第十一章《三角形》05

合集下载

最新数学八年级上册第11章三角形全章课件学习资料

最新数学八年级上册第11章三角形全章课件学习资料

如图, 画∠ A 的平分线AD ,交∠ A 所对的边BC 于点 D,所得线段AD 叫做△ ABC的角平分线。
你能画出另两条角平
A
分线吗?
F
E
B
C
D
三角形的三条角平分线相交于一点。
课堂练习 填空: (1)如图(1),AD,BE,CF是△ABC的三条中线,则
A B 2 _ _ _ _ _ ,B D _ _ _ _ _ ,A E 1_ _ _ _ _ . 2
A
c
b
B
C
a
阶段小结
11.1.1 三角形的边
II. 三角形的分类
锐角三角形 三角形 直角三角形
钝角三角形
三 边 都 不 相 等 的 三 角 形 三 角 形 等 腰 三 角 形 底 等 边 边 和 三 腰 角 不 形 相 等 的 等 腰 三 角 形
III. 三角形三边之间的大小关系
三角形两边的和大于第三边 三角形两边的差小于第三边
叫做△ ABC 的边BC 上的中线。 画∠ A 的平分线AD ,交∠ A 所对的边BC 于点D,所得线段
AD 叫做△ ABC的角平分线。
2、三角形的三条高、三条中线、三条角平分线及交点的位 置规律。
三角形的三条中线的交点、三条角平分线的交点在三角形 的内部。
锐三角形的三条高的交点在三角形的内部,直角三角形三 条高的交点在直角顶点,钝角三角形的三条高的交点在三 角形的外部。
x+2x+2x=18
为x ㎝,则腰长是
解得x=3.6
多少?
所以,三边长分别为3.6 ㎝, 7.2 ㎝, 7.2 ㎝。
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?

八年级数学上册第11章《三角形》全章教案(人教版)

八年级数学上册第11章《三角形》全章教案(人教版)

