第十二章 级数

合集下载

第十二章 傅氏级数 三角函数系及其正交性

第十二章 傅氏级数 三角函数系及其正交性

x
)
,
x为f ( x)的连续点, x为f ( x)的间断点.
Remark
一个分段连续且分段单调的函数, 在其连续点处,其傅氏级数就收敛 到该点的函数值,此时称函数 在该点可以展成傅氏级数.
仅在连续点处可 展成傅氏级数.
定理2:
设函数 f ( x)以2 为周期,且在区间 ,
上分段可微,则 f ( x)的傅氏级数在任意 一点 x 处均收敛到和函数
S( x) 1 f ( x ) f ( x ) , x . 2
例1
设函数 f ( x)以2 为周期,它在 , 上
的表达式为
f
(
x)
1,
1,
x0 0 x.
求 f ( x)的傅氏级数及其和函数.
1
1
3.奇,偶周期函数的傅氏级数
❖当 f ( x)是偶函数时,其傅氏系数为
an
f
(x)
~
a0 2
n
(an cos
n1
l
x
n
bn sin l
x)
其中, an
1 l
l l
f ( x)cos n
l
xdx,
n 0,1,2,
bn
1 l
l l
f ( x)sin n
l
xdx,
n 1,2,.
情况三:
函数 y f ( x)在 0,l上有定义.
首先延拓到 l,l上.
(1)偶延拓:
F1
f ( x)cos nxdx,
n 0,1,2,
bn
1
f ( x)sin nxdx,
n 1,2,.
定义
❖ 设 f ( x)是一个以2为周期的函数,且在

高等数学 第十二章 级数

高等数学 第十二章 级数

12)1()(x f 0x x =)(00x f a =!)(0)(k x f a k k =ππππ11()cos d (0,1,2,),()sin d (1,2,)ππn n a f x nx x n b f x nx x n --====⎰⎰. 34求收敛半径定理,幂级数展开定理,1 为了叙述方便,称前者为有限加而无穷个数相加只是我们不可能用有限加法的方法来完成另外,有限加法中的结合律和交换律在我们在研究无限累加时,是以有限加法(部一般情况下,这个和的数值不易求得,教科书1 ,B .)级数的求和问题. +-+-=1111x0)11()11(=+-+-= x 1)11()11(1=-----= x x x -=+-+--=1)1111(1 ,于是12x =. 柯西指出:以上解法犯∑∞=--11)1(n n2 ∑∞=1n nu0lim ≠∞→n n u ∑∞=1n nup2 1π3sin4n nn ∞=∑ π303sin π44nnn ⎛⎫<< ⎪⎝⎭13π4nn ∞=⎛⎫ ⎪⎝⎭∑1π3sin4n nn ∞=∑ 11π3sin341π43sin 4n n n n ++=< 1π3sin4n n n ∞=∑ 3 ∑∞=1n nu0lim ≠∞→n n u 0lim =∞→n n u∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu∑∞=1n nu0lim ≠∞→n n u3 ∑∞=---+-11)11()1(n n n n1111211)11()1(1+>-++=--+=--+--n n n n n n n n∑∑∞=∞==+01111n n nn ∑∞=---+-11)11()1(n n n n0112limlim =-++=∞→∞→n n u n n n0)2)(11()1(2)12(2)2()11(1>++--+--++-+=-+---+=-+n n n n n n n n n n n n u u n n4 ∑∞=⎪⎪⎭⎫ ⎝⎛+--21111n n n∑∑∑∞=∞=∞==-=⎪⎪⎭⎫ ⎝⎛+--22112121111n n k k n n n 11k k ∞=∑∑∞=⎪⎪⎭⎫⎝⎛+--21111n n n 4 0n n n a x ∞=∑nn n a a 1lim+∞→R ),(R R -R x ±=nn n a a 1lim +∞→0x x -5 ∑∞=⎪⎭⎫⎝⎛151n nx n111155nnnn n x x n n ∞∞==⎛⎫= ⎪⋅⎝⎭∑∑ 11511lim lim lim lim1(1)55(1)551n n n n n n n na n na n n n ++→∞→∞→∞→∞⋅====+⋅⋅+⎛⎫⋅+ ⎪⎝⎭5=R )5,5(-5=x ∑∞=11n n 5-=n ∑∞=-1)1(n n n)5,5[-6 2111(1)(21)!n n n x n -∞+=--∑2221(21)!1limlim lim 0(21)!2(21)n n n n nu n x x x u n n n +→∞→∞→∞-===⋅+++∞=R ),(+∞-∞7 11(1)(1)nn n x n∞-=--∑ 1-=x t ∑∞=--11)1(n nn nt 1111lim 1lim lim1=+=+=∞→∞→+∞→nn n a a n n n n n1=R )1,1(-1-=t ∑∑∞=∞=--=--1111)1()1(n n n n n n 1=t ∑∞=--111)1(n n n ∑∞=--11)1(n nn nt ]1,1(-]2,0( 5 )(x f )(x f 0lim ()0n n R x →∞=)(x f)1()2()3()4()5( 8 2()12xf x x x=+-x ⎪⎭⎫⎝⎛+--=+-=x x x x x x f 2111131)21)(1()(+++++=-n x x x x2111)11(<<-x+-++-+-=+n n x x x x x )2(842121132⎪⎭⎫ ⎝⎛<<-2121x∑∞=-+=)2)1(1()(n n n nx x f ⎪⎭⎫ ⎝⎛<<-2121xn n 9 x x f ln )(=2-x2()ln[2(2)]ln 2ln 12x f x x -⎛⎫=+-=++⎪⎝⎭22-=x t )1ln(221ln t x +=⎪⎭⎫ ⎝⎛-++-++-+-=-nn t nt t t t 1432)1(432t <-1(1) 2312322(2)(2)(1)(2)ln 12222322n nnx x x x x n -------⎛⎫+=-++++ ⎪⋅⋅⋅⎝⎭ x <0(≤)4+⋅--++-+---+=-n nn n x x x x x 2)2()1(2)2(312)2(21222ln ln 13322x <0(≤)4 10 ∑∞=+++12)2)(1(n n n n x1)3)(2()2)(1(lim=++++=∞→n n n n R n 1±=x ]1,1[-.∑∞=+++=12)2)(1()(n n n n x x S∑∞=++='111)(n n n x x S ∑∞==''1)(n nx x S∑∞=-=11n n x x x xxx S -=''1)()11(<<-x ⎰⎰---=-=''='-'x xx x x xxx x S S x S 00)1ln(d 1d )()0()()11(<<-x 0)0(='S )1ln()(x x x S ---=')11(<<-x⎰⎰---='=-x xx x x x x S S x S 0d )]1ln([d )()0()(⎰--+---=x x xx x x x 02d 1)1ln(2 )1ln()1(22x x x x --+-= )11(<<-x 0)0(='S)1ln()1(2)(2x x x x x S --+-= )11(<<-x11 ∑∞=+02!12n nx n n 0)1)(12(32lim !12)!1(32lim 2232=+++=+++∞→+∞→x n n n x n n xn n n n n n),(+∞-∞∑∞=+=2!12)(n nx n n x S2212200021()d d e !!!n nx x n x n n n n x x S x x x x x x n n n +∞∞∞===+====∑∑∑⎰⎰()2220()()d (e )e (12)x x x S x S x x x x ''===+⎰222021()e (12)!n x n n S x x x n ∞=+==+∑),(+∞-∞∈x )1(10)1)(2(2+++n n x n )2(11nx n n 2!12+1)3(106 )(x f )(x f )(x f )(x f )(x f [π,π]-n a n b ∑∞=++1)sin cos (2n n n nx b nx a a )(x f )(x f [π,π]-n a n b)(x f x )(x f )(x f )(x f 2)()()(-++=x f x f x f∑∞=++=1)sin cos (2)(n n n nx b nx a a x f )(x f12 +-+-=!6!4!21cos 642x x x x 13246357cos isin 1i 2!4!6!3!5!7!θθθθθθθθθ⎛⎫⎛⎫+=-+-++-+-+⎪ ⎪⎝⎭⎝⎭23456i i 1i 2!3!4!5!6!θθθθθθ=+--++--,2i 1=-3i i =-4i 1=5i i =23456i (i )(i )(i )(i )(i )cos isin 1i e 2!3!4!5!6!θθθθθθθθθ+=+++++++=i cos isin e θθθ+=14 10年,每年向球300?假设存储30003000B p B 元. r t nntn r p B ⎪⎭⎫⎝⎛+=1ntn r B p ⎪⎭⎫⎝⎛+=1, re rt B p =e ertrt B p B -==.10300万元,第一次付款是在签约当%5113=(百万元), 2205.013+=33205.13=10905.13=1029131 1.05333324.3211.05 1.05 1.051 1.05⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++++=≈-, 2432300?%5 13= 20.053e-=),30.0523(e )-=),0.050.0520.05333e 3(e )3(e )---=++++,0.05ex -=0.05361.51e -=≈-(百万元).( √ ) )(x f )(x f 能展开成0x x -的幂级)(x f( ⨯ ) )(x f )(x f 时,)(x f,0lim =∞→n n u ∑∞=1n nu收敛; ( ⨯ )0lim =∞→n n u 正项级数∑∞=1n n u 0lim =∞→n n u ∑∞=11n n 01lim =∞→n n ∑∞=11n n(),11∑∞=-n n na ,0lim =∞→n n a ∑∞=-1)1(n n n a ⨯),2,1(1=≥+n u u n n∑∞=1n na0lim =∞→n n a 1lim1<+∞→n nn a a1lim1n n na a +→∞≤ 1lim 1>=+∞→λn n n a a1lim 1<=+∞→nn n a a q∑∞=+1)4(n n nx a2-=x 2=x4+=x t ∑∞=1n nn ta 2-=x 2=t ∑∞=1n nn ta 2-2(,2)∪(2,)-∞-+∞2=x 6=t ∑∞=+1)4(n n nx a∑∞=1n nn x1<x 1≤x11<≤-x 11≤<-x 11lim lim1=+=∞→+∞→n na a n nn n 1)1,1(-1=x ∑∞=11n n 1-=x ∑∞=-1)1(n n n )1,1[-∑∑∑∞=∞=∞=111,,n nn nn ncb a n n nc b a <<),2,1( =n∑∞=1n nb∑∞=1n na∑∞=1n nb∑∞=1n nc∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb∑∞=1n na∑∞=1n nc∑∞=1n nb)(x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim 00)(=-∞→n n n x x n x f ∑∞=-100)()(!)(n n n x x n x f)(x f 0)(!)(lim00)(=-∞→n n n x x n x fe x = 212!!n x x x x n +++++∈R ;=x sin 35211(1)3!5!(21)!n n x x x x x n ---+-+-+∈-R ;=x cos 2421(1)2!4!(2)!nnx x x x n -+-+-+∈R ;=+)1ln(x ]1,1()1(32132-∈+-+-+-+x nx x x x nn ;mx )1(+=)1,1(!)1()1(!2)1(12-∈++--++-++x x n n m m m x m m mx n;∑∞=1n nnx aR ,则∑∞=12n n n x a 的收敛半径为R ;∑∞=1n nnx aR ,则∑∞=1n n n x a 的收敛区间为),(R R -.21nn n a x∞=∑R x <<20⇒R x R <<-,所以,∑∞=12n n n x a 的收敛R)(x f 2π[π,π]-的表达式为{1,π0,()1,0π,x x f x x x --≤<=+≤<则)(x f πx = 1π+ .ππlim ()lim(1)1πx x f x x --→→=+=+, ππlim ()lim(12π)1πx x f x x ++→→=-+=+, πlim ()1π(π)(2ππ)(π)x f x f f f →=+=-=-= ,)(x f πx =)(x f πx =处收敛于(π)f =1π+ .∑∞=+1)1(n nxn n 的收敛域与和函数;∑∞=+1)1(n nxn n =∑∞=-+11)1(n n nxn x=∑∞=++0)1)(2(n nxn n x,)(x s ∑∞=++0)1)(2(n nxn n 1-11)(x u 0()d x s x x ⎰00(2)(1)d x nn n n x x ∞=++∑⎰∑∞=++01)2(n n x n()d x u x x ⎰100(2)d x n n n x x ∞+=+∑⎰∑∞=+02n n xxx -12)(x u )1(2'-x x 22)1()1(2x x x x -+-22)1(2x x x -- )(x s ])(['x u ])1(2[22'--x x x 3)1(2x -∑∞=+1)1(n n x n n )(x xs 3)1(2x x- )1,1(-∈x ∑∞=-11n n nx∑∞=+1212n nn x)(x s ∑∞=-11n n nx()d x s x x ⎰101d x n n nx x ∞-=∑⎰∑∞=1n n x xx-1 )(x s )1('-xx2)1(1x -∑∞=-11n n nx 2)1(1x - )1,1(-∈x∑∞=+1212n n n x ∑∞=++112121n n n x x)(x u ∑∞=++11212n n n x='])([x u )12(112'+∑∞=+n n n x ∑∞=12n nx 221x x - )(x u 0()d x u x x '⎰220d 1xx x x -⎰201d 1x x x -⎰0d x x ⎰x x x --+11ln 21∑∞=+1212n n n x ∑∞=++112121n n n x x 111ln 21--+x xx xx f 1)(=3-x x x f 1)(=3)3(1+-x 331131-+⋅xx+11)1,1()1(12-∈+-+-+-x x x x nnx x f 1)(=331131-+⋅x 31]33)1()33(331[2 +⎪⎭⎫⎝⎛--+--+--nn x x x ∑∞=+--01)3(3)1(n nn n x )1,1(33-∈-x )6,0(∈xx sin π6x +x sin ππsin[()]66x +-3π1πsin()cos()2626x x +-+ )6sin(π+x 35211πππ()()()π666()(1)63!5!(21)!n n x x x x x n --++++-+-+-+∈-R ,πcos()6x +242πππ()()()6661(1)2!4!(2)!nnx x x x n +++-+-+-+∈R ,x sin 3π1πsin()cos()2626x x +-+ 234πππ()()()13π131666()22622!23!24!x x x x +++-+++⋅--⋅+22111ππ()()1366(1)(1)2(2)!2(21)!n n n n x x x n n ---+++-⋅+-⋅+∈-R .{0,()π,f x x =-π0,0π,x x -≤<≤<将)(x f 在[π,π]-上展成傅里叶级数,傅叶级数在0=x0a ππ1()d πf x x -⎰π01(π)d πx x -⎰2π011(π)π2x x -π2n a ππ1()cos d πf x nx x -⎰π01(π)cos d πx nx x -⎰π1(π)d(sin )πx nx n -⎰π01(π)sin πx nx n -π01sin d πnx x n ⎰π021cos πnx n -20,21,2,2,πn k n k n =-⎧⎪⎨=⎪⎩ n b ππ1()sin d πf x nx x -⎰π01(π)sin d πx nx x -⎰π01(π)d(cos )πx nx n --⎰π01(π)cos πx nx n -π01cos d πnx x n ⎰0cos 1n n1 )(x f)(x f π421211[cos(21)sin(21)sin 2](21)π212k k x k x kx k k k ∞=-+-+--∑ )(lim 0x f x +→0lim(π)x x +→-π)(lim 0x f x -→ 0=x π2∑∞=-211n n n11-n n 1)1(1--n n 23)1(1-n∑∞=-223)1(1n n ∑∞=1231n n312p =>p ∑∞=-211n n n11πtan 2n n n ∞+=∑nn n a aq 1lim +∞→=21π(1)tan2limπtan 2n n n n n +→∞++⋅⋅21π(1)2limπ2n n n n n +→∞++⋅⋅n n n 21lim +∞→2111πtan2n n n ∞+=∑∑∞=+-111)1(n nnn n u ∞→lim 11lim+∞→n n1+n u 21+n 11+n n u∑∞=+-111)1(n nn1000 n B ∞→n%)51(10001+⨯=a n %)51(%)51(10001+++⨯=-n n a a1221223323211211000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),(15%)1000(15%)(15%),n n n n n n n n n a a a a a a a a --------=⨯+++⎧⎪+=⨯+++⎪+=⨯+++⎨⎪⎪+=⨯+++⎩n a 1112%)51(]%)51(%)51(%)51[(1000--++++++++⨯n n an n %)51(1000%)51(1]%)51(1%)[51(10001+⨯++-+-+⨯- ]1%)51(-+nn n a ∞→lim ∞,n B ]1%)51(-+n元,当∞→n。

