高三数学第一轮总复习课件: 数列
合集下载
高三数学一轮总复习 第五章 数列 5.4 数列求和课件.ppt
12
n
4.一个数列{an},当 n 是奇数时,an=5n+1;当 n 为偶数时,an=22 ,则这 个数列的前 2m 项的和是__________。
解析:当 n 为奇数时,{an}是以 6 为首项,以 10 为公差的等差数列;当 n 为偶 数时,{an}是以 2 为首项,以 2 为公比的等比数列。所以,S2m=S 奇+S 偶=ma1+mm2-1 ×10+a211--22m
7
2 种思路——解决非等差、等比数列求和问题的两种思路 (1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往 通过通项分解或错位相减来完成。 (2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和。
8
3 个注意点——应用“裂项相消法”和“错位相减法”应注意的问题 (1)裂项相消法,分裂通项是否恰好等于相应的两项之差。 (2)在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后 面也剩下两项,未消去的项有前后对称的特点。 (3)在应用错位相减法求和时,若等比数列的公比含有参数,应分 q=1 和 q≠1 两种情况求解。
=6m+5m(m-1)+2(2m-1) =6m+5m2-5m+2m+1-2 =2m+1+5m2+m-2。 答案:2m+1+5m2+m-2
13
5.已知数列{an}的前 n 项和为 Sn 且 an=n·2n,则 Sn=__________。
解析:∵an=n·2n, ∴Sn=1·21+2·22+3·23+…+n·2n。① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1。② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1 =(1-n)2n+1-2。 ∴Sn=(n-1)2n+1+2。 答案:(n-1)2n+1+2
高三数学第一轮总复习课件: 等差、等比数列
Sn
a1 an n na
2
q 1 na1 等比数列前n项和 S n a1 1 q n q 1 1 q n 1 S1 2.如果某个数列前n项和为Sn,则 an S n S n1 n 2
nn 1 d 1 2
3.下列命题中正确的是( B
)
A.数列{an}的前n项和是Sn=n2+2n-1,则{an}为等差数列 B. 数列 {an} 的前 n 项和是 Sn=3n-c,则 c=1 是 { an} 为等比数列的 充要条件 C.数列既是等差数列,又是等比数列
D.等比数列{an}是递增数列,则公比q大于1
4. 等差数列 { an} 中, a1>0,且 3 a8=5a13,则 Sn 中最大的是 C ( ) (A)S10 (B)S11 (C)S20 (D)S21
(2n-1)an,当{an}为等比数列时其结论可类似推导得出.
4. 已知数列 { an} 的前 n 项和 Sn=32n-n2,求数列 { |an|} 的前 n 项 Sn 和S’n .
【解题回顾】
:当ak≥0 一般地,数列{an}与数列{|an|}的前n项和Sn与 S n
时,有 S n ak<0时, S n S(n k =1,2,…,n).若在 S;当 n
高三数学第一轮总复习四:等差、等比数列
等差、等比数列的通项及求和公式 等差、等比数列的运用
等差、等比数列的应用 数列的通项与求和
第1课时 等差、等比数列的通项及求 和公式
• • • •
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展
•误 解 分 析
要点·疑点·考点
1.等差数列前n项和
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零, 设其和分别为S+、S-,则有Sn=S++S-,所以
[精]高三第一轮复习全套课件3数列:数列的综合应用
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
湘教版高考总复习一轮数学精品课件 第六章 数列 第一节 数列的概念与简单表示法
=6,因此数列{Sn}是首项为
1,公比为 6 的等比数列,则 Sn=6n-1,于是当 n≥2
时,an=Sn-Sn-1=6n-1-6n-2=5×6n-2,且 a1=1 不适合上式,因此数列{an}的通项公式
1, = 1,
为 an=
故选 C.
-2
5 × 6 , ≥ 2.