第11章:三角形11.1.1 三角形的边1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)3.三角形在实际生活中的应用.(难点)一、情境导入出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学. 教师利用多媒体演示三角形的形成过程,让学生观察.问:你能不能给三角形下一个完整的定义?二、合作探究探究点一:三角形的概念图中的锐角三角形有( )A .2个B .3个C .4个D .5个 解析:(1)以A 为顶点的锐角三角形有△ABC 、△ADC 共2个;(2)以E 为顶点的锐角三角形有△EDC 共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n 个点,那么就有n (n -1)2条线段,也可以与线段外的一点组成n (n -1)2个三角形.探究点二:三角形的三边关系【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A.2cm,3cm,5cmB.5cm,6cm,10cmC.1cm,1cm,3cmD.3cm,4cm,9cm解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】判断三角形边的取值范围一个三角形的三边长分别为4,7,x,那么x的取值范围是( )A.3<x<11 B.4<x<7C.-3<x<11 D.x>3解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.11.1.2三角形的高、中线与角平分线1.掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用.(重点) 2.能够准确的画出三角形的高、中线和角平分线.(难点)一、情境导入这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.二、合作探究探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选D.方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245. 方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.解析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC 的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC 的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.三、板书设计三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.本节课由实际问题“平分三角形蛋糕”引入,让学生意识到数学与实际生活的密切联系,明确数学来源于实践应用于实践,进而学习用数学方法解决实际问题.然后从画图入手,分三种情况:即锐角三角形、直角三角形和钝角三角形,培养学生形成分类讨论思想,同时,可以在学生头脑中对这三种线段留下清晰的形象,然后结合这些具体形象叙述它们的定义以及表示方法,最后通过例题进一步巩固.11.1.3三角形的稳定性1.通过观察、感悟三角形具有稳定性,四边形不具有稳定性.(重点)2.三角形的稳定性在生活、生产中的实际应用.(难点)一、情境导入一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的.三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”四边形:“灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”四边形:“我的用途广,像活动衣架、缩放尺、活动铁门等,人类的生活因为我而丰富多彩!”假如你是数学小博士,你会如何来调解它们的争论?二、合作探究探究点:三角形的稳定性【类型一】三角形稳定性的应用要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.【类型二】四边形的不稳定性大家经常看到有些学校、小区的大门都使用了伸缩门,它常常做成四边形的形状,你知道这是为什么吗?解析:从四边形特性的角度考虑.解:伸缩门做成四边形的形状,是利用四边形易变形这一特性.方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验.三、板书设计三角形的稳定性1.三角形具有稳定性2.四边形没有稳定性3.三角形的稳定性的应用4.四边形的不稳定性的应用在教学三角形的稳定性时,利用多媒体引导学生探寻三角形稳定性的数学含义,进而用三角形的稳定性解释“为什么不易变形”,再回归生活,运用三角形的稳定性解释如何解决生活中的问题.学生清楚地认识到“不易变形”是三角形的稳定性的一个表现,一种应用,而不是将三角形的稳定性与“不易变形”划等号.这样的教学既使得学生对稳定性有了正确清楚的认识,也为以后进一步学习三角形的稳定性和“全等三角形”的判定方法奠定了认知的基础.11.2与三角形有关的角11.2.1三角形的内角1.理解三角形内角和定理及其证明方法.(难点)2.能用三角形的内角和定理解决一些简单问题.(重点)一、情境导入多媒体展示:(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时它们非常团结,有一天,老三不高兴了,对老大说:“凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!”“为什么呢?”老二、老三纳闷起来……同学们,你们知道其中的道理吗?二、合作探究探究点一:三角形的内角和【类型一】求三角形内角的度数已知,如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,若∠A=46°,∠D=50°.求∠ACB的度数.解析:在Rt△DFB中,根据三角形内角和定理,求得∠B的度数,再在△ABC中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°.方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明了学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作活动和说明自己的想法,这样更有助于学生接受三角形的内角和是180°这一结论.11.2.2三角形的外角1.掌握三角形外角的定义和三角形内角和定理的两个推论.(重点)2.能运用三角形内角和定理的两个推论进行相关的几何计算和证明,并体会几何图形中的不等关系.(难点)一、情境导入足球比赛中的数学知识在绿茵场上,某球员在A处受到阻挡需要传球,请帮助他做出选择,应传给在B处的球员还是C处的球员,使其射门不易射偏.(不考虑其他因素)请同学们帮助他做出选择.二、合作探究探究点:三角形的外角【类型一】应用三角形的外角求角的度数如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A . 三、板书设计三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.本节的知识内容很突出,要让学生了解三角形的外角及其性质,所以在教学过程中,应让学生自主探索,利用多种方法进行研究.同时要关注学生的合作交流,开阔学生的思路,让学生在经历整个探索过程的同时,体会数学的严谨性,培养学生的逻辑思维和解决问题的能力.在教学设计上,关注学生自主学习、合作交流的过程,让学生体会数学知识应用的灵活性,感受数学基础的重要性,在获得数学活动经验的同时,提高学生的探究、发现和创新能力. 11.3 多边形及其内角和11.3.1 多边形1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)2.正确区分凹多边形和凸多边形.(重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)一、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A.14或15或16 B.15或16C.14或16 D.15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.11.3.2 多边形的内角和1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.(重点)2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)一、情境导入多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.提出问题:(1)小明是沿着几边形的广场在跑步?(2)你知道这个多边形的各部分的名称吗?(3)你会求这个多边形的内角和吗?导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.二、合作探究探究点一:多边形的内角和【类型一】 利用内角和求边数一个多边形的内角和为540°,则它是( )A .四边形B .五边形C .六边形D .七边形解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.方法总结:熟记多边形的内角和公式是解题的关键.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和。

初二上册第11章三角形总结

初二上册第11章三角形总结

初二上册第11章三角形知识点总结归纳一、三角形的基本概念与性质三角形的定义:由三条线段首尾顺次连接所围成的封闭图形叫做三角形。

这三条线段分别称为三角形的三边,相邻两边所组成的角称为三角形的内角。

三角形的分类:按角的大小分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。

按边的长短分类:不等边三角形(三边都不相等)、等腰三角形(有两边相等)、等边三角形(三边都相等)。

三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。

举例:若三角形的三边分别为a、b、c,则必须满足a + b > c, a + c > b, b + c > a,以及|a - b| < c, |a - c| < b, |b - c| < a。

