欧几里得滑铁卢数学竞赛_2009EuclidSolution

合集下载

欧几里得数学竞赛_

欧几里得数学竞赛_

欧几里得数学竞赛_摘要:I.欧几里得数学竞赛概述- 竞赛起源与发展- 竞赛难度与影响力II.欧几里得数学竞赛适合人群- 参赛对象与报名方式- 竞赛对申请大学的帮助III.欧几里得数学竞赛考试内容与形式- 竞赛知识点覆盖范围- 考试时间与题型- 评分标准与奖项设置IV.欧几里得数学竞赛备考策略- 备考时间安排- 推荐教材与学习资源- 真题练习与模拟考试V.欧几里得数学竞赛在中国的发展- 我国学生参赛情况- 相关培训机构与课程- 对我国数学教育的启示与影响正文:欧几里得数学竞赛(Euclid Mathematics Contest)是由加拿大滑铁卢大学(University of Waterloo)数学与计算机学院主办的面向全球高中生的数学竞赛,被誉为数学界的托福。

竞赛始于1963年,每年有来自10多个国家和地区、1850多所学校的2万多名学生参加。

该竞赛在数学界中已经得到广泛认可,对学生的申请大学具有很大的帮助。

欧几里得数学竞赛适合人群广泛,参赛对象为全球各地的高中生,报名方式一般由学校统一组织。

竞赛难度较高,知识点覆盖范围广泛,对学生的逻辑思维能力和数学素养有很高的要求。

在我国,许多学生通过参加欧几里得数学竞赛,提高了自身的数学能力,为申请国内外知名大学提供了有力的砝码。

欧几里得数学竞赛的考试内容主要包括代数、几何、组合、数论等多个方面,考试形式为笔试,分为简答题和解答题。

评分标准根据解题过程的准确性、完整性和创新性来评判,奖项分为金、银、铜三个等级。

对于如何备考欧几里得数学竞赛,建议学生合理安排时间,提前准备。

推荐使用一些经典的数学竞赛教材和在线学习资源,如《数学竞赛题型解析》、《欧几里得数学竞赛真题详解》等。

在备考过程中,要注重真题练习和模拟考试,以检验自己的学习效果,逐步提高自己的解题能力。

近年来,随着我国学生对国际数学竞赛的热情逐渐高涨,欧几里得数学竞赛在我国也得到了广泛关注。

越来越多的学生通过参加欧几里得数学竞赛,提升了自己的数学素养,为我国数学教育的发展带来了新的启示和影响。

几何学大师欧几里得

几何学大师欧几里得

几何学大师欧几里得今天我为大家介绍的是几何大师——欧几里得.我们先来了解一下他的生前事迹.我们现在学习的几何学,就是由古希腊数学家欧几里德(公无前330—前275)创立的。

他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。

在公元前337年,马其顿国王菲力二世用武力征服了希腊各城邦.次年亚历山大即位,在很短的时间内,他继承父业,开创了一个横跨欧、亚、非三大陆的马其顿王国.在地中海沿岸的尼罗河三角洲上,亚历山大建立了以他名字命名的城市———亚历山大城,并把它作为这个庞大帝国的文化、商业和工业中心,同时也是科学思想的中心.这儿有称誉世界拥有70万卷藏书的图书馆,还有博物馆、天文台和闻名天下的博学园,成为当时欧洲乃至世界数学的中心.欧几里得就是被亚历山大的后继者———托勒密一世重金聘请到博学园的教师.古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。

欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。

欧几里得本人始终是个难解的秘密.无人知道他的生死年月和诞生地,惟一可以确定的是他在托勒密一世(公元前305年至公元前285年)执政期间在亚历山大城工作过.根据一些间接的记载推测,欧几里得早年可能在雅典接受过教育,而且曾就学、工作于柏拉图学院,因此熟知希腊的数学知识.我们来看两个有关欧几里得的故事.第一个故事是:有一天,托勒密国王问欧几里得,除了他的《几何原本》之外,有没有其他学习几何的捷径.欧几里得回答道:“几何无王者之道.”意思是在几何学里,没有专门为国王铺设的大路.这句话后来被引申为“求知无坦途”,成为千古传诵的箴言.另一个故事说:一个学生才开始学习第一个几何命题,就问学了几何之后将得到些什么.欧几里得说:“给他三个钱币让他走吧,因为他只想在学习中获取实利.”从古籍记载的这两则故事可知,欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧、急功近利的作风.欧几里得是一个杰出的科学家,他标志着当时的科学中心从雅典过渡到了亚历山大城.欧几里得的名字与几何学是不可分割的,因为他写了一本几何教科书《几何原本》,此书至今还是几何学的权威著作,当然也经过一些修改.印刷术发明后,出过一千多版.“我学了欧几里得”就是“我学了几何学”的同义语,这句话并非很久以前说的.所以,欧几里得是最成功的不朽的几何教科书作者.然而欧几里得作为一位数学家的盛名,并非由于他本人的研究成果.在他书中,只有极少的定理是他自己创立的.他所做的一切,以及使他成为伟大的数学家的,就在于他利用了泰勒斯时代以来积累的数学知识,把两个半世纪的劳动成果条理化、系统化,并且编纂成了一本著作.在编写此书时,他一开始就推出一系列令人钦佩的简要而精致的公理和公式.然后他将定理一一排列,其逻辑性非常强,几乎无须改进.历来公认归功于欧几里得本人的惟一定理,就是他为毕达哥拉斯定理提出的证明.虽然他的这一伟大论著主要涉及几何学,但也提出了比率和比例的问题,以及现在为大家所知的数论问题,正是欧几里得证明了素数是无限的.他还通过一系列干脆利落至今尚未作过任何改进的论证,证明了2的平方根是无理数.他还通过将光视为直线,使光学成为几何学的一部分.当然欧几里得并没有概括希腊的全部数学,甚至也没有概括全部几何学.继他之后,希腊数学在相当长时期内,一直生气蓬勃,像阿波洛尼乌斯和阿基米德等人,都为数学增添了一大笔财富.。

欧几里得——精选推荐

欧几里得——精选推荐

幸进入学园之后,便全身心地沉潜在数学王国里。

他潜心求索,以继承柏拉图的学术为奋斗目标,除此之外,他哪儿也不去,什么也不干,熬夜翻阅和研究了柏拉图的所有著作和手稿,可以说,连柏拉图的亲传弟子也没有谁能像他那样熟悉柏拉图的学术思想、数学理论。