引申探究(变条件)在本例中,若其他条件不变,将“an+1=5Sn(n≥1)”改为
以运用累加法an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1(n≥2),并验
证a1,求出数列{an}的通项公式.
考向2累乘法
题组(1)(2023·江苏宿迁高三月考)已知数列{an}满足
1
+1
a1= ,an+1= an(n∈N+),则
4
4
an=
.
(2)(2023·福建泉州高三期中)已知数列{an}的前n项和为Sn,且满足
Sn=(n+1)2an-3,则{an}的通项公式为
答案
(1)
4
6
(2)an=
(+1)(+2)
.
解析 (1)由
因此当
又
1
+1
+1
a1=4,an+1= 4 an,得
2
n≥2 时,an=a1·
1
1
.
答案 (1)A (2)an=
-1, = 1,
2·3-2 , ≥ 2
解析 (1)当n≥2时,由a1+2a2+3a3+…+nan=(n-1)·2n+1,可得
1,公比为 6 的等比数列,则 Sn=6n-1,于是当 n≥2
时,an=Sn-Sn-1=6n-1-6n-2=5×6n-2,且 a1=1 不适合上式,因此数列{an}的通项公式
1, = 1,
为 an=
故选 C.
-2
5 × 6 , ≥ 2.
引申探究(变条件)在本例中,若其他条件不变,将“an+1=5Sn(n≥1)”改为
以运用累加法an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1(n≥2),并验
证a1,求出数列{an}的通项公式.
考向2累乘法
题组(1)(2023·江苏宿迁高三月考)已知数列{an}满足
1
+1
a1= ,an+1= an(n∈N+),则
4
4
an=
.
(2)(2023·福建泉州高三期中)已知数列{an}的前n项和为Sn,且满足
Sn=(n+1)2an-3,则{an}的通项公式为
答案
(1)
4
6
(2)an=
(+1)(+2)
.
解析 (1)由
因此当
又
1
+1
+1
a1=4,an+1= 4 an,得
2
n≥2 时,an=a1·
1
1
.
答案 (1)A (2)an=
-1, = 1,
2·3-2 , ≥ 2
解析 (1)当n≥2时,由a1+2a2+3a3+…+nan=(n-1)·2n+1,可得
[精]高三第一轮复习全套课件3数列:等差数列
新疆 源头学子小屋
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9
辽宁省大连市第八中学高三数学一轮复习课件:数列(共33张PPT)共35页
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
小组 任务 负责人
第一组 第8题
第二组 第10题 数学 第三组 第11题 课代表 第四组 第12题 上传至 第五组 第14题 展示1
第六组 第15题
第七组 第16题
பைடு நூலகம்
时间 3分钟
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
14.点评:
已知an与Sn关系时,常用
an
S1, n
S
n
1 S n1, n
2
方向1:把Sn转化为an,研究an 方向2:把an转化为 Sn ,研究Sn
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
试卷小结:
1.数列的单调性与函数的单调性的区别是什么?
2.求数列通项公式的常用方法有哪些?
3.数列求和的常用方法有哪些?
4.常见的裂项有哪些? 5.常见的放缩有哪些?
6.解决数列问题时常见的错误有哪些?
大连市第八中学
惜时 坚韧 创新
作业:
大连市第八中学
惜时 坚韧 创新
大连市第八中学
惜时 坚韧 创新
8.点评:
数列的单调性与函数的单调性不完全一致。 处理时,可用数列单调性定义。
大连市第八中学
惜时 坚韧 创新
第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习
a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1
=
(2n
+
1)
7 8
n+1
,
an+1 an
=
(2n+1)78n+1 (2n-1)78n
=
14n+7 16n-8
.
