运筹学第四章 整数规划模型 第4节 整数规划问题案例建模及讨论

合集下载

运筹学-4-整数规划

运筹学-4-整数规划

若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下 一步;
2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算, 若还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
x1 , x2 , xn 0
实际问题要求xi为整数! 如机器的台数,人数等
第四章 整数规划
例: 胜利家具厂生产桌子和椅子两种家具。桌 子售价50元/个,椅子售价30元/个,生产桌子 和椅子需要木工和油漆工两种工种。生产一个 桌子需要木工4个小时,油漆工2小时。生产一 个椅子需要木工3个小时,油漆工1小时。该厂 每月可用木工工时为120小时,油漆工工时为 50小时。问该厂如何组织生产才能使每月的销 售收入最大?
第四章 整数规划
min z cij xij [1200 y3 1500 y4 ]
i 1 j 1 4 4
x11 x21 x31 x41 350 x12 x22 x32 x42 400 x13 x23 x33 x43 300 x14 x24 x34 x44 150 x x x x 400 11 12 13 14 s .t x21 x22 x23 x24 600 x31 x32 x33 x34 200 y3 x41 x42 x43 x44 200 y4 x 0 ( i , j 1, 2, 3, 4) ij yi 0,1 ( i 1, 2)

运筹学——.整数规划与分配问题

运筹学——.整数规划与分配问题

2.4 匈牙利法实例(2)
第二步:找出矩阵每列的最小元素,再分别从各列中减去。
必定满足:bij = aij–ui–vj
0 11 2 0 0
8 0 3 11 0
7 5 0 11 10 4 2 5 0 9 5 0 5 0
8 2 5 0 5 4 3 0 0 11 4 5
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家康尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员
任务 译成英文 译成日文 译成德文 译成俄文 甲 乙 丙 丁 7 8 11 9 2 15 13 4 10 4 14 15 9 14 16 13
一、整数规划的特点及作用
1.2 0-1整数规划
某公司拟在市东、西、南三区建立门市部。拟 议中有7个位置(点)Ai供选择。规定
在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个点中至少选一个。
如选用Ai点,设备投资估计为bi元,每年可获利 润估计为ci元,但投资总额不能超过B元。 问:应如何选址,可使年利润为最大?
第一步:找出每 行的最小元素, 每行对应减去这 个元素。

运筹学CH4整数规划

运筹学CH4整数规划
解决方案
使用整数规划求解器进行求解,得到最优的员工任务指派 方案。
05
整数规划软件实现
MATLAB实现整数规划
MATLAB优化工具箱
MATLAB提供了专门的优化工具箱,其中包含用于解决整 数规划问题的函数和算法。
intlinprog函数
该函数用于解决线性整数规划问题,可以处理大规模问题, 并提供多种求解选项。
CPLEX提供了多种建模方式,包括使 用API接口、编程语言(如Python、 Java)和交互式界面等。
CPLEX采用了先进的分支定界算法和启发式 算法,能够快速有效地求解大规模整数规划 问题。同时,CPLEX还提供了多种参数设置 和求解选项,以满足不同问题的需求。
06
整数规划总结与展望
整数规划研究现状
跨学科融合
整数规划与运筹学、计算机科学、数学等多个学 科密切相关,跨学科融合将为整数规划的研究和 应用带来更多机遇。
THANK YOU
感谢聆听
求解过程
在LINGO中,用户需要编写包含目标函数和约束条件的模型文件,然后调用 LINGO求解器进行求解。LINGO会自动选择合适的算法,并输出最优解和相关 信息。
CPLEX实现整数规划
CPLEX优化器
建模方式
求解算法
CPLEX是IBM提供的一款高性能数学 优化软件,支持线性规划、混合整数 规划和二次规划等多种问题类型。
在物流领域,整数规划可用于 优化运输路线和配送计划,以 减少运输时间和成本。
金融投资
在金融领域,整数规划可用于 投资组合优化,选择最佳的投 资组合以最大化收益并降低风 险。
城市规划
在城市规划中,整数规划可用 于优化城市布局和交通网络设 计,以提高城市运行效率和居 民生活质量。