三角形的内角和:三角形的三个内角之和等于180°。

举例:在△ABC中,∠A + ∠B + ∠C = 180°。

三角形的稳定性:三角形具有稳定性,即三角形的形状和大小在其三边长度确定后就不会改变。

举例:建筑中的钢架结构、桥梁的支撑结构等常利用三角形的稳定性。

二、等腰三角形与等边三角形的性质与判定等腰三角形的性质:等腰三角形的两底角相等。

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。

举例:在等腰△ABC中,若AB = AC,则∠B = ∠C,且AD(顶角平分线、底边上的中线、底边上的高)重合。

等腰三角形的判定:有两边相等的三角形是等腰三角形。

有两个角相等的三角形是等腰三角形。

举例:若△ABC中,AB = AC或∠B = ∠C,则△ABC是等腰三角形。

等边三角形的性质:等边三角形的三个内角都相等,且每个角都为60°。

等边三角形的三条边都相等。

等边三角形的每条边上的中线、高线和对角的平分线三线合一。

举例:在等边△ABC中,AB = BC = AC,∠A = ∠B = ∠C = 60°,且AD、BE、CF三线合一。

第十一章--三角形教材分析.doc

第十一章--三角形教材分析.doc

第十一章三角形教材分析三角形是一种基本的几何图形.本章在线段与角、相交线与平行线的基础上介绍三角形的概念与性质,进而研究多边形的概念与性质.在本章,学生进一步学习通过推理得出数学结论的方法,提高推理能力.本章的有关内容有广泛的实际应用,也是学习各种特殊三角形(如等腰三角形、直角三角形)与平行四边形等图形知识的基础.本章教学时间约需8课时,具体分配如下(仅供参考):11.1 与三角形有关的线段2课时11.2 与三角形有关的角 3课时11.3 多边形及其内角和2课时数学活动小结 1课时一、教科书内容和本章学习目标1.本章知识结构本章知识结构框图如下:2.教科书内容本章首先介绍三角形的有关概念和性质,分为两节.11.1节研究与三角形有关的线段.首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类.对于三角形的边,证明了三角形两边的和大于第三边.接下来,给出了三角形的高、中线与角平分线的概念.结合三角形的中线介绍了三角形的重心的概念.最后结合实际例子介绍三角形的稳定性.11.2节研究与三角形有关的角.对于三角形的内角,证明了三角形内角和定理.然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余.最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和.以三角形的有关概念和性质为基础,本章11.3节接着介绍多边形的有关概念与多边形的内角和、外角和公式.三角形是多边形的一种,因而可以借助三角形介绍多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来.三角形是最简单的多边形,因而常常将多边形分为几个三角形,利用三角形的性质研究多边形.多边形的内角和公式就是利用上述方法得到的.将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习.3.本章学习目标1.理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性.2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和.3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式.二、编写时考虑的几个问题1.加强与实际的联系三角形是基本的几何图形之一,在生产和生活中有广泛的应用.教科书通过举出三角形的实际例子让学生认识和感受三角形,形成三角形的概念.多边形概念的引入,也是类似处理的.三角形有很多重要的性质,如稳定性,三角形的内角和等于180°.教科书在介绍三角形的稳定性的同时,顺带介绍了四边形的不稳定性.这些内容是通过如下的实际问题引入的:“盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做呢?”.然后让学生通过实验得出三角形有稳定性,四边形没有稳定性的结论,进而明白在上述实际问题中“斜钉一根木条”的道理.除此之外,教科书还举出了一些应用三角形的稳定性,四边形的不稳定性的实际例子.对于三角形的内角和等于180°,教科书则安排求视角的实际问题作为例题,加强与实际的联系.在本章的数学活动中,教科书从用地砖铺地引入镶嵌,进而让学生探究一些多边形能否镶嵌成平面图案,并运用通过探究得出的结论进行简单的镶嵌设计.在编写时关注上述从实践到理论,再从理论到实践的全过程,使学生对理论来源于实践又运用于实践的认识进一步加深.2.加强与已学内容的联系学生在前两个学段已学过三角形的一些知识,对三角形的许多重要性质有所了解,在第三学段又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理.