运筹学第四章整数规划和分配问题a
运筹第四章整数规划与分配问题
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
运筹学--第四章 整数规划与分配问题
一、整数线性规划问题的提出
引例:生产组织计划问题与选址问题 例4-1(生产组织计划问题)某工厂在一个计划期 内拟生产甲、乙两种大型设备。除了A、B两种部件 需要外部供应且供应受到严格限制之外,该厂有充 分的能力来加工制造这两种设备所需的其余零件, 并且所需原材料和能源也可满足供应。每种设备所 用部件数量和部件的供应限额以及设备的利润由表 3-1-1给出。问该厂在本计划期内如何安排甲、乙 设备的生产数量,才能获取最大利润?
例4-3某人有一背包可以装10公斤重、0.025m3的物
品。他准备用来装甲、乙两种物品,每件物品的重 量、体积和价值如表4-3-1所示。问两种物品各装 多少件,所装物品的总价值最大?
表4-3-1 物品 甲 乙 重量 (公斤/每件) 1.2 0.8 体积 (m3/每件) 0.002 0.0025 价值 (元/每件) 4 3
应寻找仅检查可行的整数组合的一部分,就能定出 分支定界法可用于解纯整数或混合整数线性规划问
最优的整数解的方法。分支定界解法就是其中之一。
题。
–20世纪60年代初由Land Doig和Dakin等提出,是 解整数线性规划的重要方法之一。
–由于这方法灵活且便于用计算机求解,所以现在
它已是解整数规划的重要方法。
了。 但这常常是不行的,因为化整后不见得是可行解; 或虽是可行解,但不一定是最优解。 因此,对求最优整数解的问题,有必要另行研究。
例4-4 说明整数规划问题的求解不能直接在单纯形
法最优解的基础上四舍五入 求下述整数规划问题的最优解(P105)
max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值 1 2
运筹学——.整数规划与分配问题45页PPT
谢谢!
运筹学——.整数规划与分配 问题
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
ห้องสมุดไป่ตู้35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
运筹学基础及应用第4章-整数规划与分配问题
整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学基础及应用_(第四章_整数规划与分配问题)
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
运筹学课件第四节0—1型整数规划
例:固定费用问题 有三种产品被用于生产三种产品,资源量、产品单件费用、 资源消耗量以及生产产品的固定费用。要求制定一个生产计 划,总收益最大。
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
4 求解: 7 C 6 6 6
8
7
9 17 9 12 7 14 9 12
15 12 14 10 8 7 6 10 10 6
第一步 造0 各行各列减其最小元素
0 0 0 0 0
4 3 2 10 3 1 3 6 8 6
11 7 2 0 4
第四节
0—1型整数规划
一、0-1变量及其应用 某些特殊问题,只做是非选择,故变量设置简化为0或1, 1代表选择,0代表不选择。
选取某个特定方案 1, 当决策选取方案 x 0 , 当决策不选取方案 问题含有较多的要素, 每项要素有 2 种选择,用 0 1变量描述。 有限要素 E1, E 2 ,...E n , 每项 E j 有两种选择 A j , A j 1, E j 选择 A j xj 0 , E j 选择 A j
运筹学 第4章 整数规划与分配问题
匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学第四章--整数规划和分配问题(新)aPPT课件
-
1
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
-
21
-
23
例.用分枝定界法求下述数整规划问题的最优
maxz 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
-
24
-
25
-
26
-
27
-
28
-
29
第四节 割平面法 一、割平面法的基本思想
先不考虑整数条件,用单纯形法求解其 松弛问题,若得整数解,即得整数规划最优 解。否则,增加线性约束条件(称为割平面 方程),将原问题的可行域切割掉一部分, 被切割掉的都是非整数解,再用单纯形法求 解新的线性规划问题,依次进行下去,直到 使问题的最优解恰好在可行域的某个具有整 数坐标的顶点上得到。
0.5 + 0.4 x4 + 0.4 x5≥ 1
-
35
2. 借助单纯形表法
对求解整数规划问题的松弛问题(LP问题)得到
最优单纯形表,设xi=bi 是最优解中取分数值(分数 部分最大)的基变量,则有
运筹学 整数规划( Integer Programming )
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1
第四章整数规划与分配问题习题
1
0
X1 32/7 1 0 0 1/7 -1/7 0
X3 11/7 0 0 1 1/7 -22/7 0
S1 -4/7 0 0 0 [-1/7] -6/7 1
Cj—Zj
0 0 0 -1
-8
0
X2 3
0
00
1
0
X1 4 1 0 0 0
-1 1
X3 1 0 0 1 0
-4 1
X4 4 Cj—Zj
0001 0000
解:
(1)
LP(1)
1 x1 = 39
7 x2 = 29
5 Z1 = 329
z = 32 5 9
z = 28
x1≤3 LP(4) x1 = 3 x2 = 2 z4 = 28
剪去
x2≤2
x2≥3
LP(2) 1
x1 = 32 x2 = 2
z2 = 31
LP(3) 2
x1 = 25
x2 = 3 4
z3= 315
x3* = (1,2)T , z * = 3 由于表 3(b)中一非基变量x5的检验数为 0,故让x5进量,用单纯形法迭代一次,得另一最优解
(见表 4):
x3* = (2,1)T , z * = 3
8、 用完全枚举法求解 0—1 规划问题.