整数规划解法与实际案例分析

整数规划解法与实际案例分析

整数规划解法与实际案例分析整数规划是运筹学中的一个重要分支,它在实际问题中有着广泛的应用。

整数规划问题是指决策变量被限制为整数的线性规划问题,通常用于需要做出离散决策的情况。

在本文中,我们将介绍整数规划的基本概念和解法,并结合一个实际案例进行分析,以帮助读者更好地理解整数规划的应用。

### 整数规划的基本概念整数规划是一种特殊的线性规划问题,其决策变量被限制为整数。

一般来说,整数规划可以分为纯整数规划和混合整数规划两种情况。

纯整数规划要求所有的决策变量都是整数,而混合整数规划则允许部分决策变量为整数,部分为连续变量。

整数规划可以用数学模型来描述,通常形式如下:$$\begin{aligned}\text{Maximize} \quad & c^Tx \\\text{Subject to} \quad & Ax \leq b \\& x \in \mathbb{Z}^n\end{aligned}$$其中,$c$、$x$、$b$ 分别为目标函数系数向量、决策变量向量和约束条件右端常数向量,$A$ 为约束条件系数矩阵,$x \in\mathbb{Z}^n$ 表示 $x$ 是一个整数向量。

### 整数规划的解法整数规划问题的求解相对复杂,因为整数约束使得问题的解空间不再是连续的,而是离散的。

针对整数规划问题,通常有以下几种解法:1. **穷举法**:穷举法是最直接的方法,即枚举所有可能的整数解,然后逐一计算目标函数值,找出最优解。

然而,穷举法在问题规模较大时会变得非常低效。

2. **分支定界法**:分支定界法是一种常用的整数规划求解方法。

它通过不断将整数规划问题分解为子问题,并对子问题进行求解,直到找到最优解为止。

3. **割平面法**:割平面法是一种基于线性规划的整数规划求解方法。

它通过不断添加线性不等式约束(割平面)来逼近整数解,直到找到最优解为止。

4. **分支定价法**:分支定价法是一种高级的整数规划求解方法,通常用于解决混合整数规划问题。

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。

其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。

本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。

一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。

通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。

整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。

与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。

二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。

具体使用哪种方法需要根据问题的规模和特点来确定。

1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。

然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。

2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。

通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。

3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。

通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。

运筹学--第四章 整数规划与分配问题

运筹学--第四章 整数规划与分配问题

一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2

运筹学基础及应用第4章-整数规划与分配问题

运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。

运筹学基础及应用_(第四章_整数规划与分配问题)

运筹学基础及应用_(第四章_整数规划与分配问题)
号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next

运筹学4整数规划

运筹学4整数规划
24
例4.4 对如下整数规划
max z x1 x2 x1 x2 1 s.t 3 x1 x2 4 x , x 0, x , x 为整数 1 2 1 2
17
步骤1:不考虑整数条件,引入松弛变量 x3 , x4,
化为标准形式,用单纯形法求解得到: 表4-2
xB
x1
b
3/4
x1
1
x2
0
x3
-1/4
x4
1/4
x2
7/4
0
0
1
0
3/4
-1/2
1/4
-1/2
最优解为: x1
3/ 4, x2 7 / 4

18
步骤2:
最优表中 x1 1/ 4x3 1/ 4x4 3/ 4 -1/4 -整数和非负真分数之和
x1 x3 3/ 4x3 1/ 4x4 3/ 4
5
解:设 x i (i 1, 2,,7) 表示是否在位置i 建立门市 部,有 ,当Ai点被选用 i 1, 2,, 7 1 xi 0,当Ai点没被选用
则可以建立如下的数学模型:
max z c i x i
i 1
7
目标函数表示寻求获利最大
x1 x 2 x 3 2 s.t x 4 x5 1 x6 x7 1 x i 0或1
问题(B1)和(B2)的可行域中包含了原整数 规划问题的所有整数可行解,而在 4 x1 5中不 可能存在整数可行解。
10
分别求解这两个线性规划问题,得到的解是:
x1 4, x2 2.1, z 349 和 x1 5, x2 1.57, z 341 变量 x2 仍不满足整数的条件,对问题(B1), 必有 x2 3或x2 2,将(B1)增加约束条件,得到

