【精选】中考数学总复习第1部分第四章几何初步与三角形第一节线段角相交线与平行线要题随堂演练

合集下载

2020年中考数学一轮复习第4章几何初步与三角形(付)

2020年中考数学一轮复习第4章几何初步与三角形(付)

第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·浙江金华中考)如图,∠B的同位角可以是( )A.∠1 B.∠2C.∠3 D.∠42.(2018·江苏宿迁中考)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C =24°,则∠D的度数是( )A.24° B.59°C.60° D.69°3.(2018·山东枣庄中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20° B.30°C.45° D.50°4.(2018·湖南益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是( )A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°5.(2018·山东聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )A.110° B.115°C.120° D.125°6.(2018·浙江金华模拟)若∠α=35°,则∠α的补角为__________度.7.(2018·湖南衡阳中考)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC 的度数为__________.8.(2018·湖南永州中考)一副透明的三角板,如图叠放,直角三角板的斜边AB,CE相交于点D,则∠BDC=__________.9. (2018·重庆中考B卷)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.10.(2017·湖北十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=( )A.40° B.50°C.60° D.70°11.如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm.如果点C是OB上一个动点,则PC的最小值为( )A.2 cm B.2 3 cm C.4 cm D.4 3 cm12.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°13.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F =____________.14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 的长是______.15.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B=__________.16.(2018·湖北鄂州中考)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E,F分别为DB,BC的中点,连结AE,EF,AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.17.已知O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,∠COF和∠BOE之间有何数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明.18.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数;(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC 的数量关系,并说明理由.参考答案【基础训练】1.D 2.B 3.D 4.C 5.C 6.145 7.75° 8.75°9.解:∵∠EFG=90°,∠E=35°, ∴∠FGH=55°.∵GE 平分∠FGD,AB∥CD, ∴∠FHG=∠HGD=∠FGH=55°. ∵∠FHG 是△EFH 的外角, ∴∠EFB=55°-35°=20°. 【拔高训练】 10.B 11.C 12.C 13.9.5° 14.3 15.95°16.(1)证明:∵点E ,F 分别为DB ,BC 的中点, ∴EF 是△BCD 的中位线,∴EF=12CD.又∵DB=DC ,∴EF=12DB.在Rt△ABD 中,∵点E 为DB 的中点, ∴AE 是斜边BD 上的中线, ∴AE=12DB ,∴AE=EF.(2)解:如图,∵AE=EF ,AF =AE ,∴AE=EF =AF , ∴△AEF 是等边三角形,∴∠AEF=60°. ∵EF 是△BCD 的中位线, ∴EF∥CD,∴∠BEF=∠CDB=β,∴β+∠2=60°.又∵∠2=∠1+∠ADB=∠1+α,∴∠1+α+β=60°,∴∠1=60°-α-β. ∵AE 是斜边BD 上的中线, ∴AE=DE ,∴∠1=∠ADB=α, ∴α=60°-α-β,∴2α+β=60°. 17.解:(1)∠BOE=2∠COF.理由如下: ∵∠COE=90°, ∴∠BOE=90°-∠AOC,∠COF=∠AOF-∠AOC=12(90°+∠AOC)-∠AOC=12(90°-∠AOC),∴∠BOE =2∠COF.(2)不发生变化.证明如下:∵∠COE=90°,∴∠COF=90°-∠EOF,∠BOE=180°-2∠EOF. ∴∠BOE=2∠COF. (3)∠BOE+2∠COF=360°.证明如下:∵∠COE=90°,∴∠COF=90°+∠EOF,∠BOE=90°+∠BOC=90°+90°-2∠EOF=180°-2∠EOF. ∴∠BOE+2∠COF=360°. 【培优训练】18.解:(1)∵OM 平分∠BOC, ∴∠MOC=∠MOB.又∵∠BOC=110°,∴∠MOB=55°. ∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°. (2)11或47(3)∠AOM-∠NOC=20°.理由如下:∵∠MON=90°,∠AOC=70°, ∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,∴∠AOM与∠NOC的数量关系为∠AOM-∠NOC=20°.第二节三角形的基础姓名:________ 班级:________ 用时:______分钟1.(2018·广西柳州中考)如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个2.已知,如图,在△ABC中,BO和CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.83.(2018·湖北黄石中考)如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°4.(2017·四川巴中中考)若a,b,c为三角形的三边,且a,b满足a-9+(b-2)2=0,第三边c为奇数,则c=______.5.(2017·四川乐山中考)点A,B,C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是_________.6.如图,在△ABC 中,AB =AC ,AD⊥BC,垂足为点D ,AD =18,点E 在AC 上,且CE =12AC ,连结BE ,与AD 相交于点F.若BE =15,则△DBF 的周长是________.7.(2018·湖北宜昌中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E. (1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.8. (2019·易错题)如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上.若点C 也在网格格点上,以A ,B ,C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D .59.如图,在△ABC 中,AB =AC =5,BC =8,点P 是BC 边上的动点,过点P 作PD⊥AB 于点D ,PE⊥AC 于点E ,则PD +PE 的长是( )A .4.8B .4.8或3.8C .3.8D .510.(2017·辽宁大连中考)如图,在△ABC 中,∠ACB=90°,CD⊥AB,垂足为点D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为( )A .2aB .22aC .3aD.433a11.如图,在四边形ABCD 中,∠ABC=90°,AB =BC =22,E ,F 分别是AD ,CD 的中点,连结BE ,BF ,EF.若四边形ABCD 的面积为6,则△BEF 的面积为( )A.2 B.94C.52D.312.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连结EF交AP于点G.给出以下五个结论:①∠B=∠C=45°;②AE=CF;③AP=EF;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是( )A.只有① B.①②④C.①②③④ D.①②④⑤13.(2017·四川达州中考)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是______________.14.(2019·改编题)已知点G是面积为27 cm2的△ABC的重心,那么△AGC的面积等于______cm2.15.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点.若S△BFC=1,则S△ABC=______.16.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设该组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.17.