上述内容是学习本章的基础:三角形的高、中线、角平分线分别与已学过的垂线、线段的中点、角的平分线有关;用拼图的方法认识三角形的内角和等于180°可以启发学生得出证明这个结论的方法,而证明的过程中要用到平行线的性质与平角的定义.在编写时关注本章内容与已学内容的联系,帮助学生掌握本章所学内容.另一方面,又注意让学生通过本章内容的学习,温习稳固已学的内容.3.加强推理能力的培养学生在七年级已经通过推理证明了一些图形的性质,如同角(等角)的补角相等,对顶角相等、两直线平行,内错角相等.本章中的许多结论也要通过推理来证明.在本章中加强推理能力的培养,可以提高学生已有的思维水平.也为学习全等三角形、等腰三角形、平行四边形等内容打下基础.在“相交线与平行线”一章已经给出了证明的概念,在本章中进一步借助三角形的内角和等于180°”这个结论的探索与证明让学生体会证明的必要性.教科书首先回顾学生在小学是通过度量与剪拼的方法知道这个结论的.然后指出:测量常常有误差,并且只能对有限个三角形运用上述方法,而形状不同的三角形有无数个,不能通过上述方法得出这个结论,所以需要通过推理的方法去证明.这样通过以上分析让学生明白为什么要证明,提高对推理证明的认识.三角形内角和定理是本章的重点内容.在本章中,由平行线的性质与平角的定义证明了这个定理.由这个定理还证明了“直角三角形的两个锐角互余”“三角形的一个外角等于与它不相邻的两个内角的和”以及多边形内角和公式.此外,还由“两点之间,线段最短”证明了“三角形两边的和大于第三边”,由多边形内角和公式证明了多边形外角和公式.安排这些内容有助于提高学生的推理能力.学生在本章仍处于进一步熟悉证明的阶段,学习通过推理的方法证明本章中的有关结论有一定难度.因此,教科书注意分析证明结论的思路,通过多提问题,留给学生足够的思考时间,让学生经历发现和提出问题、分析和解决问题的过程.例如,对于三角形内角和定理,设计实验操作的探究栏目,并对操作过程进行分析,从而获得证明的思路.注重证明思路的分析有助于学生学好推理证明.三、对教学的几个建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到.如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了.学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论.同样,三角形的三条中线交于一点的结论也可直接点明.在本章中,三角形的稳定性是通过实验得出的,待以后学过“三边分别相等的两个三角形全等”,可进一步明白其中的道理.证明三角形的内角和等于180°有一定的难度,只要学生了解得出结论的过程,不要在辅助线上花太多的精力,以免影响对内容本身的理解与掌握,对推理的要求应循序渐进.2.开展好数学活动镶嵌作为数学活动的内容安排在本章的最后,学习这个内容要用到多边形的内角和公式.通过这个数学活动,学生可以经历从实际问题抽象出数学问题,建立数学模型,综合应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力.这个数学活动可以如下展开:(1)背景了解多边形覆盖平面问题来自实际.(2)实验发现有些多边形能覆盖平面,有些则不能.(3)分析讨论多边形能覆盖平面的基本条件,发现问题与多边形的内角大小有密切关系,运用多边形内角和公式对实验结果进行分析.(4)运用进行简单的镶嵌设计.首先引入用地砖铺地,用瓷砖贴墙等问题情境,并把这些实际问题转化为数学问题:用一些不重叠摆放的多边形把平面的一部分完全覆盖.然后让学生通过实验探究一些多边形能否镶嵌成平面图案,并记下实验结果:(1)用正三角形、正方形或正六边形可以镶嵌成一个平面图案(图1).用正五边形不能镶嵌成一个平面图案.(2)用正三角形与正方形可以镶嵌成一个平面图案.用正三角形与正六边形也可以镶嵌成一个平面图案.(3)用任意三角形可以镶嵌成一个平面图案, 用任意四边形可以镶嵌成一个平面图案(图2).观察上述实验结果,得出如下结论:如果拼接在同一个点(例如图2中的点O)的各个角的和恰好等于360°(周角),相邻的多边形有大众边(例如图2中的OA 两侧的多边形有大众边OA),那么多边形能镶嵌成一个平面图案.运用上述结论解释实验结果,例如,三角形的内角和等于180°,在图2中,∠1+∠2+∠3=180°.因此,把6个全等的三角形适当地拼接在同一个点(如图2), 一定能使以这点为顶点的6个角的和恰好等于360°,并且使边长相等的两条边贴在一起.于是, 用三角形能镶嵌成一个平面图案.又如,由多边形内角和公式,可以得到五边形的内角和等于(5-2)×180°=540°.因此,正五边形的每个内角等于540°÷5=108°,360°不是108°的整数倍,也就是说用一些108°的角拼不成360°的角.因此,用正五边形不能镶嵌成一个平面图案.最后,让学生进行简单的镶嵌设计,使所学内容得到稳固与运用.知识改变命运。