运筹学 第4章 整数规划与分配问题

运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356

运筹与决策之4整数规划

运筹与决策之4整数规划

解法1:
枚举法:
X1 =0
X1 =1
X2 =0 1
01
x1=1 , x2=1 , x3=1 ,
x4=0 。枚举法?
X3 =0 1 0 1 0 1 0 1
若该整数规划问题有100个0-1整数 变量,那么整数解有多少个?
❖ 2100个整数解,用最现代化的计算机也要算 上几亿亿年。
❖ 穷举法是无法用来求解实际问题。 ❖ 最优解经过四舍五入的方法是否可以?
2. 整数规划的求解方法? 3. 分枝定界法的基本思路? 4. 分枝问题解可能出现的情况?
Q1:整数规划与线性规划LP 区别: (要求所有 xj 的解为整数,或者要求部分 xj 的解为整数)
1)一般整数规划。要求所有 xj 的解为整数, 称为纯整数规划;或者要求部分 xj 的解为整 数,称为混合整数规划。
如何回答?
x1≤1
子问题1 Z1=5.333
X1=1 X2=4.333
x2≤4
子问题3 Z3=5 X1=1 X2=4
松弛问题
Z0=5.545 X1=1.477 X2=4.068
分枝定界法 求解过程
x1≥2
x2≥5
子问题4 无可行解
子问题2 Z2=4.5 X1=2 X2=2.5
∴ 最优整数解 X1= 1 X2= 4
(C)
i+1
Xj*
X*最优解
i
(D)
X*最优解为非整数解,
则对(B)每次分两枝, 每枝多一个约束条件
(B) (C)
Xj i+1
(B)
(D) Xj i
Q4:分枝问题解可能出现的情况
如何回答?
表 分枝问题解可能出现的情况
结果

管理运筹学讲义 第4章-整数规划(4学时)

管理运筹学讲义 第4章-整数规划(4学时)
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。
• 要求部分或全部决策变量是整数的线性规划问题,则称 为整数规划(Integer Programming)。
当要求全部决策变量的取值都为非负整数的,则称为纯整数规 划或全整数规划(Pure IP) ; 仅要求部分决策变量的取值为整数,而另一部分不一定要求取 整数,则称为混合整数规划(Mixed IP)
cj CB
2 3 λj 3 2 0 0
XB x2 x1
x1
0 1 0
x2
1 0 0
x3
1/2 -1/4 -1/4
x4
-1/2 3/4 -5/4
b
5/2 13/4
最优解X=(13/4,5/2,0,0)T,x1 、x2不满足整数要求,选择x2行进行分割: 5 1 1 2 2 3 2 4 2 1 1 1 2 4 2 3 2 4 2
10 OM:SM
第一节 整数规划问题引言
三、 整数规划解的特点
3、完全枚举法
从图4-2可知,整数规划问题的可行解集是相应的线性规划 问题的可行域内的整数格子点,它是一个有限集。显然,我们 还有另一种方法,即将所有的可行解依次代入目标函数,比较 所得的目标函数的大小,从而得到最优解。这个方法称为完全 枚举法。如上例有整数可行解有7个,所以得到最优解( 0, 2),最优值为10。 对于决策变量较少,可行的整数解又较少时,这种穷举法 有时是可行的,并且也是有效的。但对于大型的整数规划问题, 可行的整数解数量很多,用穷举法求解是不可能的。因此,如 何巧妙构造枚举过程是必须研究的问题,目前用得较多的是将 完全枚举法变成部分枚举法。常用的求解整数规划的方法有分 枝定界法和割平面法,对于特别的0-1规划问题的求解,可以采 用隐枚举法和匈牙利法。下面分别介绍。

运筹学课件第四节0-1型整数规划

运筹学课件第四节0-1型整数规划
运筹学课件第四节0-1型整数 规划
目录
CONTENTS
• 0-1型整数规划概述 • 0-1型整数规划的数学模型 • 0-1型整数规划的求解算法 • 0-1型整数规划的案例分析 • 0-1型整数规划的软件实现
01 0-1型整数规划概述
CHAPTER
定义与特点
定义
0-1型整数规划是一种特殊的整数规 划,其中决策变量只能取0或1。
解决方案通常采用动态规划或混合整数线性规 划方法,通过迭代和优化算法来找到最优解。
05 0-1型整数规划的软件实现
CHAPTER
Excel求解工具
适用范围
适用于简单的0-1型整数规划问题。
优点
操作简单,易学易用,适合初学者。
使用方法
利用Excel的Solver插件,设置目标函数、 约束条件和决策变量,进行求解。
其他约束
除了资源和需求约束外,还可能 存在其他类型的约束,如数量约 束、时间约束等,这些约束条件 都对决策变量的取值范围进行了 限制。
决策变量
离散变量 0-1型整数规划中的决策变量通常 是离散的,只能取0或1两个值。 这些决策变量代表了不同的策略 或选择。
最优解 最优解是指在所有可行解中使目 标函数达到最优值的决策变量的 取值组合。
缺点
对于大规模问题求解能力有限,可能存在精 度问题。
Python求解库
适用范围
适用于各种规模的0-1型整数规 划问题。
使用方法
利用Python的优化库,如PuLP 或CVXPY,编写目标函数和约束 条件,进行求解。
优点
功能强大,可处理大规模问题 ,精度高。
缺点
需要一定的编程基础,学习成 本较高。
MATLAB求解工具