第十二章无穷级数(解题方法归纳)

第十二章无穷级数(解题方法归纳)

第十二章解题方法归纳 一、正项级数敛散性的判定方法 1. 一般项极限不趋于零则级数发散• 2. 比较审敛法3. 比较审敛法的极限形式4. 比值审敛法5. 根值审敛法1. 一般项极限不趋于零则级数发散例1判定级数a n s= 1 • 2s• 3s • 「n s*11 (s 0)的敛散性.n 4『方法技巧』无论是正项级数还是任意项级数,判定其敛散性时一般第 步都是验证一般项的极限是否为零.2. 比较审敛法n a 2n1 a1 ln 3n的敛散性.由于lim ns=邑学0,所以总n s发散.n =100 an 判定级数二诗(a 0)的敛散性.当a 1时,n a 2n1 ana 2n1 ana '2n a<a n,而二a n收敛,所以二nW00门"■: ,而—an收敛, n故v —J 收敛.nV 1 a1,则n4. 比值审敛法解 lim nu n =lim 也 芋=—lim(1 —)nn 存 * f 2n 2n、任意项级数敛散性的判定lim W = lim 山 n ?:V nr‘U n二 lim —二 lim x3 — (3)J :In n J :ln x二 lim 2x 门:31 n x x 「::二 lim —— = lim —=::, J 和6 由比较审敛法的极限形式得1发散.例4判定级数v n!e 的敛散性.nnU n 1n 1 n(n 1)!e n解 lim J =limn 1F u n F (n +1)无法断言原级数是否收敛,但e>1,从而u n 单调递增且5 = e,故m U n 0nn :!n5.根值审敛法 例5判定级数二(n 1)n2nnn 2的敛散性.(n 1)n2故由根值审敛法知二(n 1)nn n 2nm 2 n发散. 例6试研究级数曰 a1 a n(a - 0)是绝对收敛、条件收敛还是发散. oOa解先考虑级数nd 畀的敛散性.当a 1时, an :::二,而J 亠收敛,故由比较审敛法得 n(1 +a ) a令 f(x) =x(1 a x),则 f (x) =1 a xxa xlna,当 x 充分大时,「(x)二 a xlna[2 xlna]:::0,所以 f (x)单调递减,且x 1a1 l-n^ + i m a1- l h _J i m x 厂:a x 厂:-ln aa所以f(x) 1,函数f (x)= x (1a x)单调增加,故后单调减少,且n im :応=。

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

第十二章 级数

第十二章       级数


n1
1 ( p 0)的敛散性。 p n
当 0 p 1 时 , 级数条件收敛, 当 p 1 时 , 级数绝对收敛。
例3。讨论下列级数 的敛散性,如果收敛, 是绝对收敛还是条件收 敛 ? (1) () 1 3n n1


n1
sin

n
(2)
(1)
n1

n1
ln n n
第十二章
1。无穷级数的概念
级数
§1。无穷级数的概念及其基本性质
定义1。设一数列 u1 , u2 , un , 则和式
un u1 u2 un 称为无穷级数,
n1

简称级数。
un 称为级数的通项或一般 项。
sn uk u1 u2 un 称为级数的
n1
un 其中
un 0 (n 1,2,3,) 那么称它为交错级数。
定理1。 (莱布尼茨判别法 ) 若交错级数 ( 1) n1 u n (其中 u n 0 )满足条件:
n 1
(1) u n1 u n (n 1,2,3, ) (2) lim u n 0
收敛, q 1 时 发散, q 1 时

1 例3。讨论级数 ln(1 ) 的敛散性。 n n 1 1 例4。讨论级数 arctan 2 的敛散性。 2n n 1
例5。讨论级数 an a1 a2 1 a1 (1 a1 )(1 a2 ) (1 a )(1 a2 ) (1 an )
1 (3) sin(n ) ln n n2
常数项级数的敛散性判别法
un
n 1

un ? 0

第十二章数项级数

第十二章数项级数

第十二章数项级数1级数问题的提出1. 证明:若微分方程xy " y ' xy0 有多项式解y a0a1 x a2 x2a n x n , 则必有 a i0 i n2.试确定系数a0 , a1 , , a n , , 使a n x n满足勒让德方程n 0(1 x2 ) y " 2 xy ' l (l 1)y0.2 数项级数的收敛性及其基本性质1.求下列级数的和:(1)1 ;4)(5 nn 1 (5n 1)(2) 1 ;n 1 4n2 1( 1)n 1(3) n 1 ;n 1 22n 1(4) n ;n 1 2(5) r n sin nx,| r |1;n 1(6) r n cos nx,| r |1.n 12.讨论下列级数的敛散性:(1)n ;n 1 2n 1(2)1 1( n n ); n 1 2 3(3) cos2n ;n 1 1(4) 1 ;2)(3nn 1 (3n 1)(5)1 .n(n 1)( n nn 1 1)3.证明定理 10.2.4.设级数u n 各项是正的,把级数的项经过组合而得到新级数U n , 即n 1 n 1U n 1 u k n 1 u k n 2 u k n 1 , n 0,1,2, ,其中 k0 0, k0 k1 k2 k n k n 1 .若U n收敛,证明原来的级数也收敛.n 13正项级数1.判别下列级数的收敛性:1 (1)n2 ;n 1 n(2)1;2 n 1 n 1 (2n 1)2(3) n n ;n 12n 1 (4) sin n;n 1 2(5)1(a 1);a n n 11(6)1;n 1n n n(7)( 1 )n ; n 1 2n 1(8)1;1)] nn 1[ln( n(9) 2 ( 1)n; n 12n (10)2nsin n ;n 13 (11)n n ;n 1n!(12)n ln nn;n 12(13)n!2n n ; n 1n(14)n!3n n; n 1 n(15)n 2;n 1(n1 )nn(16)x n( x 0);(1 x)(1 x 2 )n 1(1 x n )3 3 53 5 7 3579 (17)1 41 4 7;1 14710(18)1ln n ;n 1n(19)1;(20)ln n ;n 121(21)ln n;n 13 (22)13 n ;n 1(23)n.n 1 3n2.利用泰勒公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)[ e (1 1 )n ] p ;n 1n(2)ln p cos;n 3n(3)( n 1n ) plnn1;n 1n 1(4)( n a4n 2n b ).n 13.已知两正项级数u n 和v n 发散,问max( u ,v ) ,min( u ,v ) 两级数的nnnnn 1n 1n 1n 1收敛性如何?4.若正项级数a n 收敛, a n 1a n (n 1,2, ) ,求证 lim na n 0 .n 1na n1 ,n k2 , k 1,2, , 5.设n 21a k 2 , k 1,2, ,k 2求证 :(1)a n 收敛 ;n 1(2)lim na n0.n6.讨论下列级数的收敛性:(1);n 2 n(ln n)p1 (2)n ln n ;n 2 ln ln n(3)10);n(ln n)1(n 2 ln ln n1(4).n 2 n(ln n)p(ln ln n)q7.利用拉阿比判别法研究下列级数的收敛性:(1) [ (2 n 1)!!] p ( p是实数 );n 1 (2 n)!!(2) ( 1) ( n 1) 1 (0, 0).n 1 n! n8.设a na n 1l ,求证 lim n a n l .反之是否成立? 0, 且 limn a n n9.利用级数收敛的必要条件证明:(1) limn n0; ( n!) 2n(2) lim (2n)!0 ( a 1).n !n a10.设a n0 , 且数列{ na n}有界 , 证明级数a n 2收敛.n 111.设正项级数a n收敛,证明anan 1 也收敛 .n 1 n 1 12.设lim a n l ,求证:n(1) 当 l 1时, 1a 收敛 ;n 1 n n(2) 当 l 1时, 1 发散 .n1n a n问 l 1时会有什么结论?4 一般项级数1.讨论下列级数的收敛性:(1)( 1)nn n ;n 1100(2)ln n sin n ;n 1 n21 1 12n ;(3)( 1)n n 1n(4)( 1)nn ( 1)n;n 2(5)sin(n 21);n 1n( n 1)(6)( 1)2;3nn 1(7)( 1)n ( p0);n 1n p(8)1sin n;3n2n 1(9)( 1)n cos 2n ; n 1n(10)( 1)n sin 2 n ;n 1n(11)( 1)nsin x( x 0) ;n 1n( 1)n n(12)(n2;n 11)(13)1 1 1 1 1 12 12 1313 1n 1;n 1( 1)n 1an ( a 0);(14)n 1 a n 1sin(n1 ) (15)n n ;n 1(16)sin nsin n 2 .n 1n2.讨论下列级数是否绝对收敛或条件收敛:(1)( 1)n;nxn 1(2)sin(2 n x)n!n 1(3)sin nx (0 x );n 1n(4)cosnxx);np(0 n 1(5)( 1)n0);( p n 1n p 1n(6)( 1)n( p0);[n ( n ] pn 21)n(7)( 1)1 ;n 1pnn(8) ( n 12n sin 2 n x 1) n ; n 1(9)( x)n , lim a na 0;n 1a nn(10)( 1)n r nn(r 0);n 1(11)n!( x)n ;(12)( 1)nln(1n p);n 1(13)( 1)np;nn 1] n 1[ ( 1)sinn(14)4.sinnn 1 np43.利用柯西收敛原理判别下列级数的敛散性 :(1) a 0a 1 q a 2 q 2 a n q n,| q | 1,| a n | A (n 0,1,2, );(2)1 1 1 11 1 .2 3 45 64.求证 : 若级数a n (a n 0) 收敛 , 则级数a n 2 收敛 . 但反之不成立 , 请举出例子 .n1n 15.若级数a n 收敛 , 且 limb n 1, 问是否能断定b n 也收敛 ?研究例子n 1 na nn 1a n ( 1)na n 1, b n.nn6.证明 : 若级数a n (A) 及b n (B) 都收敛 , 且n1n 1a n c nb n ( n 1,2, )则级数c n (C ) 也收敛 , 若级数 ( A) 与 (B) 都发散 , 问级数 (C ) 的收敛性如何 ?n 17.证明 : 若a n收敛 , 则当 x x 0 时 ,a n 也收敛 . 若a n发散 , 则当 x x 0 时 ,n 1n x 0n 1 n x n 1 n x 0a n 也发散 . n 1 n x8.求证 : 若数列 { na n } 有极限 ,n(a n a n 1 ) 收敛 , 则a n 也收敛 .n 1n 19.求证 : 若(a n a n 1 ) 绝对收敛 ,b n 收敛 , 则a nb n 收敛 .n 1n 1n 110.求证 : 若级数a n 2 和b n 2 都收敛 , 则级数n 1 n 1| a bn |, ( anb )2 , a nn nnn 1 n 1 n 1也收敛 .11.设正项数列{ x n } 单调上升且有界, 求证 :(1 x n )n 1x n 1收敛 .n12.对数列{ a n},{ b n} , 定义S n a k , b k b k 1 b k,求证:k 1(1)如果{ S n}有界, | b n | 收敛,且 b n0(n ) ,则a n b n收敛,且有n 1 n 1a nb n S n b n ;n 1n 1(2)如果a n与| b n |都收敛,则a n b n收敛.n 1 n 1 n 113.设a n 收敛 , 且lim na n 0,求证:n 1 nn(a n a n 1 )n 1收敛,并且n(a n a n 1 ) a nn 1 n 114.下列是非题 , 对的请给予证明, 错的请举出反例 :(1) 若 a n 0 ,则 a1 a1 a2 a2 a3 a3 收敛 ;(2) 若 a n 0 ,则 a1 a1 a2 a2 a3 a3 收敛 ;(3) 若 a 收敛,则( 1)n a 收敛;n nn 1 n 1(4) 若a n 2收敛,则a n 3绝对收敛 ;n 1 n 1(5) 若a n发散,则 a n不趋于0;n 1(6) 若a n收敛, b n 1 ,则a n b n收敛;n 1 n 1(7) 若| a n |收敛, b n 1,则a n b n收敛;n 1 n 1 (8) 若a n收敛,则a n 2收敛;n 1 n 1(9) 若a n收敛, a n 0 ,则lim na n0.n 1 n15.求下列极限 ( 其中p1)(1) lim(1 1 1p ); (n 1)p(n 2)p(2 n)n(2) lim(1 1 1). p n 1 p n 2 p 2nn5无穷级数与代数运算1.不用柯西准则 , 求证 : 如果| a n |,则a n也收敛.n 1 n 12.设a n收敛,求证:将相邻奇偶项交换后所成的级数收敛, 且具有相同的和数.n 1精品文档3.求证 : 由级数 ( 1)n 1重排所得的级数n 1n1 1 1 1 1 125743发散 .4.证明 : 若 a n 条件收敛 , 则可把级数重排 , 使新级数部分和数列有一子数列趋向于n 1, 有一子数列趋向.5.已知 H n 111 c ln n r n , c 是欧拉常数 , lim r n0,求证:2nn(1)1 1 1 1ln m 1 c 1r m ;2 42m 2 2 2(2)若把级数 11 1 1的各项重排 , 而使依次p 个正项的一组与依次 q 个负234项的一组相交替 , 则新级数的和为 ln 21ln p .2q6.求证 : 级数( 1) n 1的平方 ( 柯西乘积 ) 是收敛的 .n 1n7.令 e xx n , 求证 e x y e x e y .n 0 n!8.证明 : 若级数的项加括号后所成的级数收敛, 并且在同一个括号内项的符号相同 , 那么去掉括号后 , 此级数亦收敛 ; 并由此考察级数( 1)[ n ]n 1n的收敛性 .精品文档。