人教版初中八年级上册数学第十一章《三角形(小结复习课)》精品教案

人教版初中八年级上册数学第十一章《三角形(小结复习课)》精品教案

A
D
1
2
B
C
本题源自《教材帮》
深化练习 4
∠ABD和∠ACE是△ABC的两个外角,若∠A=55°,则∠ABD+∠ACE=( 235° ).
解:∵∠ABD和∠ACE是△ABC的外角, ∴∠ABD=∠A+∠ACB, ∠ACE=∠A+∠ABC. ∴∠ABD+∠ACE =∠A+∠ACB+∠A+∠ABC =∠A+∠ACB+∠ABC+∠A =180°+55° =235°.
深化练习 3
如图,已知BD平分∠ABC交AC于点D,且∠ABC=∠C=2∠A,求△ABC各角的度数.
解:∵BD平分∠ABC,∠ABC=∠C=2∠A, ∴∠1=∠2=∠A. 设∠1=∠2 =∠A=x°,则∠ABC=∠C=2x°. ∵在△ABC中,∠A+∠ABC+∠C=180°. ∴x+2x+2x=180,解得x=36. ∴∠A=36°,∠ABC=∠C=2∠A=72°.
从三角形的一个顶点向它所对的边所在直线画垂线,顶点与垂足之间的线段叫做三 角形的这条边上的高. 连接三角形的一个顶点和它所对的边的中点,所得线段叫做三角形这条边上的中线. 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线.
知识梳理
与三角形有关的线段
3、三角形的重心 三角形的三条中线的交点叫做三角形的重心.
知识梳理
与三角形有关的角
1、三角形的内角和定理 三角形三个内角的和等于180°.
2、直角三角形的性质 直角三角形的两个锐角互余. 有两个角互余的三角形是直角三角形.
知识梳理
与三角形有关的角 3、三角形内角和定理的推论 三角形的外角等于与它不相邻的两个内角的和. 4、三角形外角和的性质 三角形的外角和等于360°.

八年级数学上册第十一章三角形知识点

八年级数学上册第十一章三角形知识点

八年级数学上册第十一章三角形知识点八年级数学上册第十一章三角形知识点包括以下内容:
1. 三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3. 三角形的高的定义:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4. 三角形的中线的定义:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5. 三角形的角平分线的定义:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8. 多边形的内角的定义:多边形相邻两边组成的角叫做它的内角。

这些知识点可应用于各种不同类型的三角形和多边形的计算和证明。

记住这些基本概念和性质对于理解和解答与三角形和多边形有关的数学问题非常重要。

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.