运筹学-4-整数规划ppt课件

运筹学-4-整数规划ppt课件

.
8
第四章 整数规划 0-1规划
解:设xi
1 0
带第 i件物品
不带第 i件物品 数学模型:
Z表示所带物品的总价值
m
Z ci 带第i件
ci xi
i 1
m
携带物品的总重量 bi x i
i 1
m
max Z ci xi
m i1
s.t
i1
bi xi
b
xi 0,1,
i 1, 2, m
i1
1, 2,..., m
i1
s.t. xij bj j 1, 2 , n
i1
xij
0
,
yi 0,1
混合型整数规划
.
11
第四章 整数规划
例 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地有 B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各需 求地的单位物资运费cij,见下表:
.
10
第四章 整数规划
解:设 xij表示A 工 i运厂 往B 商 j的店 运量
m
n
则总运费为
c ij x ij
i1 j 1
数学模型:
mn
m
设yi
1 0
则总建厂费为
在第 i个地点建m厂in Z
不在第 i个地点建厂 n
m
fi yi
j1 m
xij
i1
j
ai
1
yi
cij xij
i
fi yi
1 若 建 工 厂 yi 0 若 不 建 工 厂(i3,4)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。

运筹学 第四章 整数规划与分配问题

运筹学 第四章 整数规划与分配问题

第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为

运筹学 第4章 整数规划

运筹学 第4章  整数规划

第四章整数规划整数规划(Integer Programming)主要是指整数线性规划。

一个线性规划问题,如果要求部分决策变量为整数,则构成一个整数规划问题,在项目投资、人员分配等方面有着广泛的应用。

整数规划是近二、三十年发展起来的数学规划的一个重要分支,根据整数规划中变量为整数条件的不同,整数规划可以分为三大类:所有变量都要求为整数的称为纯整数规划(Pure Integer Programming)或称全整数规划(All integer Programming);仅有一部分变量要求为整数的称为混合整数规划(Mixed Integer Programming);有的变量限制其取值只能为0或1,这类特殊的整数规划称为0-1规划。

本章主要讨论整数规划的分枝定界法、割平面法、0-1规划及指派问题。

第一节整数规划问题及其数学模型一、问题的提出在线性规划模型中,得到的最优解往往是分数或小数,但在有些实际问题中要求有的解必须是整数,如机器设备的台数、人员的数量等,这就在原来线性规划模型的基础上产生了一个新的约束,即要求变量中某些或全部为整数,这样的线性规划称为整数规划(Integer Programming)简称IP,是规划论中的一个分枝。

整数规划是一类特殊的线性规划,为了满足整数解的条件,初看起来,只要对相应线性规划的非整数解四舍五入取整就可以了。

当然在变量取值很大时,用上述方法得到的解与最优解差别不大,当变量取值较小时,得到的解与实际最优解差别较大,当变量较多时,如n=10个,则整数组合有210=1024个,而且整数解不一定在这些组合当中。

先来看下面的例子。

例4.1某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A、材料B,有关数据如下,问这两种设备各生产多少使工厂利润最大?表4-112量都要求为整数,建立模型如下:2123max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,5.45.01432x x x x x x x x 要求该模型的解,首先不考虑整数约束条件④,用单纯形法对相应线性规划求解,其最优解为:x 1=3.25 x 2=2.5 max z =14.75由于x 1=3.25,x 2=2.5都不是整数,不符合整数约束条件。

