高中数学新人教A版必修5习题2.2等差数列2
2019-2020学年高中数学人教A版必修5练习:第二章 2.2 等差数列 第一课时 等差数列的概念及通项公式 课下检
一、选择题1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 011,则序号n 等于( ) A .668 B .669 C .670D .671解析:∵a n =a 1+(n -1)·d , ∴2 011=1+(n -1)×3,n =671. 答案:D2.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2(n ∈N *) B .a n =2n +4(n ∈N *) C .a n =-2n +12(n ∈N *) D .a n =-2n +10(n ∈N *) 解析:由⎩⎪⎨⎪⎧a2·a4=12,a2+a4=8,d<0,⇒⎩⎪⎨⎪⎧ a2=6,a4=2,⇒⎩⎪⎨⎪⎧a1=8,d =-2,所以a n =a 1+(n -1)d =8+(n -1)(-2). 即a n =-2n +10. 答案:D3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a 、b 的关系是( ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0解析:由等差中项的定义知:x =a +b 2,x 2=a2-b22, ∴a2-b22=(a +b 2)2,即a 2-2ab -3b 2=0. 故a =-b 或a =3b . 答案:C4.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( ) A .52 B .51 C .50D .49解析:∵2a n +1=2a n +1, ∴2(a n +1-a n )=1.即a n +1-a n =12.∴{a n }是以12为公差的等差数列.a 101=a 1+(101-1)×d =2+50=52. 答案:A二、填空题5.等差数列1,-3,-7,-11,…的通项公式是________,它的第20项是________. 解析:数列中a 2=-3,a 1=1,∴d =a 2-a 1=-4. 通项公式为a n =a 1+(n -1)×d =1+(n -1)×(-4) =-4n +5, a 20=-80+5=-75. 答案:a n =-4n +5 -756.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________. 解析:∵由a 4=8,a 8=4,得⎩⎪⎨⎪⎧a1+3d =8,a1+7d =4. ∴d =-1,a 1=8-3d =11. ∴a n =a 1+(n -1)d =11-(n -1)=12-n . 答案:12-n7.等差数列{a n }中,首项为33,公差为整数,若前7项均为正数,第7项以后各项都为负数,则数列的通项公式为____________.解析:由题意,得⎩⎪⎨⎪⎧ a7=a1+6d >0,a8=a1+7d <0,即⎩⎪⎨⎪⎧33+6d >0,33+7d <0,得:-336<d <-337,又∵d ∈Z ,∴d =-5.∴a n =33+(n -1)×(-5)=38-5n . 答案:a n =38-5n (n ∈N *) 8.下表给出一个“等差矩阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数,那么a 45=________. 解析:该等差数列第一行是首项为4,公差为3的等差数列:a 1j =4+3(j -1). 第二行是首项为7,公差为5的等差数列:a 2j =7+5(j -1).……第i 行是首项为4+3(i -1),公差为2i +1的等差数列. 因此,a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j .故a 45=49. 答案:49 三、解答题9.已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?解:法一:设等差数列{a n }的前三项分别为a 1,a 2,a 3.依题意得⎩⎪⎨⎪⎧a1+a2+a3=18,a1·a2·a3=66,∴错误!解得⎩⎪⎨⎪⎧ a1=11,d =-5.或⎩⎪⎨⎪⎧a1=1,d =5.∵数列{a n }是递减等差数列,∴d <0. 故取a 1=11,d =-5,∴a n =11+(n -1)·(-5)=-5n +16 即等差数列{a n }的通项公式为a n =-5n +16. 令a n =-34,即-5n +16=-34,得n =10. ∴-34是数列{a n }的项,且为第10项. 法二:设等差数列{a n }的前三项依次为: a -d ,a ,a +d , 则错误!解得错误!又∵{a n }是递减等差数列,即d <0. ∴取a =6,d =-5.∴{a n }的首项a 1=11,公差d =-5. ∴通项公式a n =11+(n -1)·(-5), 即a n =-5n +16. 令a n =-34,解得n =10.即-34是数列{a n }的项,且为第10项.10.数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)是否存在实数λ使数列{a n }为等差数列?若存在,求出λ及数列{a n }的通项公式;若不存在,请说明理由.解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…), 且a 1=1.所以当a 2=-1时,得-1=2-λ,故λ=3.从而a3=(22+2-3)×(-1)=-3.(2)数列{a n}不可能为等差数列,证明如下:由a1=1,a n+1=(n2+n-λ)a n,得a2=2-λ,a3=(6-λ)(2-λ),a4=(12-λ)(6-λ)(2-λ).若存在λ,使{a n}为等差数列,则a3-a2=a2-a1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a2-a1=1-λ=-2,a4-a3=(11-λ)(6-λ)(2-λ)=-24.这与{a n}为等差数列矛盾.所以,不存在λ使{a n}是等差数列.。
2021年高中数学 2.2.1等差数列的概念与通项公式练习 新人教A版必修5
2021年高中数学 2.2.1等差数列的概念与通项公式练习新人教A版必修5►基础梳理1.(1)等差数列的定义:____________________.定义的数学式表示为__________________________.(2)判断下列数列是不是等差数列.①2,4,6,8,10;②1,3,5,8,9,10.2.(1)首项为a1公差为d的等差数列{a n}的通项公式为____________.(2)写出下列数列的通项公式:①2,4,6,8,10;②0,5,10,15,20,….3.(1)等差中项的定义:______________________.(2)求下列各组数的等差中项:①2,4;②-3,9.4.(1)等差数列当公差______时,为递增数列;当公差______时,为递减数列.(2)判断下列数列是递增还是递减数列.①等差数列3,0,-3,…;②数列{a n}的通项公式为:a n=2n-100(n∈N*).5.等差数列的图象的特点是________________.基础梳理1.(1)从第二项起,每一项与它前一项的差等于同一个常数a n-a n-1=d (与n无关的常数),n≥2,n∈N*(2)①是②不是2.(1)a n=a1+(n-1)d,n∈N*(2)①a n=2n,n=1,2,3,4,5②a n=5n-5,n∈N*3.(1)如果a,A,b成等差数列,则A叫a与b的等差中项(2)①所求等差中项为3 ②所求等差中项为34.(1)d>0 d<0(2)①递减数列②递增数列5.一条直线上的一群孤立点►自测自评1.下列数列不是等差数列的是( )A.a-d,a,a+dB.2,4,6,…,2(n-1),2nC.m,m+n,m+2n,2m+n(m≠2n)D.数列{a n}满足a n-1=a n-12(n∈N*,n>1)2.等差数列a-2d,a,a+2d,…的通项公式是( )A.a n=a+(n-1)d B.a n=a+(n-3)dC.a n=a+2(n-2)d D.a n=a+2nd3.已知数列{a n}对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上,则{a n}为( ) A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列自测自评1.解析:利用定义判断,知A,B,D是等差数列;对于C,m+n-m=n,(2m+n)-(m+2n)=m-n,且n≠m-n,∴该数列不是等差数列.故选C.答案:C2.解析:数列的首项为a-2d,公差为2d,∴a n=(a-2d)+(n-1)·2d=a+2(n-2)d.答案:C3.A►基础达标1.有穷等差数列5,8,11,…,3n+11(n∈N*)的项数是( )A.n B.3n+11C.n+4 D.n+31.解析:在3n+11中令n=1,结果为14,它是这个数列的第4项,前面还有5,8,11三项,故这个数列的项数为n+3.故选D.答案:D2.若{a n }是等差数列,则由下列关系确定的数列{b n }也一定是等差数列的是( )A .b n =a 2nB .b n =a n +n 2C .b n =a n +a n +1D .b n =na n2.解析:{a n }是等差数列,设a n +1-a n =d ,则数列b n =a n +a n +1满足:b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d .故选C.答案:C3.已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A. 3 B. 2 C.13 D.123.解析:a ,b 的等差中项为12×⎝ ⎛⎭⎪⎫13+2+13-2=12×(3-2+3+2)= 3. 答案:A4.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个4.C5.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A .49B .50C .5D .525.