(2017·山东德州中考)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9 s.已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80 km/h,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)18.如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=________;若∠A=a°,则∠BEC=________.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC =________;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.参考答案【基础训练】1.C 2.D 3.A 4.9 5.3556.247.解:(1)∵在Rt△ABC 中,∠ACB=90°,∠A=40°, ∴∠ABC=90°-∠A=50°, ∴∠CBD=130°. ∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°, ∴∠CEB=90°-65°=25°. ∵DF∥BE,∴∠F=∠CEB=25°. 【拔高训练】8.C 9.A 10.B 11.C 12.D 13.1<m<4 14.9 15.416.解:(1)设三角形的第三边长为x. ∵每个三角形有两条边的长分别为5和7, ∴7-5<x<5+7,即2<x<12,∴其中一个三角形的第三边的长可以为10(不唯一). (2)∵2<x<12,它们的边长均为整数, ∴x=3,4,5,6,7,8,9,10,11, ∴该组中最多有9个三角形,∴n=9.(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.17.解:(1)如图,过点A 作AD⊥BC 于点D ,则AD =10 m.∵在Rt△ACD 中,∠C =45°, ∴Rt△ACD 是等腰直角三角形. ∴CD=AD =10 m.在Rt△ABD 中,tan B =ADBD,∵∠B=30°,∴BD=3AD , ∴BD=10 3 m.∴BC=BD +DC =(10+103)m. 答:B ,C 之间的距离是(10+103)m. (2)这辆汽车超速.理由如下: 由(1)知BC =(10+103)m. 又3≈1.7,∴BC≈27 m, ∴汽车速度v =270.9=30(m/s).又∵30 m/s=108 km/h , 此地限速为80 km/h ,且108>80, ∴这辆汽车超速. 【培优训练】18.解:131° 90°+12a°【探究】 (1)60°+23a°(2)∠BOC=12∠A.理由如下:由三角形的外角性质得,∠ACD =∠A+∠ABC, ∠OCD=∠BOC+∠OBC,∵O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点, ∴∠ABC=2∠OBC,∠ACD=2∠OCD, ∴∠A+∠ABC=2(∠BOC+∠OBC), ∴∠A=2∠BOC,∴∠BOC=12∠A.(3)∠BOC=90°-12∠A.理由如下:∵O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC=12(180°-∠ABC)=90°-12∠ABC,∠OCB=12(180°-∠ACB)=90°-12∠ACB,在△OBC 中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠ABC)-(90°-12∠ACB)=12(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,∴∠BOC=12(180°-∠A)=90°-12∠A.第三节 全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( ) A .两个等边三角形一定全等 B .腰对应相等的两个等腰三角形全等 C .形状相同的两个三角形全等 D .全等三角形的面积一定相等2.如图,在▱ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A .BE =DFB .BF =DEC .AE =CFD .∠1=∠23.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个4.(2017·四川眉山中考)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB =4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.9.(2018·陕西中考)如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连结AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥CD,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF.在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.1816.证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF=90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC ,∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠ACD=90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC ,∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD =180°-∠ABC-∠BAO-∠CAE =180°-60°-60°=60°. 【培优训练】19.解:(1)∵AM⊥BM, ∴∠AMB=∠AMC=90°. ∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM. ∵AB=32,∴AM=BM =3. ∵BC=5,∴MC=2,∴AC=AM 2+CM 2=13.(2)证明:如图,延长EF 到点G ,使得FG =EF ,连结BG.∵DM=MC ,∠BMD=∠AMC=90°,BM =AM , ∴△BMD≌△AMC,故AC =BD. 又CE =AC ,因此BD =CE.∵点F 是线段BC 的中点, ∴BF=FC ,由BF =FC ,∠BFG=∠EFC,FG =FE , ∴△BFG≌△CFE,故BG =CE ,∠G=∠CEF, ∴BD=CE =BG ,∴∠BDG=∠G,∴∠BDF=∠CEF.第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.(2017·四川南充中考)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. (2018·四川绵阳中考)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.(2018·黑龙江绥化中考)已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.(2018·湖南娄底中考)如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.(2018·浙江嘉兴中考)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. (2018·江苏镇江中考)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.(2019·易错题)在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.(2018·辽宁葫芦岛中考)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.(2018·浙江绍兴中考)数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. (2018·青海中考)请认真阅读下面的数学小探究系列,完成所提出的问题. (1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C, ∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x 2≠x,即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°. 又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中, ∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30第五节 直角三角形与勾股定理姓名:________ 班级:________ 用时:______分钟1.(2018·海南中考)如图,在△ABC 中,AB =8,AC =6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°,得到△AB 1C 1,连结BC 1,则BC 1的长为( )A .6B .8C .10D .122.(2019·改编题)下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.(2017·贵州毕节中考)如图,在Rt △ABC 中,∠ACB=90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .124.(2018·山东德州中考)如图,OC 为∠AOB 的平分线,CM⊥OB,OC =5,OM =4,则点C 到射线OA 的距离为______.5.