经过对柏拉图思想的深入探究,他得出结论:图形是神绘制的,所有一切现象的逻辑规律都体现在图形之中。

因此,对智慧训练,就应该从图形为主要研究对象的几何学开始。

他确实领悟到了柏拉图思想的要旨,并开始沿着柏拉图当年走过的道路,把几何学的研究作为自己的主要任务,并最终取得了世人敬仰的成就。

几何学贡献最早的几何学兴起于公元前7世纪的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。

在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。

大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。

因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。

欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。

他下定决心,要在有生之年完成这一工作。

为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。

在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。

经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。

这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。

欧几里得滑铁卢数学竞赛_2010EuclidSolution

欧几里得滑铁卢数学竞赛_2010EuclidSolution

Since Bea flies at a constant speed, then the ratio of the two distances equals the ratio of
the corresponding times.
HF 60 minutes 4
Therefore, =
=.
GF 45 minutes 3
(b) Solution 1
Since ∠OP B = 90◦, then OP and P B are perpendicular, so the product of their slopes
is −1.
4−0 4
4−0
4
The slope of OP is
= and the slope of P B is
Since F GH is right-angled at F , then F GH must be similar to a 3-4-5 triangle, and
HG 5
so = .
GF 3
In
particular,
this
means
that
the
ratio
of
the
times
flying
H
to
Wednesday, April 7, 2010
Solutions
©2010 Centre for Education in Mathematics and Computing
2010 Euclid Contest Solutions
Page 2
1. (a) Solution 1 Since 3x = 27, then 3x+2 = 3x32 = 27 · 9 = 243.

欧几里得滑铁卢数学竞赛_2003EuclidContest

欧几里得滑铁卢数学竞赛_2003EuclidContest

parts are indicated like this: .Enter the answer in the appropriate box in the answer booklet.be given for a correct answer which is placed in the box. Part marks will be awarded parts are indicated like this: .Finished solutions must be written in the appropriate location in the answer booklet.Sybasei Anywhere SolutionsCanadian Instituteof ActuariesChartered Accountants Great West Lifeand London LifeNOTE: 1.Please read the instructions on the front cover of this booklet.2.Place all answers in the answer booklet provided. 3.For questions marked “”, full marks will be given for a correct answer placed in theappropriate box in the answer booklet. Marks may be given for work shown . Students are strongly encouraged to show their work.4.It is expected that all calculations and answers will be expressed as exact numbers such as4π, 27+, etc., except where otherwise indicated.1.(a)In the diagram, the parabola cuts the y -axis at the point 08,(), cuts the x -axis at the points 20,() and 40,(),and passes through the point a ,8(). What is the value of a ?(b)The quadratic equation x x k 260++= has two equal roots. What is the value of k ?(c)The line y x =+22 intersects the parabola y x x c =+23– at two points. One of these points is 14,(). Determine the coordinates of the second point of intersection.2.(a)If 090o o <<x and 3150sin cos x ()−()=o , what is the value of x to the nearest tenth of a degree?(b)In the diagram, ∆ABC is right-angled at B and AC =20. If sin C =35, what is the length ofside BC ?(c) A helicopter is flying due west over level ground at a constant altitude of 222 m and at aconstant speed. A lazy, stationary goat, which is due west of the helicopter, takes two measurements of the angle between the ground and the helicopter. The first measurement the goat makes is 6° and the second measurement, which he makes 1 minute later, is 75°. If the helicopter has not yet passed over the goat, as shown, how fast is the helicopter travelling to the nearest kilometre per hour?A B C3.(a)The function f x () has the property that f x f x 2323+()=()+ for all x .If f 06()=, what is the value of f 9()?(b)Suppose that the functions f x () and g x () satisfy the system of equations f x g x x x f x g x x ()+()=++()+()=+36242422for all x . Determine the values of x for which f x g x ()=().4.(a)In a short-track speed skating event, there are five finalists including two Canadians. Thefirst three skaters to finish the race win a medal. If all finalists have the same chance of finishing in any position, what is the probability that neither Canadian wins a medal?(b)Determine the number of positive integers less than or equal to 300 that are multiples of 3or 5, but are not multiples of 10 or 15.5.(a)In the series of odd numbers 1357911131517192123+++++––––––... the signs alternate every three terms, as shown. What is the sum of the first 300 terms of the series?(b)A two-digit number has the property that the square of its tens digit plus ten times its units digit equals the square of its units digit plus ten times its tens digit. Determine all two-digit numbers which have this property, and are prime numbers.6.(a)A lead box contains samples of two radioactive isotopes of iron. Isotope A decays so that after every 6 minutes, the number of atoms remaining is halved. Initially, there are twice as many atoms of isotope A as of isotope B, and after 24 minutes there are the same number of atoms of each isotope. How long does it take the number of atoms of isotopeB to halve?(b)Solve the system of equations:log log log log 103102102103113x y x y ()+()=()−()=7.(a) A regular hexagon is a six-sided figure which has all of its angles equal and all of its side lengths equal. Inthe diagram, ABCDEF is a regular hexagon with anarea of 36. The region common to the equilateral triangles ACE and BDF is a hexagon, which isshaded as shown. What is the area of the shadedhexagon?(b)At the Big Top Circus, H erc theHuman Cannonball is fired out of the cannon at ground level. (For the safetyof the spectators, the cannon ispartially buried in the sand floor.)Herc ’s trajectory is a parabola until he catches the vertical safety net, on his way down, at point B . Point B is 64 mdirectly above point C on the floor ofthe tent. If Herc reaches a maximumheight of 100 m, directly above a point30 m from the cannon, determine thehorizontal distance from the cannon tothe net.8.(a) A circle with its centre on the y-axis intersects the graph of y x = at the origin, O , and exactly two otherdistinct points, A and B , as shown. Prove that the ratioof the area of triangle ABO to the area of the circle isalways 1 : π.(b)In the diagram, triangle ABC has a right angle at Band M is the midpoint of BC . A circle is drawn usingBC as its diameter. P is the point of intersection of thecircle with AC . The tangent to the circle at Pcuts ABat Q . Prove that QM is parallel to AC .9.Cyclic quadrilateral ABCD has AB AD ==1, CD ABC =∠cos , and cos –∠=BAD 13. Provethat BC is a diameter of the circumscribed circle.10. A positive integer n is called “savage” if the integers 12,,...,n{} can be partitioned into three sets A, B and C such thati)the sum of the elements in each of A, B, and C is the same,ii)A contains only odd numbers,iii)B contains only even numbers, andiv)C contains every multiple of 3 (and possibly other numbers).(a)Show that 8 is a savage integer.(b)Prove that if n is an even savage integer, then n+412is an integer.(c)Determine all even savage integers less than 100.PUBLICATIONS2003 Euclid Contest(English)。

欧几里得滑铁卢数学竞赛_2002EuclidSolution

欧几里得滑铁卢数学竞赛_2002EuclidSolution

Solution 2
Since TM AB, and CM = MB, then CT = TA = AB.
A
Join T to B.
T
Since ∠ABC = 90o, then AC is the diameter of a circle
passing through A, C and B, with T as its centre.
Solution 3
2x2 +1 x2 − 3
=
2x2 − 6 + x2 − 3
7
( ) 2 x2 − 3 + 7
= x2 − 3
=
2
+
7 x2 −
3
Therefore, A = 7.
Answer: A = 7
(c) Solution 1
The original parabola can be written as
2002 Euclid Solutions
3
2x + 3 = 8x + 15
−12 = 6x
x = −2
Substituting x = −2 into the first equation, we obtain y = 2(−2) + 3 = −1, so the point of intersection is (−2, −1), which must lie on the third line.
common angle and each have a right angle.
B
M
C
But CM = 1 so CT = CM = 1 , and thus CT = AT = AB , ie. AB = 1 or sin(∠ACB) = 1 .