解析:由2a n +1=2a n +1得a n +1-a n =12, ∴{a n }是等差数列,且公差为d =12,又a 1=2, ∴a 101=a 1+(101-1)d =2+100×12=52.故选D. 答案:D►巩固提高6.若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 2-a 1b 2-b 1=( )A.34B.43C.23D .不能确定 6.解析:a 2-a 1=13(y -x ),b 2-b 1=14(y -x ), ∴a 2-a 1b 2-b 1=43.故选B. 答案:B7.已知函数f (x )=2x ,等差数列{a n }的公差为 2.若f (a 2+a 4+a 6+a 8+a 10)=4,则log 2[f (a 1)·f (a 2)·f (a 3)·…·f (a 10)]=________.7.解析:∵f (a 2+a 4+a 6+a 8+a 10)=2a 2+a 4+a 6+a 8+a 10=4,∴a 2+a 4+a 6+a 8+a 10=2.又∵a 1+a 3+a 5+a 7+a 9=(a 2-d )+(a 4-d )+…+(a 10-d )=2-5d =-8,∴a 1+a 2+…+a 10=2+(-8)=-6.∴log 2[f (a 1)·f (a 2)·…·f (a 10)]=log 2(2a 1+a 2+…+a 10)=a 1+a 2+…+a 10=-6. 答案:-68.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.8.解析:利用等差数列的通项公式求解.设等差数列公差为d ,则由a 3=a 22-4,得1+2d =(1+d )2-4,∴d 2=4,∴d =±2.由于该数列为递增数列,∴d =2.∴a n =1+(n -1)×2=2n -1(n ∈N *).答案:2n -1(n ∈N *)9.有四个数成等差数列,它们的平方和等于276,第一个数与第四个数之积比第二个数与第三个数之积少32,求这四个数.9.解析:设四个数依次为a -3d ,a -d ,a +d ,a +3d ,∴⎩⎪⎨⎪⎧(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=276,(a -d )(a +d )-(a -3d )(a +3d )=32. ∴⎩⎪⎨⎪⎧a 2+5d 2=69,d 2=4.∴a =±7,d =±2. ∴所求的四个数依次为:1,5,9,13或13,9,5,1或-13,-9,-5,-1或-1,-5,-9,-13.10.已知函数f (x )=x ax +b(a ,b 为常数,a ≠0)满足f (2)=1,且f (x )=x 有唯一解. (1)求f (x )的表达式;(2)若数列{x n }由x n =f (x n -1)(n ≥2,n ∈N *)且x 1=1.①求证:数列⎩⎨⎧⎭⎬⎫1x n 是等差数列; ②求数列{x n }的通项公式.10.(1)解析:由f (2)=1,得22a +b=1,即2a +b =2. 由f (x )=x ,得x ax +b=x ,即ax 2+(b -1)x =0有唯一解, ∴Δ=(b -1)2=0,∴b =1.∴a =12. ∴f (x )=2x x +2. (2)①证明:当n ≥2时,x n =f (x n -1)=2x n -1x n -1+2. 又x 1=1>0,∴x n >0,即x n ≠0.∴1x n =x n -1+22x n -1=1x n -1+12,即1x n -1x n -1=12. 故数列⎩⎨⎧⎭⎬⎫1x n 是首项为1,公差为12的等差数列. ②解析:由①得1x n =1+12(n -1)=n +12, ∴x n =2n +1(n ∈N *).1.用好等差数列的定义与掌握好等差数列的通项公式是关键,写数列通项公式时注意n 的取值范围.2.注意等差数列与一次函数间的关系,如自测自评中第3题.3.题设中有三个数成等差数列时,一般设这三个数为a -d 、a 、a +d .若五个数成等差一般设为a -2d 、a -d 、a 、a +d 、a +2d .有时也直接设为等差数的通项形式,具体问题具体分析,设的目的是便于计算,要灵活选择设的方法.4.等差中项有广泛应用,要准确理解其含义.5.证明数列为等差数列的方法有:定义法、通项公式法、等差中项法.K29753 7439 琹35196 897C 襼.D27967 6D3F 洿40023 9C57 鱗34218 85AA 薪}l !I24395 5F4B 彋E。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
人教版高中数学必修五 2.2 等差数列
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.
高中数学第二章数列2.2等差数列第一课时等差数列的概念与通项公式课件新人教A版必修5
则
an am
a1 (n 1)d, a1 (m 1)d
⇒
an-am=(n-m)d⇒
d an am , nm an am (n
m)d.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
2.对等差数列定义的理解 (1)“从第2项起”是因为首项没有“前一项”. (2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不 一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中 强调“同一个常数”,注意不要漏掉这一条件. (3)求公差d时,可以用d=an-an-1来求,也可以用d=an+1-an来求.注意公差是每 一项与其前一项的差,且用an-an-1求公差时,要求n≥2,n∈N*.
解析:由等差数列的定义知强调两个方面:①从第2项起; ②差为同一个常数,故选D.
2.等差数列{an}中,a4+a8=10,a10=6,则公差 d 等于( A )
(A) 1 4
(B) 1 2
(C)2
(D)- 1 2
解析:在等差数列{an}中,由 a4+a8=10,得 2a6=10,a6=5.又 a10=6,则 d= a10 a6 = 6 5 = 1 .故选 A.
2d a14d 105, a1 3d a1 5d
99,
解得
ad1
39, 2,
所以
a20=a1+19d=1.
答案:1
课堂探究
题型一 等差数列的通项公式
【例1】 已知{an}为等差数列,a15=8,a60=20,求a75.
新人教A版必修5高中数学2.2等差数列(1)学案(二)
高中数学 2.2等差数列(1)学案新人教A 版必修5学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定项.学习重难点1.重点: 等差数列的通项公式2.难点: 灵活运用通项公式求等差数列的首项、公差、项数、指定项一、课前准备 (预习教材P 36 ~ P 39 ,找出疑惑之处)复习1:什么是数列? 复习2:数列有几种表示方法?分别是哪几种方法?二、试一试问题一:等差数列的概念1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5 ④ 10072,10144,10216,10288,10366 新知:1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =问题二:等差数列的通项公式2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+ ……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 学习探究探究1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数. 探究 2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数. ※ 模仿练习练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.当堂检测1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ; ⑵已知13a =,21n a =,d =2,求n ;⑶已知112a=,627a=,求d;⑷已知d=-13,78a=,求1a.2. 一个木制梯形架的上下底边分别为33cm,75cm,把梯形的两腰各6等分,用平行木条连接各分点,构成梯形架的各级,试计算梯形架中间各级的宽度.课后反思。
2019-2020学年数学人教A版必修5课件:2.2 第2课时等差数列的性质
4.在等差数列{an}中,已知a2+2a8+a14=120,则2a9- a10的值为________.
【答案】30
【解析】∵a2 +a14=2a8,∴a2 +2a8+a14=4a8=120, ∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.
利用等差数列的通项公式或性质解题
【例1】 在等差数列{an}中,若a2=4,a4=2,则a6= ()
在等差数列{an}中,若a1+a2+a3=32,a11+a12+
a13=118,则a4+a10=( )
A.45
B.50
C.75
D.60
【答案】B
【解析】∵a1+a2+a3=3a2=32,a11+a12+a13=3a12= 118,∴3(a2+a12)=150,即a2+a12=50.∴a4+a10=a2+a12= 50.故选B.
(2019 年陕西西安模拟)《莱因德纸草书》是世
界上最古老的数学著作之一,书中有一道这样的题目:把 100
个面包分给五个人,使每人所得面包数成等差数列,且使较大
的三份之和的17等于较小的两份之和,问最小的 1 份为多少?这
个问题的答案为( )
A.53
B.130
C.56 【答案】A
D.161
【解析】设五个人分得的面包为 a-2d,a-d,a,a+d, a+2d(d>0),则(a-2d)+(a-d)+a+a+d+a+2d=5a=100, ∴a=20.由17(a+a+d+a+2d)=a-2d+a-d,得 3a+3d=7(2a -3d),∴24d=11a.∴d=565.∴最小的一份为 a-2d=20-2×565 =53.故选 A.