管理运筹学第四章整数规划与指派问题

管理运筹学第四章整数规划与指派问题

货物运输路线选择案例
案例描述
某物流公司需要为其客户提供从起点到终点的货物运 输服务。在运输过程中,有多种可能的路线可以选择 ,每条路线都有不同的运输成本和时间。此外,客户 对货物的运输时间和成本也有一定的要求。
整数规划应用
该案例可以通过整数规划来解决。首先,将每条路线的 选择定义为整数决策变量,1表示选择该路线,0表示 不选择。然后,根据每条路线的运输成本和时间,构建 目标函数,即最小化总运输成本和时间。接下来,根据 客户的要求和路线的特点,构建约束条件,如运输时间 限制、成本限制和路线连通性等。最后,使用整数规划 求解算法,找到满足所有约束条件的最优路线组合,即 最小化总运输成本和时间的路线选择方案。
展望
未来,整数规划与指派问题将在更多领域得到应用和推广 ,为实际问题的解决提供更加有效的方法和工具。同时, 随着相关技术的不断发展,整数规划与指派问题的求解方 法将更加高效和精确,为相关领域的发展提供更加有力的 支持。
THANKS
感谢观看
要点一
Xpress
Xpress是一款功能强大的数学优化求 解器,适用于线性规划、整数规划等 多种问题。它提供了丰富的算法和工 具,支持大规模问题的求解和分析。
要点二
LINGO
LINGO是一款易于使用的数学优化建 模工具,具有直观的语法和丰富的函 数库。它可以帮助用户快速构建和求 解线性规划、整数规划等问题,并提 供详细的解决方案和报告。
原理
通过添加割平面约束条件,逐 步缩小问题的可行域,从而找 到整数最优解。
添加割平面
根据松弛问题的最优解,构造 一个割平面约束条件,添加到 原问题中。
迭代
重复添加割平面和求解新问题 的步骤,直到找到整数最优解 或确定无整数最优解为止。

运筹学——整数规划

运筹学——整数规划

5
4
x(0)=(4.81,1.82) Z0=356
3
B 2
1
7x1+20x2=70
C
0 1 2 3 4 5 6 7 8 9 10 x1
x1<=[x1(0)]
12
x1>=[x1(0)]+1
2021/7/26
解:第一步:先不考虑整数约束条件,求解相应的线性 规划问题,得最优解和最优值如下:
x1=4.81, x2=1.82, Z=356 解不满足整数条件。最优值Z=356作为整数规划目标函 数值的上界;用观察法可知x1=0,x2=0是可行解,对应 目标值Z=0作为整数规划目标值的下界,即0 Z* 356
1
2
x6 x7 1
xi 0或1
获利最大的设点方案,第 一个约束条件表示投资总 额限制,之后的三个约束 条件分别表示在东、西和 南区的设点数限制,决策 变量取值0或1。
5
2021/7/26
例3 解决某市消防站的布点问题。该市共有6个区,每 个区都可以建消防站。政府希望设置的消防站最少,但 必须满足在城市任何地区发生火警时,消防车要在15分 钟内赶到现场。据实地测定,各区之间消防车行驶的时 间见下表:
行解, 停止; b) 若有满足整数条件的最优解, 则已得到整数规划问 题的最优解, 停止; c) 若有最优解, 但不满足整数条件, 记此最优值 为原整数规划问题Z*的上界, 然后, 用观察法求出下界. (2)分支、定界直到得到最优解为止
分支:取目标函数值最大的一个支LPs,在LPs的解中任选一不 符合整数条件的变量xj,其值为bj,构造两个约束条件xj≤[bj]和 xj≥[bj]+1。将两个约束条件分别加入问题LPs,得两个后继规划问 题LPs1和LPs2。不考虑整数条件求解这两个后继问题,以每个后 继问题为一分支标明求解结果。

运筹学整数规划建模

运筹学整数规划建模
• 项目 C:第2年初可以投资,到第5年未能回收本利 140% ,投资金额必须为1万元的整数倍;
• 项目D:第3年初可以投资,到第5年未能回收本利 128% ,如果投资金额必须大于2万元;
• 该部门现有资金10万元,问它应如何确定给这
些项目的每年投资额,使到第 5 年末拥有的资
金本利总额为最大?
8
解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表

yi
1
动用i仓库 i 1, 2,L , m
0 否则
( yi为指示变量)
xij : 从仓库i到j顾客运送的货物量
顾客 B1 顾客 B2
仓库 A1
6
4
仓库 A2
6
5
顾客需求量 150 150
顾客 B3
6 5 200
仓库固定 运营费
10 11
6.1.2 建模中常用的处理方法(续)
费用:
fi:动用i仓库的固定运营费(租金等) cij:从仓库i到j顾客运送单位货物的运费 约束条件:
6.1 整数规划问题的提出
6.1.1 问题特征
变量取值范围是离散的,经典连 续数学中的理论和方法一般无法 直接用来求解整数规划问题。
• 不考虑整数条件,由余下的目标函数和约 束条件构成的规划问题称为整数规划问题 的松弛问题。若松弛问题是一个线性规划 问题,则称该整数规划问题为整数线性规 划问题。
设决策变量xj为对第j个方案的取(xj=1) 或舍(xj=0),可得到下列整数规划问题, 是0—1规划。
yj
x yj yj xij 为整数
例.某公司考虑今后五年内给以下项目投资。
• 项目A:每年年初可以投资,于次年末回收本利 115% ,投资金额必须为1万元的整数倍;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档