当
aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列
高一数学数列高三总复习.pptx
若项数为2n-1(n∈N),则S奇-S偶
=an ,
S奇 / S偶=n / (n-1)
⑥ 等差数列{an }、{bn }的前n项和为Sn、Tn, 则an S2n1
bn T2n1
第11页/共52页
⑦
am an
n m
amn
0
Sm Sn
n m
Smn
(
m
n
)
第12页/共52页
设元的技巧:
三个数成等差数列,可设为a-d , a ,
第9页/共52页
练习1. 等差数列{an }、{bn }的 前n项和为Sn、Tn . (1)若am n, an m,求amn; (2)Sm n, Sn m(m n),求Smn; (3)若 Sn 7n 1 ,求an .
Tn 4n 27 bn
第10页/共52页
⑤若项数为2n(n∈N),则S偶-S奇=nd , S偶 / S奇=an+1 / an
}
的前 T n项和,求 n.
第17页/共52页
6.在等差数列{an}中, a16+ a17+ a18= a9=-36,其前n 项和为Sn.
(1)求Sn的最小值,及取得最小值时的n 值
(2)求Tn=| a1 |+| a2 |+…+| an |
第18页/共52页
(2010全国)如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=
第27页/共52页
140 85
8. 有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售,甲 商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多 买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原 价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?
高三数学一轮复习数列求和的方法总结课件 (共19张PPT)
2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②
①
-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1
高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件
(2)因为{an}是等差数列,公差为 d,所以 a3(n+1)-a3n=3d(与 n 值无关的常数),所以数列{a3n}也是等差数列.
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .
高三数学一轮复习课件:数列求和_高考复习优秀课件
= n 1 -1.
令 Sn=10, 解得 n=120. 故选 C.
考向2 裂项相消法求和 【例2】 (2013·江西高考)正项数列{an}满足:a2n-(2n- 1)an-2n=0. (1)求数列{an}的通项公式an; (2)令bn=n+11an,求数列{bn}的前n项和Tn. 【思路点拨】 (1)通过解关于an的一元二次方程及 an>0,求an; (2)用裂项相消法求Tn.
解析: (1)设等差数列{an}的首项为 a1,公差为 d, 由于 a3=7,a5+a7=26, 所以 a1+2d=7,2a1+10d=26,解得 a1=3,d=2. 由于 an=a1+(n-1)d,Sn=na12+an, 所以 an=2n+1,Sn=n(n+2).
(2)因为 an=2n+1,所以 an2-1=4n(n+1), 因此 bn=4nn1+1=141n-n+1 1. 故 Tn=b1+b2+…+bn =141-21+12-13+…+1n-n+1 1 =141-n+1 1=4nn+1. ∴所以数列{bn}的前 n 项和 Tn=4nn+1.
答案: B
2.已知数列{an}的通项公式是
an=
1
,若 Sn=10,则 n 的值
n n1
是( C )
(A)11
(B)99 (C)120
(D)121
解析:∵an=
1
= n 1 - n ,
n n 1
∴Sn=( 2 -1)+( 3
- 2 )+( 4 - 3 )+…
+( n - n 1 )+( n 1 - n )
一种思路 一般数列求和,应从通项入手,若无通项,先求通项, 然后通过对通项变形,转化为与特殊数列有关或具备某种方 法适用特点的形式,从而选择合适的方法求和.
高考数学一轮复习 第五章 数列 5.1 数列的概念与简单表示法课件 理 高三全册数学课件
=__-___1n___.
2021/12/8
第二十八页,共六十三页。
【解析】 (1)当 n=1 时,a1=S1=2(a1-1),可得 a1=2, 当 n≥2 时,an=Sn-Sn-1=2an-2an-1, ∴an=2an-1, ∴数列{an}为首项为 2,公比为 2 的等比数列, 所以 an=2n.
2 . 若 数 列 {an} 的 前 n 项 和 为 Sn , 通 项 公 式 为 an , 则 an = S1,n=1, Sn-Sn-1,n≥2,n∈N*.
3.三种必会方法 (1)叠加法:对于 an+1-an=f(n)型,若 f(1)+f(2)+…+f(n)的和是可 求的,可用多式相加法求得 an.