【方法规律】常见设元技巧: (1)某两个数是等差数列中的连续两个数且知其和,可设这 两个数为a-d,a+d,公差为2d; (2)三个数成等差数列且知其和,常设此三数为a-d,a,a +d,公差为d; (3)四个数成等差数列且知其和,常设成a-3d,a-d,a+ d,a+3d,公差为2d.
人教版高中数学必修⑤2.2《等差数列》教学设计
课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。
2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。
并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。
3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。
教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:1.概括通项公式推导过程中体现出的数学思想方法。
2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。
2022-2021学年高二数学人教A必修5学案:2.2 等差数列(二)
明目标、知重点 1.能依据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是一固定常数;当d ≠0时,a n 的相应函数是一次函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点. 2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a m n -m ,从而有a n=a m +(n -m )d .(2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . 3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和. 即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c ·a n } 公差为cd 的等差数列(c 为任一常数) {a n +a n +k } 公差为2d 的等差数列(k 为常数,k ∈N *) {pa n +qb n }公差为pd +qd ′的等差数列(p ,q 为常数)(3){a n }的公差为d ,则d >0⇔{a n }为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.[情境导学]在等差数列{a n }中,若已知首项a 1和公差d 的值,由通项公式a n =a 1+(n -1)d 可求出任意一项的值,假如已知a m 和公差d 的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?本节我们连续探讨.探究点一 等差数列通项公式的推广思考1 等差数列的通项公式a n =a 1+(n -1)d 是由等差数列的前几项归纳得出的,公式只是一个猜想,那么,如何证明公式对全部正整数n 都成立?答 (1)叠加法:由等差数列的定义知: a n -a n -1=d (n ≥2,n ∈N *),⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=da 4-a 3=d …a n-a n -1=d (n -1)个 将以上(n -1)个等式两边分别相加,可得a n -a 1=(n -1)d ,即a n =a 1+(n -1)d . (2)迭代法:{a n }是等差数列,则:a n =a n -1+d =a n -2+2d =a n -3+3d =…=a 1+(n -1)d . 所以a n =a 1+(n -1)d .思考2 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,假如已知第m 项a m 和公差d ,又如何表示通项a n?答 设等差数列的首项为a 1,则a m =a 1+(m -1)d , 变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d =a m +(n -m )d .思考3 对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间有怎样的关系?为什么?答 a m +a n =a p +a q .由于a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(n +m -2)d ,而a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d ,又因m +n =p +q ,所以a m +a n =a p +a q .小结 (1)等差数列的其次通项公式:a n =a m +(n -m )d ;(2)对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为a m +a n =a p +a q . 例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.解 由于a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2. 又因a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.反思与感悟 利用等差数列的其次通项公式及等差数列的性质,不难得出等差数列另外一些性质:(1){a n }为有穷等差数列,则与首末两项“等距离”的两项之和都相等,且等于首末两项之和. (2)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列. (3)若数列{a n }和{b n }均为等差数列,则{a n ±b n },{pa n +qb n }(p 、q 为常数)也为等差数列.跟踪训练1 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.答案 12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝⎛⎭⎫14+3d =2,∴d =12, ∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.探究点二 等差数列与一次函数的关系思考 等差数列{a n }的通项公式a n =a 1+(n -1)d 整理成a n 关于n 的函数后,其相应的一次函数图象的斜率及在y 轴上的截距各是什么?答 等差数列{a n }的通项公式变形为a n =dn +a 1-d ,其图象为一条直线上孤立的一系列点,d 为直线的斜率,在y 轴上的截距为a 1-d .例2 已知数列{a n }的通项公式a n =pn +q ,其中p 、q 为常数,那么这个数列确定是等差数列吗?若是,首项和公差分别是多少?解 取数列{a n }中任意相邻两项a n 和a n -1(n >1),求差得a n -a n -1=(pn +q )-[p (n -1)+q ]=pn +q -(pn -p +q )=p . 它是一个与n 无关的常数,所以{a n }是等差数列. 首项a 1=p +q ,公差d =p .反思与感悟 推断数列{a n }是不是等差数列,可以利用等差数列的定义,即a n -a n -1(n >1)是不是一个与n 无关的常数;也可以利用等差中项,即若a n +1=a n +a n +22成立,则说明{a n }是等差数列.跟踪训练2 已知a ,b ,c 成等差数列,证明a 2(b +c ),b 2(c +a ),c 2(a +b )也能构成等差数列. 证明 ∵a ,b ,c 成等差数列,∴a +c =2b . ∴a 2(b +c )+c 2(a +b ) =a 2b +a 2c +c 2a +c 2b =(a 2b +c 2b )+(a 2c +c 2a ) =b (a 2+c 2)+ac (a +c ) =b (a 2+c 2)+2abc =b (a 2+c 2+2ac )=b (a +c )2=b ·(a +c )·(a +c ) =2·b 2(a +c ).∴a 2(b +c ),b 2(c +a ),c 2(a +b )能构成等差数列. 探究点三 等差数列性质的应用例3 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式. 解 由于a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又由于a 2a 4a 6=45,所以a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9, 解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .反思与感悟 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练3 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值. 解 方法一 ∵a 1+a 4+a 7=(a 1+a 7)+a 4=3a 4=39, ∴a 4=13,∵a 2+a 5+a 8=(a 2+a 8)+a 5=3a 5=33.∴a 5=11,∴d =a 5-a 4=-2. ∵a 3+a 6+a 9=(a 3+a 9)+a 6 =2a 6+a 6=3a 6=3(a 5+d )=3(11-2)=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39, ∴a 1+3d =13,①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33. ∴a 1+4d =11,②由①②联立⎩⎪⎨⎪⎧ a 1+3d =13,a 1+4d =11,得⎩⎪⎨⎪⎧d =-2,a 1=19.∴a 3+a 6+a 9=(a 1+2d )+(a 1+5d )+(a 1+8d ) =3a 1+15d =3×19+15×(-2)=27.例4 三个数成等差数列,和为6,积为-24,求这三个数.解 方法一 设等差数列的中间一项为a ,公差为d ,则这三个数分别为a -d ,a ,a +d , 依题意得,3a =6且a (a -d )(a +d )=-24, 所以a =2,代入a (a -d )(a +d )=-24, 化简得d 2=16,于是d =±4, 故三个数为-2,2,6或6,2,-2.方法二 设首项为a ,公差为d ,这三个数分别为a ,a +d ,a +2d , 依题意得,3a +3d =6且a (a +d )(a +2d )=-24, 所以a =2-d ,代入a (a +d )(a +2d )=-24, 得2(2-d )(2+d )=-24,4-d 2=-12,即d 2=16,于是d =±4,三个数为-2,2,6或6,2,-2.反思与感悟 当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…,a-2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…,a -3d ,a -d ,a +d ,a +3d ,…,这样可削减计算量.跟踪训练4 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数. 解 方法一 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 依题意得,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.方法二 设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意得,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得(1-32d )(1+32d )=-8,即1-94d 2=-8,化简得d 2=4,所以d =2或-2. 又四个数成递增等差数列,所以d >0, 所以d =2,a =-2. 故所求的四个数为-2,0,2,4.1.