(2018·浙江宁波中考)如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1 200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为_____________________米(结果保留根号).6.(2017·湖南常德中考)如图,已知在Rt△ABE中,∠A=90°,∠B=60°,BE=10,D 是线段AE上的一动点,过点D作CD交BE于点C,并使得∠CDE=30°,则CD长度的取值范围是________________.7.(2018·湖北襄阳中考)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为__________.8.(2018·四川广安中考)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个一边长为22,面积为6的等腰三角形.9.已知直角三角形的周长为14,斜边上的中线长为3,则该直角三角形的面积为( ) A.5 B.6 C.7 D.810.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100C.110 D.12111.(2018·江苏无锡中考)已知△ABC中,AB=10,AC=27,∠B=30°,则△ABC的面积等于______________.12.(2017·湖北襄阳中考)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=8,AB=10,则CD的长为_______.13.如图,在平面直角坐标系中,将含30°角的三角尺的直角顶点C落在第二象限,其斜边两端点A ,B 分别落在x 轴、y 轴上,且AB =12 cm .(1)若OB =6 cm , ①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2)点C 与点O 的距离的最大值=________cm .14.如图,在Rt △ABC 中,∠ACB=90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.15.某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图1△ABC 中,M 是BC 的中点,P 是射线MA 上的点,设APPM=k ,若∠BPC=90°,则称k 为勾股比.(1)如图1,过B,C分别作中线AM的垂线,垂足为E,D.求证:CD=BE.(2)①如图2,当k=1,且AB=AC时,AB2+AC2=________BC2(填一个恰当的数).②如图1,当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;③对任意锐角或钝角三角形,如图1,3,请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).参考答案【基础训练】1.C 2.D 3.A 4.3 5.1 200(3-1) 6.0<CD≤5 7.23或27 8.解:(1)如图(1)所示. (2)如图(2)所示. (3)如图(3)所示. (4)如图(4)所示.【拔高训练】 9.C 10.C11.153或10 3 12.25813.解:(1)①如图,过点C 作y 轴的垂线,垂足为点D ,在Rt△AOB 中,AB =12,则BC =6.∵OB=6=BC ,AB =AB , ∴Rt△ABC≌Rt△ABO, ∴∠BAO=30°,∠ABO=60°. 又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°, ∴BD=3,CD =33, ∴OD=BD +OB =3+6=9,∴点C 的坐标为(-33,9).②如图,设点A 向右滑动的距离为x ,根据题意得点B 向上滑动的距离也为x.∴A O =AB·cos∠BAO=12×cos 30°=6 3. ∴A′O=63-x ,B′O=6+x ,A′B′=AB =12. 在△A′OB′中,由勾股定理,得 (63-x)2+(6+x)2=122, 解得x 1=0(舍去),x 2=6(3-1). ∴滑动的距离为6(3-1)cm. (2)12 【培优训练】 14.1815.(1)证明:∵M 是BC 的中点,∴BM=CM. ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°. 在△BME 和△CMD 中, ⎩⎪⎨⎪⎧∠E=∠CDM=90°,∠BME=∠CMD,BM =CM ,∴△BME≌△CMD(AAS),∴CD=BE. (2)①AB 2+AC 2=2.5BC 2②结论仍然成立.设EM =DM =a ,则AE =AM +a ,AD =AM -a.在Rt△ABE 中,AB 2=AE 2+BE 2=(AM +a)2+BE 2=AM 2+2AM·a+a 2+BE 2, 在Rt△ACD 中,AC 2=AD 2+CD 2=(AM -a)2+CD 2=AM 2-2AM·a+a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2). ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2.∵APPM=1,∴AP=PM. ∵∠BPC=90°,AM 是△ABC 的中线, ∴PM=12BC.若△ABC 是锐角三角形,则AM =AP +PM =PM +PM =2PM =BC , ∴AB 2+AC 2=2BC 2+12BC 2=52BC 2,即AB 2+AC 2=2.5BC 2.③结论:锐角三角形:AB 2+AC 2=k 2+2k +22BC 2,钝角三角形:AB 2+AC 2=k 2-2k +22BC 2.第六节 尺规作图姓名:________ 班级:________ 用时:______分钟1.(2018·湖北宜昌中考)尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )2.(2018·河北中考)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2018·山东潍坊中考)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连结BD,BC.下列说法不正确的是( )A .∠CBD=30°B .S △BDC =34AB 2 C .点C 是△ABD 的外心 D .sin 2A +cos 2D =14. (2018·吉林中考)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为________________.5.(2018·内蒙古通辽中考)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连结AD.若AB =BD ,AB =6,∠C=30°,则△ACD 的面积为______.6.(2018·辽宁抚顺中考)如图,▱ABCD 中,AB =7,BC =3,连结AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连结AE ,则△AED 的周长是________.7.(2018·北京中考)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(________)(填推理的依据).8.如图,∠BAC内有一点P,过点P作直线L∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q,R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连结EF;②过P作直线l2∥EF,分别交两直线AB,AC于Q,R两点,则Q,R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q,R即为所求.下列判断正确的是( )A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确9.如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A,D为圆心,A到C的距离为半径画弧,两弧交于E,以A为圆心,O到E的距离为半径画弧,交⊙O于F,则△ACF面积是__________.10.(2018·四川自贡中考)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)11.(2018·山东济宁中考)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图;(保留画图痕迹,不写画法)(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10 m,请你求出这个环形花坛的面积.参考答案【基础训练】 1.B 2.D 3.D4.(-1,0) 5.9 3 6.10 7.(1)解:直线PQ 如图所示.(2)AP CQ 三角形中位线定理 【拔高训练】 8.A 9.3+3410.解:(1)⊙O 如图所示.(2)如图,作OH⊥BC 于H. ∵AC 是⊙O 的切线, ∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形, ∴OE=CH =52,BH =BC -CH =32.在Rt△OBH 中,OH =(52)2-(32)2=2, ∴EC=OH =2,BE =EC 2+BC 2=2 5. ∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴DE EC =BD BE ,∴DE 2=525, ∴DE= 5.【培优训练】11.解:(1)如图,点O即为所求.(2)如图,设EF与小圆切点为C,连结OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5 m,∴OM2-OC2=CM2=25,∴S圆环=π·OM2-π·OC2=25π(m2).。