初一数学第十一章《三角形全章复习课》

初一数学第十一章《三角形全章复习课》
2. 木工师傅做完门框后,为防止变 形,通常在角上钉一斜条,根据 是三角形具有稳定性 ;
3. 小明绕五边形各边走一圈,他共 转了 3Hale Waihona Puke 0 度。三角形角平分线的定义:
三角形一个角的平分线与它的对边相交,这 个角的 顶点与交点 之间的线段叫做三角形的 角平分线。
三角形的中线定义
连结三角形一个 顶点与它对边中点 的线段 叫做三角形的中线。
9. 三角形木架的形状不会改变,而四边形木 架的形状会改变.这就是说,三角形具有稳定 性,而四边形没有稳定性。
CN
一、选择题
1. 三角形三个内角的度数分别是(x+y)o, (x-y)o,xo,且
x>y>0,则该三角形有一个内角为 ( C ) A、30O B、45O C、60O D、90O
2. 把14cm长的细铁丝截成三段,围成不等边三角形, 并且使三边长均为整数,那么( C )
A、只有一种截法 C、有三种截法
G
A
F
B C
E D
12、有一六边形,截去一三角形,内角和会发生 怎样变化?请画图说明。
内角和减少180O 内角和不变 内角和增加180O
13、如图:D是△ABC中BC边上一 点,试说明2AD<AB+BC+AC。
A
B
DC
问题 1:如图△ABC 中,∠ABC、∠ACB 的平分线相交于点 I.你
能归纳出∠BIC 和∠A 的关系吗?
三角形全 章 复 习
三角形知识结构图
三角形的边
与三角形有 关的线段
高线 中线



与三角形有
关的角
三角形的分类
角平分线 三角形内角和 三角形外角和 内角与外角关系

数学八年级上册第11章三角形全章完整ppt课件

数学八年级上册第11章三角形全章完整ppt课件

完整版PPT课件
A
c
b
B
C
15
a
阶段小结
11.1.1 三角形的边
II. 三角形的分类
ቤተ መጻሕፍቲ ባይዱ
锐角三角形 三角形 直角三角形
钝角三角形
三 边 都 不 相 等 的 三 角 形 三 角 形 等 腰 三 角 形 底 等 边 边 和 三 腰 角 不 形 相 等 的 等 腰 三 角 形
完整版PPT课件
III. 三角形三边之间的大小关系
课堂练习 2. 下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10.
14
阶段小结
11.1.1 三角形的边
I. 三角形及相关概念
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 组成三角形的线段叫做三角形的边。 相邻两边所组成的角叫做三角形的内角,简称角。 相邻两边的公共端点是三角形的顶点。 顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”。
11
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?
完整版PPT课件
(2)①如果长为4 ㎝的边为底边,设腰长为x ㎝,则
4+2x=18 解得x=7 ②如果长为4 ㎝的边为腰,设底边长为x ㎝,则
AD 叫做△ ABC的角平分线。
2、三角形的三条高、三条中线、三条角平分线及交点的位 置规律。
三角形的三条中线的交点、三条角平分线的交点在三角形 的内部。
锐三角形的三条高的交点在三角形的内部,直角三角形三
条高的交点在直角顶点,钝角三角形的三条高的交点在三

最新人教版八年级上册第11章《三角形》全章教案(共9份)

最新人教版八年级上册第11章《三角形》全章教案(共9份)