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( ) A .3 B .-6 C .4 D .-3 答案 B解析 由等差数列的性质,得a 8-a 3=(8-3)d =5d ,所以d =-20-105=-6.2.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .32 B .-32 C .35 D .-35 答案 C解析 由a 8-a 4=(8-4)d =4d ,得d =3,所以a 15=a 8+(15-8)d =14+7×3=35.3.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3 B .-3 C.32 D .-32答案 A解析 由数列的性质,得a 4+a 5=a 2+a 7,所以a 2=15-12=3.4.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数. 解 设这三个数为a -d ,a ,a +d ,由已知得⎩⎪⎨⎪⎧(a -d )+a +(a +d )=18 ①(a -d )2+a 2+(a +d )2=116 ②由①得a =6,代入②得d =±2. ∵该数列是递增数列, ∴d >0,即d =2. ∴这三个数依次为4,6,8. [呈重点、现规律]1.在等差数列{a n }中,当m ≠n 时,d =a m -a n m -n 为公差公式,利用这个公式很简洁求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项依据原来的挨次排列,构成的新数列照旧是等差数列. 3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),特殊地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,假如条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要留意公式的变形及整体计算,以削减计算量.一、基础过关1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6 D .4 答案 B解析 由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,又d ≠0,∴m =8.2.设公差为-2的等差数列{a n },假如a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( ) A .-182 B .-78 C .-148 D .-82 答案 D解析 a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33=-82.3.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4答案 D解析 a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题p 1正确. na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小关系和a 1的取值状况有关. 故数列{na n }不愿定递增,命题p 2不正确. 对于p 3:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn (n -1), 当d -a 1>0,即d >a 1时,数列{a nn}递增,但d >a 1不愿定成立,则p 3不正确. 对于p 4:设b n =a n +3nd , 则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,p 4正确. 综上,正确的命题为p 1,p 4.4.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.5.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0 B .1 C .2 D .1或2 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 6.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10, ∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值. 解 方法一 设公差为d , 则d =a m -a n m -n =n -mm -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =an +b (a ,b 为常数),则⎩⎪⎨⎪⎧a m =am +b =n ,a n =an +b =m ,得a =-1,b =m +n .所以a m +n =a (m +n )+b =0. 二、力气提升8.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180 D .300答案 C解 ∵a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5 =5a 5=450,∴a 5=90. ∴a 2+a 8=2a 5=180.9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3 C .-33D .-3 答案 D解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π, ∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan8π3=tan 2π3=- 3. 10.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________. 答案 105解析 ∵a 1+a 2+a 3=3a 2=15,∴a 2=5. ∵a 1a 2a 3=(a 2-d )a 2(a 2+d )=5(25-d 2)=80, 又d 为正数,∴d =3.∴a 11+a 12+a 13=3a 12=3(a 2+10d )=3(5+30)=105.11.成等差数列的四个数之和为26,其次个数与第三个数之积为40,求这四个数. 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, ∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40.解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n .(1)数列{a n }是否为等差数列?说明理由. (2)求a n . 解 (1)∵a n +1-a n +1=a n +a n ,∴a n +1-a n =a n +1+a n ,∴(a n +1+a n )·(a n +1-a n )=a n +1+a n ,∴a n +1-a n =1,∴{a n }是等差数列,公差为1. (2)由(1)知{a n }是等差数列,且d =1, ∴a n =a 1+(n -1)×d =1+(n -1)×1=n , ∴a n =n 2. 三、探究与拓展13.已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n }是否为等差数列?说明理由.(2)求a n .解 (1)数列{1a n }是等差数列,理由如下:∵a 1=2,a n +1=2a na n +2,∴1a n +1=a n +22a n=12+1a n ,∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12,公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n .。
#高中数学人教A版必修5《2.2.2等差数列2》
课堂练习:
1. 等差数列-5,-1,3…的公差是( A ) A. 4 B. - 4 C. 8 D. -8
2. 求等差数列2,9,16…的第10项,1000是不是这个数列 的项。如果是,是第几项?
3. 等差数列中,已知a3=9, a9=3, 则a12 =_0____
复习引入
1. 等差数列定义: 即an-1 =d (n≥2).
2. 等差数列通项公式: an=a1+(n-1)d (n≥1). 推导出公式:an=am+(n-m)d . 或an=pn+q (p、q是常数)
复习引入
3. 有几种方法可以计算公差d:
danan1
复习引入
3. 有几种方法可以计算公差d:
7. 已知四个数成等差数列,它们的和为 28,中间两项的积为40,求这四个数.
讲授新课
1. 性质 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq.
特别地, 若m+n=2p,则am+an=2ap.
讲解范例:
例2、在等差数列{an}中 (1) 若a5=a, a10=b, 求a15; (2) 若a3+a8=m, 求a5+a6.
总结:
如果一个数列的通项公式是关于 正整数n的一次型函数,那么这个 数列必定是等差数列.
探究:
1. 在直角坐标系中,画出通项公式为 an=3n-5的数列的图象.这个图象有 什么特点?
探究:
2. 在同一个直角坐标系中,画出函数 y=3x-5的图象,你发现了什么?据 此说一说等差数列an=pn+q与一次 函数y=px+q的图象之间有什么关系.
高二数学人教A版必修5第二章2.2等差数列练习卷(含答案与解析)
等差数列一、选择题:1.数列}{n a 中,11=a ,211+=+n n a a ,则=2014a )(A 2014 )(B 2015 )(C 507 )(D 22015 2.等差数列}{n a 中,公差2111-=a ,1=d ,则=++++20642a a a a )(A 40 )(B 45 )(C 50 )(D 553.在等差数列}{n a 中,若12732=++a a a ,则它的前7项之和=7S)(A 35 )(B 32 )(C 28 )(D 244.在公差为2的等差数列}{n a 中,如果前17项和为3417=S ,那么12a 的值为)(A 2 )(B 4 )(C 6 )(D 85.若等差数列}{n a 共有21项,其中奇数项之和为11,偶数项之和为10,则=11a)(A 0 )(B 1 )(C 2 )(D 36.在等差数列}{n a 中,公差1=d ,且9999321=++++a a a a ,则=++++99963a a a a)(A 99 )(B 66 )(C 33 )(D 07.等差数列}{n a 的前n 项和为n S ,若310=S ,1020=S ,则=30S)(A 13 )(B 17 )(C 21 )(D 268.等差数列}{n a 中,1511=a 且9203a a =,则=12a)(A 13 )(B 15 )(C 17 )(D 309.若等差数列}{n a 是递减数列,且24432=a a a ,33=a ,则}{n a 的通项公式为)(A 6-=n a n )(B 6+=n a n )(C 6--=n a n )(D 6+-=n a n10.等差数列}{n a 中,141=a ,1-=d ,设n S 为其前n 项之和,则)(*N n S n ∈中最大值是)(A 14 )(B 15 )(C 28 )(D 10511.等差数列}{n a 中,110=a 且1019=a ,若前n 项和0=n S ,则=n)(A 7 )(B 9 )(C 17 )(D 1912.等差数列}{n a 中,141=a ,1-=d ,设n S 为其前n 项之和,则)(*N n S n ∈中最大值是)(A 14 )(B 15 )(C 28 )(D 105二、填空题:13.数列数列}{n a 中,01=a 且11=++n n a a ,则=2014a14.等差数列}{n a 中,62=a ,138=a ,则公差=d15.等差数列}{n a 中,2,365-==a a ,则=+++1054a a a16.设数列}{n a 的前n 项和2n S n =,则=n a17.等差数列}{n a 中,520=S ,则=+++141387a a a a18.等差数列}{n a 中,n a m =,)(n m m a n ≠=,则=+n m a19.两个等差数列}{n a 、}{n b 的前n 项和分别为n A 、n B ,若1+=n n B A n n ,则=44b a 20.