滑铁卢大学欧几里得数学竞赛

滑铁卢大学欧几里得数学竞赛

该考试是学生申请滑铁卢大学数学学院本科专业的重要参考。

众所周知滑铁卢大学数学学院是全球最大的数学、统计学、计算机科学等学科教学中心比尔•盖茨曾于 2005 年、 2008 年两度造访该大学是比尔•盖茨大学巡回讲座的北美5 所大学之一也是唯一的一所加拿大大学。

考试范围:大部分的题目基于高三或者12年级数学课学习的内容。

我们的竞赛题目主要包括以下的数学内容:Ø 欧几里德几何和解析几何Ø 三角函数,包括函数、图像、性质、正弦余弦定理Ø 指数和对数函数Ø 函数符号Ø 方程组Ø 多项式,包括二次三次方程根的关系、余数定理Ø 数列、数列求和Ø 简单的计算问题Ø 数字的性质考试时间为 2.5 个小时, 10 道题。

每题 10 分,共计 100 分。

考试题有两种,一种只需要给出答案,另一种则需要写出整个解题过程,这种题的最终得分不仅取决于结果正确与否,还与解题思路有关。

Ø 笔试Ø 10道题:大部分要求写出完整的解题步骤;Ø 根据解题的方法和步骤获得相应的分数;Ø 步骤不完整的解题无法得到全部的分数;Ø 竞赛时长为2.5小时;Ø 共100分;Ø 可以使用无编程无绘图功能的计算器;Ø 不可以使用任何可接入互联网的设备,如手机、平板电脑等均不能携带如何准备:Ø CEMC官网可以免费下载历年的竞赛原题以及标准答案;Ø CEMC官网提供各种免费的数学资源;Ø www.cemc.uwaterloo.ca;如何参加:Ø 学校可以申请注册为考点,安排组织欧几里德数学竞赛;Ø 学生需要通过自己所在的学校报名参加欧几里德数学竞赛;Ø 如果学生所在学校未注册考点,学生可以报名在我们北京或者上海的考点参加欧几里德数学竞赛;Ø 竞赛结束之后,学校需要将全部的试卷寄回滑铁卢大学;Ø 改卷结束之后,滑铁卢大学会在CEMC官网录入学生的成绩。