max z = 3x1 − 2x2 + 5x3 s.t. x1 + 2x2 − x3 ≤ 2
变换效益矩阵:
⎛0 1 2 3⎞⎛0 ⎞ ⎛0 1 2 3⎞ ⎛ⓞ Ø 2 3 ⎞
Ci'j
=
⎜ ⎜ ⎜
7 8
6 9
5 9
4 8
⎟ ⎟ ⎟
⎜ ⎜ ⎜
−4 −8
运筹学习题精选
运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。
A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。
A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。
A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。
2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。
运筹学-4-整数规划ppt课件
.
8
第四章 整数规划 0-1规划
解:设xi
1 0
带第 i件物品
不带第 i件物品 数学模型:
Z表示所带物品的总价值
m
Z ci 带第i件
ci xi
i 1
m
携带物品的总重量 bi x i
i 1
m
max Z ci xi
m i1
s.t
i1
bi xi
b
xi 0,1,
i 1, 2, m
i1
1, 2,..., m
i1
s.t. xij bj j 1, 2 , n
i1
xij
0
,
yi 0,1
混合型整数规划
.
11
第四章 整数规划
例 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要再 建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地有 B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各需 求地的单位物资运费cij,见下表:
.
10
第四章 整数规划
解:设 xij表示A 工 i运厂 往B 商 j的店 运量
m
n
则总运费为
c ij x ij
i1 j 1
数学模型:
mn
m
设yi
1 0
则总建厂费为
在第 i个地点建m厂in Z
不在第 i个地点建厂 n
m
fi yi
j1 m
xij
i1
j
ai
1
yi
cij xij
i
fi yi
1 若 建 工 厂 yi 0 若 不 建 工 厂(i3,4)
再设xij为由Ai运往Bj的物资数量,单位为千吨;z表示总费用, 单位万元。
运筹学 第四章 整数规划与分配问题
第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为
管理运筹学第四章整数规划与指派问题
货物运输路线选择案例
案例描述
某物流公司需要为其客户提供从起点到终点的货物运 输服务。在运输过程中,有多种可能的路线可以选择 ,每条路线都有不同的运输成本和时间。此外,客户 对货物的运输时间和成本也有一定的要求。
整数规划应用
该案例可以通过整数规划来解决。首先,将每条路线的 选择定义为整数决策变量,1表示选择该路线,0表示 不选择。然后,根据每条路线的运输成本和时间,构建 目标函数,即最小化总运输成本和时间。接下来,根据 客户的要求和路线的特点,构建约束条件,如运输时间 限制、成本限制和路线连通性等。最后,使用整数规划 求解算法,找到满足所有约束条件的最优路线组合,即 最小化总运输成本和时间的路线选择方案。
展望
未来,整数规划与指派问题将在更多领域得到应用和推广 ,为实际问题的解决提供更加有效的方法和工具。同时, 随着相关技术的不断发展,整数规划与指派问题的求解方 法将更加高效和精确,为相关领域的发展提供更加有力的 支持。
THANKS
感谢观看
要点一
Xpress
Xpress是一款功能强大的数学优化求 解器,适用于线性规划、整数规划等 多种问题。它提供了丰富的算法和工 具,支持大规模问题的求解和分析。
要点二
LINGO
LINGO是一款易于使用的数学优化建 模工具,具有直观的语法和丰富的函 数库。它可以帮助用户快速构建和求 解线性规划、整数规划等问题,并提 供详细的解决方案和报告。