在数列}{n a 中,10071-=a ,12=a ,且)()1(1*2N n a a n n n ∈-+=-+,则=2014S等差数列(答案与解析版)一、选择题:1.212111=-⇒+=++n n n n a a a a ,所以}{n a 是等差数列,公差21=d ,故21221)1(1+=⨯-+=n n a n ,220152014=a ,选)(D 2.29121112-=+-=+=d a a ,而20642,,,,a a a a 也是等差数列,公差22=d ,故20642a a a a ++++ 4522910)29(10=⨯⨯+-⨯=,选)(B 3.法1:4312)6()2()(1111732=+⇒=+++++=++d a d a d a d a a a a ,d a S 267717⨯+= 28)3(71=+=d a ,选)(C法2:412344732=⇒==++a a a a a ,82471==+a a a ,282872)(7717=⨯=+=a a S ,选)(C 4.法1:3422161717117=⨯⨯+=a S ,解出141-=a ,82111411112=⨯+-=+=d a a ,选)(D法2:224342)(179917117117=⇒==+⇒=+=a a a a a a S ,82323912=⨯+=+=d a a ,选)(D 5.112153111a a a a a =++++ ,112064210a a a a a =++++ ,110111*********=-==-a a a ,选)(B6.法1:489912989999991199321-=⇒=⨯⨯+⇒=++++a a a a a a ,46213-=+=∴d a a ,3a ,6a ,999,,a a 是公差为3的等差数列,故323233)46(3399963⨯⨯+-⨯=++++a a a a 66=,选)(B 法2:d a a a a a a a a 339996398852-++++=++++ ,97741a a a a ++++d a a a a 6699963-++++= ,代入9999321=++++a a a a 有d a a a a 99)(399963-++++ 99=,6699963=++++a a a a ,选)(B7.由于10S ,1020S S -,2030S S -也构成等差数列,所以=-)(21020S S 10S )(2030S S -+,即)10(3)310(230-+=-S ,从而解得2130=S ,选)(C8.1510111=+=d a a ①,d a a a 1931920+⇒=)8(31d a +=,0521=+d a ②,则①与②解得51-=a ,2=d ,故1711112=+=d a a ,选)(C9.设公差为d ,24))((3)()(33333432=+-=+-=d a d a d a a d a a a a ,从中解出1±=d ,由递减数列知0<d ,取1-=d ;6)3(3+-=-+=n d n a a n ,选)(D10.由015)1)(1(14)1(1≥-=--+=-+=n n d n a a n ,解得15≤n ,即15≤n 时,有0≥n a ;)(*N n S n ∈中最大值是1052)014(152)(1515115=+=+=a a S ,选)(D 11.由110=a 且1019=a 得110191019=--=a a d ,89101-=-=d a a 02)17(12)1(82)1(1=-=⨯-+-=-+=n n n n n d n n na S n ,17=n ,选)(C 12.由015)1)(1(14)1(1≥-=--+=-+=n n d n a a n ,解得15≤n ,即15≤n 时,有0≥n a ;)(*N n S n ∈中最大值是1052)014(152)(1515115=+=+=a a S ,选)(D 二、填空题:13.由01=a 且11=++n n a a 得12=a ,03=a ,14=a ,由此类推有12=n a ,故=2014a 1. 14.67286132828=--=--=a a d 。
高中数学人教A版浙江专版必修5讲义第二章2.2等差数列含答案
等差数列第一课时 等差数列的概念及通项公式[新知初探]1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.[点睛] (1)“从第2项起”是指第1项前面没有项,无法与后续条件中“与前一项的差”相吻合.(2)“每一项与它的前一项的差”这一运算要求是指“相邻且后项减去前项”,强调了:①作差的顺序;②这两项必须相邻.(3)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差中项如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.这三个数满足的关系式是A =a +b2. 3.等差数列的通项公式已知等差数列{a n }的首项为a 1,公差为d .[点睛] 由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,a n 是关于n 的一次函数;当p =0时,a n =q ,等差数列为常数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列( )(2)等差数列{a n }的单调性与公差d 有关( )(3)根据等差数列的通项公式,可以求出数列中的任意一项( ) (4)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列( )解析:(1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列. (3)正确.只需将项数n 代入即可求出数列中的任意一项.(4)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列. 答案:(1)× (2)√ (3)√ (4)√2.等差数列{a n }中,a 1=1,d =3,a n =298,则n 的值等于( ) A .98 B .100 C .99D .101解析:选B a n =a 1+(n -1)d =3n -2,令a n =298,即3n -2=298⇒n =100. 3.在等差数列{a n }中,若a 1·a 3=8,a 2=3,则公差d =( ) A .1 B .-1 C .±1D .±2解析:选C 由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1.4.若log 32,log 3(2x -1),log 3(2x +11)成等差数列.则x 的值为________.解析:由log 3(2x +11)-log 3(2x -1)=log 3(2x -1)-log 32,得:(2x )2-4·2x -21=0,∴2x=7,∴x =log 27.答案:log 27[典例] n(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. [解] (1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧ a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1.(2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧ a 1+a 1+5d =12,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1,d =2.∴a n =1+(n -1)×2=2n -1, ∴a 9=2×9-1=17.[活学活用]1.2 016是等差数列4,6,8,…的( ) A .第1 006项 B .第1 007项 C .第1 008项D .第1 009项解析:选B ∵此等差数列的公差d =2,∴a n =4+(n -1)×2,a n =2n +2,即2 016=2n +2,∴n =1 007.2.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?解:设首项为a 1,公差为d ,则a n =a 1+(n -1)d ,由已知⎩⎪⎨⎪⎧a 1+(15-1)d =33,a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23,d =4.所以a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,解得n =45∈N *,所以153是所给数列的第45项.[典例] 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.[解] 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.三数a ,b ,[活学活用]1.已知数列8,a,2,b ,c 是等差数列,则a ,b ,c 的值分别为________,________,________.解析:因为8,a,2,b ,c 是等差数列, 所以⎩⎪⎨⎪⎧8+2=2a ,a +b =2×2,2+c =2b .解得⎩⎪⎨⎪⎧a =5,b =-1,c =-4.答案:5 -1 -42.已知数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 5=________.解析:由数列⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则有1a 3+1+1a 7+1=2a 5+1,可解得a 5=75.答案:75[典例] 已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.求证:数列{b n }是等差数列.证明:[法一 定义法]∵b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2),∴b n +1-b n =a n 2(a n -2)-1a n -2=a n -22(a n -2)=12,为常数(n ∈N *).又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.[法二 等差中项法] ∵b n =1a n -2, ∴b n +1=1a n +1-2=1⎝⎛⎭⎫4-4a n -2=a n 2(a n -2).∴b n +2=a n +12(a n +1-2)=4-4a n 2⎝⎛⎭⎫4-4a n -2=a n -1a n -2.∴b n +b n +2-2b n +1=1a n -2+a n -1a n -2-2×a n 2(a n -2)=0. ∴b n +b n +2=2b n +1(n ∈N *), ∴数列{b n }是等差数列.[活学活用]已知1a ,1b ,1c 成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c ),lg(a -c ),lg(a +c -2b )也成等差数列.解:∵1a ,1b ,1c 成等差数列,∴2b =1a +1c , ∴2b =a +cac ,即2ac =b (a +c ).(a +c )(a +c -2b )=(a +c )2-2b (a +c )=(a +c )2-2×2ac =a 2+c 2+2ac -4ac =(a -c )2. ∵a +c ,a +c -2b ,a -c 均为正数,上式左右两边同时取对数得,lg[(a +c )(a +c -2b )]=lg(a -c )2,即lg(a +c )+lg(a +c -2b )=2lg(a -c ),∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列.层级一 学业水平达标1.已知等差数列{a n }的通项公式为a n =3-2n ,则它的公差为( ) A .2 B .3 C .-2D .-3解析:选C ∵a n =3-2n =1+(n -1)×(-2),∴d =-2,故选C. 2.若等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =35,则n =( )A .50B .51C .52D .53解析:选D 依题意,a 2+a 5=a 1+d +a 1+4d =4,代入a 1=13,得d =23.