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)

几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。

(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。

立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。

(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。

(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。

(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。

2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。

(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。

2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。

5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。

考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。

第一部分 第四章 第1讲 角、相交线和平行线-2020中考数学一轮复习课件(共25张PPT)

第一部分 第四章 第1讲 角、相交线和平行线-2020中考数学一轮复习课件(共25张PPT)
图 4-1-8
8.(2019 年江苏南京)结合图 4-1-9,用符号语言表达定理“同 旁内角互补,两直线平行”的推理形式: ∵____∠__1_+__∠__3_=__1_8_0_°___,∴a∥b.
图 4-1-9
9.(2019 年甘肃)如图 4-1-10,将一块含有 30°的直角三角板 的顶点放在直尺的一边上,若∠1 =48° ,那么∠2 的度数 是( )
②性质 2:直线外一点与直线上各点连接的所有线段中, __垂__线__段__最短.简称:垂线段最短.
4.平行线
名称
内容
平行公理 过直线外一点,有且仅有_一__条__直线与已知直线平行
两直线平行: 性质定理
①同位角相等;②_内__错__角__相等;③同旁内角_互__补__
判定定理
同位角相等,或内错角相等,或同旁内角互补 ⇒两直线平行
图 4-1-2 B.100° C.120° D.150° 答案:B
3.将一直角三角板与两边平行的纸条按如图 4-1-3 所示放置, 下列结论:
①∠1=∠2;
③∠2+∠4=90°;
其中正确的个数是(
A.1 个
B.2 个
答案:D
图 4-1-3 ②∠3=∠4; ④∠4+∠5=180°.
) C.3 个
D.4 个
对顶角
_相__等___
注意:①同角(或等角)的余角相等;②同角(或等角)的补角相等.
3.相交线
(1)垂线和点到直线的距离:
名称
概念
两条直线互相垂直,其中的一条直线叫做 垂线
另一条直线的垂线
点到直线的距离 直线外一点到这条直线的垂线段的__长__度__
(2)垂线的性质:
①性质 1:过一点有且只有_一__条__直线与已知直线垂直.