高等数学 第十二章 无穷级数

高等数学 第十二章 无穷级数

n 1
n 1
设法求出和函数s( x)
an xn ,
n 1
n(n 1)
例10 求 n 1
2n
的和.
1 将其转化成幂级数求和函数问题.
2
原式
s(
1 2
),
s(x)
n(n
n 1
1)xn
2x (1 x)2
.
3
推广:
n1
n(n 3n
1)
S
(
1
),
3 n1
n(n 1
n1)
S(1) 5
.
5
n1 的和 .
n0
(2n1)!
解: 原式 = 1 (1)n (2n 1) 1
2 n0 ( 2 n 1)!
1 2
n0
(1)n ( 2 n)!
n0
(
(1)n 2 n 1)!
1 [cos1 sin 1 ].
2
(参见例6 ,也可用间接法解本题.)
(间接法)求数项级数和:

an an x0n s( x0 ),
0
0
n 0

f(x)
x(1)nx2ndx(1)nx2n 1
(
x
1).
0 n0
n0 2n1
例13
将函数
(2
1
x )2
展开成 x 的幂级数.
解:
1 (2x)2
1 2x
11
2
1
x 2
1 2
xn 2n
n0
1 2
n 1
n x n1 2n
x2 (
)n
x n1 2
1x12x2
x 2x2
,