所以a n =a 1+(n -1)d =13+(n -1)×23=23n -13,令a n =35,解得n =53.3.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( ) A .a =-b B .a =3b C .a =-b 或a =3bD .a =b =0 解析:选C 由等差中项的定义知:x =a +b2, x 2=a 2-b 22,∴a 2-b 22=⎝⎛⎭⎫a +b 22,即a 2-2ab -3b 2=0.故a =-b 或a =3b .4.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 2 015的值是( ) A .1 006 B .1 007 C .1 008D .1 009解析:选D 由2a n +1=2a n +1,得a n +1-a n =12,所以{a n }是等差数列,首项a 1=2,公差d =12,所以a n =2+12(n -1)=n +32,所以a 2 015=2 015+32=1 009.5.等差数列{a n }的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .a 8B .a 9C .a 10D .a 11解析:选B |a n |=|70+(n -1)×(-9)|=|79-9n |=9⎪⎪⎪⎪879-n ,∴n =9时,|a n |最小. 6.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 解析:设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+2d =7,a 1+4d =a 1+d +6.解得⎩⎪⎨⎪⎧a 1=3,d =2.∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1. ∴a 6=2×6+1=13. 答案:137.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 解析:根据题意得:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1, ∴a 1=1.又a 3=a 1+2d =1+2d =0, ∴d =-12.答案:-128.已知数列{a n }满足:a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________. 解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4.∴数列{a 2n }是公差为4的等差数列,则a 2n =a 21+(n -1)×4=4n -3.∵a n >0,∴a n =4n -3. 答案:4n -39.已知数列{a n }满足a 1=2,a n +1=2a na n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:因为a 1=2,a n +1=2a na n +2, 所以1a n +1=a n +22a n =12+1a n,所以1a n +1-1a n =12(常数). 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=12为首项,公差为12的等差数列.10.若1b +c ,1a +c ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 证明:由已知得1b +c +1a +b =2a +c ,通分有2b +a +c (b +c )(a +b )=2a +c. 进一步变形有2(b +c )(a +b )=(2b +a +c )(a +c ),整理,得a 2+c 2=2b 2, 所以a 2,b 2,c 2成等差数列.层级二 应试能力达标1.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q2解析:选B ∵a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,∴⎩⎪⎨⎪⎧a 1+(p -1)d =q , ①a 1+(q -1)d =p . ②①-②,得(p -q )d =q -p . ∵p ≠q ,∴d =-1.代入①,有a 1+(p -1)×(-1)=q ,∴a 1=p +q -1. ∴a p +q =a 1+(p +q -1)d =p +q -1+(p +q -1)×(-1)=0.2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +1解析:选D 设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.已知数列{a n },对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( ) A .公差为2的等差数列 B .公差为1的等差数列 C .公差为-2的等差数列D .非等差数列解析:选A 由题意知a n =2n +1,∴a n +1-a n =2,应选A.4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,且公差d ≠0,则( ) A .a 3a 6>a 4a 5 B .a 3a 6<a 4a 5 C .a 3+a 6>a 4+a 5D .a 3a 6=a 4a 5解析:选B 由通项公式,得a 3=a 1+2d ,a 6=a 1+5d ,那么a 3+a 6=2a 1+7d ,a 3a 6=(a 1+2d )(a 1+5d )=a 21+7a 1d +10d 2,同理a 4+a 5=2a 1+7d ,a 4a 5=a 21+7a 1d +12d 2,显然a 3a 6-a 4a 5=-2d 2<0,故选B.5.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.解析:a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6, 令a n =b n ,得3n -1=4n -6,∴n =5. 答案:56.在数列{a n }中,a 1=3,且对于任意大于1的正整数n ,点(a n , a n -1)都在直线x-y -3=0上,则a n =________.解析:由题意得a n -a n -1=3,所以数列{a n }是首项为3,公差为3的等差数列,所以a n =3n ,a n =3n 2.答案:3n 27.已知数列{a n }满足a 1=1,且a n =2a n -1+2n (n ≥2,且∈N *). (1)求a 2,a 3;(2)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(3)求数列{a n }的通项公式a n .解:(1)a 2=2a 1+22=6,a 3=2a 2+23=20. (2)证明:∵a n =2a n -1+2n (n ≥2,且n ∈N *), ∴a n 2n =a n -12n -1+1(n ≥2,且n ∈N *), 即a n 2n -a n -12n -1=1(n ≥2,且n ∈N *), ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 121=12,公差d =1的等差数列.(3)由(2),得a n 2n =12+(n -1)×1=n -12,∴a n =⎝⎛⎭⎫n -12·2n.8.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *). (1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由. 解:(1)∵a 1=2,a 2=-1,a 2=(λ-3)a 1+2,∴λ=32.∴a 3=-32a 2+22,∴a 3=112.(2)∵a 1=2,a n +1=(λ-3)a n +2n , ∴a 2=(λ-3)a 1+2=2λ-4. a 3=(λ-3)a 2+4=2λ2-10λ+16. 若数列{a n }为等差数列,则a 1+a 3=2a 2. 即λ2-7λ+13=0.∵Δ=49-4×13<0,∴方程无实数解.∴λ值不存在.∴不存在λ的值使{a n }成等差数列.第二课时 等差数列的性质[新知初探]1.等差数列通项公式的推广2.若{a n }是公差为d 的等差数列,正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p+a q .(1)特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若{a n}是等差数列,则{|a n|}也是等差数列()(2)若{|a n|}是等差数列,则{a n}也是等差数列()(3)若{a n}是等差数列,则对任意n∈N*都有2a n+1=a n+a n+2()(4)数列{a n}的通项公式为a n=3n+5,则数列{a n}的公差与函数y=3x+5的图象的斜率相等()解析:(1)错误.如-2,-1,0,1,2是等差数列,但其绝对值就不是等差数列.(2)错误.如数列-1,2,-3,4,-5其绝对值为等差数列,但其本身不是等差数列.(3)正确.根据等差数列的通项可判定对任意n∈N*,都有2a n+1=a n+a n+2成立.(4)正确.因为a n=3n+5的公差d=3,而直线y=3x+5的斜率也是3.答案:(1)×(2)×(3)√(4)√2.在等差数列{a n}中,若a5=6,a8=15,则a14等于()A.32B.33C.-33 D.29解析:选B∵数列{a n}是等差数列,∴a5,a8,a11,a14也成等差数列且公差为9,∴a14=6+9×3=33.3.在等差数列{a n}中,已知a3+a4+a5+a6+a7=450,则a2+a8=()A.90 B.270C.180 D.360解析:选C因为a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=2×90=180.4.在等差数列{a n}中,已知a2+2a8+a14=120,则2a9-a10的值为________.解析:∵a2+a14=2a8,∴a2+2a8+a14=4a8=120,∴a8=30.∴2a9-a10=(a8+a10)-a10=a8=30.答案:30[典例] (1)已知等差数列{a n }中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A .30 B .15 C .5 6D .10 6(2)设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37 C .100D .-37[解析] (1)∵数列{a n }为等差数列,∴a 1+a 2+a 3+a 4+a 5=(a 1+a 5)+(a 2+a 4)+a 3=52(a 2+a 4)=52×6=15.(2)设c n =a n +b n ,由于{a n },{b n }都是等差数列, 则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100, c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0. ∴c 37=100,即a 37+b 37=100. [答案] (1)B (2)C[活学活用]1.已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32解析:选A a 1+a 5+a 9=3a 5=π,所以a 5=π3,而a 2+a 8=2a 5=2π3,所以cos(a 2+a 8)=cos2π3=-12,故选A. 2.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=( ) A .10 B .18 C .20D .28解析:选C 由等差数列的性质得:3a 5+a 7=2a 5+(a 5+a 7)=2a 5+(2a 6)=2(a 5+a 6)=2(a 3+a 8)=20,故选C.[典例] (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数. (2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数. [解] (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧(a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1.