澳大利亚数学竞赛欧几里得

澳大利亚数学竞赛欧几里得

澳大利亚数学竞赛欧几里得澳大利亚数学竞赛欧几里得澳大利亚数学竞赛是全球数学竞赛中备受瞩目的一项赛事。

作为其中的一道经典数学题目,欧几里得算法一直备受关注。

欧几里得算法是一种求解最大公约数的简洁有效的方法,尽管它诞生于古希腊时期,却至今仍然被广泛应用于数学和计算机科学领域。

欧几里得(Euclid)是古代希腊的一位著名数学家,他是一位卓越的几何学家和教育家。

在他的名著《几何原本》中,欧几里得提出了一种求解最大公约数的方法,即欧几里得算法。

这个方法的基本思想是通过不断相除和取余数的操作,迭代地缩小两个数之间的差距,直到余数为零为止。

假设我们要求解两个整数a和b的最大公约数,我们可以一直进行欧几里得算法的迭代操作,直到最后余数为零。

具体步骤如下:1. 将a除以b,得到商q和余数r。

2. 如果r等于零,那么b就是最大公约数;否则,我们继续使用b和r 重复上述步骤。

欧几里得算法之所以高效,是因为它能够将求解最大公约数的问题转化为更小规模的问题,并且每一次操作都能够缩小问题的规模。

这种迭代的特性使得欧几里得算法在实际应用中非常有用。

在澳大利亚数学竞赛中,欧几里得算法常常出现在各种题目中。

一些题目会要求学生使用欧几里得算法求解最大公约数,而其他一些题目则会考察学生对欧几里得算法的理解和应用。

这不仅考验了学生的算法设计能力,还培养了学生的逻辑思维和问题解决能力。

通过参与澳大利亚数学竞赛,学生们可以掌握欧几里得算法的基本原理和应用,培养他们的数学思维和解决问题的能力。

欧几里得算法的迭代过程深深植根于数学中,同时也为学生们提供了一种思维工具,让他们能够更好地面对复杂的数学问题。

不仅在数学竞赛中,欧几里得算法在现实生活中也有广泛的应用。

它可以用于简化分数、化简系数、求解线性方程等多个领域。

同时,在计算机科学领域,欧几里得算法也被广泛运用于处理大数、密码学等方面。

澳大利亚数学竞赛将欧几里得算法作为一道重要题目,不仅是为了考验学生的数学素质,更是为了让学生认识到数学与现实生活之间的联系,培养他们的创新思维和问题解决能力。

欧几里得数学竞赛证书

欧几里得数学竞赛证书

欧几里得数学竞赛证书在数学领域,欧几里得数学竞赛是一项备受推崇的竞赛活动。

该竞赛以欧几里得(Euclid)为名,致力于鼓励学生在数学领域的创造力和解决问题的能力。

参加这项竞赛的学生可以通过解决一系列的数学问题来展示他们的数学才华。

获得欧几里得数学竞赛证书是对参赛者的认可和表彰。

这个证书不仅代表着学生在数学竞赛中的优秀表现,还可以作为他们学术成就的一项荣誉。

这个证书可以是个人竞赛的证明,也可以是团体竞赛的证明,取决于竞赛的类型和规模。

欧几里得数学竞赛证书通常包括参赛者的姓名、竞赛的名称和日期、以及竞赛成绩等信息。

获得这个证书需要参赛者在竞赛中取得一定的成绩或达到一定的标准。

这可以是通过解答一定数量的问题、获得高分或达到某个等级等方式来评判。

欧几里得数学竞赛证书在学术界和招聘过程中具有重要的意义。

在学术界,这个证书可以增加个人的学术声誉和被学术机构接纳的机会。

在招聘过程中,拥有这个证书可以显示出申请者在数学领域的才能和优秀的解决问题能力,从而提高他们的竞争力。

然而,欧几里得数学竞赛证书并不仅仅是为了荣誉和竞争力。

获得这个证书也意味着学生在数学领域的持续努力和学习。

通过参加竞赛,学生可以锻炼自己的数学思维能力、解决问题的能力和团队合作精神。

这个证书是对学生付出努力和取得成果的肯定,同时也是对他们数学兴趣和热情的鼓励。

总之,欧几里得数学竞赛证书是一项令人兴奋和具有价值的荣誉。

它代表着参赛者在数学领域的卓越表现和学术成就。

获得这个证书不仅可以增加个人的学术声誉和竞争力,还是对学生持续努力和学习的肯定。

这个证书将继续激励更多的学生追求数学领域的卓越和创新。

欧几里得滑铁卢数学竞赛_2006EuclidSolution

欧几里得滑铁卢数学竞赛_2006EuclidSolution
y = x2−2(21)x+212−212+440 = (x−21)2−212+440 = (x−21)2−441+440 = (x−21)2−1
From this form, we immediately see that the coordinates of the vertex are (21, −1).
(c) Solution 1 To determine B, the point of intersection of the lines y = x and x + 2y = 12, we set y = x in the second equation to obtain x + 2x = 12 or 3x = 12 or x = 4.
3. (a) Answer: (21, −1)
Solution 1
The x-intercepts of the given parabola are x = 20 and x = 22.
The x-coordinate of the vertex of the parabola is the average of the x-intercepts, or
10A + B
resulting number is
.
10
So we want to determine A and B so that
10A + B
A+B
=
10
2
10A + B = 5(A + B)
5A = 4B
Since A and B are digits such that 5A = 4B, then A = 4 and B = 5 is the only possibility. Therefore, n = 45. (We can quickly check that the average of the digits of n is 4.5, the number obtained by putting a decimal point between the digits of n.)