《数学分析》第十二章 数项级数

《数学分析》第十二章 数项级数

第十二章 数项级数 ( 1 4 时 )§1 级数的收敛性( 3 时 )一. 概念:1.级数:级数,无穷级数;通项 (一般项, 第n 项), 前n 项部分和等概念 (与中学的有关概念联系).级数常简记为∑nu.2. 级数的敛散性与和:介绍从有限和入手, 引出无限和的极限思想.以在中学学过的无穷等比级数为蓝本, 定义敛散性、级数的和、余和以及求和等概念 . 例1 讨论几何级数∑∞=0n nq的敛散性.解 当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||<q 时收敛, 且和为q-11( 注意n 从0开始 ). 例2 讨论级数∑∞=+1)1(1n n n 的敛散性. 解 用链锁消去法求. 例3 讨论级数∑∞=12n n n的敛散性. 解 设 ∑=-+-++++==nk n n k n n n k S 11322212322212, =n S 211432221 232221++-++++n n nn ,1322212121212121+-++++=-=n n n n n n S S S12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n .⇒ n S →2, ) (∞→n .因此, 该级数收敛. 例4 讨论级数∑∞=-1352n n n的敛散性. 解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.3. 级数与数列的关系:⑴设∑nu对应部分和数列{n S }, 则∑nu收敛 ⇔ {n S }收敛;⑵对每个数列{n x },对应级数∑∞=--+211)(n n nx xx ,对该级数,有n S =n x .于是,数列{n x }收敛⇔级数 ∑∞=--+211)(n n nx xx 收敛.可见,级数与数列是同一问题的两种不同形式. 4. 级数与无穷积分的关系:⑴⎰∑⎰+∞∞=+==111)(n n nf dx x f ∑∞=1n nu, 其中 ⎰+=1n nn f u . 无穷积分可化为级数;⑵对每个级数, 定义函数 , 2 , 1 , 1 , )(=+<≤=n n x n u x f n , 易见有∑∞=1n nu=⎰+∞1)(dx x f . 即级数可化为无穷积分.综上所述,级数和无穷积分可以互化,它们有平行的理论和结果.可以用其中的一个研究另一个.二 级数收敛的充要条件 —— Cauchy 准则 :把部分和数列{n S }收敛的Cauchy 准则翻译成级数的语言,就得到级数收敛的Cauchy 准则.Th1 ( Cauchy 准则 )∑nu收敛⇔N n N >∀∃>∀ , , 0ε和∈∀p N ⇒ε | |21<++++++p n n n u u u .由该定理可见,去掉或添加上或改变(包括交换次序) 级数的有限项, 不会影响级数的敛散性. 但在收敛时, 级数的和将改变.去掉前 k 项的级数表为∑∞+=1k n nu或∑∞=+1n kn u.推论 (级数收敛的必要条件)∑nu收敛⇒ 0lim =∞→n n u .例5 证明2-p 级数∑∞=121n n 收敛 . 证 显然满足收敛的必要条件.令 21nu n =, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N . 例6 判断级数∑∞=11sinn nn 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)例7 证明调和级数∑∞=11n n发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.三. 收敛级数的基本性质:(均给出证明)性质1∑nu收敛,a 为常数⇒∑nau收敛,且有∑nau=a∑nu(收敛级数满足分配律)性质2∑nu和∑nv收敛⇒)(n nv u±∑收敛,且有)(n n v u ±∑=∑n u ±∑nv.问题:∑nu、∑nv、)(n nv u±∑三者之间敛散性的关系.性质3 若级数∑nu收敛, 则任意加括号后所得级数也收敛, 且和不变.(收敛数列满足结合律)例8 考查级数 ∑∞=+-11)1 (n n 从开头每两项加括号后所得级数的敛散性. 该例的结果说明什么问题 ?Ex [1]P 5—7 1 — 7.§2 正项级数( 3 时 )一. 正项级数判敛的一般原则 :1.正项级数: n n S u , 0>↗; 任意加括号不影响敛散性.2. 基本定理: Th 1 设0≥n u .则级数∑nu收敛⇔)1(0=n S .且当∑nu发散时,有+∞→n S ,) (∞→n . ( 证 )正项级数敛散性的记法 . 3. 正项级数判敛的比较原则: Th 2 设∑nu和∑nv是两个正项级数, 且N n N >∃ , 时有n n v u ≤, 则 ⅰ> ∑nv <∞+ , ⇒ ∑nu<∞+ ;ⅱ>∑nu=∞+, ⇒∑nv=∞+ . ( ⅱ> 是ⅰ>的逆否命题 )例1 考查级数∑∞=+-1211n n n 的敛散性 .解 有 , 2 11 012222nn n n n <+-⇒>+- 例2 设)1( 0π><<q q p . 判断级数∑∞=+111sin n n n q p 的敛散性.推论1 (比较原则的极限形式) 设∑n u 和∑n v 是两个正项级数且l v u nnn =∞→lim,则ⅰ> 当∞+<< 0l 时,∑nu和∑nv共敛散 ; ⅱ> 当0=l 时 ,∑nv<∞+⇒∑nu<∞+ ;ⅲ> 当+∞=l 时,∑nv=∞+⇒∑nu=∞+ . ( 证 )推论2 设∑nu和∑nv 是两个正项级数,若n u =)(0n v ,特别地,若 n u ~n v ,) (∞→n , 则∑nu<∞+⇔∑nv=∞+.例3 判断下列级数的敛散性:⑴∑∞=-121n n n ; ( n n -21~ n 21) ; ⑵ ∑∞=11sin n n ; ⑶ ∑∞=+12) 11 ln(n n .二 正项级数判敛法:1.比值法:亦称为 D ’alembert 判别法.用几何级数作为比较对象,有下列所谓比值法. Th 3 设∑nu为正项级数, 且0 N ∃ 及 0 , ) 10 ( N n q q ><<时ⅰ> 若11<≤+q u u nn ⇒∑n u <∞+; ⅱ> 若11≥+nn u u ⇒∑n u =∞+ . 证 ⅰ> 不妨设 1≥n 时就有11<≤+q u u nn 成立, 有, , , , 12312q u u q u u q u u n n ≤≤≤- 依次相乘⇒11-≤n n q u u , 即 11-≤n n qu u . 由 10<<q , 得∑<nq∞+⇒∑n u <∞+.ⅱ> 可见}{n u 往后递增⇒ , 0→/n u ) (∞→n . 推论 (比值法的极限形式) 设∑n u 为正项级数, 且 q u u nn n =+∞→1lim. 则ⅰ> 当q <1⇒∑nu<∞+; ⅱ>当q >1或q =∞+⇒∑nu=∞+. ( 证 )注: ⑴倘用比值法判得∑nu=∞+, 则有 , 0→/n u ) (∞→n .⑵检比法适用于n u 和1+n u 有相同因子的级数, 特别是n u 中含有因子!n 者. 例4 判断级数 ()()+-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性. 解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.例5 讨论级数∑>-)0( 1x nx n 的敛散性.解 因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.例6 判断级数∑+nn n n !21的敛散性 .注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n,均有 11<+nn u u ,但前者发散, 后者收敛.Ex [1]P 16 1⑴―⑺, 2⑴⑵⑷⑸,3,4,12⑴⑷;2. 根值法 ( Cauchy 判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设∑nu为正项级数,且 0 N ∃ 及 0>l , 当 0N n >时,ⅰ> 若 1 <≤l u n n ⇒∑nu<∞+;ⅱ> 若1 ≥n n u ⇒∑nu =∞+. ( 此时有 , 0→/n u ) (∞→n .) ( 证 ) 推论 (根值法的极限形式) 设∑nu为正项级数,且 l u n n n =∞→lim . 则ⅰ> 当1 <l 时⇒∑nu<∞+; ⅱ> 当1 >l 时⇒∑nu=∞+ . ( 证 )注: 根值法适用于通项中含有与n 有关的指数者.根值法优于比值法. (参阅[1]P 12)例7 研究级数 ∑-+nn2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ⇒∑+∞<. 例8 判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解 前者通项不趋于零 , 后者用根值法判得其收敛 . 3. 积分判别法:Th 5 设在区间) , 1 [∞+上函数0)(≥x f 且↘. 则正项级数∑)(n f 与积分⎰+∞1)(dx x f 共敛散.证 对] , 1[ , 1 A R f A ∈>∀ 且 ⎰-=-≤≤nn n n f dx x f n f 1, 3 , 2 , )1()()(⇒⎰∑∑∑=-===-≤≤mmn m n mn n f n f dx x f n f 12112, )()1()()( . 例9 讨论 -p 级数∑∞=11n pn的敛散性. 解 考虑函数>=p xx f p ,1)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分⎰+∞1)(dxx f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n pn当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛. 例10 讨论下列级数的敛散性:⑴ ∑∞=2) ln ( 1n p n n ; ⑵ ∑∞=3)ln ln ( ) ln ( 1n pn n n .Ex [1]P 16 1⑻,2⑶⑹,5,6,8⑴―⑶,11;§3 一般项级数 ( 4 时 )一. 交错级数: 交错级数, Leibniz 型级数.Th 1 ( Leibniz ) Leibniz 型级数必收敛,且余和的符号与余和首项相同, 并有1 ||+≤n n u r . 证 (证明部分和序列 } {n S 的两个子列} {2n S 和} {12+n S 收敛于同一极限. 为此先证明} {2n S 递增有界. ))()()()(22122124321)1(2++-+-+-++-+-=n n n n n u u u u u u u u S ≥ n n n S u u u u u u 22124321)()()(=-++-+-- ⇒n S 2↗; 又 1212223212)()(u u u u u u u S n n n n ≤------=-- , 即数列} {2n S 有界. 由单调有界原理, 数列} {2n S 收敛 . 设 )( , 2∞→→n s S n .)( , 12212∞→→+=++n s u S S n n n . ⇒s S n n =∞→lim .由证明数列} {2n S 有界性可见 , ∑∞=+≤-≤111)1 (0n n n u u . 余和∑∞=++-nm m m u 12)1(亦为型级数 ⇒余和n r 与1+n u 同号, 且1 ||+≤n n u r .例1 判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解 当10≤<x 时, 由Leibniz 判别法⇒∑收敛;当1>x 时, 通项0→/,∑发散.二. 绝对收敛级数及其性质:1. 绝对收敛和条件收敛: 以Leibniz 级数为例, 先说明收敛⇒/ 绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) ∑∞+< ||na, ⇒∑na收敛.证 ( 用Cauchy 准则 ).注: 一般项级数判敛时, 先应判其是否绝对收敛. 例2 判断例1中的级数绝对或条件收敛性 . 2. 绝对收敛级数可重排性: ⑴ 同号项级数:对级数∑∞=1n nu,令⎩⎨⎧≤>=+=. 0 , 0 , 0 , 2||n n n n n n u u u u u v ⎩⎨⎧≥<-=-= . 0 , 0 ,0 , 2||n n n n n n u u u u u w 则有 ⅰ>∑nv和∑nw均为正项级数 , 且有|| 0n n u v ≤≤和|| 0n n u w ≤≤;ⅱ> n n n w v u +=|| , n n n w v u -= . ⑵ 同号项级数的性质: Th 3 ⅰ> 若∑||nu +∞< , 则∑n v +∞< ,∑n w +∞< .ⅱ> 若∑nu条件收敛 , 则∑nv+∞= ,∑nw+∞= .证 ⅰ> 由|| 0n n u v ≤≤和|| 0n n u w ≤≤, ⅰ> 成立 .ⅱ> 反设不真 , 即∑nv和∑nw中至少有一个收敛 , 不妨设∑nv+∞< .由 n u = n v n w - , n w =n v n u - 以及 ∑nv+∞<和∑n u 收敛 ⇒∑n w +∞<.而n n n w v u +=||⇒∑||nu+∞<, 与∑n u 条件收敛矛盾 .⑶ 绝对收敛级数的可重排性: 更序级数的概念. Th 4 设∑'nu 是∑nu的一个更序. 若∑||nu+∞<,则||∑'nu +∞<,且∑'n u =∑n u . 证 ⅰ> 若n u 0≥,则∑'nu 和∑nu是正项级数,且它们的部分和可以互相控制.于是,∑nu+∞< ⇒∑'nu +∞<, 且和相等. ⅱ> 对于一般的n u , ∑nu=∑nv ∑-nw⇒∑'nu = ∑'nv ∑'-nw .正项级数∑'nv 和∑'n w 分别是正项级数∑nv和∑nw的更序. 由∑||nu+∞<, 据Th 1 ,∑nv和∑nw收敛. 由上述ⅰ>所证,有∑'nv +∞<,∑'nw +∞<, 且有∑nv =∑'nv , ∑n w ∑n u =∑'n w ⇒∑nu =∑'nu .由该定理可见, 绝对收敛级数满足加法交换律.是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 . Th 5 ( Riemann ) 若级数∑nu条件收敛, 则对任意实数s ( 甚至是∞± ),存在级数∑nu的更序∑'nu , 使得∑'nu =s .证 以Leibniz 级数∑∞=+-111) 1 (n n n为样本, 对照给出该定理的证明. 关于无穷和的交换律, 有如下结果: ⅰ> 若仅交换了级数∑nu的有限项,∑nu的敛散性及和都不变.ⅱ> 设∑'nu 是的一个更序. 若N ∈∃K , 使 nu在∑'nu 中的项数不超过K n +,106则∑'n u 和∑n u 共敛散, 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积: 级数乘积, Cauchy 积. [1] P 20—22.2.级数乘积的Cauchy 定理:Th 6 ( Cauchy ) 设∑||n u +∞<, ||∑n v +∞<, 并设∑n u =U , ∑n v =V . 则 它们以任何方式排列的乘积级数也绝对收敛, 且乘积级数的和为UV . ( 证略 ) 例3 几何级数1 || ,1112<+++++=-r r r r rn 是绝对收敛的. 将()2∑n r 按Cauchy 乘积排列, 得到 +++++++++++=++个12222)()()(1)1(1n n n n r r r r r r r r r ++++++=n r n r r )1(3212 .Ex [1] P 24—25 1⑴—⑻ ⑽,4; 31(总Ex ) 2,3,4⑴⑵;四. 型如∑n n b a 的级数判敛法:1.Abel 判别法:引理1 (分部求和公式,或称Abel 变换)设i a 和i b m i ≤≤1)为两组实数.记) (1 ,1m k b B k i i k ≤≤=∑=. 则∑∑=-=++-=m i m i m m i i i i i B a B a a b a 1111)(.证 注意到 1--=i i i B B b , 有∑∑==-+-=m i m i i i ii i b a B B a b a 12111)()()()(123312211--++-+-+=m m m B B a B B a B B a B a107 m m m m m B a B a a B a a B a a +-++-+-=--11232121)()()() )( ( . )(111111∑∑-=+-=+--=+-=m i i i i m m m m m i i i i B a a B a B a B a a. 分部求和公式是离散情况下的分部积分公式. 事实上,⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛=b a ba x a dt t g d x f dx x g x f )()()()( ⎰⎰⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=b a x a b a x a x df dt t g dt t g x f )()()()(⎰⎰⎰⎪⎭⎫ ⎝⎛-=b a b ax a x df dt t g dt t g b f )()()()(. 可见Abel 变换式中的i B 相当于上式中的⎰x a dt t g )(, 而差i i a a -+1相当于)(x df , 和式相当于积分. 引理 2 ( Abel )设i a 、i b 和i B 如引理1 .若i a 单调 , 又对m i ≤≤1,有M B i ≤||,则||1∑=mi i i b a ) ||2|| (1m a a M +≤.证 不妨设i a ↘.||1∑=m i i i ba ∑-=++-≤111||||||m i m m i i i B a B a a ) ||2|| ( ||)(1111m m i m i i a a M a a a M +≤⎥⎦⎤⎢⎣⎡+-≤∑-=+. 推论 设i a , 0≥i a ↘,(m i ≤≤1 ). i b 和i B 如引理1. 则有||1∑=m i i i ba 1Ma ≤.( 参引理2证明 ) Th 7 (Abel 判别法)设ⅰ> 级数∑n b 收敛,ⅱ> 数列}{n a 单调有界.则级数∑n n b a 收敛. 证 (用Cauchy 收敛准则,利用Abel 引理估计尾项)设K a n ≤||, 由∑n b 收敛 ⇒对N n N >∃>∀ , , 0ε时 , 对N ∈∀p , 有108 ε | |21<++++++p n n n b b b .于是当N n >时对p ∀有()εεK a a b a p n n pn n k k k 3 ||2|| 11≤+≤++++=∑.由Cauchy 收敛准则 ⇒∑n n b a 收敛.2. Dirichlet 判别法:Th 8 ( Dirichlet)设ⅰ> 级数∑n b 的部分和有界, ⅱ> 数列}{n a 单调趋于零. 则级数∑n n b a 收敛.证 设∑==n i n n bB 1, 则M B n ||≤ ⇒对p n , ∀, 有M B B b b b n p n p n n n 2 ||||21≤-=+++++++ .不妨设n a ↘0 ⇒对εε<⇒>∀∃>∀|| , , , 0n a N n N . 此时就有εM a a M b a P n n pn n k k k 6|)|2|(|2 11<+≤++++=∑.由Cauchy 收敛准则,∑n n b a 收敛. 取n a ↘0,∑n b ∑+-=1) 1(n ,由Dirichlet 判别法, 得交错级数∑+-n n a 1) 1(收敛 . 可见Leibniz 判别法是Dirichlet 判别法的特例.由Dirichlet 判别法可导出 Abel 判别法. 事实上, 由数列}{n a 单调有界 ⇒}{n a 收敛, 设) ( , ∞→→n a a n .考虑级数∑∑+-n n n b a b a a )(,a a n -单调趋于零,n B 有界 ⇒级数∑-n n b a a )(收敛,又级数∑n b a 收敛⇒级数∑∑+-n n n b a b a a )(收敛.109 例4 设n a ↘0.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k x n x n x n ) 21sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++, ) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+nk x x n kx 12sin 2) 21 sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx a n cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .Ex [1]P 24 — 25 2, 3.。

第十二章 数项级数

第十二章 数项级数

第十二章 数项级数§1 级数的收敛性要求:1 掌握级数的基本概念,敛散性定义、记住几何级数、调和级数的敛散结论,2 掌握理解级数的基本性质要点:1)级数的收敛性,2)级数的基本性质1 数项级数的概念、记号: 将数列}{n u 的各项用加号连接起来,即n u u u 21 或1n nu称为数值级数,简称级数。

其中第n 项 nu 称为通项。

级数的敛散性与和 : .2 介绍从有限和入手,引出无限和的极限思想 级数的部分和: . n n u u u S 213 以在中学学过的无穷等比级数为蓝本 , 定义敛散性、级数的和、余和以及求和等概念级数的收敛性:若S S n nlim 存在,称级数1n n u 收敛,S 称为级数的和; 余和:称 nk k n n u S S r 为级数1n n u 的余和若部分和数列}{n S 发散,则称级数1n nu发散,发散级数没有和。

这就是说,级数的敛散性可通过数列的敛散性来判断。

例1 讨论几何级数 0,11a ar n n 的敛散性。

按照级数收敛性的定义,其敛散性可通过部分和数列的敛散性判断。

由等比数列前n 项和的计算公式,1 r 时,n n n n r ra r a r ar a arar a S 11111) 当 1|| r 时,r a S n n 1lim ,几何级数收敛,其和为 r a1;2) 当 1|| r 时,n n S lim ,此时几何级数发散,和不存在; 3) 当 1|| r 时,显然 }{n S 发散;结论:几何级数 0,11a arn n ,当 1|| r 时,收敛,其和为 ra 1;例2 讨论级数1)1(1n n n 的敛散性.解 利用 111)1(1 n n n n 求出部分和 n S ,例3 讨论级数12n n n的敛散性.解 设 n k n n k n nn k S 11322212322212,n S 211432221 232221 n n n n , 1322212121212121 n n n n n nS S S =1211211211n n n ,) ( n .n S 2, ) ( n .因此, 该级数收敛. 例4 讨论级数1352n n n的敛散性.解 52 , 5252352 n S n n n n n, ) ( n . 级数发散.二 收敛级数的性质因为级数的敛散性等价于部分和数列的敛散性,由数列收敛的柯西准则,级数收敛的充分必要条件为:定理1,(柯西准则)级数1n n u 收敛N p N n N ,,,0 有 ||n p n S S根据定理1,取 1 p ,有 n n n u S S ||1 ,于是有下面结论:推论1, 级数1n n u 收敛的必要条件为 0limn n u本推论可以方便的用来判断级数发散。