∴这三个数为4,3,2.(2)法一:设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ), 依题意,2a =2,且(a -3d )(a +3d )=-8, 即a =1,a 2-9d 2=-8, ∴d 2=1,∴d =1或d =-1.又四个数成递增等差数列,所以d >0, ∴d =1,故所求的四个数为-2,0,2,4.法二:若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8, 即1-94d 2=-8,化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, a =-2.故所求的四个数为-2,0,2,4.[活学活用]已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列.解:设这四个数依次为a -3d ,a -d ,a +d ,a +3d (公差为2d ). 由题设知⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40, 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.∴这个数列为2,5,8,11或11,8,5,2.[典例] 某公司经销一种数码产品,第一年可获利200万元,从第二年起由于市场竞争方面的原因,其利润每年比上一年减少20万元,按照这一规律,如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?[解] 设从第一年起,第n 年的利润为a n 万元, 则a 1=200,a n +1-a n =-20(n ∈N *), ∴每年的利润构成一个等差数列{a n },从而a n =a 1+(n -1)d =200+(n -1)×(-20)=220-20n . 若a n <0,则该公司经销这一产品将亏损. ∴由a n =220-20n <0,得n >11,即从第12年起,该公司经销此产品将亏损.[活学活用]某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,需要支付车费________元.解析:根据题意,当该市出租车的行程大于或等于4 km时,每增加1 km,乘客需要支付1.2元.所以可以建立一个等差数列{a n}来计算车费.令a1=11.2,表示4 km处的车费,公差d=1.2,那么当出租车行至14 km处时,n=11,此时需要支付车费a11=11.2+(11-1)×1.2=23.2(元).答案:23.2层级一学业水平达标1.在等差数列{a n}中,已知a4+a8=16,则a2+a10=()A.12B.16C.20 D.24解析:选B因为数列{a n}是等差数列,所以a2+a10=a4+a8=16.2.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6C.8 D.10解析:选A由等差数列的性质,得a1+a9=2a5,又∵a1+a9=10,即2a5=10,∴a5=5.3.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列解析:选C因为a,b,c成等差数列,则2b=a+c,所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),所以a +2,b +2,c +2成等差数列.4.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10D .14解析:选B 由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 5.等差数列{a n }中, a 2+a 5+a 8=9,那么方程x 2+(a 4+a 6)x +10=0的根的情况( ) A .没有实根 B .两个相等实根 C .两个不等实根D .无法判断解析:选A 由a 2+a 5+a 8=9得a 5=3,∴a 4+a 6=6,方程转化为x 2+6x +10=0.因为Δ<0,所以方程没有实根.6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________. 解析:设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4.∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21. 答案:-217.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.解析:∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 答案:1或28.已知等差数列{a n }满足a m -1+a m +1-a 2m -1=0,且m >1,则a 1+a 2m -1=________. 解析:因为数列{a n }为等差数列,则 a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1,所以a 1+a 2m -1=2a m =2.答案:29.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.解:法一:由等差数列的性质得a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.∴(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).∴a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:∵数列{a n}是等差数列,∴a1+a2+…+a5,a6+a7+…+a10,a11+a12+…+a15也成等差数列,即30,80,a11+a12+…+a15成等差数列.∴30+(a11+a12+…+a15)=2×80,∴a11+a12+…+a15=130.10.有一批影碟机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原价的75%销售.某单位购买一批此类影碟机,问去哪家商场买花费较少.解:设单位需购买影碟机n台,在甲商场购买每台售价不低于440元,售价依台数n 成等差数列.设该数列为{a n}.a n=780+(n-1)(-20)=800-20n,解不等式a n≥440,即800-20n≥440,得n≤18.当购买台数小于等于18台时,每台售价为(800-20n)元,当台数大于18台时,每台售价为440元.到乙商场购买,每台售价为800×75%=600元.作差:(800-20n)n-600n=20n(10-n),当n<10时,600n<(800-20n)n,当n=10时,600n=(800-20n)n,当10<n≤18时,(800-20n)n<600n,当n>18时,440n<600n.即当购买少于10台时到乙商场花费较少,当购买10台时到两商场购买花费相同,当购买多于10台时到甲商场购买花费较少.层级二应试能力达标1.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n +b n}是()A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列解析:选D(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.2.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A. 3 B.±3C.-33D.- 3解析:选D由等差数列的性质得a1+a7+a13=3a7=4π,∴a7=4π3.∴tan(a2+a12)=tan(2a7)=tan 8π3=tan2π3=- 3.3.若方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A .1 B.34 C.12D.38解析:选C 设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2, 再设此等差数列的公差为d ,则2a 1+3d =2, ∵a 1=14,∴d =12,∴a 2=14+12=34,a 3=14+1=54,a 4=14+32=74,∴|m -n |=|a 1a 4-a 2a 3| =⎪⎪⎪⎪14×74-34×54=12.4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A .1升 B.6766升 C.4744升 D.3733升 解析:选B 设所构成的等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4, 即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,则a 5=a 1+4d =6766, 故第5节的容积为6766升.5.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________.解析:设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18,即a 4a 7的最大值为18.答案:186.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn =n ,所以a n =n 2.答案:n 27.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n ,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求数列{a n }的通项公式.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3.∵a 1,a 2,a 3成等差数列,∴a 2=1,故可设a 1=1-d ,a 3=1+d , 由⎝⎛⎭⎫121-d +12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2.当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3; 当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5.8.下表是一个“等差数阵”:ij (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 017这个数在“等差数阵”中所在的一个位置. 解:通过每行、每列都是等差数列求解. (1)a 45表示数阵中第4行第5列的数.先看第1行,由题意4,7,…,a 15,…成等差数列, 公差d =7-4=3,则a 15=4+(5-1)×3=16. 再看第2行,同理可得a 25=27.最后看第5列,由题意a 15,a 25,…,a 45成等差数列,所以a 45=a 15+3d =16+3×(27-16)=49.(2)该“等差数阵“的第1行是首项为4,公差为3的等差数列a 1j =4+3(j -1); 第2行是首项为7,公差为5的等差数列a 2j =7+5(j -1); …第i 行是首项为4+3(i -1),公差为2i +1的等差数列, ∴a ij =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要求2 017在该“等差数阵”中的位置,也就是要找正整数i ,j ,使得i (2j +1)+j =2 017, ∴j =2 017-i 2i +1.又∵j ∈N *,∴当i =1时,得j =672.∴2 017在“等差数阵”中的一个位置是第1行第672列.。
人教A版高中数学高一必修5作业 2-2-1等差数列的概念、通项公式