中考数学总复习第一编教材知识梳理篇第四章图形的初步

中考数学总复习第一编教材知识梳理篇第四章图形的初步

中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
2017年中考数学命题研究(怀化专版)
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单
中考重难点突破
2017年中考数学命题研究(怀化专版)
中考真题及模拟
中考考点清单

中考数学总复习 第一部分 基础篇 第四章 三角形 考点17 相交线、平行线课件.pptx

中考数学总复习 第一部分 基础篇 第四章 三角形 考点17 相交线、平行线课件.pptx
2
考点聚焦
考点一 生活中的立体图形
3
考点二 直线、射线、线段
4
5
考点三 角的有关概念及性质
6
Hale Waihona Puke 7考点四 垂线的性质与判定
8
考点五 平行线的性质与判定
9
考点六 角平分线、垂直平分线的性质与判定
10
真题探源
11
12
13
14
第一部分 基 础 篇
第四章 三 角 形
17 相交线、平行线
1
目标方向
了解生活中常见的立体图形(包括棱柱、棱锥、圆 锥和球)的有关概念及其基本特征;了解直线、线段、 射线的相关性质、区别与联系,以及线段的中点、两点 之间的距离的意义;更要熟练掌握角的概念、角的度数 的运算、垂线的性质、平行线的性质与判定;了解基本 作图方法.其中平行线的性质与判定是中考的重点,一 般以客观题的形式独立考查或在主观题中结合三角形与 四边形等知识进行综合考查.