原理
通过添加割平面约束条件,逐 步缩小问题的可行域,从而找 到整数最优解。
添加割平面
根据松弛问题的最优解,构造 一个割平面约束条件,添加到 原问题中。
迭代
重复添加割平面和求解新问题 的步骤,直到找到整数最优解 或确定无整数最优解为止。
管理运筹学4 整数规划
甲
乙
丙 丁
39
34 24
38
27 42
26
28 36
20
40 23
33
32 45
x ij 0或1 ,i、j 1,2,3,4
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法和割平面法
Page 19
匈牙利法(指派问题)
分配问题与匈牙利法
指派问题的数学模型的标准形式:
Page 20
设n 个人被分配去做n 件工作,规定每个人只做一件工作, 每件工作只有一个人去做。已知第i个人去做第j 件工作的效率 ( 时间或费用)为Cij(i=1.2…n;j=1.2…n)并假设Cij ≥0。问应 如何分配才能使总效率( 时间或费用)最高? 设决策变量
每项工作只能安排一人,约束条件为:
x11 x 21 x 31 x 41 x12 x 22 x 32 x 42 x13 x 23 x 33 x 43 x14 x 24 x 34 x 44 1 1 1 1
Page 18
变量约束:
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
如
Page 5
1. 变量是人数、机器设备台数或产品件数等都要求是整数 2. 对某一个项目要不要投资的决策问题,可选用一个逻辑变 量 x,当x=1表示投资,x=0表示不投资; 3. 人员的合理安排问题,当变量xij=1表示安排第i人去做j工作,
整数规划的特点及应用
min z c ij x ij [1200y1 1500y 2 ]
i 1 j 1 4 4
运筹学整数规划
2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3。重复。依行,不考虑划去的0,只有一个0的 对0打圈,划去列 2
1
5 2 0 9 0
0 3 10 8 6
2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3
4。重复。依列,不考虑划去的0,只有一个0的 对0打圈,划去行 2
7 8 11
任务 人员
分派情况
甲 乙 丙
E J G R
丁
4
15
所需时间
13
9
甲 1 1 乙 1 丙 1 丁
对应每个指派问题, 都有类似的表格,我们称之 为效率矩阵或系数矩阵,某元素 cij ( i , j = 1,2, · · · · · · , n ) 表示指派第 i 个人去完成 第 j 项任务时的效率(或
整数规划问题的求解要比一般的线性规划困难
本章将着重讨论 1。一类特殊的整数规划——指派问题,它的数 学模型和求解。 2。求解整数规划方法——分枝定界法。
一、指派问题的数学模型
1。数学模型
某单位需要指派 n 个人去完成 n 项任务,每个人 只做一项工作,同时,每项工作只由一个人完成。由 于各人的专长不同,每个人完成各项任务的效率也不 同。于是产生了应指派哪一个人去完成哪一项任务, 使完成 n 项任务的总效率最高(如所用的时间为最 少)。我们把这类问题称之为指派问题或分派问题 (Assignment Problem)。
二、匈牙利法
指派问题的效率矩阵的每一个元素aij≥0
解矩阵是每行或每列只能有一个元素为1,其余 均为 0 的 n 阶方阵。如:
0 0 ( xij ) 1 0 1 0 0 0 0 1 0 0 0 0 0 1
整数规划与分配问题
整数规划与分配问题第四章整数规划与分配问题§4.1整数规划的特点及作⽤⽤单纯形法求解线性规划的结果往往得到分数或⼩数解。
但在很多实际问题中,全部或部分变量的取值必须是整数,如⼈或者机器设备不可分割。
此外还有⼀些问题,如要不要在某地建设⼯⼚,可选⽤⼀个逻辑变量x ,令1x =表⽰在该地建⼚,0x =表⽰不在该地建⼚,逻辑变量也只允许取整数值的⼀类变量。
在⼀个整数规划中要求全部变量取整数值的,称纯整数线性规划或纯整数规划;只要求⼀部分变量取整数值的,称为混合整数(线性)规划;在纯整数规划问题中,若所有变量只允许取0,1两个值,则称其为0-1规划。