第十二章常数项级数的概念和性质

第十二章常数项级数的概念和性质

例 2 讨论等比级数(几何级数)
aqn a aq aq2 aqn
n0
的收敛性.
(a 0)
解 如果q 1时
sn a aq aq2 aqn1
a aqn 1q
a aqn , 1q 1q
当q 1时,
lim qn 0
n
lim
n
sn
a 1
q
当q 1时,
lim qn
即 sn s 误差为 Rn

级数收敛
lim
n
Rn
0
例 1 判别无穷级数
1 1
1
的收敛性.
13 35
(2n 1) (2n 1)

un
(2n
1 1)(2n
1)
1( 1 2 2n
1
1 2n
), 1
sn
1 1 13 35
1
(2n 1) (2n 1)
1 (1 1) 1 (1 1) 1 ( 1 1 )
2 3 23 5
2 2n 1 2n 1
1 (1 1 ), 2 2n 1
例 1 判别无穷级数
1 1
1
的收敛性
13 35
(2n 1) (2n 1)
sn
1 (1 2
1 2n
), 1
lim
n
sn
lim 1 (1 1 ) n 2 2n 1
1, 2
级数收敛, 和为 1 . 2
正十二边形的面积 a1 a2
正3 2n形的面积 a1 a2 an
即 A a1 a2 L an L
2).
1 3
3 3 3 10 100 1000
3 10n
2、概念

第十二章---无穷级数

第十二章---无穷级数

无穷级数内容概要和重难点提示常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与p -级数及其收敛性;正项级数收敛性的判别法、任意项级数的绝对收敛与条件收敛、交错级数与莱布尼茨定理。

幂级数及其收敛半径、收敛区间〔指开区间〕和收敛域;幂级数的和函数、幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法、初等函数的幂级数展开式。

对数一,要理解狄利克雷收敛定理以及付式展开式。

考试要求1.了解级数的收敛与发散、收敛级数的和的概念。

2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及p -级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法、比较判别法的极限形式 和比值判别法。

3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法。

4.会求幂级数的收敛半径、收敛区间及收敛域。

5.了解幂级数在其收敛区间内的基本性质〔和函数的连续性、逐项求导和逐项积分〕,会求简单幂级数在其收敛区间内的和函数。

6.了解函数的麦克劳林〔Maclaurin 〕展开式〔牢记5个公式〕。

难点 判断数项级数的敛散性 剖析级数与数列的关系 求和函数 理解狄利克雷定理考试知识要点讲解一、 常数项级数的概念与基本性质 (一) 基本概念1、 设有数列}{12:,,...,,...n n u u u u ,将它们依次相加 12......n u u u ++++称为由数列}{n u 构成的无穷级数,记为1n n u ∞=∑。

2、 假设12......n u u u s ++++=〔定数〕,则称级数1n n u ∞=∑收敛,且收敛于总和s ;假设12......n u u u ++++=∞〔或者不定〕,则称级数1n n u ∞=∑发散。

〔通俗的定义〕3、 令12...n n u u u s +++=,称n s 为级数前n 项部分和。

显然数列}{n u 与 }{n s 有:12...n n s u u u =+++ ⇔ 1n n n u s s -=-。

高等数学@12.1 级数概念与性质

高等数学@12.1 级数概念与性质

n0
(1)当|q|
<1时,收敛,其和为
1
a
q
(2)当|q|≥1时,发散

如:
n0
5 3n
,
收敛
(1)n
n0 2n , 收敛

(2)n
n0
发散
思考(2):级数 1 1 1 1 1 是否收敛?
n1 n
23
n
S
n
1

1 2

1 3

(1)
lim
n
un

0
则 un 发散。
n1
(2)若加括号后的级数发散, 则原级数必发散。


(3)若级数 un 收敛, vn 发散
n1
n1

则级数 (un vn ) 必发散
n1


(4) 级数 kun与 un 收敛性相同 (k 0)
n1
n1


(5) 级数 un 与 un 收敛性相同。
收敛,则
lnimun
0
(必要条件)

问题
1.若
lim
n
un
0
则 un 发散
n1

2.若
lim
n
un
0
则 un
n1
未必收敛
如 1 n1 n


性质1 若常数k≠0,则级数 un 与 kun 收敛性相同.
n1
n1
证 设 Sn u1 u2 un
1. 级数收敛的性质:


(1)常数 k≠0,级数 un与 kun同敛散。

数学分析12.2正项级数

数学分析12.2正项级数

第十二章 数项级数2 正项级数一、正项级数收敛的一般判别原则概念:若数项级数各项的符号都相同,则称它为同号级数. 各项都是正数组成的同号级数称为正项级数.定理12.5:正项级数∑n u 收敛的充要条件是:部分和数列{S n }有界,即存在某正数M ,对一切正整数n ,有S n <M.证:∵u i >0(i=1,2,…),∴{S n }递增. 根据数列的单调有界定理,得证.定理12.6:(比较原则)设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n>N ,都有:u n ≤v n 则: (1)若级数∑n v 收敛,则级数∑n u 也收敛; (2)若级数∑n u 发散,则级数∑n v 也发散. 证:由改变级数的有限项不影响其收敛性, 不妨设对一切正整数,u n ≤v n 都成立.以S ’n 和S ”n 分别记级数∑n u 和∑n v 的部分和,则对一切正整数n , 有S ’n ≤S ”n .(1)若∑n v 收敛,则∞n lim +→S ”n 存在,记为S ,则S ’n ≤S ,即{S ’n }有界,∴∑n u 也收敛.(2)若级数∑n v 收敛,由(1)知级数∑n u 收敛,矛盾!得证.例1:考察∑+1n -n 12的收敛性.解:当n ≥2时,1n -n 12+<1)-n (n 1.∵正项级数∑-1)n(n 1收敛,∴∑+1n -n 12也收敛.推论:设∑n u =u 1+u 2+…+u n +…与∑n v =v 1+v 2+…+v n +… 是两个正项级数,若nn∞n v u lim+→=l. 则 (1)当0<l<+∞时,同时收敛或同时发散; (2)当l=0且级数∑n v 收敛时,级数∑n u 也收敛; (3)当l=+∞且级数∑n v 发散时,级数∑n u 也发散.证:(1)当0<l<+∞时,对任意正数ε(ε<l),存在某正数N ,当n>N 时, 恒有l -nnv u <ε,即(l-ε)v n <u n <(l+ε)v n . 显然, 若∑n v 收敛,则∑n ε)v +(l 收敛,∴∑n u 也收敛; 若∑n v 发散,则∑-n ε)v (l 发散,∴∑n u 也发散.(2)当l=0时,由u n <(l+ε)v n =εv n ,可知∑n v 收敛时,∑n u 也收敛. (3)当l=+∞时,任给正数M ,存在相应的正数N ,当n>N 时,都有nnv u >M ,即u n >Mv n ,由比较原则知:若∑n v 发散时,∑n u 也发散.例2:证明:级数∑n -21n 收敛.证:∵nn ∞n 21n -21lim+→=n ∞n 2n 11lim -+→=1, 又等比级数∑n21收敛,∴级数∑n -21n 也收敛.例3:证明:级数∑n 1sin =sin1+sin 21+…+sin n1+…发散. 证:∵n1n 1sinlim∞n +→=1,又调和级数∑n 1发散,∴级数∑n 1sin 也发散.二、比式判别法和根式判别法定理12.7:(达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某正整数N 0及常数q(0<q<1). (1)若对一切n> N 0,不等式n1n u u +≤q 成立,则级数∑n u 收敛; (2)若对一切n> N 0,不等式n1n u u +≥1成立,则级数∑n u 发散. 证:(1)不妨设不等式n1n u u +≤q 对一切n ≥1都成立,于是有 12u u ≤q, 23u u ≤q,…, n 1n u u +≤q, .... 把前n-1个不等式的左右各相乘得 12u u .23u u .. (1)-n n u u ≤q n-1,即u n ≤u 1q n-1. ∵等比级数∑1-n q (0<q<1)收敛,∴级数∑n u 也收敛. (2)由对一切n> N 0,不等式n1n u u +≥1成立,∴有u n+1≥u n ≥0N u ,可知∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(比式判别法极限形式)若∑n u 为正项级数,且n1n ∞n u u lim++→=q ,则 (1)当q<1时,级数∑n u 收敛; (2)当q>1或q=+∞时,级数∑n u 发散. 证:∵n 1n ∞n u u lim++→=q ,∴对取定的正数ε=21|1-q|,存在正数N , 当n>N 时,都有q-ε<n1n u u +<q+ε. (1)当q<1时,n 1n u u +<q+ε=21(1-q)<1,∴级数∑n u 收敛. (2)当q>1时,n 1n u u +>q-ε=21(1+q)>1,∴级数∑n u 发散; 当q=+∞时,存在N ,当n>N 时,有n1n u u +>1,∴级数∑n u 发散.例4:证明:级数12+5152⨯⨯+951852⨯⨯⨯⨯+…+)]1n (41[951)]1n (32[852-+⋯⨯⨯-+⋯⨯⨯+…收敛.证:∵n 1n ∞n u u lim++→=n 41n 32lim ∞n +++→=43<1,∴该级数收敛.例5:讨论级数∑1-n nx (x>0)的敛散性. 解:当x=1时,级数∑n 发散. 又n 1n ∞n u u lim++→=nx)1n (lim ∞n ++→=x. ∴当0<x<1时,该级数收敛;当x ≥1时,该级数发散;推论2:设∑n u 为正项级数,则 (1)若n1n ∞n u u lim++→=q<1,则级数∑n u 收敛; (2)若n1n ∞n u u lim ++→=q>1,则级数∑n u 发散.例6:讨论级数1+b+bc+b 2c+b 2c 2+…+b m c m-1+b m c m +…的敛散性,0<b<c.解:∵n 1n u u +=⎩⎨⎧为偶数为奇数n c n b . ∴n1n ∞n u u lim ++→=c, n 1n ∞n u u lim ++→=b. ∴当c<1时,该级数收敛;当b>1时,该级数发散; 当c<1<b 时,无法判定.定理12.8:(柯西判别法,或称根式判别法)设∑n u 为正项级数,且存在某正数N 0及正常数l ,则(1)若对一切n>N 0,不等式n n u ≤l<1成立,则级数∑n u 收敛; (2)若对一切n>N 0,不等式n n u ≥1成立,则级数∑n u 发散. 证:(1)∵n n u ≤l<1,∴u n ≤l n ,又等比级数∑n l 当0<l<1时收敛, 由比较原则知∑n u 也收敛.(2)∵n n u ≥1,∴u n ≥1n =1, ∴∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(根式判别法极限形式)设∑n u 为正项级数,且n n ∞n u lim +→=l ,则 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.证:∵n n ∞n u lim +→=l ,∴当取ε<|1-l|时,存在某正数N ,对一切n>N , 有l-ε<n n u <l+ε. 根据定理12.8得证.例7:研究级数∑+nn2)(-12的敛散性.解:∵n n ∞n u lim +→=nnn ∞n 2)(-12lim ++→=21<1,∴该级数收敛.推论2:设∑n u 为正项级数,且n n ∞n u lim +→=l ,则当 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.例8:讨论级数b+c+b 2+c 2+…+b m +c m +…的敛散性,0<b<c<1.解:∵n n u =⎪⎩⎪⎨⎧-为偶数为奇数n cn b 2m m12m m . ∴n n∞n u lim +→=2m m ∞n c lim +→=c <1, ∴该级数收敛.注:根式判别法较比式判别法更有效,所以优先使用根式判别法.例9:讨论级数∑∞=+1n n2nx1x 的敛散性,其中x>0. 解:∵nn 2∞n x 1lim ++→=max{1,x 2},∴n n ∞n u lim +→=nn 2n∞n x 1x lim ++→=}x max {1,x 2=⎩⎨⎧==≠<1x 11x 1. ∴当x ≠1时,该级数收敛;当x=1时,该级数发散.例10:判别下列级数的敛散性:(1)∑∞=1n 2!n)2()(n!;(2)∑∞=⎪⎭⎫⎝⎛+1n n2n 12n .解:(1)∵n1n ∞n u u lim ++→=1)2)(2n n 2(1)(n lim 2∞n ++++→=41<1,∴该级数收敛. (2)∵n n ∞n u lim+→=n12n lim n2∞n ++→=21<1,∴该级数收敛.三、积分判别法定理12.9:设f 为[1,+∞)上非负减函数,那么正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时收敛或同时发散.证:∵f 在[1,+∞)上非负减,∴对任何正数A ,f 在[1,A]上可积,从而 有f(n)≤⎰n1-n f(x )dx ≤f(n-1), n=2,3,…. 依次相加可得:∑=m2n f(n)≤⎰m1f(x )dx ≤∑=m 2n 1)-f(n =∑=1-m 1n f(n).若反常积分收敛,则有S m =∑=m1n f(n)≤f(1)+⎰m 1f(x )dx ≤f(1)+⎰+∞1f(x )dx ,根据定理12.5知,级数∑f(n)收敛.若级数∑f(n)收敛,则有⎰m1f(x )dx ≤S m-1≤∑f(n)=S. 又f 在[1,+∞)上非负减,∴对任何正数A ,都有 0≤⎰A1f(x )dx ≤S n <S, n ≤A ≤n+1. ∴⎰+∞1f(x )dx 收敛.用反证法或同理可证:正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时发散.例11:讨论p 级数∑p n1的敛散性. 解:当p<0时,p∞n n 1lim+→≠0,∴级数∑p n 1的发散. 当p>0时,f(x)=p x1为[1,+∞)上非负减函数,又当0<p ≤1时,⎰+∞1px 1dx 发散,∴级数∑p n 1也发散; 当p>1时,⎰+∞1p x 1dx 收敛,∴级数∑p n1也收敛.例12:讨论下列级数的敛散性:(1)∑∞=2n p lnn)(n 1;(2)∑∞=3n plnlnn)(lnn)(n 1. 解:(1)∵⎰+∞2p lnn)(n 1dx=⎰+∞2p lnn)(1dlnn=⎰+∞ln2p u1du. ∴当p ≤1时,原级数发散;当p>1时,原级数收敛. (2)∵⎰+∞3plnlnn)(lnn)(n 1dx=⎰+∞3p lnlnn)(lnn 1dlnn=⎰+∞ln3p u(lnu)1du. 由(1)可知: ∴当p ≤1时,原级数发散;当p>1时,原级数收敛.四、拉贝判别法定理12.10:(拉贝判别法)设∑n u 为正项级数,且存在某正整数N 0及数常r, 则:(1)若对一切n>N 0, 不等式n ⎪⎪⎭⎫⎝⎛-+n 1n u u 1≥r>1成立,则级数∑n u 收敛; (2)若对一切n>N 0, 不等式n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1成立,则级数∑n u 发散. 证:(1)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≥r>1可得n 1n u u +<1-nr,取p 使1<p<r ,则 由nr n 1-1-1lim p∞n ⎪⎭⎫⎝⎛+→=()rx x -1-1lim p0x →=rp <1知:存在正数N ,使对任意n>N ,有n r >p n 1-1-1⎪⎭⎫ ⎝⎛. ∴n n u 1u +<1-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛p n 1-1-1=p n 1-1-1⎪⎭⎫ ⎝⎛=pn 1-n ⎪⎭⎫⎝⎛. 于是当n>N 时,就有u n+1=N N 1N 1-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅++≤pn 1-n ⎪⎭⎫ ⎝⎛p1-n 2-n ⎪⎭⎫ ⎝⎛…Npu N 1-N ⋅⎪⎭⎫ ⎝⎛=u N (N-1)p ·p n 1. ∵p>1,∴∑p n1收敛,∴原级数收敛. (2)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1可得n1n u u +≥1-n 1=n 1-n ,于是 u n+1=2231-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅+>2u 211-n 2-n n 1-n ⋅⋅⋯⋅⋅=u 2·n1. ∵调和级数∑n1发散,∴原级数发散.推论:(拉贝判别法的极限形式)设∑n u 为正项级数,且极限⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =r 存在,则 (1)当r>1时,级数∑n u 收敛;(2)当r<1时,级数∑n u 发散.例13:讨论级数:∑⎥⎦⎤⎢⎣⎡⋯⋅⋯⋅s(2n)421)-(2n 31当s=1,2,3时的敛散性. 解:n1n ∞n u u lim++→=s∞n (2n)421)-(2n 312)(2n 421)(2n 31lim ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋅⋯⋅+⋯⋅+⋯⋅+→=s ∞n 22n 12n lim ⎪⎭⎫ ⎝⎛+++→=1,无法判别. 当s=1时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎪⎭⎫ ⎝⎛++-+→22n 12n 1n lim ∞n =22n n lim ∞n ++→=21<1,∴发散; 当s=2时,⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛++-222n 12n 1n =4n 84n 3n4n 22+++<1,∴发散;当s=3时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-+→3∞n 22n 12n 1n lim=8n 42n 248n n 7n 1812n lim 2323∞n ++++++→=23>1,∴收敛.习题1、应用比较原则判别下列级数的敛散性: (1)∑+22a n 1;(2)∑n n3πsin 2;(3)∑+2n11;(4)∑n )n (ln 1; (5)∑⎪⎭⎫ ⎝⎛-n 1cos 1;(6)∑n nn 1;(7)∑-)1a (n (a>1);(8)∑∞=2n n ln )n (ln 1;(9)∑-+)2a 1a (nn(a>0);(10)∑n12nsinn1.解:(1)∵0≤22a n 1+≤2n 1,又级数∑2n 1收敛,∴原级数收敛. (2)∵0<n n 3πsin 2<n32π⎪⎭⎫ ⎝⎛,又等比级数∑⎪⎭⎫⎝⎛n32收敛,∴原级数收敛.(3)∵2n 11+>1n 1+,又级数∑+1n 1发散,∴原级数发散. (4)∵0<n )n (ln 1<n 21 (n>e 2),又级数∑∞=2n n21收敛,∴原级数收敛. (5)∵0≤n 1cos 1-=2sin 22n 1<22n 1,又级数∑22n1收敛,∴原级数收敛. (6)∵n nn 1>2n 1,又级数∑2n1发散,∴原级数发散. (7)∵1a n ->n a ,又当a>1时,n∞n a lim +→=1≠0,∴级数∑n a 发散, ∴原级数发散. (8)∵0≤n ln )n (ln 1=ln(lnn)n 1<2n 1 (n>2e e ),又级数∑2n 1收敛,∴原级数收敛.(9)∵2nn∞n n 12a1a lim-++→=2t t 0t t2a 1a lim-+→=(lna)2>0, 又级数∑2n 1收敛,∴原级数收敛. (10)∵2n12nsin∞n n 1n 1lim +→=2tsint 20t t tlim ⋅→=1>0,又级数∑2n 1收敛,∴原级数收敛.2、用比式判别法或根式判别法鉴定下列级数的敛散性.(1)∑⋯⋅n!1)-(2n 31;(2)∑+n 101)!(n ;(3)∑⎪⎭⎫⎝⎛+n1n 2n ;(4)∑n n n!;(5)∑n 22n ;(6)∑⋅n n n n!3;(7)∑⎪⎪⎭⎫⎝⎛nn a b (其中n ∞n a lim +→=a, a n ,b,a>0, 且a ≠b). 解:(1)∵n1n ∞n u u lim++→=n!1)-(2n 31!)1(n 1)(2n 31lim ∞n ⋯⋅++⋯⋅+→=1n 12n lim ∞n +++→=2>1,∴原级数发散. (2)∵n1n ∞n u u lim++→=n1n ∞n 101)!(n 102)!(n lim ++++→=102n lim ∞n ++→=+∞,∴原级数发散. (3)∵n n∞n u lim +→=n n∞n 1n 2n lim ⎪⎭⎫⎝⎛++→=1n 2n lim∞n ++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n1n ∞n n n!)1(n 1)!(n lim ++→++=n∞n 1n n lim ⎪⎭⎫ ⎝⎛++→=e1<1,∴原级数收敛. (5)∵n n∞n u lim +→=nn 2∞n 2n lim +→=2n lim n2∞n +→=21<1,∴原级数收敛.(6)∵n1n ∞n u u lim++→=n n 1n 1n ∞n nn!31)(n 1)!n (3lim ⋅++⋅+++→=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛++→=e 3>1,∴原级数发散.(7)∵n n∞n u lim +→=n ∞n a b lim +→=ab,∴当a=b 时,无法判定; 当b>a>0时,原级数发散;当a>b>0时,原级数收敛.3、设∑n u 与∑n v 为正项级数,且存在正数N 0,对一切n>N 0, 有n1n u u +≤n 1n v v +. 证明: 若级数∑n v 收敛,则级数∑n u 收敛;若∑n u 发散,则∑n v 发散. 证:由题意知:当n>N 0时,1n 1n v u ++≤nn v u,从而对n>N 0有, 0<1n 1n v u ++≤n n v u ≤1-n 1-n v u ≤…≤1N 1N 00v u ++,∴u n ≤1N 1N 00v u ++v n ,又1N 1N 00v u ++是常数, 根据比较原则,得证.4、设正项级数∑n a 收敛,证明∑2n a 也收敛;试问反之是否成立? 证:由∑n a 收敛知n ∞n a lim +→=0,∴存在N ,使n ≥N 时,有0≤a n <1,从而n ≥N 时,有0≤a n 2<a n ,由比较原则知 ∑2n a 也收敛.但反之不成立,如∑2n1收敛,而∑n 1发散.5、设a n ≥0, n=1,2,…. 且{na n }有界,证明∑2n a 收敛. 证:∵a n ≥0, {na n }有界,可设0≤na n ≤M ,则0≤a n ≤nM,从而a n 2≤22nM ,又级数∑22n M 收敛,由比较原则知 ∑2na也收敛.6、设级数∑2n a 收敛,证明∑na n(a n >0)也收敛. 证:∵0<n a n <21(a n 2+2n 1),又级数∑2n a 和∑2n1都收敛,∴级数∑+)n1(a 22n 收敛,由比较原则知级数∑n a n 也收敛.7、设正项级数∑n u 收敛,证明级数∑+1n n u u 也收敛.证:∵0<1n n u u +<21(u n +u n+1),又由级数∑n u 收敛知∑+1n u 也收敛, ∴级数∑)u +(u 1+n n 收敛,由比较原则知∑+1n n u u 也收敛.8、利用级数收敛的必要条件,证明下列等式:(1)2n∞n )(n!n lim +→=0;(2)n!∞n a )!(2n lim +→=0 (a>1). 证:(1)记u n =2n)(n!n ,则n1n ∞n u u lim ++→=2n 21n ∞n )(n!n ]1)![(n 1)(n lim ++++→=n∞n n 1n 1n 1lim ⎪⎭⎫ ⎝⎛+⋅++→=0<1, ∴级数∑2n)(n!n 收敛,∴2n ∞n )(n!n lim +→=0.(2)记u n =n!a )!(2n ,则当a>1时,n1n ∞n u u lim ++→=n!1)!(n ∞n a)!(2n a )!2(2n lim ++→+=!n n ∞n a )21)(2n (2n lim ⋅+→++=0, ∴级数∑n!a )!(2n 收敛,∴n!∞n a )!(2n lim +→=0 (a>1).9、用积分判别法讨论下列级数的敛散性:(1)∑+1n 12;(2)∑+1n n 2;(3)∑∞=3n )nlnnln(lnn 1;(4)∑∞=3n qp (lnlnn)n(lnn)1. 解:(1)∵f(x)=1x 12+在[1,+ ∞)上非负减,且 ⎰+∞1f(x )dx=⎰++∞121x 1dx=2π,积分收敛;∴原级数收敛. (2)∵f(x)=1x x2+在[1,+ ∞)上非负减,且由1x x x lim 2∞x +⋅+→=1知 ⎰++∞121x xdx 发散;∴原级数发散. (3)∵f(x)=ln(lnx )lnx x 1⋅⋅在(3,+ ∞)上非负减,且⎰+∞3f(x )dx=⎰+⋅⋅∞3ln(lnx )lnx x 1dx=⎰+∞ln(ln3)u1du ,积分发散;∴原级数发散.(4)∵f(x)=qp (lnlnx )x (lnx )1在(3,+ ∞)上非负减,且 ⎰+∞3f(x )dx=⎰+∞3q p (lnlnx )x (lnx )1dx=⎰+∞ln(ln3)q 1)u -(p ue 1du , 当p=1时,⎰+∞3f(x )dx=⎰+∞ln(ln3)q u1du ;若q>1,收敛;若q ≤1,发散. 当p ≠1时,取t>1,有q 1)u -(p t∞u u e 1u lim ⋅+→=1)u -(p q -t ∞u e u lim +→=⎩⎨⎧<∞+>1p 1p 0,,, ∴当p>1或(p=1且q>1)时,由积分收敛知原级数收敛; 当p<1或(p=1且q ≤1)时,由积分发散知原级数发散.10、判别下列级数的敛散性:(1)∑1-2n n -n ;(2)∑+na 11 (a>1);(3)∑n 2nlnn ;(4)∑n n n n!2; (5)∑n n n n!3;(6)∑lnn 31;(7)∑+⋯++)x (1)x x)(1(1x n2n(x>0). 解:(1)∵1-2n n -n >1-2n 1(n ≥3),又级数∑1-2n 1发散,∴原级数发散. (2)∵n a 11+<n a 1,又当a>1时,等级级数∑na1收敛,∴原级数收敛. (3)n1n ∞n u u lim++→=n1n ∞n 2nlnn 21)1)ln(n (n lim ++→++=nlnn 21)1)ln(n (n lim ∞n +++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n n 1n 1n ∞n n n!21)(n 1)!2(n lim +++→++=n∞n 1n n 2lim ⎪⎭⎫ ⎝⎛+⋅+→=e2<1,∴原级数收敛. (5)∵n1n ∞n u u lim++→=nn 1n 1n ∞n n n!31)(n 1)!3(n lim +++→++=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛+⋅+→=e3>1,∴原级数发散. (6)3lnn =n ln3,又ln3>1,∴∑ln3n 1收敛,∴原级数收敛. (7)n1n ∞n u u lim++→=1n ∞n x 1xlim++→+=⎪⎩⎪⎨⎧<=<><1x x 1x 1211x 10,,∴原级数收敛.11、设{a n }为递减正项数列,证明:级数∑∞=1n n a 与∑∞=0m 2m ma 2同敛散性.证:记两个级数的部分和分别为S n , T n ,由{a n }为递减正项数列知: S n <n2S ≤a 1+(a 2+a 3)+…+(n2a +…+121n a -+)≤a 1+2a 2+…+2n n2a =T n ,∴当级数∑∞=0m 2mma 2收敛时,级数∑∞=1n n a 也收敛.又n2S =a 1+a 2+(a 3+a 4)+…+(121n a +-+…+n2a )≥21a 1+a 2+2a 4+…+2n-1n2a =21T n , ∴当级数∑∞=1n n a 收敛时,级数∑∞=0m 2m ma 2也收敛. 得证!12、用拉贝判别法判别下列级数的敛散性: (1)12n 1(2n)421)-(2n 31+⋅⋯⋅⋯⋅∑;(2)∑+⋯++n)(x 2)1)(x (x n!(x>0). 解:(1)∵⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =6n 104n 5n 6n lim 22∞n ++++→=23>1,∴原级数收敛. (2)当x=1时,原级数为∑+1n 1发散,又⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =1x n xn lim ∞n +++→=x , ∴当x>1时,原级数收敛;当0<x ≤1时,原级数发散.13、用根式判别法证明级数∑n(-1)--n 2收敛,并说明比式判别法对此级数无效.证:∵n n∞n u lim +→=n (-1)-n -∞n n2lim +→=n(-1)-1-∞n n2lim +→=21<1,∴原级数收敛.又n 1n ∞n u u lim ++→=n 1n (-1)-n -(-1)-1--n ∞n 22lim ++→=n1n )1((-1)--1∞n 2lim -++→+=⎪⎩⎪⎨⎧><为偶数为奇数n 12n 181,,,可见, 比式判别法对此级数无效.14、求下列极限(其中p>1): (1)⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim ;(2)⎪⎪⎭⎫ ⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p 1lim . 解:(1)∵当p>1时,级数∑p n1收敛,由柯西准则知,任给ε>0,存在N ,当n>N 时,有pp p (2n)12)(n 11)(n 1+⋯++++<ε, ∴⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim =0. (2)∵当p>1时,等级级数∑n p1收敛,由柯西准则知, 任给ε>0,存在N ,当n>N 时,有2n 2n 1n p1p 1p 1+⋯++++<ε, ∴⎪⎪⎭⎫⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p1lim =0.15、设a n >0,证明数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性. 解:数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑+)a ln(1n 有相同的敛散性. 又当级数∑n a 或∑+)a ln(1n 收敛时,都有n ∞n a lim +→=0,∴nn ∞n a )a 1ln(lim++→=1. 由比较判别法知∑+)a ln(1n 与∑n a 有相同的敛散性. ∴数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性.。