2021/12/8
第三十六页,共六十三页。
2.若将“an+1=an+n+1”改为“an+1=2an+3”,如何求解?
解:设递推公式 an+1=2an+3 可以转化为 an+1-t=2(an-t), 即 an+1=2an-t,解得 t=-3.故 an+1+3=2(an+3).令 bn=an+3, 则 b1=a1+3=5,且bbn+n 1=aan+n+1+33=2.所以{bn}是以 5 为首项,2 为公比的等比数列.所以 bn=5×2n-1,故 an=5×2n-1-3.
2021/12/8
第三十四页,共六十三页。
考向三 由递推关系求通项公式
n2+n+2
【例 3】 设数列{an}中,a1=2,an+1=an+n+1,则 an=____2____.
【解析】 由条件知 an+1-an=n+1, 则 an=(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)+a1=(2 +3+4+…+n)+2=n2+2n+2.
2021/12/8
高三一轮复习等比数列课件
判断性质
根据通项公式判断等比数 列的性质,如公比、项数 等。
求解问题
利用通项公式解决等比数 列相关的问题,如求和、 判断单调性等。
特殊等比数列的通项公式
等差等比混合数列
该数列前n项中,有一部分是等差数列,一部分是等比数列,需要分别推导等 差部分和等比部分的通项公式,再结合得到混合数列的通项公式。
平方数列
算法优化
在计算机性。
05 等比数列的习题与解析
基础习题
基础习题
1. 题目:已知等比数列 { a_n } 中,a_1 = 2,a_3 = 8, 则 a_5 = _______.
3. 题目:已知等比数列 { a_n } 的前 n 项和为 S_n,且 S_3,S_9,S_6 成等差数列,则 a_2a_8 = _______.
高三一轮复习等比数列课件
目录
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列在实际生活中的应用 • 等比数列的习题与解析
01 等比数列的定义与性质
等比数列的定义
等比数列的定义
等比数列是一种特殊的数列,其 中任意两个相邻项的比值都相等 ,记作 a_n/a_(n-1)=r(常数) 。
分段等比数列求和
对于一些分段等比数列,需要分段进行求和,并注意分段点处的连 续性。
04 等比数列在实际生活中的 应用
等比数列在金融中的应用
复利计算
等比数列可以用于计算复利,帮 助投资者了解投资收益的增长情
况。
保险计算
保险公司在计算保险费用和赔付 时,常常使用等比数列来计算未
来价值和赔偿金额。
股票分析
等比数列的表示
通常用英文字母q表示等比数列的 公比,用a_1表示第一项,用n表 示项数。
2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)
再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =
,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得
设
1
an+1
+k=2
1
an
+k
即
1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3
∴
1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1
6.4数列求和课件高三数学一轮复习
KAODIANTUPOTIXINGPOUXI
例1 已知等差数列{an}的前n项和为Sn,且关于x的不等式a1x2-S2x+2<0的解 集为(1,2). (1)求数列{an}的通项公式; 解 设等差数列{an}的公差为d, 因为关于x的不等式a1x2-S2x+2<0的解集为(1,2), 所以Sa12=1+2=3. 又S2=2a1+d,所以a1=d, 易知a21=2,所以 a1=1,d=1. 所以数列{an}的通项公式为an=n.
即23Tn=3111--3131n-3nn+1
=121-31n-3nn+1,
整理得 Tn=34-24n×+33n,
则 2Tn-Sn=234-24n×+33n -231-31n=-3nn<0,故 Tn<S2n.
训练 3 在①Sn=2an+1;②a1=-1,log2(anan+1)=2n-1;③a2n+1=anan+2,S2= -3,a3=-4 这三个条件中任选一个,补充在下面问题的横线上,并解答. 问题:已知单调数列{an}的前 n 项和为 Sn,且满足________. (1)求{an}的通项公式;
即aann+-11=4,
所以{a2k-1}(k∈N*)为等比数列,其中首项为a1=-1,公比为4, 所以a2k-1=-1×4k-1=-2(2k-1)-1; 由a1=-1,log2(a1a2)=1,得a2=-2,
同理可得,a2k=-2×4k-1 =-22k-1(k∈N*). 综上,an=-2n-1.