课时作业(九)1.已知等差数列{a n}的通项公式a n=3-2n,则它的公差为()A.2 B.3C.-2 D.-3答案 C解析可得a n+1-a n=-2或a2-a1=(3-4)-(3-2)=-2.2.已知数列{a n}满足a1=2,a n+1-a n+1=0,则数列的通项a n等于() A.n2+1 B.n+1C.1-n D.3-n答案 D3.等差数列-3,-1,1,…,的第1 000项为()A.1 990 B.1 995C.2 010 D.2 015答案 B4.等差数列1,-1,-3,-5,…,-89,它的项数为()A.92 B.47C.46 D.45答案 C5.等差数列20,17,14,11,…中第一个负数项是()A.第7项B.第8项C.第9项D.第10项答案 B6.{a n}是首项a1=1,公差d=3的等差数列,若a n=2 011,则n等于()A.671 B.670C .669D .668答案 A7.lg(3-2)与lg(3+2)的等差中项为( ) A .0B .lg 3-23+2C .lg(5-26)D .1答案 A解析 等差中项为lg (3-2)+lg (3+2)2 =lg[(3-2)(3+2)]2=lg12=0. 8.一个首项为23,公差为整数的等差数列,第7项开始的负数,则它的公差是( )A .-2B .-3C .-4D .-6答案 C9.若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1,d 2,则d 1d 2=( )A.32B.23C.43D.34答案 C解析 ∵d 1=b -a 4-1,d 2=b -a 5-1,∴d 1d 2=43.10.首项为-24的等差数列,从第10项起为正数,则公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3答案 D解析 从第10项起为正数,则a 10>0且,a 9≤0,由⎩⎨⎧-24+9d >0,-24+8d ≤0,可得83<d ≤3.11.等差数列2,5,8,…,107共有________项.答案 3612.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =________. 答案 -12解析 法一 由于a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,则a 1=1,又由于a 3=a 1+2d =1+2d =0,解得d =-12.法二 a 7=a 3+4d =4d ,a 4=a 3+d =d ,代入条件即可得d . 13.首项为18,公差为3的等差数列从第________项开始大于100. 答案 2914.已知一个等差数列的第8,第9,第10项分别为b -1,b +1,2b +3,则通项公式an =________.答案 2n -17解析 由(b -1)+(2b +3)=2(b +1),可得b =0. ∴a 8=-1,a 9=1,a 10=3.∴d =2,a 1=-15,∴an =2n -17.15.已知f (n +1)=f (n )-14(n ∈N*),且f (2)=2,则f (101)=____________. 答案 -914解析 ∵{f (n )}为等差数列,公差为-14, ∴f (1)=f (2)-(-14)=2+14=94.∴f (101)=f (1)+100·d =94+100×(-14)=-914. 16.已知等差数列5,2,-1,…. (1)求数列的第20项; (2)问-112是它的第几项? (3)数列从第几项开始小于-20? (4)在-20到-40之间有多少项?答案 (1)-52 (2)第40项 (3)从第10项开始 (4)6项17.有一个阶梯教室,共有座位25排,第一排离教室地面高度为17 cm ,前16排前后两排高度差8 cm ,从17排起,前后两排高度差是10 cm(含16,17排之间高度差).求最后一排离教室地面的高度.解析 设从第一排起,各排的高度组成数列{a n },则a 1=17,∴a 16=a 1+15d 1=17+15×8=137.∴a 25=a 16+10·d 2=137+10×10=237(cm). ►重点班·选作题18.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,则项n 的取值有________种可能.答案 519.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值. 答案 501.(2011·重庆)在等差数列{a n }中,a 2=2,a 3=4,则a 10等于( ) A .12 B .14 C .16 D .18答案 D解析 设{a n }的公差为d ,∵a 2=2,a 3=4,∴d =a 3-a 2=2. ∴a 10=a 2+(10-2)d =2+8×2=18.2.已知数列{an }为等差数列,且a 5=11,a 8=5,求an . 解析 设公差为d ,则由a 5=11,a 8=5,得⎩⎨⎧a 1+4d =11,a 1+7d =5,解得⎩⎨⎧a 1=19,d =-2.∴an =19+(n -1)(-2),即an =-2n +21.3.甲虫是行动较快的昆虫之一,下表记录了某种类型的甲虫的爬行速度:时间t (s)123... ? (60)距离s (cm) 9.8 19.6 29.4 … 49 … ?(1)关系吗?(2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?解析 (1)由题目表中数据可知,该数列从第2项起,每一项与前一项的差都是常数9.8,所以是一个等差数列模型.因为a 1=9.8,d =9.8,所以甲虫的爬行距离s 与时间t 的关系是s =9.8t .(2)当t =1(min)=60(s)时, s =9.8t =9.8×60=558(cm). s =49(cm)时,t =s 9.8=494.8=5 (s).。
人教版A版高中数学必修5:2.2 等差数列(2)
思考:在如下的两个数之间,插入一个什么数
后这三个数就会成为一个等差数列:
(1)2 ,( 3 ) , 4 (3) -1 ,( 2 ) ,5
(2)-12,( -6 ) ,0 (4) 0,( 0 ) ,0
如果在a与b中间插入一个数A,使a,A, b成等差数列,那么A叫做a与b的等差中项。
A ab 2
定这就义是的数符列号的表递示推是:公a式n 。- an-1=d(n≥2,n∈N*),
求下列数列的公差
(1)0、5、10、15、20… (2)女子举重被共设置了7个级别,其中较轻的4个级别体重组成数列
d=5
48、53、58、63 (3)水库每天的水位组成的数列
d=5
18、15.5、13、10.5、8、5.5
a5 a4 d (a1 3d) d a1 4d
由此可知 an a1 (n 1)d
等差数列通项公式
例1 已知等差数列8,5,2,…,
(1)求它的第20项。
(2) 它的第几项是 –79? –100是否是这个 数列的项?
练习
1. 求等差数列2,9,16,…的第10项;
a10 2 (10 1) 7 65
2. 求等差数列0,-7/2,-7…的第n项;
an
0
n
1
7 2
7 2:
an an1 d (n 2, n N ) 或 an 1 an d(n N )
(4)银行按活期存入10000元钱,年利率是0.72%,那么5年内各年末的本利 和组成了数列
d=-2.5
10072、10144、10216、10288、10360 (5)1、1、1、1、1、1、1…… (6)1、2、1、2、1、2、1……
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴log6(a5+a7+a9)=2.
答案:C
4.在等差数列{an}中,若a4+a6+a8+a10+a12=240,则a9-a11的值为()
A.30 B.31
C.32 D.33
解析:由等差数列的性质可得a4+a6+a8+a10+a12=240,解得a8=48,设等差数列{an}的公差为d,a9-a11=a8+d-(a8+3d)=a8=32,故选C.
解析:设两个等差数列的公差分别为d1和d2,
则3d1=9-(-1)=10,d1=,4d2=9-(-1)=10,d2=,
于是===.
答案:
8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,最上面4节的容积共3升,最下面3节的容积共4升,则第5节的容积为________升.
∴a7=12,∴a6+a7+a8=3a7=36.
答案:C
2.a=,b=,则a、b的等差中项为()
A.B.
C.D.
解析:=
==.
答案:A
3.数列{an}满足3+an=an+1(n∈N*)且a2+a4+a6=9,则log6(a5+a7+a9)的值是()
A.-2 B.-
C.2 D.
解析:由已知可得{an}是等差数列,公差d=3,
解析:解法一:设自上第一节竹子容积为a1,则第9节容积为a9,且数列{an}为等差数列.
由a1+a2+a3+a4=3,a7+a8+a9=4,
即解得a5=.
解法二:设自上第一节竹子容积为a1,依次类推,数列{an}为等差数列.又a1+a2+a3+a4=4a1+6d=3,a7+a8+a9=3a1+21d=4,解得a1=,d=,∴a5=a1+4d=+4×=.
等差数列的性质
A组 基础巩固
1.若等差数列{an}中,a3+a7-a10=8,a11-a4=4,则a6+a7+a8等于()
A.34 B.35
C.36 D.37
解析:由题意得:
(a3+a7-a10)+(a11-a4)=12,
∴(a3+a11)+a7-(a10+a4)=12.
∵a3+a11=a10+a4,
B组 能力提升
11.在△ABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,B=30°,△ABC的面积为1.5,那么b等于()
A.B.1+
C.D.2+
解析:灵活选择三角形面积公式,再结合余弦定理可解出b的值.
由a,b,c成等差数列可得2b=a+c.
又∵S△ABC=1.5,即acsin30°=ac=,
A.0 B.7
C.1 D.49
解析:∵数列{an}是等差数列,∴a2 011是a2 000与a2 022的等差中项,
即2a2 011=a2 000+a2 022=log27+log2=log21=0,故a2 011=0.
答案:A
7.已知数列-1,x1,x2,9和-1,y1,y2,y3,9都是等差数列,则=________.
答案:C
5.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,则=()
A.B.
C.D.
解析:由d=知=,
∴a2-a1=.①
又=,∴b4-b3=(y-x).②
由②÷①得=.
答案:C
6.在等差数列{an}中,a2 000=log27,a2 022=log2,则a2 011=()
∴=2+×(2 015-1)=.
∴x2 015=.
10.已知{an}是等差数列,且a1+a2+a3=12,a8=16.
(1)求数列{an}的通项公式;
(2)若从数列{an}中,依次取出第2项,第4项,第6项,…,第2n项,按原来顺序组成一个新数列{bn},试求出{bn}的通项公式.
解:(1)∵a1+a2+a3=12,∴a2=4,
∵a8=a2+(8-2)d,∴16=4+6d,∴d=2,
∴an=a2+(n-2)d=4+(n-2)×2=2n.
(2)a2=4,a4=8,a8=16,…,a2n=2×2n=4n.
当n>1时,a2n-a2(n-1)=4n-4(n-1)=4.
∴{bn}是以4为首项,4为公差的等差数列.
∴bn=b1+(n-1)d=4+4(n-1)=4n.
∴a2+a8=,从而cos(a2+a8)=-.
答案:-
13.已知等差数列{an}中,a1=a,公差d=1,若bn=a-a(n∈N*),试判断数列{bn}是否为等差数列,并证明你的结论.
∴ac=6.
由余弦定理,得
b2=a2+c2-2accos30°=(a+c)2-2ac-6
=4b2-12-6,
∴b2=4+2.
又∵b是△ABC的一条答案:B
12.若{an}为等差数列,且a1+a5+a9=π,则cos(a2+a8)的值为________.
解析:∵{an}为等差数列,∴a1+a9=2a5=a2+a8.代入a1+a5+a9=π,得(a2+a8)=π,
答案:
9.已知函数f(x)=,在数列{xn}中,xn=f(xn-1)(n≥2,n∈N*).
(1)求证:是等差数列;
(2)求当x1=时,x2 015的值.
解析:(1)证明:∵f(x)=,xn=f(xn-1),
∴xn=.∴==+.
即-=(n≥2,n∈N*).
∴是等差数列.
(2)由(1)可知是等差数列,且=2,公差d=,∴=+(n-1)d=2+(n-1).