第十二章数项级数

第十二章数项级数

第十二章 数 项 级 数一、主要内容与教学要求主要内容数项级数极其收敛与和的定义,柯西收敛准则,收敛级数的基本性质。

正顶级数收敛性的一般判别原则(比较原则),比式判别法与根式判别法,积分判别法。

拉贝判别法*。

交错级数,莱布尼兹判别法,绝对收敛级数与性质,条件收敛,阿贝尔判别法与狄利克雷判别法。

教学要求1 深刻理解数项级数收敛、发散和的概念,以及收敛级数的基本性质。

2 理解级数绝对收敛与条件收敛的概念,了解绝对收敛级数的性质。

3 熟练掌握正顶级数收敛性的比较原则,比式判别法与根式判别法,并记注几何级数与P 级数的收敛性。

4 掌握交错级数的莱布尼兹判别法,会用其它判别法。

5 会应用级数收敛定义、收敛级数的性质及判别法证明级数中的有关问题。

教学重点:1 数项级数及其收敛与和的定义,柯西收敛准则,收敛级数的基本性质。

2 正项级数收敛性的比较原则,比式判别法与根式判别法。

3 绝对收敛与条件收敛的概念及其相互联系。

4 交错级数的莱布尼兹判别法,一般项级数的阿贝尔判别法和狄利克雷判别法教学难点:1 收敛级数和绝对收敛级数级数的性质及其证明方法。

2 一般项级数的判敛法。

二、本章教材处理建议1. 通过讨论“无限多个数相加”引入数项级数1nn u∞=∑及其“和”的概念,从有限和出发,借助于数列极限的工具给出无限和的定义是很自然的。

通过级数与数列之间的联系使学生明确研究级数及其和数只不过是研究数列及其极限的一种新形式。

2. 尽管形式上无穷级数是无限和向无限和的推广,但两者有实质性的差别。

加法运算中的运算律(如,交换律、结合律、分配律)和性质都不能照搬到无穷级数中来,在学习收敛级数的性质时一定要注意这种对比。

3. 正项级数收敛的充要条件是它的部分和数列有界,这是正项级数敛散性判别法的理论基础。

在此基础上得到一些敛散性判别法:比较判别法、比式判别法、根式判别法,每种判别法都有两种形式:不等式形式与极限形式。

要求学生记住几何级数和p-级数的敛散性。

第十二章 富里埃级数

第十二章 富里埃级数

第十二章 富里埃级数§1 富里埃级数一 富里埃(Fourier )级数的引进1 定义:设()f x 是(,)-∞+∞上以2π为周期的函数,且()f x 在[,]ππ-上绝对可积,称形如01(cos sin )2n n n a a nx b nx ∞=++∑ 的函数项级数为()f x 的 Fourier 级数(()f x 的 Fourier 展开式),其中01()a f x dx πππ-=⎰,1()cos ,1,2,n a f x nxdx n πππ-==⎰, 1()sin ,1,2,n b f x nxdx n πππ-==⎰称为()f x 的 Fourier 系数,记为01()~(cos sin )2n n n a f x a nx b nx ∞=++∑2 说明1)在未讨论收敛性,证明01(cos sin )2n n n a a nx b nx ∞=++∑一致收敛到()f x 之前,不能将“~”改为“=”;此处“~”也不包含“等价”之意,而仅仅表示01(cos sin )2n n n a a nx b nx ∞=++∑是()f x 的 Fourier级数,或者说()f x 的 Fourier 级数是01(cos sin )2n n n a a nx b nx ∞=++∑。

2) 要求[,]ππ-上()f x 的 Fourier级数,只须求出Fourier 系数。

二 富里埃级数收敛性的判别1. Riemann (黎曼)引理 设()f x 在(有界或无界)区间[],a b 上绝对可积,则()cos 0baf x pxdx →⎰,()s i n 0baf x p x d x →⎰()p →∞.推论 在[0,]T 上绝对可积函数()f x 的Fourier 系数022()cos 0,()T n n a f x xdx n T T π=→→∞⎰;022()sin 0,()T n n b f x xdx n T Tπ=→→∞⎰2. Fourier 级数收敛的充要条件定理1 l i m()0,()(0,n n T x s εδδεπ→∞=⇔∀>∃=∈和()N N ε=, 使得当()n N ε≥时成立1sin()2(),n u u du uδϕε+<⎰其中()()()2u f x u f x u ϕδ=++--. 3. Fourier 级数收敛的Dini 判别法推论: 设()f x 在[0,2]π上除去有限点外存在有界导数,则()f x 的Fourier 级数点点收敛,且001(()()),(0,2)2(cos sin )12((0)(2)),022n n n f x f x x a a nx b nx f f x πππ∞=⎧++-∈⎪⎪++=⎨⎪++-=⎪⎩∑或特别地, (0,2)x π∈是()f x 的连续点时,1(()())()2f x f x f x ++-=,即 01()(cos sin )2n n n a f x a nx b nx ∞==++∑例: 设()f x 是以2π为周期的函数,其在[,]ππ-上可表示为1,0()0,0x f x x ππ≤≤⎧=⎨-<<⎩,判定()f x 的Fourier级数的收敛性.例:设()f x 是以2π为周期的函数,其在[0,2)π上等于x ,判定()f x 的 Fourier 级数的收敛性例:(),axf x e = ()x ππ-≤< (0)a ≠4. Jordan 判别法设()f x 在[0,2]π上单调(或有界变差),则001(()()),(0,2)2(cos sin )12((0)(2)),022n n n f x f x x a a nx b nx f f x πππ∞=⎧++-∈⎪⎪++=⎨⎪++-=⎪⎩∑或。

高数下第十二章级数

高数下第十二章级数
所有发散点的全体称为发散域.
3.和函数:
在收敛域上,函数项级数的和是x 的函数s( x) ,
称s( x)为函数项级数的和函数.
s( x) u1( x) u2 ( x) un ( x)
函数项级数旳部分和 sn ( x),
lim
n
sn( x)
s( x)
例 1
求级数
(1)n (
1
)n 的收敛域.
(2) n1 10n ; 1
1
(3)
.
n1 (2n 1) 2n

(1)
un1 un
(n 1)! 1
1
n1
0
(n ),
n!
故级数 1 收敛.
n1 n!
(2)
un1 un
(
n 1)! 10n1
10n n!
n1 10
(n ),
故级数
n! n1 10n
发散.
(3) lim un1 lim (2n 1) 2n 1, n un n (2n 1) (2n 2)
23
n

lim
n
un
0,
但发散.
练习:判别下列级数的敛散性
1. 1 1 1
1
13 35 57
(2n 1)(2n 1)
2、 1 1 1 1 ;
369
3n
3、(1 2
1) 3
1 (22
1 32
)
(
1 23
1 33
)
1 (2n
1 3n
) ;
4、 1 1 1 1 1 1 .
证明 (u1 u2 ) (u3 u4 u5 )
1 s2 , 2 s5 , 3 s9 ,

第十二章 数项级数

第十二章  数项级数

第十二章 数项级数§1 级数的收敛性教学目标:掌握数项级数收敛性的定义和收敛级数的性质教学内容:数项级数收敛性的定义和基本性质;等比级数;调和级数.(1) 基本要求:掌握数项级数收敛性的定义和基本性质,等比级数,调和级数. (2) 较高要求:应用柯西收敛准则判别级数的敛散性. 教学建议:(1)要求学生必须理解和掌握数项级数收敛性的定义和基本性质;掌握等比级数与调和级数的敛散性.(2) 应用柯西收敛准则判别级数的敛散性是一个难点,对较好的学生可提出相应要求 教学程序: 一、级数概念在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论——无限多个实数相加——级数——所可能出现的情形及特征。

如n 2121212132 从直观上可知,其和为1。

又如, )1(1)1(1。

其和无意义; 若将其改写为: )11()11()11( 则其和为:0;若写为: ]1)1[(]1)1[(1 则和为:1。

(其结果完全不同)。

问题:无限多个实数相加是否存在和; 如果存在,和等于什么。

定义1、 给定一个数列 n u ,将它的各项依次用加号“+”连接起来的表达式 n u u u u 321 (1) 称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项。

级数(1)简记为:1n n u ,或 n u 。

二、级数的收敛性记 n nk k n u u u u S 211称之为级数1n n u 的第n 个部分和,简称部分和。

定义2、 若数项级数1n n u 的部分和数列 n S 收敛于S (即S S n nlim ),则称数项级数 1n n u 收敛 ,称S 为数项级数1n n u 的和,记作S1n nu= n u u u u 321。