数列中的奇偶项问题
数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数 列的特征(等差、等比数列或其他特征)求解原数列. (1)数列中的奇、偶项问题的常见题型 ①数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n)); ②含有(-1)n的类型; ③含有{a2n},{a2n-1}的类型; ④已知条件明确奇偶项问题. (2)对于通项公式分奇、偶不同的数列{an}求Sn时,我们可以分别求出奇数项的 和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.
例1 已知等差数列{an}的前n项和为Sn,且关于x的不等式a1x2-S2x+2<0的解 集为(1,2). (1)求数列{an}的通项公式; 解 设等差数列{an}的公差为d, 因为关于x的不等式a1x2-S2x+2<0的解集为(1,2), 所以Sa12=1+2=3. 又S2=2a1+d,所以a1=d, 易知a21=2,所以 a1=1,d=1. 所以数列{an}的通项公式为an=n.
即23Tn=3111--3131n-3nn+1
=121-31n-3nn+1,
整理得 Tn=34-24n×+33n,
则 2Tn-Sn=234-24n×+33n -231-31n=-3nn<0,故 Tn<S2n.
训练 3 在①Sn=2an+1;②a1=-1,log2(anan+1)=2n-1;③a2n+1=anan+2,S2= -3,a3=-4 这三个条件中任选一个,补充在下面问题的横线上,并解答. 问题:已知单调数列{an}的前 n 项和为 Sn,且满足________. (1)求{an}的通项公式;
即aann+-11=4,
所以{a2k-1}(k∈N*)为等比数列,其中首项为a1=-1,公比为4, 所以a2k-1=-1×4k-1=-2(2k-1)-1; 由a1=-1,log2(a1a2)=1,得a2=-2,
同理可得,a2k=-2×4k-1 =-22k-1(k∈N*). 综上,an=-2n-1.
数列中的奇偶项问题
数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数 列的特征(等差、等比数列或其他特征)求解原数列. (1)数列中的奇、偶项问题的常见题型 ①数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n)); ②含有(-1)n的类型; ③含有{a2n},{a2n-1}的类型; ④已知条件明确奇偶项问题. (2)对于通项公式分奇、偶不同的数列{an}求Sn时,我们可以分别求出奇数项的 和与偶数项的和,也可以把a2k-1+a2k看作一项,求出S2k,再求S2k-1=S2k-a2k.
数列求和课件高三数学一轮复习
-2n
1
9·4 -1
+
1
1
+…+
2
4
4
−
−
4 +1
3·4
4 +1
.②
− 4 +1 ,
1
3
1
3·4
4
9
3+4
.
9·4
= −
= −
−
4 +1
,
规律方法 错位相减求和法的方法步骤
设{anbn}的前n项和为Sn,其中数列{an}为公差为d的等差数列,数列{bn}为公
所以当 k 为偶数时,(Sn)max= =
2
当 k 为奇数时,(Sn)max=+1 =
2
2
=25,解得
4
2 -1
=25,此时
4
k=10;
k 无整数解.
综上可得,k=10,Sn=-n2+10n.
当n=1时,a1=S1=9.
当n≥2时,an=Sn-Sn-1=(-n2+10n)-[-(n-1)2+10(n-1)]=-2n+11,
故数列{an}是等比数列,且首项为2,公比为2,所以an=2n.