. 了解三角形有关的概念及相应符号表示;2. 会把三角形分别按边,角分类;3. 掌握三角形三边关系,能运用三角形的三边关系解决实际问题过程 通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理表 方法达的能力,理解分类思想和方程思想.体会数学与生活的密切联系,提高学生学数学的兴趣教学难点解题中的分类讨论及求三角形边长时易忽视用三边关系定理检验^a i 5 i #一、课前导学:~~学生自学课本2-4页探究之前内容,并完成下列问题1. 三角形:由 的三条线段 所组成的图形叫做三角形 .如图,线段 是三角形的边,点 是三角形的点.Z A 、Z B 、ZC(在图中画弧)是三角形的 .三角形的内角简称三角形的角 .顶 点是A 、B 、C 的三角形,记作.读作三角形ABC.AABC 的边有时也用小写字母,a. b.c 来表示.要求:顶点A 所对的边 用小写字母 表示,顶点B 所对的边 用小写字母 表示,顶点C 所对的边 用小写字母 表示.(在图中标出a b c)A2. 三角形的分类:(1 )三角形按角分类可分为 (2) 三角形按边分类可分为3.三 角 形 三 边 之 间 的 美 系 定 理理论依据是. 二、合作、交流、展示:1. 交流展示1:三角形有关概念三角形的自我介绍: .............................................................. 2. 交流展示2:三角形分类 A R 如图,等腰三角形 ABC 中,AB=AC 腰是 ___________________ , /\ /\ 底是 ____________ ,顶角指 _________ ,底角指 _________________ . \ / \ 等边三角形 DEF 是特殊的 ____________ 三角形,DE= _____ = ____ . D / \_ E 』 -------------- 、FB C3. 交流展示3:三角形三边关系注意:任意两边的和大于第三边; “两边之差小于第三边”、“两边之和大于第三边“两边之差v 第三边v 两边之和 ”这三个重要结论.11.1 .1 三角形的边新授教学媒体多媒体教学重点 三角形三边关系定理及应用用集合图表示三角形按边分类4. 交流展示4:第3页例题用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,(2)能围成有一边长是4cm的等腰三角形吗?那么各边的长是多少?为什么?【收获感悟】:,,,.三、巩固与应用1. 课本第4页练习1 ;2. 课本第4页练习2;(归纳检验三条线段能否构成三角形的方法)3. 课本第8页第7题;4. 已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是 . ?若x是奇数,则x的值是; ?若x?是偶数,?则x?的值是.5. 现有2cm 3cm 4cm 5cm长的四根木棒,任意选取三根组成一个三角形,可以组成个.变式:现有2cm、3cm、4cm 5cm 6cm长的五根木棒呢?6. 例题变式:一个等腰三角形周长为18cm,一边为5cm,求另外两边长7. 拓展提高:已知一个三角形的三条边长均为正整数,若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形有几个?四、小结:1.三角形有关概念,2.三角形的分类;3.三角形三边关系定理;4.分类讨论和方程思想五、作业:〈〈作业本》第1页.六、课后反思:1. 画出下面三个△ ABC中BC边的高线.入。

新人教版八年级数学上册课件《第11章 三角形》(全章)PPT教学课件

新人教版八年级数学上册课件《第11章 三角形》(全章)PPT教学课件
解:(1)不能,因为3cm+4cm<8cm; (2)不能,因为5cm+6cm=11cm; (3)能,因为5cm+6cm>10cm.
归纳 判断三条线段是否可以组成三角形,只需说明两条较短 线段之和大于第三条线段即可.
针对训练 一根木棒长为7,另一根木棒长为2,那么用长度为4 的木棒能和它们拼成三角形吗?长度为11的木棒呢?若不能拼 成,则第三条边应在什么范围呢? 解:设第三边长为x,则应有
定义:由不在同一条直线上的三条线段首尾顺次相接
所组成的图形叫做三角形.
A
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角
边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫做三角形的内角,简称三角形的角.
记法:三角形ABC用符号表示_△__A_B__C__.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B所对应的 边为DC,顶点C所对应的边为BD,顶点D所对应的边为BC.
二 三角形的分类
问题1:按照三角形内角的大小,三角形可以分为哪几类? 锐角三角形、直角三角形、钝角三角形.
问题2:如果以三角形边的元素的不同,三角形该如何分类பைடு நூலகம்? (1)等腰三角形和等边三角形的区别是什么?
基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C.
特别规定: 三角形ABC的三边,一般的顶点A所对的边记作a,顶点 B所对的边记作b,顶点C所对的边记作c.
找一找:(1)图中有几个三角形?用符号表示出这些三角形?
7-2<x<7+2, 即5<x<9. 则用长度为4的木棒不能和它们拼成三角形,长度为11的 木棒也不能和它们拼成三角形.第三边长的范围为5<x<9.