数学大师欧几里得

数学大师欧几里得

数学大师欧几里得欧几里得(Euclid,约前330—前275),约公元前330年生于雅典。

是古希腊的数学家,亚历山大学派前期的三大数学家之一,被称为“几何之父”。

欧几里得早年在雅典的柏拉图学院受过教育,饱学了希腊古典数学各种科学文化。

由于雅典的衰落,数学界和其他科学一样处于困境。

约在公元前300年欧几里得就崭露头角,后来因统治埃及的托勒密国王的邀请客居亚力山大城,从事数学工作。

西方几何学兴起于埃及,经泰勒斯等人移于希腊的爱奥尼亚,又经毕达哥拉斯学派等传到雅典日臻成熟。

由于在希腊后期失去了独立性,导致雅典的学术文化中心向日益昌盛的埃及都城──亚历山大城转移。

此时此刻的欧几里得,以流亡者的心境,旅居亚历山大,内心燃起一股热情,要将以雅典为代表的希腊数学成果,运用前人曾经部分地采用过的严密的逻辑方法重新编纂成书。

惊世鸿著《几何原本》就是这样于公元前300年后诞生了。

说它是一本教科书,不如说它是一部与雅典数学争鸣的专著。

《几何原本》中所引用的材料一般都可追溯到古希腊数学著作,特别是希波克拉提斯的著作,他编写的第一部初等几何教科书《几何纲要》为《几何原本》提供了基础。

《几何原本》汇集了大量前人积累的数学成果,是世间少有的鸿篇巨著,被称为欧几里得几何学。

《几何原本》采用了前所未有的独特编写方式,先提出公理、公设定义,然后由简到繁证明一系列定理。

内容丰富,结构严谨,文字洗练,概念清晰,判断准确,推理周密,论证有力。

对这本书英国的数学家罗素在《西方哲学史》中是这样评价他的:欧几里得的《几何原本》毫无疑义是古往今来最伟大的著作之一,是希腊理智最完美的纪念碑之一。

欧几里得,这位希腊古典文化哺育起来的学者,运用惊人的才智,成功地树立了数学演绎体系的最初典范。

把数学引入一个崭新的领域,迈上一个新的台阶。

他的贡献就像太阳一样光辉灿烂。

欧几里得虽然生活在公元前300年左右,活跃于当时的古希腊文化中心亚历山大。

但一直到20世纪之前,欧几里得的名字几乎是几何学的同义词。

2009PascalSolution滑铁卢竞赛题答案

2009PascalSolution滑铁卢竞赛题答案

1.Calculating,2×9−√36+1=18−6+1=13.Answer:(D)2.On Saturday,Deepit worked6hours.On Sunday,he worked4hours.Therefore,he worked6+4=10hours in total on Saturday and Sunday.Answer:(E) 3.Since1piece of gum costs1cent,then1000pieces of gum cost1000cents.Since there are100cents in a dollar,the total cost is$10.00.Answer:(D) 4.Since each of the18classes has28students,then there are18×28=504students who attendthe school.On Monday,there were496students present,so504−496=8students were absent.Answer:(A) 5.The sum of the angles around any point is360◦.Therefore,5x◦+4x◦+x◦+2x◦=360◦or12x=360or x=30.Answer:(D) 6.When−1is raised to an even exponent,the result is1.When−1is raised to an odd exponent,the result is−1.Thus,(−1)5−(−1)4=−1−1=−2.Answer:(A) 7.Since P Q is horizontal and the y-coordinate of P is1,then the y-coordinate of Q is1.Since QR is vertical and the x-coordinate of R is5,then the x-coordinate of Q is5.Therefore,the coordinates of Q are(5,1).Answer:(C)8.When y=3,we have y3+yy2−y=33+332−3=27+39−3=306=5.Answer:(D)9.Since there are4♣’s in each of thefirst two columns,then at least1♣must be moved out ofeach of these columns to make sure that each column contains exactly three♣’s.Therefore,we need to move at least2♣’s in total.If we move the♣from the top left corner to the bottom right corner♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣and the♣from the second row,second column to the third row,fifth column♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣then we have exactly three♣’s in each row and each column.Therefore,since we must move at least2♣’s and we can achieve the configuration that we want by moving2♣’s,then2is the smallest number.(There are also other combinations of moves that will give the required result.)Answer:(B) 10.Solution1Since z=4and x+y=7,then x+y+z=(x+y)+z=7+4=11.Solution2Since z=4and x+z=8,then x+4=8or x=4.Since x=4and x+y=7,then4+y=7or y=3.Therefore,x+y+z=4+3+4=11.Answer:(C) 11.We write out thefive numbers to5decimal places each,without doing any rounding:5.076=5.07666...5.076=5.07676...5.07=5.070005.076=5.076005.076=5.07607...We can use these representations to order the numbers as5.07000,5.07600,5.07607...,5.07666...,5.07676...so the number in the middle is5.076.Answer:(E) 12.Solution1Since there are24hours in a day,Francis spends13×24=8hours sleeping.Also,he spends14×24=6hours studying,and18×24=3hours eating.The number of hours that he has left is24−8−6−3=7hours. Solution2Francis spends13+14+18=8+6+324=1724of a day either sleeping,studying or eating.This leaves him1−1724=724of his day.Since there are24hours in a full day,then he has7hours left.Answer:(D) 13.Solution1Since the sum of the angles in a triangle is180◦,then∠QP S=180◦−∠P QS−∠P SQ=180◦−48◦−38◦=94◦Therefore,∠RP S=∠QP S−∠QP R=94◦−67◦=27◦.Solution2Since the sum of the angles in a triangle is180◦,then∠QRP=180◦−∠P QR−∠QP R=180◦−48◦−67◦=65◦Therefore,∠P RS=180◦−∠P RQ=180◦−65◦=115◦.Using P RS,∠RP S=180◦−∠P RS−∠P SR=180◦−115◦−38◦=27◦Answer:(A)14.The perimeter of the shaded region equals the sum of the lengths of OP and OQ plus the lengthof arc P Q.Each of OP and OQ has length5.Arc P Q forms34of the circle with centre O and radius5,because the missing portion corre-sponds to a central angle of90◦,and so is14of the total circle.Thus,the length of arc P Q is34of the circumference of this circle,or34(2π(5))=152π.Therefore,the perimeter is5+5+152π≈33.56which,of the given answers,is closest to34.Answer:(A)15.After some trial and error,we obtain the two lists{4,5,7,8,9}and{3,6,7,8,9}.Why are these the only two?If the largest number of thefive integers was8,then the largest that the sum could be would be8+7+6+5+4=30,which is too small.This tells us that we must include one9in the list.(We cannot include any number larger than9,since each number must be a single-digit number.)Therefore,the sum of the remaining four numbers is33−9=24.If the largest of the four remaining numbers is7,then their largest possible sum would be 7+6+5+4=22,which is too small.Therefore,we also need to include an8in the list.Thus,the sum of the remaining three numbers is24−8=16.If the largest of the three remaining numbers is6,then their largest possible sum would be 6+5+4=15,which is too small.Therefore,we also need to include an7in the list.Thus,the sum of the remaining two numbers is16−7=9.This tells us that we need two different positive integers,each less than7,that add to9.These must be3and6or4and5.This gives us the two lists above,and shows that they are the only two such lists.Answer:(B) 16.The area of the entire grid is4×9=36.The area of P QR is12(QR)(P Q)=12(3)(4)=6.The area of ST U is12(ST)(UT)=12(4)(3)=6.The area of the rectangle with base RS is2×4=8.Therefore,the total shaded area is6+6+8=20and so the unshaded area is36−20=16.The ratio of the shaded area to the unshaded area is20:16=5:4.Answer:(E) 17.We can suppose that each test is worth100marks.Since the average of herfive test marks is73%,then the total number of marks that she received is5×73=365.Once her teacher removes a mark,her new average is76%so the sum of the remaining four marks is4×76=304.Since365−304=61,then the mark removed was61%.Answer:(B) 18.Solution1From December31,1988to December31,2008,a total of20years have elapsed.A time period of20years is the same asfive4year periods.Thus,the population of Arloe has doubled 5times over this period to its total of 3456.Doubling 5times is equivalent to multiplying by 25=32.Therefore,the population of Arloe on December 31,1988was 345632=108.Solution 2The population doubles every 4years going forward,so is halved every 4years going backwards in time.The population on December 31,2008was 3456.The population on December 31,2004was 3456÷2=1728.The population on December 31,2000was 1728÷2=864.The population on December 31,1996was 864÷2=432.The population on December 31,1992was 432÷2=216.The population on December 31,1988was 216÷2=108.Answer:(D)19.Since Pat drives 60km at 80km/h,this takes him 60km 80km/h =34h.Since Pat has 2hours in total to complete the trip,then he has 2−34=54hours left to complete the remaining 150−60=90km.Therefore,he must travel at 90km 54h =360km/h =72km/h.Answer:(C)20.Since the three numbers in each straight line must have a product of 3240and must include 45,then the other two numbers in each line must have a product of 3240=72.The possible pairs of positive integers are 1and 72,2and 36,3and 24,4and 18,6and 12,and 8and 9.The sums of the numbers in these pairs are 73,38,27,22,18,and 17.To maximize the sum of the eight numbers,we want to choose the pairs with the largest possible sums,so we choose the first four pairs.Thus,the largest possible sum of the eight numbers is 73+38+27+22=160.Answer:(E)21.Since each of Alice and Bob rolls one 6-sided die,then there are 6×6=36possible combinationsof rolls.Each of these 36possibilities is equally likely.Alice wins when the two values rolled differ by 1.The possible combinations that differ by 1are (1,2),(2,3),(3,4),(4,5),(5,6),(2,1),(3,2),(4,3),(5,4),and (6,5).Therefore,there are 10combinations when Alice wins.Thus her probability of winning is 1036=518.Answer:(C)22.Diameters P Q and RS cross at the centre of the circle,which we call O .The area of the shaded region is the sum of the areas of P OS and ROQ plus the sum of the areas of sectors P OR and SOQ .Each of P OS and ROQ is right-angled and has its two perpendicular sides of length 4(the radius of the circle).Therefore,the area of each of these triangles is 12(4)(4)=8.Each of sector P OR and sector SOQ has area 14of the total area of the circle,as each hascentral angle 90◦(that is,∠P OR =∠SOQ =90◦)and 90◦is one-quarter of the total central angle.Therefore,each sector has area 14(π(42))=14(16π)=4π.Thus,the total shaded area is 2(8)+2(4π)=16+8π.Answer:(E)23.The maximum possible mass of a given coin is 7×(1+0.0214)=7×1.0214=7.1498g.The minimum possible mass of a given coin is 7×(1−0.0214)=7×0.9786=6.8502g.What are the possible numbers of coins that could make up 1000g?To find the largest number of coins,we want the coins to be as light as possible.If all of the coins were as light as possible,we would have 10006.8502≈145.98coins.Now,we cannot have a non-integer number of coins.This means that we must have at most 145coins.