若部分和数列 n S 发散,则称数项级数1n n u 发散。

例1、试讨论等比级数(几何级数)1121n n n aq aq aq a aq ,)0( a的收敛性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 无穷级数§ 1 常数项级数的概念和性质1、 设级数∑∞=053n n n,则其和为( )A 21B 53D 352、 若0lim =∞→n n a ,则级数∑∞=1n n a ( )A 收敛且和为C 发散可能收敛也可能发散 3 、若级数∑∞=1n n u 收敛于S ,则级数)(11∑∞=++n n n u u ( )A 收敛于2SB 收敛于2S+1u 2S-1u D 发散4、若+∞=∞→n n b lim ,0≠n b ,求 )11(11+∞=-∑n n n b b 的值 解: (=n S 11143322111)11......()11()11()11(++-=-+-+-+-n n n b b b b b b b b b b 所以11lim b S n n =∞→ 5、若级数∑∞=1n n a 收敛,问数列{n a }是否有界解:由于0lim =∞→n n a ,故收敛数列必有界。

6、若a a n n =∞→lim ,求级数)(11∑∞=+-n n n a a 的值解:=n S 1113221)......())(()(++-=-+-+-n n n a a a a a a a a 故a a a a a a n n n n n -=-=-+∞→∞=+∑11111)(lim )(7、求)(12121-+∞=-∑n n n a a 的值解:=n S +-)(3a a a a a a a a n n n -=-+-+-+12121235)......()(故)(12121-+∞=-∑n n n a a =a a a n n -=-=+∞→1)(lim 12 8、求 ∑∞=++1)2)(1(1n n n n 的和 ()41§ 2 常数项级数的审敛法一、用比较审敛法或极限形式的比较审敛法判别下列级数的收敛性1、判定级数 ∑∞=+-1)13)(23(1n n n 的敛散性解:由于)13)(23(1+-n n <21n ,而∑∞=121n n收敛,故∑∞=+-1)13)(23(1n n n 收敛2、判定敛散性 ∑∞=11n nnn解: n n = 2121).1(1.....1.1.<-=-+<nn n n n n n 故n n n 1>n 21,而级数∑∞=121n n 发散,故∑∞=11n n n n 发散3、判定敛散性 ∑∞=+111n na)0(>a ,1>a 收敛; ≤<a 01, 发散4、判定敛散性 ∑∞=-++13221n nn ne n en ne (收敛); 二、用比值或根值审敛法判别下列级数的收敛性5、判定级数∑∞=1!.3n n n nn 的敛散性解:e a a nn n 3lim1=+∞→>1,所以∑∞=1!.3n n n n n 发散 6、判定级数∑∞=-1354n nn n的敛散性 解:154lim 1<=+∞→nn n a a ,所以∑∞=-1354n n n n收敛 7、 ∑∞=+112tan.n n n π收敛8、 nn n an∑∞=+1)1(,1>a 收敛 三、判别下列级数是否收敛。

如果收敛,是绝对收敛还是条件收敛? 7、∑∞=---1113)1(n n n n (绝对收敛)10、∑∞=--+-11)1()1(n n n n (条件收敛)四、判定∑∞=1323sin n nn n π是否收敛,若收敛,是绝对收敛还是条件收敛解:|n n n 23sin3π|n n 23≤,用比值判别法知收敛∑∞=132n nn ,所以∑∞=1323sin n n n n π绝对收敛 §3 幂级数1、设幂级数∑∞=0n n a n x 在x=3处收敛,则该级数在x=-1点处( )A 绝对收敛B 条件收敛C 发散D 可能收敛也可能发散2、级数∑∞=----1n n n n x n )2(2)1(11的收敛域 (0,4]3、 求幂级数]32)1([n n n n n x x +-∑∞=1n 的收敛半径 (31)4、若级数∑∞=-1n n a n x )2(在x=-2处收敛,则此级数在x=5处是否收敛,若收敛,是否绝对收敛 (绝对收敛 )5、求幂级数∑∞=-⋅+1n nn n x 42)5(12的收敛域 解:首先判断其收敛区间为(-7,-3),当x=-7、-3时,级数发散,所以级数的收敛域为(-7,-3)6、求幂级数∑∞=--1n n x n n13)(的收敛域解:首先求得收敛区间为(-3,3),而级数在x=-3处发散,在x=3处收敛,所以 收敛域为(-3,3]7、求幂级数∑∞=++11414n n n x 的和函数 ( x x x x -+-+arctan 2111ln 41 -1<x<1)8、求幂级数∑∞=+1n n x n n )2(的和函数解:∑∑∑∑∑∞=∞=+∞=∞=∞=+=++=+1n 1n 1n 1n 1n )()()1()2(122nn nnnx dx d x x dx d x nx x n n x n n=3)1()3(x x x -- (-1<x<-1) § 4 函数展开成幂级数1、将函数f(x)=2312+-x x 展开成x 的幂级数解:f(x)=)2(1)1(1x x ---由的幂级数和)2(1)1(1x x --展开式可得f(x)= ∑∞=+1n n 1n )x 21-(1 x )1,1(-∈ 2、将函数f(x)=)1ln(2x x ++展开成x 的幂级数解:211)('xx f += 而211x +=.....4.23.121142-+-x x x ]1,1[-∈两边积分得∑∞=+++=++1n 1n 2nn2x )1n 2(n!2!1)!-(2n -1)(x )x 1x ln( x )1,1(-∈ 3、将函数f(x)=)1)(1)(1)(1(1842x x x x ++++展开成x 的幂级数解:f(x)=......1.....)1)(1)(1(1133321716321616+-+-+-=+++-=--x x x x x x x x xx 4、将函数f(x)=652+-x x x展开成x-5的幂级数解: f(x)= --+)5(23x )5(32-+x =∑∞=++1n n 1n 1n n 5)-)(x 32-23(-1)( x )7,3(∈ 5、的幂级数.的和函数展开成将级数)1()!12(2)1(12111--⋅--∞=--∑x n x n n n n解:∑∑∞=--∞=-----=-⋅-112111211)2()!12()1(2)!12(2)1(n n n n n n n x n n x =2sin 2x =211sin2+-=x 21sin21cos 221cos 21sin 2-+-=x x ∑∑∞=+∞=-+-+-⋅-=01202)1()!12(2)1(21cos )1()!2(2)1(21sin 2n n nn n nn n x n x n x R ∈ §5函数幂级数展开式的应用1、计算ln2的进似值(要求误差不超过0.0001)解:在lnx 的幂级数展开式中令x=2 ln2=1-....)1.......(4131211+-+-+-n考虑误差范围可求得ln26931.0≈2、计算定积分dx e x ⎰-2122π的进似值(要求误差不超过0.0001) 解:2x e -=∑∞=-0n nnx n 2!1)1( dx x n dx en nx ⎰∑⎰∞=--=210221]!1)1([222n ππ=......)!2.5.213.211(142-+-π再考虑误差范围可求得dx e x ⎰-21022π5205.0≈3、计算积分dx xx⎰10sin 的进似值,(要求误差不超过0.0001) ....!5!31sin 43++-=x x x x .....!7.71!5.51!3.311sin 10+-+-=⎰dx x x再考虑误差范围可求得dx xx⎰10sin 9461.0≈§7 傅里叶级数1、设f(x)是周期为π2的周期函数,它在[-),ππ上的表达式为f(x)=⎩⎨⎧<≤≤≤--πππx x x 0,0, 试将f(x)展开成傅立叶级数解:2)(10ππππ-==⎰-dx x f a ]1)1[(1cos )(12--==⎰-n n n nxdx x f a ππππb n =])1(21[1sin )(1n nnxdx x f --=⎰-πππ再将所求得的系数代入傅立叶级数可得傅立叶级数展开式 2、将函数)0(,2)(ππ≤≤-=x xx f 展开成正弦级数∑∞==-1]),0(,sin 12(n nx nxππ 3、将函数)0(,1)(2π≤≤+=x x x f 展开成正弦级数和余弦级数)),0[,sin )]2()1(2[21121332πππnx nnn x n n--+-+=+∑∞=),0[,cos 1)1(431111222ππnx n x n n ∑∞=-++=+§8 一般周期函数的傅立叶级数1、将f(x)=2+|x|(-1)1≤≤x 展开成以2为周期的傅立叶级数后求∑∞=021n n 的值 解:展开f(x)=∑∞=++-022)12()12cos(425n n xn ππ代x=0得8)12(1202π∑∞==+n n∑∞=021n n =∑∞=+02)12(1n n +∑∞=02)2(1n n 得 61202π=∑∞=n n2、将f(x)=x-1(02≤≤x )展开成周期为4的余弦级数解:0)1(2220=-=⎰dx x a ]1)1[(42cos )1(222220--=-=⎰n n n dx x n x ππaf(x)= 2)12(cos )12(18122xk k k ππ--∑∞= (02≤≤x ) 3、将f(x)=x-1(02≤≤x )展开成周期为4的正弦级数的和函数为s(x),求s(8)解:s(8)=s(0)=02112)00()00(=-=-++f f4、设f(x)=⎩⎨⎧-x x 22)1,21(]21,0[∈∈x x ,S(x)= +20a R x x n a n n ∈∑∞=,cos 1π, 其中n a =2⎰=10.....3,2,1,0,cos )(n xdx n x f π求S()27解:S()27=S()21=2)021()021(-++f f =43 第十一章 自测题 一选择题:(40分)1、下列级数中,收敛的是( ).(A)∑∞=11n n; (B)∑∞=11n n n ;(C)∑∞=1321n n ; (D)∑∞=-1)1(n n .2、下列级数中,收敛的是( ).(A) 11)45(-∞=∑n n ; (B)11)54(-∞=∑n n ;(C)111)45()1(-∞=-∑-n n n ; (D)∑∞=-+11)5445(n n .3、下列级数中,收敛的是( )(A)∑∞=1222)!(n n n ; (B)∑∞=1!3n n n n n ;(C) ∑∞=22sin 1n n n π; (D)∑∞=++1)2(1n n n n .4、部分和数列{}n s 有界是正项级数∑∞=1n n u 收敛的( )(A)充分条件; (B)必要条件;(C)充要条件; (D)既非充分又非必要条件5、设a 为非零常数,则当( )时,级数∑∞=1n n ra收敛 .(A)1<r ; (B)1≤r ; (C)a r <; (D)1>r6、幂级数∑∞=---11)1()1(n nn n x 的收敛区域是( ).(A) ]2,0(;(B) )2,0[; (C) (0,2) (D) [0,2]7、0lim =∞→n n u 是级数∑∞=1n n u 收敛的( )(A)充分条件; (B)必要条件;(C)充要条件; (D)既非充分又非必要条件 . 8、幂级数∑∞=+1)1(n n x n n 的收敛区间是( )(A) ]1,1(-; (B) )1,1(-; (C) )1,1[-; (D) ]1,1[-. 二、(8分)判别下列级数的收敛性1、∑∞=1222)!(n n n ; 2、∑∞=1223cos n nn n π三、(6分)判别级数∑∞=+-11ln )1(n n n n 的敛散性 .四、(6分)求极限 ])2(842[lim 312719131nn n ⋅⋅⋅⋅∞→ .五(8分)求下列幂级数的收敛区间:1、∑∞=+153n n n n x n ;2、∑∞=122n n n x n. 六(6分)求幂级数∑∞=+1)1(n nn n x 的和函数 .七(6分)求数项级数∑∞=12!n n n 的和 .八(6分)试将函数2)2(1x -展开成的幂级数x . 九(6分)设)(x f 是周期为π2的函数,它在],[ππ-上的表达式为⎩⎨⎧∈-∈=),0[,)0,[,0)(ππx e x x f x 将)(x f 展开成傅立叶级数 .十(8分)将函数⎩⎨⎧≤<≤≤=πx h hx x f ,00,1)(分别展开成正弦级数和余弦级数 .自测题答案 一、1、B ; 2、B ; 3、C ; 4、C ; 5、D ; 6、A ; 7、B ; 8、B. 二、1、发散; 2、收敛. 三、条件收敛.四、48. (提示:化成 ++++n n 3323122)五、1、)51,51[-; 2、)2,2(-.六、⎪⎩⎪⎨⎧=⋃-∈--+=0,0)1,0()0,1(),1ln()11(1)(x x x xx s . 七、e 2. 八、)2,2(,2)2(11112-∈=-∑∞=-+x x n x n n n 九、x nx n e n n n e e x f n n n ]sin 1)1)1((cos 11)1([121)(2112++-++--+-=+∞=∑πππππ ( ,2,1,0,±±=≠+∞<<∞-n n x x π且).十、),(),0(,sin cos 12)(1ππh h x nx nnhx f n ⋃∈-=∑∞=),(),0[,cos sin 2)(1πππh h x nx nnhh x f n ⋃∈+=∑∞=.。

相关文档
最新文档