中考数学 第一编 教材知识梳理篇 第四章 图形的初步认识与三角形、四边形 第一节 线段、角、相交线和

中考数学 第一编 教材知识梳理篇 第四章 图形的初步认识与三角形、四边形 第一节 线段、角、相交线和

第四章图形的初步认识与三角形、四边形第一节线段、角、相交线和平行线,河北8年中考命题规律)年份题号考查点考查内容分值总分20158,15 平行线的性质两直线平行内错角相等,同旁内角互补;两条平行线之间的距离3,2 5201313 余角、补角性质以正方形与等边三角形为背景,利用余角、补角、三角形内角和性质求角度之和319 平行线性质以三角形折叠为背景,利用平行线性质、折叠性质及三角形内角和求角度3 62011 2 补角性质以直角三角板为背景,利用补角性质求角度2 22016、2014、2012、2010、2009年未考查命题规律几何初步、相交线与平行线在中考中最多设置2道题,分值为2~6分,均在选择和填空题中考查,题目较简单,为中考的送分题.分析近8年河北中考试题可以看出,本课时常考点有:(1)余角、补角(在选择题中考查2次);(2)平行线性质求角度(在填空题中考查2次,选择题中考查1次).命题预测预计2017年中考,本节内容仍会考查,且以利用平行线的性质计算角度为主,题型为选择或填空题.,河北8年中考真题及模拟)平行线性质求角度(3次)1.(2015河北8题3分)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( C) A.120°B.130°C.140°D.150°(第1题图)(第2题图)2.(2015河北15题2分)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是( B)A.②③B.②⑤C.①③④D.④⑤3.(2011河北2题2分)如图,∠1+∠2等于( B)A.60°B.90°C.110°D.180°4.(2016河北保定十七中一模)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( C)A.35°B.70°C.110°D.145°(第4题图)(第5题图)5.(2016河北石家庄四十三中一模)如图,三条直线相交于点O.若OC⊥AB,∠1=56°,则∠2等于( B)A.30°B.34°C.45°D.56°6.(2016张家口模拟)如图,直线a,b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行,其最小旋转角为( B)A.100°B.90°C.80°D.70°(第6题图)(第7题图) 7.(2015唐山路北区一模)如图,直线l1∥l2,∠CAB=125°,∠ABD=85°,则∠1+∠2等于( A)A.30°B.35°C.36°D.40°8.(2016河北石家庄四十三中一模)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=110°,则∠2等于( B)A.65°B.70°C.75°D.80°(第8题图)(第9题图)9.(2013河北19题3分)在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=__95__°.10.(2016河北石家庄四十中一模)一副三角板如图所示放置,则∠AOB=__105__°.11.(2016河北石家庄二十八中二模)已知三条不同的直线a,b,c在同一平面内,有下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是__①②④__.(填写所有真命题的序号)12.(2016河北唐山友谊中学一模)如图,AF,BD,CE,AC,DF均是直线,∠EQF=∠APB,∠C=∠D.求证:∠A=∠F.证明:∵∠APB=∠DPF,∠APB=∠EQF,∴∠DPF=∠EQF.∴DB∥EC.∴∠FEC=∠D.又∵∠C=∠D,∴∠FEC=∠C.∴DF∥AC.∴∠A=∠F.,中考考点清单)线段与直线1.线段(1)定义:线段的直观形象是拉直的一段线.(2)基本事实:两点之间的所有连线中,线段最短.(3)线段的和与差:如图(1),已知两条线段a和b,且a>b,在直线l上画线段AB=a,BC=b,则线段AC就是线段a 与b 的和,即AC =__a +b__.如图(2),在直线l 上画线段AB =a ,在AB 上画线段AD =b ,则线段DB 就是线段a 与b 的差,即DB =a -b.(4)线段的中点:如图(3),线段AB 上的一点M ,把线段AB 分成两条线段AM 与MB.如果AM =MB ,那么点M 就叫做线段AB 的中点,此时有__AM__=MB =12AB ,AB =2AM =2MB.2.直线(1)定义:沿线段向两方无限延伸所形成的图形.(2)基本事实:经过两点有一条直线,并且只有一条直线.角及角平分线3.角的分类 (1)分类(2)周角、平角、直角之间的关系和度数 1周角=2平角=4直角=360°,1平角=2直角=180°,1直角=90°,1°=60′,1′=60″,1′=(160)°,1″=(160)′.4.角平分线的概念及性质(1)定义:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的角平分线. (2)性质:角平分线上的点到角两边的距离相等. 警示:到角两边距离相等的点在角平分线上. 5.余角、补角、邻补角(1)余角:A.如果两个角的和为__90°__,那么这两个角互为余角; B .同角(等角)的余角相等.(2)补角:A.如果两个角的和为__180°__,那么这两个角互为补角; B .同角(等角)的补角相等.(3)邻补角:A.两个角有一个公共顶点和一条公共边,另一边互为反向延长线的两个角互为邻补角; B .互为邻补角的两个角的和为180°.分类 锐角 直角 钝角 平角 周角 度数0°<α<90°α=90°90°<α <180°α=180°α=360°相交线三线八角(如图)6.同位角有:∠1与__∠5__,∠2与∠6,∠4与∠8,∠3与∠7.7.内错角有:∠2与__∠8__,∠3与∠5.8.同旁内角有:∠3与∠8,∠2与__∠5__.9.对顶角:∠1与∠3为对顶角,∠2与__∠4__为对顶角,∠5与∠7为对顶角,∠6与__∠8__为对顶角.垂线及其性质10.定义:两条直线相交所成的四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.11.基本事实:经过直线上或直线外一点,有且只有一条直线与已知直线垂直.12.性质:直线外一点与直线上各点连接的所有线段中,垂线段最短.13.点到直线的距离:从直线外一点到这条直线的垂线段长度.14.线段垂直平分线:(1)定理:线段垂直平分线上的点到线段两端的距离__相等__.(2)逆定理:到一条线段的两端点的距离相等的点在线段的垂直平分线上.平行线的判定及性质15.定义:在同一平面内,不相交的两条直线叫做平行线.16.两条平行线之间的距离处处相等.17.性质:(1)两直线平行,同位角相等,即∠1=__∠2__.(2)两直线平行,内错角相等,即∠2=__∠3__.(3)两直线平行,同旁内角互补,即∠3+__∠4__=180°.18.判定:(1)基本事实:经过已知直线外一点,有且只有一条直线和已知直线平行.(2)同位角相等,两直线平行.(3)内错角相等,两直线平行.(4)同旁内角互补,两直线平行.(5)平行于同一条直线的两条直线平行.命题与定理19.命题:判断一件事情的句子叫做命题,命题由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题常写成“如果……那么……”的形式.20.真命题:如果题设成立,那么结论一定成立的命题叫做真命题.21.假命题:题设成立,不能保证结论一定成立的命题叫做假命题.22.定理:有些命题的正确性是用推理证实的,这样的真命题叫做定理,推理过程叫做证明.【方法技巧】利用平行线性质求角度:先观察要求角与已知角的位置关系,再选择合理的角度进行等量代换,因此需要熟练掌握平行线的性质.另外在解题中要注意平角、直角及三角形内角和、三角形内外角关系等知识的运用.,中考重难点突破)补角、余角的计算【例1】(2016湘西中考)一个角的度数是40°,那么它的余角的补角度数是( )A.130°B.140°C.50°D.90°【解析】若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.【学生解答】A1.(2016保定博野模拟)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有( C)A.4个B.3个C.2个D.1个(第1题图)(第2题图)2.(2016河北沧州八中二模)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E 落在AC边上,且ED∥BC,则∠CEF的度数为__15°__.平行线的性质与判定【例2】(2016白银中考)如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )A.34°B.54°C.66°D.56°【学生解答】D【点拨】此题主要运用平行线的性质:两直线平行,内错角相等(或两直线平行,同旁内角互补)来解.3.(2016盐城中考)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=__70__°.(第3题图)(第4题图)4.(2016承德二中二模)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=__31__°. 5.(2016河北石家庄二十八中一模)如图,AB∥CD,∠1=130°,则∠2=__50°__.,中考备考方略)1.(2016长沙中考)下列各图中,∠1和∠2互为余角的是( B),A) ,B),C) ,D) 2.(2016福州中考)如图,直线a,b被直线c所截,∠1与∠2的位置关系是( B)A.同位角B.内错角C.同旁内角D.对顶角3.(2016孝感中考)如图,直线a,b被c所截,若a∥b,∠1=110°,则∠2等于( A)A.70°B.75°C.80°D.85°(第3题图)(第4题图) 4.(2016陕西中考)如图,AB∥CD,AE平分∠C AB交CD于点E,若∠C=50°,则∠AED=( B)A.65°B.115°C.125°D.130°5.(2016龙岩中考)下列命题是假命题的是( A)A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根6.(2016邢台金华中学模拟)直线a,b,c,d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于( C)A.58°B.70°C.110°D.116°(第6题图)(第7题图) 7.(2016廊坊二模)如图直尺EF压在三角板上,∠BAC=30°,则∠CME+∠BNF是( B) A.180°B.150°C.135°D.不能确定8.(2016保定二模)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1,l2于点B、点C,连接AC,BC,若∠ABC=54°,则∠1的大小为( B)A.70°B.72°C.74°D.76°(第8题图)(第9题图) 9.(2016邯郸十一中模拟)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( C)A.105°B.110°C.115°D.120°10.(2016秦皇岛二模)如图,C、D是线段AB上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB的长度是( C)A.8 B.9C.8或9 D.无法确定11.(2016沧州九中一模)如图,直线l∥m,等边三角形ABC的顶点B在直线m上,∠1=25°,∠2的度数为( A)A.35°B.25°C.30°D.45°,(第11题图)),(第12题图))12.(2016毕节中考)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( C)A.85°B.60°C.50°D.35°13.(2016秦皇岛二模)如图,射线AB,CD分别与直线l相交于点G,点H,若∠1=∠2,∠C=65°,则∠A 的度数是__115°__.(第13题图)(第14题图)14.(2016菏泽中考)如图,将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__15°__.15.(2016莆田中考)已知直线a∥b,一块直角三角板按如图所示放置,若∠1=37°,则∠2=__53°__.(第15题图)(第16题图)16.(2016原创)将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为__75°__.。