有⼈认为,对整数规划问题的求解可以先不考虑对变量的整数约束,作为⼀般线性规划问题来求解,当解为⾮整数时可⽤四舍五⼊或凑整数寻找最优解,其实这种⽅法是不可⾏的,原因有以下两点:⼀、⽤凑整的⽅法计算量很⼤,⽽况还不⼀定能找到最优解。
如某线性规划问题的最优解为()()12 4.6 5.5x x =,⽤凑整数的⽅法时需⽐较与12,x x 的上述数值最接近的四种组合:(4,5),(5,5),(4,6),(5,6)如果问题中有10个变量,就要⽐较1021024=个整数解组合,⽽且最优解还不⼀定在这些组合中。
⼆、放松约束也⽆法求出其最优解例12121212max 322314.0.5 4.5,0,z x x x x s t x x x x =++≤??+≤??≥?整数如果不考虑整数约束,称为上述线性规划问题的松弛问题,松弛问题的最优解为:123.25, 2.5x x ==取整以后123,2x x ==是可⾏解,但1212123,3;4,2;4,3x x x x x x ======都不是可⾏解,⽽123,2x x ==对应的⽬标函数值123213z x x =+=却不是最优解,然⽽最优解是12124,1,max 3214x x z x x ===+=。
直接对松弛问题进⾏求解都⽆法求得整数规划问题的最优解,这就需要对整数线性规划问题有特殊的求解⽅法。
运筹学:第4章 整数规划与分配问题
2021/4/18
17
资源 金属板(吨) 劳动力(人月) 机器设备(台月)
小号容器 2 2 1
中号容器 4 3 2
大号容器 8 4 3
解:设 x1, x2, x3 分别为小号容器、中号容器和大号容 器的生产数量。
0, 不生产j型号容器 y j 1, 生产j型号容器
建立如下的数学模型:
2021/4/18
为:
C
j
(x
j
)
K 0,
j
c
j
x
j
,
xj 0 xj 0
其中 K j 是与产量无关 的生产准备费用
n
目标函数: min z C j (x j )
j 1
定义
0 y j 1
则原问题可表示为
xj 0
xj 0
n
min z (c j x j K j y j ) j 1
s.t
0 x j Myj
y
j
0或1
2021/4/18
10
§2.2 应用举例
例1 东方大学计算机实验室聘用4名大学生(代号
1,2,3,4)和2名研究生(代号5,6)值班。已知各学生从 周一至周五每天可安排的值班时间及每人每小时报酬见下 表所示。
学生 代号
1 2 3 4 5 6
酬金 (元/h) 10.0 10.0
9.9 9.8 10.8 11.3
2021/4/18
29
(0) 8
2
5
11 (0) 5
4
2
3 (0) 0
0
11
4
5
根据上图,k=2,
周一 6 0 4 5 3 0
每天可安排的值班时间(h) 周二 周三 周四
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 重复1.、2.两个步骤,可能出现三种情况: (1)若能找到m个位于不同行不同列的0元素(即 带( )的0元素),则令(0)处的xij=1,求解结 束; (2)若有形成闭回路的0元素,则任选一个打 ( ),然后对每个间隔的0元素打( ),同时 对打( )的0元素所在行(或列)画一条直线。 (3)若位于不同行不同列的0元素[即带( )的0 元素]少于m,转第四步。
决策变量全部取整数,约束系数和约束常数项 可取非整数的整数线性规划。
纯整数线性规划可化为全整数线性规划。 3. 混合整数线性规划
决策变量中有一部分取整数值,另一部分可取 非整数值的整数线性规划。 4. 0-1整数线性规划
决策变量只能取0或1的整数线性规划。
三、0-1变量(或称逻辑变量)在模型中 的应用
设原整数规划问题为IP,其松弛问题为L0。 用单纯形法求L0,若L0无可行解,则IP也无可 行解,计算停止。若求得L0为整数解,则得IP 的最优解,停止。否则,转下一步; 第二步 分枝与定界
在L0的解中,任选一个不满足整数条件的 变量xi,设xi = bi ,则做两个子问题
L1,xi bi L2,xi bi1
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