(If we had 146coins,the total mass would have to be at least 146×6.8502=1000.1292g,which is too heavy.)Practically,we can get 145coins to have a total mass of 1000g by taking 145coins at the minimum possible mass and making each slightly heavier.To find the smallest number of coins,we want the coins to be as heavy as possible.If all of the coins were as heavy as possible,we would have 10007.1498≈139.86coins.Again,we cannot have a non-integer number of coins.This means that we must have at least 140coins.(If we had 139coins,the total mass would be at most 139×7.1498=993.8222g,which is too light.)Therefore,the difference between the largest possible number and smallest possible number of coins is 145−140=5.Answer:(B)24.Divide the large cube of side length 40into 8smaller cubes of side length 20,by making threecuts of the large cube through its centre using planes parallel to the pairs of faces.Each of these small cubes has the centre of the large cube as its vertex.Each of these small cubes also just encloses one of the large spheres,in the sense that the sphere just touches each of the faces of the small cube.We call the sphere that fits in the central space the inner sphere.To make this sphere as large possible,its centre will be at the centre of the large cube.(If this was not the case,the centre be outside one of the small cubes,and so would be farther away from one of the large spheres than from another.)To find the radius of the inner sphere,we must find the shortest distance from the centre of the large cube (that is,the centre of the inner sphere)to one of the large spheres.(Think of starting the inner sphere as a point at the centre of the cube and inflating it until it just touches the large spheres.)Consider one of these small cubes and the sphere inside it.Join the centre of the small cube to one of its vertices.Since the small cube has side length 20,then this new segment has length √102+102+102or √300,since to get from the centre to a vertex,we must go over 10,down 10and across 10.(See below for an explanation of why this distance is thus √300.)The inner sphere will touch the large sphere along this segment.Thus,the radius of the inner sphere will be this distance (√300)minus the radius of the large sphere (10),and so is √300−10≈7.32.Of the given answers,this is closest to 7.3.(We need to justify why the distance from the centre of the small cube to its vertex is √102+102+102.Divide the small cube into 8tiny cubes of side length 10each.The distance from the centre of the small cube to its vertex is equal to the length of a diagonal of one of the tiny cubes.Consider a rectangular prism with edge lengths a ,b and c .What is the length,d ,of the diag-onal inside the prism?By the Pythagorean Theorem,a face with side lengths a and b has a diagonal of length √a 2+b 2.Consider the triangle formed by this diagonal,the diagonal of the prism and one of the vertical edges of the prism,of length c .cThis triangle is right-angled since the vertical edge is perpendicular to the top face.By the Pythagorean Theorem again,d 2=(√a 2+b 2)2+c 2,so d 2=a 2+b 2+c 2or d =√a 2+b 2+c 2.)Answer:(B)25.The three machines operate in a way such that if the two numbers in the output have a commonfactor larger than 1,then the two numbers in the input would have to have a common factor larger than 1.To see this,let us look at each machine separately.We use the fact that if two numbers are each multiples of d ,then their sum and difference are also multiples of d .Suppose that (m,n )is input into Machine A.The output is (n,m ).If n and m have a common factor larger than 1,then m and n do as well.Suppose that (m,n )is input into Machine B.The output is (m +3n,n ).If m +3n and n have a common factor d ,then (m +3n )−n −n −n =m has a factor of d as each part of the subtraction is a multiple of d .Therefore,m and n have a common factor of d .Suppose that (m,n )is input into Machine C.The output is (m −2n,n ).If m −2n and n have a common factor d ,then (m −2n )+n +n =m has a factor of d as each part of the addition is a multiple of d .Therefore,m and n have a common factor of d .In each case,any common factor that exists in the output is present in the input.Let us look at the numbers in the five candidates.After some work,we can find the prime factorizations of the six integers:2009=7(287)=7(7)(41)1016=8(127)=2(2)(2)(127)1004=4(251)=2(2)(251)1002=2(501)=2(3)(167)1008=8(126)=8(3)(42)=16(3)(3)(7)=2(2)(2)(2)(3)(3)(7)1032=8(129)=8(3)(43)=2(2)(2)(3)(43)Therefore,the only one of 1002,1004,1008,1016,1032that has a common factor larger than 1with 2009is 1008,which has a common factor of 7with 2009.How does this help?Since2009and1008have a common factor of7,then whatever pair was input to produce(2009,1008)must have also had a common factor of7.Also,the pair that was input to create this pair also had a common factor of7.This can be traced back through every step to say that the initial pair that produces the eventual output of(2009,1008)must have a common factor of7.Thus,(2009,1008)cannot have come from(0,1).Notes:•This does not tell us that the other four pairs necessarily work.It does tell us,though, that(2009,1008)cannot work.•We can trace the other four outputs back to(0,1)with some effort.(This process is easier to do than it is to describe!)To do this,we notice that if the output of Machine A was(a,b),then its input was(b,a), since Machine A switches the two entries.Also,if the output of Machine B was(a,b),then its input was(a−3b,b),since MachineB adds three times the second number to thefirst.Lastly,if the output of Machine C was(a,b),then its input was(a+2b,b),since MachineC subtracts two times the second number from thefirst.Consider(2009,1016)for example.We try tofind a way from(2009,1016)back to(0,1).We only need tofind one way that works,rather than looking for a specific way.We note before doing this that starting with an input of(m,n)and then applying MachineB then MachineC gives an output of((m+3n)−2n,n)=(m+n,n).Thus,if applyingMachine B then Machine C(we call this combination“Machine BC”)gives an output of (a,b),then its input must have been(a−b,b).We can use this combined machine to try to work backwards and arrive at(0,1).This will simplify the process and help us avoid negative numbers.We do this by making a chart and by attempting to make the larger number smaller wher-ever possible:Output Machine Input(2009,1016)BC(993,1016)(993,1016)A(1016,993)(1016,993)BC(23,993)(23,993)A(993,23)(993,23)BC,43times(4,23)(4,23)A(23,4)(23,4)BC,5times(3,4)(3,4)A(4,3)(4,3)BC(1,3)(1,3)A(3,1)(3,1)B(0,1)Therefore,by going up through this table,we can see a way to get from an initial input of(0,1)to afinal output of(2009,1016).In a similar way,we can show that we can obtainfinal outputs of each of(2009,1004), (2009,1002),and(2009,1032).Answer:(D)。