(2)由(1)知 bn=log2a2n-1=2n-1,
1
所以
+1
所以
=
=
1
Tn=
1 2
1
1
(1-3
2
1
3
1
(2-1)(2+1)
+
1
2 3
1
5
高三数学一轮复习 第六章《数列》63精品课件
二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an} a11-qn a1-anq 的前 n 项和 Sn= = .等比数列的前 n 项和公式 1-q 1-q 涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的设项技巧 a a (1)对于连续奇数项的等比数列,通常可设为…,q2,q, a,aq,aq2,…; (2)对于连续偶数项且公比为正的等比数列,通常可设 a a 为…,q3,q,aq,aq3,….
an (2){an}{bn}均为等比数列⇒{an· bn}、b 是等比数列. n
am m-n (3){an}为等比数列,则 a = q n
.
(4)若 m、 n、 p、 q∈N*且 m+n=p+q, 则 am· an=ap· aq. 特别地,a1an=a2an-1=a3an-2=…
(5)等间隔的 k 项和(或积)仍成等比数列. 例如:{an}是等比数列,则 ①a1, a3, a5, …, a2n-1; ②a1+a2, a2+a3, a3+a4, …; ③a1a2,a2a3,a3a4,…;④a1+a2,a3+a4,a5+a6……均 成等比数列. (6)an2=an-k· an+k (1≤k<n,n、k∈N*).
1 1 3 解析:a4=a1 2 = a1, 8
15 S4 S4= = a1,∴ =15. 1 8 a4 1-2 答案:15
1 a11-24
• (理)(09·全国Ⅱ)设等比数列{an}的前n项和为Sn.若a1=1, S6=4S3,则a4=________.
解析:设等比数列的公比为 q. 当 q=1 时,由 S6=4S3 得,6a1=4×3a1⇒a1=0(舍). a11-q6 a11-q3 当 q≠1 时,由 S6=4S3⇒ =4· ⇒ 1-q 1-q • 答案: 3 3 1+q =4⇒q3=3⇒a4=a1q3=3.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识梳理
2.数列的分类
分类原则
按项数分类 按项与项间 的大小关系 分类
类型 有穷数列 无穷数列 递增数列 递减数列 常数列
有界数列
按其他标准 分类
摆动数列
满足条件 项数 有限 项数 无限 an+1>an 其中 an+1< an n∈N* an+1=an 存在正数M,使 |an|≤M an的符号正负相 间,如1,-1,1,- 1,…
课堂互动讲练
例3 已知数列{an}的前n项和为 Sn,求{an}的通项公式. (1)Sn=2n2-3n; (2)Sn=3n+b.
课堂互动讲练
【思路点拨】 利用数列的通项an与前
S1 (n= 1), n 项和 Sn 的关系 an= Sn-Sn- 1 (n≥2).
三基能力强化
5.(教材习题改编)下列关于星星 的图案个数构成一个数列,该数列的 一个通项公式是________.
1 答案:an= n(n+1பைடு நூலகம் 2
课堂互动讲练
考点一 由数列的前几项求数列的通项公式
根据数列的前若干项写出数列的 一个通项公式,解决这一题型的关键 是通过观察、分析、比较去发现项与 项之间的关系,如果关系不明显,应 该将项作适当变形或分解,让规律突 现出来,便于找到通项公式;同时还 要借助一些基本数列的通项及其特 点.
课堂互动讲练
3.有界性:若{an}满足:|an|<M 或|an|≤M,则称{an}为有界数列,并能 求出数列中的最大项或最小项.
课堂互动讲练
例2 已知数列{an}的前n项和Sn=-n2 +24n(n∈N+). (1)求{an}的通项公式; (2)当n为何值时,Sn达到最大? 最大值是多少?
【思路点拨】 (1)可借助an与Sn 的关系求得通项公式; (2)因为Sn是关于n的二次函数, 故可利用函数观点解决.
三基能力强化
3.若数列的前四项分别为 2,0,2,0,则此数列的通项公式不能是 ( ) A.an=1+(-1)n+1 B.an=1-cosnπ 2nπ C.an=2sin 2 D.an=1+(-1)n-1+(n-1)(n-2) 答案:D
三基能力强化
4.已知数列{an}满足an+2=an+1 +an(n∈N*).若a1=1,a2=2.则a5= ________. 答案:8
基础知识梳理
3.数列的表示法 数列有三种表示法,它们分别 是 列表法 、 图象法 和 解析法 .