数学八年级上册第11章三角形全章课件

数学八年级上册第11章三角形全章课件

如图, 画∠ A 的平分线AD ,交∠ A 所对的边BC 于点 D,所得线段AD 叫做△ ABC的角平分线。
你能画出另两条角平
A
分线吗?
F
E
B
C
D
三角形的三条角平分线相交于一点。
课堂练习 填空: (1)如图(1),AD,BE,CF是△ABC的三条中线,则
A B 2 _ _ _ _ _ ,B D _ _ _ _ _ ,A E 1_ _ _ _ _ . 2
解得x=3.6
x+2x+2x=18
为x ㎝,则腰长是 多少?
所以,三边长分别为3.6 ㎝, 7.2 ㎝, 7.2 ㎝。
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?
(2)①如果长为4 ㎝的边为底边,设腰长为x ㎝,则
三边都不相 等的三角形
等腰三角形
等边三 角形
探究
任意画一个△ ABC,假设有一只小虫要从B 点出发, 沿三角形的边爬到C点。 (1)它有几种路线可以选择? (2)各条路线的长有什么关系?为什么?
A BA CB C A CB CA B
A
两点之间线段最短
A BB CA CB
C
三角形两边的和大于第三边
A
B
A CB CA B
移项
A BB CA C
C
B CA BA C B CA CA B
三角形两边的差小于第三边
例题 用一条长为18 ㎝的细绳围成一个等腰三角形。
(1)如果腰长是底边长的2 倍,那么各边的长是多少? (2)能围成有一边的长为4 ㎝的等腰三角形吗?为什么?

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

人教版八年级上册数学第十一章三角形课件PPT

人教版八年级上册数学第十一章三角形课件PPT

1 2
∠ABC
F
OE
∵CF是△ABC的角平分线
∴∠ACB=2___∠_A__C=F2____∠BCF B
D
C
三角形的角平分线与角的平分 线有什么区别?

三角形的角平分线是一条

线段 , 角的平分线是一条
射线
练一练
如图,在△ABC中, ∠1=∠2,G为AD中点,延长BG 交AC于E,F为AB上一点,CF⊥AD于H,判断下列 说法那些是正确的,哪些是错误的?
腰与底不等的等腰三角形
等腰三角形 等边三角形
直角三角形
三角形
锐角三角形
斜三角形
钝角三角形
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?Leabharlann AB DE
C
13
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
B D
E
C
14
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
21
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
22
下面图形中一共有多少个三角形?锐角 三角形、直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
C

八年级数学上册知识点总结(第十一章)

八年级数学上册知识点总结(第十一章)

八年级数学上册知识点总结(第十一章) 八年级数学上册知识点总结(第十一章)八年级数学上册知识点总结八年级数学上册知识点总结第十一章三角形编者:肖潇11.1与三角形有关的线段第1课时三角形的边1.三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类三角形等腰三角形(至少两边相等)等边三角形(三边都相等)不等腰三角形底边和腰不等的等腰三角形3.三角形三边的关系(重点)三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c 或c-b<a。

已知三角形两边的长度分别为a,b,求第三边长度的范围:|a -b|<c<a+b要求会的题型:①数三角形的个数方法:分类,不要重复或者多余。

Page2题11八年级数学上册知识点总结②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可Page2题4③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

Page2题11④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+bPage2题5,9,10⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

Page3题14,15 第2课时三角形的高、中线与角平分线1.三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

2.三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(学科)活页导学案导学案总编号:05
主备人
审核
八年级数学组
审批
授课人
授课
时间
班 级
姓名
小组
课题
三角形的内角
课型
综合课
课时
2
D
C
三、反馈提升
B
E
1如图:∠C=∠D=90°,AD,BC相交于点E,∠CAE与
∠DBE有什么关系?为什么?90°,CD⊥AB,垂足为D,∠ACD与∠B
难点
两个 定理的运用
学习过程:
一、自主学习
1三角形有哪些性质?
2直角三角形有哪些性质?
3你能证明直角三角形的两锐角互余?
4用符号表示直角三角形ABC为▁▁▁▁▁。
二、问题探究
1直角三角形的定义是什么?
2要说明三角形是直角三角形的关键在哪?
3试证明有两个角互余的三角 形是直角三角形。
知识链接 :
书写等级:
测评得分:
有什么关系?为什么?
2如图,∠C=90°,∠1=∠2,△ADE是直角三角形吗?为什么?
A
D
1
E
2
五、总结反思
C
B
课堂记录
或学法指导
学习
目标
1、记住直角三角形的 两锐角互余并会运用
2、记住有两 个角互余的三角形是直角三角形并会运用
学习
重点
1、直角三角形的两锐角互余
2、有两个角互余的三角形是直角三角形
学习
相关文档
最新文档