欧几里得滑铁卢数学竞赛_2011EuclidSolution

欧几里得滑铁卢数学竞赛_2011EuclidSolution

=
6,
then
∠BDA
=
∠BAD
=
1 2
(180◦
− ∠DBA)
=
1 2
(180◦

30◦)
=
75◦.
We calculate the length of AD.
Method 1
AD
BA
By the Sine Law in DBA, we have
=
.
sin(∠DBA) sin(∠BDA)
6 sin(30◦)
4. (a) We consider choosing the three numbers all at once. We list the possible sets of three numbers that can be chosen:
{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}
∠B C D)
=
1 2
(180◦

60◦)
=
60◦.
Therefore, BCD is equilateral, and so BD = BC = CD = 6.
Consider DBA.
Note that ∠DBA = 90◦ − ∠CBD = 90◦ − 60◦ = 30◦.
Since
BD
=
BA
∠ADC = 360◦ − ∠ADB − ∠CDB = 360◦ − 130◦ − 150◦ = 80◦ .
(c) By the Pythag√orean Theorem in EAD, we have EA2 +AD2 = ED2 or 122 +AD2 = 132, and so AD = 169 − 144 = 5, since AD > 0. By the Pythag√orean Theorem in ACD, we have AC2 + CD2 = AD2 or AC2 + 42 = 52, and so AC = 25 − 16 = 3, since AC > 0. (We could also have determined the lengths of AD and AC by recognizing 3-4-5 and 5-12-13 right-angled triangles.) By the Pythag√orean The√orem in ABC, we have AB2 + BC2 = AC2 or AB2 + 22 = 32, and so AB = 9 − 4 = 5, since AB > 0.

欧几里得滑铁卢数学竞赛_2008EuclidSolution

欧几里得滑铁卢数学竞赛_2008EuclidSolution

(We can check this using the given example. We might also have been able to see initially
that the average of the numbers inside the square frame is always the middle number.)
Tuesday, April 15, 2008
Solutions
c 2008 Centre for Education in Mathematics and Computing
2008 Euclid Contest Solutions
1. (a) Solution 1 By the Pythagorean Theorem in ADB,
Since A(5, 0) lies on the line, then 0 = 5 + b so b = −5, so the line has equation y = x − 5.
To find the intersection of the line with parabola, we use the two equations and equate:
Therefore, the sum of the numbers in the frame is
x + x − 1 + x + 1 + x − 8 + x − 7 + x − 6 + x + 6 + x + 7 + x + 8 = 9x
Thus, the sum of numbers in the frame is 9 times the middle number.

2009滑铁卢竞赛试题

2009滑铁卢竞赛试题
y
(c) The point (k, k) lies on the line segment AB
shown in the diagram. Determine the value
of k.
A(0, 4)
O
x B(8, 4)
2.
(a) What is the sum of the two numbers that satisfy the equation x2 − 6x − 7 = 0?
Euclid Contest
Tuesday, April 7, 2009
C.M.C. Sponsors
C.M.C. Supporter
Chartered Accountants
Time:
2
1 2
hours
c 2009 Centre for Education in Mathematics and Computing
(b) Suppose that a(x + b(x + 3)) = 2(x + 6) for all values of x. Determine a and b.
5.
(a) In the diagram, ABC is isosceles with
C
AC = BC = 7. Point D is on AB with
of angle A.
a
c
C
b
A
6.
(a) An integer n, with 100 ≤ n ≤ 999, is chosen at random. What is the probability
that the sum of the digits of n is 24?

欧几里得滑铁卢数学竞赛_2009EuclidSolution

欧几里得滑铁卢数学竞赛_2009EuclidSolution

Solution 2
We label the point (k, k) as K.
Since K lies on the line segment AB, then the slope of AK equals the slope of AB.
4 − (−4) 8
Line segment AB joins (0, 4) to (8, −4), so has slope
Since this equation is true for all values of x, then the coefficients on the left side and right side must be equal, so a + ab = 2 and 3ab = 12. From the second equation, ab = 4 so the first equation becomes a + 4 = 2 or a = −2. Since ab = 4, then −2b = 4 and so b = −2. Thus, a = b = −2.
Canadian Mathematics Competition
An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario
2009 Euclid Contest
Solution 2
Since x3 − 6x2 + 5x = 0, then x(x2 − 6x + 5) = 0 or x(x − 5)(x − 1) = 0.
The three roots of this equation are x = 0, x = 1 and x = 5.

欧几里得数学竞赛奖项设置

欧几里得数学竞赛奖项设置

欧几里得数学竞赛奖项设置
欧几里得数学竞赛(Euclid Mathematics Contest)是由加拿大滑铁卢大学的数学院(Centre for Education in Mathematics and Computing, CEMC)主办的一项国际性高中数学竞赛。

该竞赛为全球高中生提供了一个展示数学才能的平台,并设置了以下奖项:
个人奖项:
Certificate of Distinction:颁发给在全球参赛者中排名前25%的学生。

Contest Medal:由CEMC决定,通常授予每个学校表现最优秀的学生。

Honour Rolls:根据成绩分设不同的荣誉榜,如全国荣誉榜、省级荣誉榜等。

团队奖项:
虽然主要以个人形式参加,但竞赛可能也会基于学校或地区团队整体成绩进行评价,并设立相应的团队奖项。

区域奖项:
根据成绩,可能会评出不同等级的奖项,比如针对加拿大区域的Zone、Provincial和National级别奖项。

其他表彰:
高分选手可能还会获得额外的证书或其他形式的表彰。

需要注意的是,具体的奖项设置以及获奖标准可能会随着年份的不同有所调整,请参考当年竞赛官方发布的最新公告和规则。

欧几里得滑铁卢数学竞赛_2001EuclidSolution

欧几里得滑铁卢数学竞赛_2001EuclidSolution

Solution
If f (k) = k , then k2 – 3k – 5 = k
k2 – 4k – 5 = 0
(k – 5)(k + 1) = 0
so
k = 5 or k = –1.
(c) Determine all (x, y) such that x2 + y2 = 25 and x – y = 1.
25
Therefore BC = 59 m to the nearest metre.
Solution 2
Since QR AC, ∠QRP = ∠ BAC (alternating angles).
B
This means ∆ ABC ~ ∆ RPQ (two equal angles).
By Pythagoras, PR2 = QP2 + QR2
2. (a) The vertex of the parabola y = (x – b)2 + b + h has coordinates (2, 5). What is the value of h?
Solution Since the x-coordinate of the vertex is 2, then b = 2. Since the y-coordinate of the vertex is 5, then b + h = 5. Since b = 2, then h = 3.
Solution
Let n be the smallest integer in one of these sequences.
So we want to solve the equation n2 + (n + 1)2 + (n + 2)2 = (n + 3)2 + (n + 4)2 (translating the

欧几里德数学竞赛简介EuclidContest滑铁卢大学UofWaterloo

欧几里德数学竞赛简介EuclidContest滑铁卢大学UofWaterloo

欧几里德数学竞赛简介EuclidContest滑铁卢大学UofWaterloo滑铁卢大学(U of Waterloo)的欧几里德数学竞赛(Euclid Contest)---------加拿大“数学托福”的考试考试简介滑铁卢大学始建于1957年,在加拿大最权威的教育杂志Maclean`s(麦克林)的排名榜上,连续五年综合排名第一第二。