基础知识梳理
1.数列是否可以看作一个函数, 若是,其定义域是什么? 【思考· 提示】 可以看作一个函 数,其定义域是正整数集N*(或它的有 限子集{1,2,3,…,n}),可表示为an = f(n).
高考导航
命题探究
1.最近几年的高考试题,数列部分的内容约 占8%~10%,试题有如下特点:一般试题类型为 一道选择题或填空题和一道解答题.考查的重点 是等差数列、等比数列的通项公式与前n项和公式 的灵活运用,特别是等差数列、等比数列的性 质,这一部分题多是中、低难
高考导航
命题探究
度题,但解题方法灵活多样.掌握一定的技巧,可 以又快又准地完成它,有利于区分不同层次的考 生.数列中an与Sn的关系也是高考的一个热点,因为 这类题目既能考查数列的有关概念和性质,又能考 查学生建模能力和抽象概括能力.与此同时,函数 思想、方程思想、分类讨论等数学思想方法在解决 数列问题时的应用也会常常涉及.
基础知识梳理
4.数列的通项公式 如果数列{an}的第n项an与序号n 之间的关系可以用一个公式 an=f(n)来 表示,那么这个公式叫做这个数列的 通项公式.
基础知识梳理
2.数列的通项公式唯一吗?是否 每个数列都有通项公式?
【思考· 提示】 不唯一,如数 列- 1,1,- 1,1 , …的通项公式可 以 为 an = ( - 1)n 或 an = -1 (n为奇数 ) ,有的数列没有 (n为偶数 ) 1 通项公式.
课堂互动讲练
考点三 数列的通项an与前n项和Sn
数列的前n项和Sn与an之间的关系如下:
S1, n=1, an= 务必注意 an= Sn-Sn- 1,n≥2,
Sn-Sn-1是在n≥2的条件下成立的,若将n=1 代入该式所得的值与S1相等,则{an}的通项公 式就可用统一的形式来表示,否则就写成上 述分段数列的形式.
课堂互动讲练
例1 写出下列数列的一个通项公式: (1)3,5,9,17,33,…; 1 9 25 (2) ,2, ,8, ,…; 2 2 2 (3) 2, 5,2 2, 11,….
课堂互动讲练
【思路点拨】
课堂互动讲练
考点二 数列的性质
1.数列的单调性:若an+1>an, 则{an}为递增数列,若an+1<an,则 {an}为递减数列,否则为摆动数列或 常数列. 2.周期性:若an+k=an对 n∈N*(k为常数)成立,则{an}为周期数 列.对于一些数列,若通项无法求出 时,可考虑其周期性.
第六章 数列(必修5)
高考导航
考纲解读
1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表 示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一 类函数.
高考导航
考纲解读
2.等差数列、等比数列 (1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前n 项和公式. (3)能在具体的问题情境中识别数列的等差关系 或等比关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数、等比数列与指数 函数的关系.
高考导航
命题探究
2.预计在明年高考试卷中,对数列知识的考查,总 的趋势是“稳中有变”.由于探索性问题是近几年的考查热 点,这类问题在数列中出现的可能性较大.
第1课时 数列的概念与 简单表示法
基础知识梳理
1.数列的定义 按照一定顺序 排列着的一列数称 为数列,数列中的每一个数叫做这个 数列的项.
三基能力强化
1 1 1 1 1.数列 , , ,…, ,…中第 3 4 5 n 10 项是( ) 1 1 A. B. 10 8 1 1 C. D. 11 12
答案:D
三基能力强化
2.已知数列{an}的通项公式是 an= 2n ,那么这个数列是( 3n+ 1 )
A.递增数列 B.递减数列 C.摆动数列 D.常数列 答案:A