中考数学总复习 第1部分 教材同步复习 第四章 三角形 课时13 相交线与平行线课件

中考数学总复习 第1部分 教材同步复习 第四章 三角形 课时13 相交线与平行线课件

• ∵a∥b,∴∠2=∠ACB=32°.
1224/9/2021
• 本题考查了平行线的性质.用平行线的性质进行角度的计算,此类题还通常与角平 分线、三角形的内角和定理、三角形内外角关系等结合考查,找准对应的角是解题 的关键.另外,有时需要通过添加辅助线创造运用平行线的条件.
1225/9/2021
• 练习2 如图,直线a∥b,将含有45°的三角板ABC的直角顶点C放在
第一部分 教材同步复习
第四章 三角形
课时13 相交线与平行线
12/9/2021
知识要点 · 归纳
知识点一 直线、线段
• 1.直线的基本事实:经过两点有一条直线,并且只有①__一__条____直线, 简述为两点确定②__一_条_____直线.
• 2.线段 • (1)概念:直线上的两个点和它们之间的部分叫做③___线__段___,这两个点
性质,即可求解.Biblioteka • 【解答】∵a∥b,∴∠3=∠1=45°,∴∠2=180°-∠3=135°.
1221/9/2021
• 解决利用平行线和相交线的性质求角度的问题时,应从角度出发,结合 已知条件寻找所求角度与已知条件的关系,有时会用到题中的隐含条件, 如角平分线、三角形的内角和、三角形内外角关系,建立未知角与已知 角之间的等量关系进行求解.
如果两条直线都和第三条直线平行,那么这两条直线也互相
○23 __平__行____
同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行
126/9/2021
平行线 的性质
定义 性质
两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 平行线间的距离
过平行线上的一点作另一条平行线的垂线,○24 __垂_线__段_____的

重庆市中考数学一轮复习 第四章 三角形 第1节 线段、角、相交线与平行线课件.ppt

重庆市中考数学一轮复习 第四章 三角形 第1节 线段、角、相交线与平行线课件.ppt


定义:如果两个角的和等于⑥ 90° ,那么这两个角互
线 余角 为余角
性质:同角(或等角)的余角相等
未完继续补角Fra bibliotek定义:如果两个角的和等于⑦ 为补角
180°
,那么这两个角互