滑铁卢大学设有加拿大唯一一所数学学院,这也是北美乃至全世界最大的数学学院。

该学院拥有计算机科学、精算、生物信息、数学/会计、数学/工商管理等多种国际热门专业,每年接纳全世界105万名学生申请,却只有100名佼佼者能被录取。

面对众多的申请者,为了用客观、公平的标准来评估来评估学生的数学能力,滑铁卢大学最早1963年就采用了统一考试的办法。

最初的数学考试是由安大略省西南部的几个高中老师联合创办的,冲六十年代初年每年300人参加考试到今天,累计已经有21万名学生参加了这个考试。

根据滑铁卢大学的校方统计资料:21万名学生中有40%是来自安大略省的学生,20%是来自英属哥伦比亚省的学生,35%是来自加拿大其他省份的,还有5%是来自国际学生,包括美国、英国、中国等世界各国的学生。

2003年因为安大略省取消13年级,部分涉及微积分的试题不再使用,于是将迪卡尔(法国著名数学家)数学竞赛(Descartes Contest)更名为(欧几里德数学竞赛)。

现在,欧几里德数学竞赛的分数已经成为Waterloo数学学院各专业以及“软件工程”专业入学录取的重要指标,更成为学生申请该学院奖学金的重要考核标准。

欧几里德数学竞赛(Euclid Contest)主要是为高三年级(加拿大12年级)的高中学生提供的考试,考试内容主要包括:代数(函数、三角、排列、组合)、平面组合、解析几何等,他不仅仅看的是结果,更看重的是学生的解题思路和技巧。

考试的及格分数每年大概在40分左右。

因滑铁卢大学在数学领域的优良声誉及传统,以及欧几里德数学竞赛考察标准的严格性和专业性,该竞赛成绩在加拿大大学中已经得到广泛认可,被誉为类似加拿大“数学托福”的考试.考试形式考试时间为2.5小时,总共包括10道题,每题10分,总共100分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b) Solution 1
If
a
quadratic
equation
has
the
form
ax2 + bx + c = 0,
then
the
product
of
its
roots
is
c .
a
Here,
the
product
of
the
roots
must
be
−20 5
=
−4.
Solution 2 Since 5x2 − 20 = 0, then x2 − 4 = 0 or (x − 2)(x + 2) = 0.
Tuesday, April 7, 2009
Solutions
c 2009 Centre for Education in Mathematics and Computing
2009 Euclid Contest Solutions
Page 2
1. (a) We rewrite 6x + 3y = 21 as 3y = −6x + 21 or y = −2x + 7. Thus, the slope is −2.

1)d)
=
70.
Thus,
1 2
n(2
+
18)
=
70
or
10n
=
70
and
so
n
=
7.
(b) Solution 1
Since the given equation is true for all values of x, then it is true for any particular value
=
600.
Next,
using
DB
as
base
and
AF
as
height,
we
obtain
an
area
of
1 2
(50)x
=
25x.
We
must
have
25x
=
600
and
so
x
=
600 25
=
24.
Solution 2
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30. By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then
move 3 units up.
Since (5, c) is 4 units to the right of (1, 0), then it is 3(4) = 12 units up from (1, 0), so
c = 0 + 12 = 12.
(c) Solution 1
4 − (−4) 8
The given line segment joins (0, 4) to (8, −4), so has slope
= = −1.
0 − 8 −8
Since the y-intercept of the line segment is 4, then the equation of the line passing through
A and B is y = −x + 4.
Since the point (k, k) lies on the line, then k = −k + 4 or 2k = 4 and so k = 2.
(b) Solution 1
c−0
c
Since the slope of the line segment is 3, then
= 3, and so = 3 or c = 12.
5−1
4
Solution 2
Since the slope of the line segment is 3, then for every unit that we move to the right, we



BD = 302 + 402 = 900 + 1600 = 2500 = 50
AB 40 4
Since
DAB
is
right-angled
at
A,
then
sin(∠ADB)
=
BD
=
50
=
. 5
But ADF is right-angled at F and ∠ADF = ∠ADB.
AF x
Therefore,
Solution 2
We label the point (k, k) as K.
Since K lies on the line segment AB, then the slope of AK equals the slope of AB.
4 − (−4) 8
Line segment AB joins (0, 4) to (8, −4), so has slope
= = −1.
0 − 8 −8
k−4
Line segment AK joins (0, 4) to (k, k), so has slope
.
k−0
k−4
Therefore,
= −1 or k − 4 = −k or 2k = 4 and so k = 2.
k
2. (a) Solution 1
If a quadratic equation has the form ax2 + bx + c = 0, then the sum of its roots is − b . a
Here, the sum of the roots must be −
(−6) 1
= 6.
Solution 2 Since x2 − 6x − 7 = 0, then (x − 7)(x + 1) = 0.
Thus, the roots are x = 7 and x = −1.
The sum of these roots is 7 + (−1) = 6.



BD = 302 + 402 = 900 + 1600 = 2500 = 50
We calculate the area of ADB is two different ways.
First,
using
AB
as
base
and
AD
as
height,
we
obtain
an
area
of
1 2
(40)(30)



BD = 302 + 402 = 900 + 1600 = 2500 = 50
Note that BF A is similar to BAD, since each is right-angled and they share a com-
mon angle at B.
AF AD
x 40
30(40)
of
these
numbers
is
1 3
(0
+
1
+
5)
=
1 3
(6)
=
2.
Page 3
3. (a) Since AB = AD = BD, then BDA is equilateral. Thus, ∠ABD = ∠ADB = ∠DAB = 60◦. Also, ∠DAE = 180◦ − ∠ADE − ∠AED = 180◦ − 60◦ − 90◦ = 30◦. Since CAE is a straight line, then ∠CAD = 180◦ − ∠DAE = 180◦ − 30◦ = 150◦.
last terms times the number of terms.
If
n
is
the
number
of
terms
in
the
sequence,
then
1 2
(1
+
19)n
=
70
or
10n
=
70
and
so
n = 7.
Solution 2
Let n be the number of terms in the sequence and d the common difference.
Since the first term is 1 and the nth term equals 19, then 1 + (n − 1)d = 19 and so
(n − 1)d = 18.
Since
the
sum
of
the
terms
in
the
sequence
is
70,
then
1 2
n(1
+
1
+
(n
− 150◦)B = ∠CDA + ∠ADB = 15◦ + 60◦ = 75◦.
(b) Solution 1
Since ABCD is a rectangle, then AB = CD = 40 and AD = BC = 30. By the Pythagorean Theorem, BD2 = AD2 + AB2 and since BD > 0, then
相关文档
最新文档