二、分枝定界法的步骤(最大值问题) 第一步 寻找替代问题并求解
则分配问题的数学模型为
mm
min z
a ij x ij
i1 j1
m
x ij 1 ( i 1 , 2 ,...,
m)
j1
m
x ij 1 ( j 1 , 2 ,...,
m)
i1
x
ij
0 或 1,( i ,
j
1 , 2 ,...,
m)
பைடு நூலகம்
2-2 匈牙利法 定理1.如果从分配问题效率矩阵(aij)的每一 行元素中分别减去(或加上)一个常数ui (称为该行的位势);从每一列中分别减去 (或加上)一个常数 vj (称为该列的位 势);得到一个新的效率矩阵bij,其中bij= aij - ui - vj ,则aij的最优解等价于bij的 最优解。
不考虑整数条件,用单纯形法求解两个 子问题,若得整数解或子问题的最优值小于 前面分支中已计算得到的所有整数解的目标 函数最大值,则停止分枝;否则,选取所有 子问题中目标函数值最大的问题作为L0继续 分枝,直至得到整数规划的最优解。 第三步 剪枝
整数规划模型对研究管理问题有重
要意义。很多不能归结为线性规划数学 模型的管理问题,却可以通过设置逻辑 变量建立起整数规划数学模型。
第二节 分配问题(指派问题)与匈牙利法 2-1 问题的提出及数学模型
假设有m项任务分配给m个人去完成,并 指定每个人完成其中一项,每项任务也只由 一个人完成,问应如何分配任务,才能使总 效率最高?(或总费用最少,花费的总时间 最少等等。)
定理2. 若效率矩阵A的元素可分成0与非0两 部分,则覆盖所有0元素的最少直线数等于位 于不同行不同列的0元素的最大个数。
匈牙利法的步骤: 第一步 效率矩阵每行都减去该行的最小元素; 第二步 效率矩阵每列都减去该列的最小元素;
此时,效率矩阵的每行每列都有0元素。
第三步 寻找位于不同行不同列的0元素,也就是 寻找能覆盖所有0元素的最少直线数。 方法: 1. 从只有一个0元素的行开始,对0元素打上( ) 号,然后对打( )的0元素所在列画一条直线, 依次进行到最后一行; 2. 从只有一个0元素的列开始,对0元素打上( ) 号, 然后对打( )的0元素所在行画一条直线, 依次进行到最后一列;
运筹学第四章整数规划 和分配问题a
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
不考虑整数要求时, 最优解为: X=(3.25 ,2.5)T Z=13 (见下页图解法) 考虑整数要求时,最优解为: X=(4 ,1)T Z=14 凑整 (3,2)可行,非最优,Z=13。
(4,3),(4,2),(3,3) 不可行
二、整数规划的分类 1. 全整数线性规划
决策变量全部取整数,约束系数和约束常数项 也取整数的整数线性规划。 2. 纯整数线性规划
3. 对求最大值问题的处理
设目标函数为
mm
maxz
aijxij
可将其变换为
i1 j1 mm
minz'
(aij)xij
i1 j1
此时,效率矩阵的元素全成为负值,不符合要
求,根据定理1,令 Mma aijx
变换后的效率矩阵每行都加M即可。
作业:P126 4.7(a) 4.8(a) 第三节 分枝定界法 一、分枝定界法的基本思想
第四步 为产生m个位于不同行不同列的0元素, 用定理一对效率矩阵进行调整,使之生成新的0 元素。方法: 1. 在效率矩阵未被直线覆盖的元素中找出最小 元素k; 2. 效率矩阵未被直线覆盖的行都减k; 3. 效率矩阵被直线覆盖的列都加k; 4. 转回第三步。
2-3 特殊情况的处理 1. 人数多于任务数,加虚拟任务。 设有n人,m项任务,n>m,则增加n-m项任务。 2. 人数少于任务数,加虚拟人员。 设有n人,m项任务,n<m,则增加m-n项任务。
设每个人完成不同任务的耗费见下面的 效率矩阵,通常要求aij≥0。
a11 a12 ... a1m
A
aij
mm
a21 ...
a22 ...
...
a2m
... ...
am1 am2 ... amm
又 x ij 设 1 0 ,, 分 不i人 配 分 i人 去 第 配 去 j项 j项 完 第 完 任 任 ( 成 i,j成 务 1 ,2 务 第 ,.第 m .; ).。 ,