性质:同角(或等角)的补角相等
角 平
分 线
角平 性质:角平分线上的点到角两边的距离相等, 分线 即若AP平分∠BAC,PD⊥AB,PE⊥AC,则 (如 PD=PE 图③)
第四章 三角形
第1节 线段、角、相交线与平 行线
考点特训营
直线与线段
角及角平分线 线段、角、相 三线八角 交线与平行线 垂线
垂直平分线 平行线
命题与定理

两个基本事实
两点确定一条直线
两点之间线段最短
线
与 线
线 则段 点的B叫中做点线:段如A图C的①中,点点,B即在有线:段AABC=上BC,=且①AB=12 BACC.,
段 线段的和与差:如图②,在线段AC上取一点B,则有 AB+BC=AC;AB=AC-② BC ;BC=③ AC -AB
返回
角的 分类 锐角
直角 钝角
平角 周角

分类 角度
0°<α<90°
④ 90° ____
90°<α<180°
⑤_18_0_°360°

角 角的转化:1°=60′,1′=60″,度、分、秒之间是60进制 平
3.点到直线的距离:直线外一点到这条直线的垂线 段的长度
返回
性质:线段垂直平分线上的点到线段两端点的距离
垂直平分线
⑭ 相等 .
逆定理:到线段两端点距离相等的点在该线段的垂

中考数学总复习 第一部分 考点全解 第四章 三角形 第14讲 线段、角、相交线和平行线课件

中考数学总复习 第一部分 考点全解 第四章 三角形 第14讲 线段、角、相交线和平行线课件

12/10/2021
第二十二页,共三十六页。
类型四 平行线的性质 (2018·泰安)如图,将一张含有 30°角的三角形纸片的两个顶点叠放在矩
形的两条对边上,若∠2=44°,则∠1 的大小为( )
A .14°
C .90°-α
12/10/2021
B .16°
D .α-44°
第二十三页,共三十六页。
【解析】 如解图所示.∵矩形的对边平行,∴∠3=∠2=44°.根据三角形外角 的性质,可得∠3=∠1+30°,∴∠1=44°-30°=14°,故选 A.
则∠B O G 的度数是( B )
A .70°
B .35°
C .20°
D .40°
12/10/2021
第二十九页,共三十六页。
4.(2018·南阳模拟)如图,直线 a∥b,R t△A B C 的直角顶点 B 落在直线 a 上,若
∠1=27°,则∠2 的度数是( B )
A .53°
B .63°
C .73°
3.有关线段的基本事实:两点之间__线__段_____最短,连接两点间的线段的长度叫
做两点间的距离.
4.线段的中点:把一条线段分成两条相等的线段的点叫做线段的___中_点_____.
12/10/2021
第二页,共三十六页。
考点二 角高频考点 1.角的概念:具有公共端点的两条_射__线__(s_h_èx_ià_n组) 成的图形叫做角.这个公共端点 称为角的顶点,这两条射线是角的两边.角也可以看成是由一条_射__线__(_sh_èx_ià_n绕) 其端点 旋转而形成的几何图形.
12/10/2021
第十三页,共三十六页。
类型一 垂线的性质
(2018·杭州)若线段 A M ,A N 分别是△A B C 边 B C 上的高线和中线,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节线段、角、相交线与平行线
要题随堂演练
1.(2018·滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为( ) A.2+(-2) B.2-(-2)
C.(-2)+2 D.(-2)-2
2.(2018·聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )
A.110° B.115° C.120° D.125°
3.(2018·济南中考)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为( )
A.17.5° B.35° C.55° D.70°
4.(2018·金华中考)如图,∠B的同位角可以是( )
A.∠1 B.∠2 C.∠3 D.∠4
5.(2018·绵阳中考)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )
A.14° B.15° C.16° D.17°
6.(2018·眉山中考)下列命题为真命题的是( )
A.两条直线被一组平行线所截,所得的对应线段成比例
B.相似三角形面积之比等于相似比
C.对角线互相垂直的四边形是菱形
D.顺次连接矩形各边的中点所得的四边形是正方形
7.(2018·莱芜中考)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB =( )
A.149° B.149.5° C.150° D.150.5°
8.(2018·日照中考)一个角是70°39′,则它的余角的度数是________________.
9.(2018·淄博中考)如图,直线a∥b,若∠1=140°,则∠2=____________度.
10.(2018·河南中考)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为________________.
11.(2018·湘潭中考)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为___________________________________________
____________.(任意添加一个符合题意的条件即可)
参考答案
1.B 2.C 3.B 4.D 5.C 6.A 7.B 8.19°21′9.40 10.140°11.∠A+∠ABC=180°(答案不唯一)。

相关文档
最新文档