初二复习1整式乘法

合集下载

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。

初二数学整式的乘法与因式分解

初二数学整式的乘法与因式分解

初二数学整式的乘法与因式分解
初二数学中,整式的乘法与因式分解是重要的概念。

整式的乘法是指将两个或多个整式相乘的操作。

整式是由常数、
变量和运算符(加法、减法和乘法)组成的表达式。

在进行整式的乘
法运算时,需要根据乘法分配律,先分别对系数和变量进行乘法运算,然后再进行相应的合并。

例如,将整式(3x - 2y)和(4x + 5y)相乘,按照乘法分配律
展开可以得到:3x * 4x + 3x * 5y - 2y * 4x - 2y * 5y。

再按照乘
法运算的规则进行计算和合并,最终得到一个新的整式。

因式分解是指将一个整式拆分成若干个能够被整除的因式的乘积。

因式分解在解题过程中经常用到,能够简化问题的计算和分析。

例如,将整式2x^2 + 6x分解因式,首先可以因式分解出一个公
因式2x,然后将原始整式除以2x,得到x + 3。

所以整式2x^2 + 6x
可以分解为2x * (x + 3)。

整式的乘法与因式分解在初二数学中应用广泛,并且在其他数学
学科,如代数和方程式的解法中也有重要作用。

因此,我们需要掌握
整式的乘法和因式分解的方法,以便能够解决与整式相关的数学问题。

整式的乘法与因式分解精选全文完整版

整式的乘法与因式分解精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。

2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

初二八年级数学整式的乘除法

初二八年级数学整式的乘除法
此外,整式乘除法还可以用于解决一些日常生活中的问题,例如计算时间和距离 等。通过整式乘除法,我们可以更准确地计算出所需的数值,从而更好地理解和 解决实际问题。
在数学和其他学科中的应用
整式乘除法是数学中的一个基本概念,它在代数、几何和三角学等数学领域中有广泛的应用。例如, 在代数中,我们可以使用整式乘除法来化简多项式、解方程和证明代数恒等式等。在几何中,我们可 以使用整式乘除法来计算图形的面积和周长等。
对整式乘除法的理解更加深入
通过本章的学习,我对整式的乘除法有了更深入的 理解,掌握了其基本法则和应用技巧。
增强了数学运算能力
整式乘除法涉及较多的数学运算,通过不断练习, 我的运算能力得到了提高。
学会了解决实际问题
通过解决实际问题,我学会了如何运用整式乘除法 来解决生活中的数学问题。
下一步学习计划
深入学习分式的运算法则
初二八年级数学整式的乘除法

CONTENCT

• 引言 • 整式乘法规则 • 整式除法规则 • 整式乘除法的实际应用 • 练习与巩固 • 总结与回顾
01
引言
主题简介
整式乘除法是初中数学中的重要内容,是代数运算 的基础之一。
通过学习整式的乘除法,学生可以掌握代数式的基 本运算规则,为后续学习方程、不等式、函数等打 下基础。
学习几何学知识
在掌握了整式的乘除法后,我将继续 学习分式的运算法则,包括分式的加、 减、乘和除等。
在掌握了整式和分式的运算法则后, 我将开始学习几何学知识,包括平面 几何和立体几何等。
强化数学思维能力
通过练习更多的数学题目,提高自己 的数学思维能力,为后续的学习打下 坚实的基础。
THANK YOU
感谢聆听

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

整式的乘法复习课件

整式的乘法复习课件

典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。

初二数学整式的乘法运算

初二数学整式的乘法运算

初二数学整式的乘法运算在初二数学学习中,整式的乘法运算是一个重要的内容。

整式是指由数字和字母的乘方组成的代数式,乘法运算是对整式进行扩展和合并的过程。

本文将详细介绍初二数学中整式的乘法运算,帮助同学们更好地掌握这一知识点。

一、整式的基本概念在进行整式的乘法运算前,我们首先需要了解整式的基本概念。

整式是由系数和字母的乘方组成的代数式,例如:3x^2+5xy-2y+1。

其中,3、5、-2和1是系数,x^2、xy和y是字母的乘方。

整式中的字母乘方表示该字母连乘的结果,例如x^2表示x连乘两次,即x的平方。

字母的系数表示该字母乘方的倍数,例如3x^2中的系数3表示x^2的系数为3。

整式的合并是将相同字母乘方的项相加,例如5xy和3xy可以合并为8xy。

二、整式的乘法运算规则根据整式的基本概念,我们可以得出整式的乘法运算规则。

整式相乘时,需要将每个项的系数相乘,字母的乘方相加,并将结果相加得到最终的整式。

例如:(3x-2)(2x+4)的乘法运算过程如下:1. 将被乘数和乘数的每一项进行相乘:3x * 2x = 6x^23x * 4 = 12x-2 * 2x = -4x-2 * 4 = -82. 合并同类项:6x^2 + 12x - 4x - 83. 将合并后的项相加得到最终结果:6x^2 + 12x - 4x - 8 = 6x^2 + 8x - 8三、整式乘法运算的例题为了更好地理解整式的乘法运算,下面列举几个例题进行详细解析。

例题1:(2x+3y)(4x-5y)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。

2x * 4x = 8x^22x * -5y = -10xy3y * 4x = 12xy3y * -5y = -15y^2将合并后的项相加得到最终结果:2x * 4x + 2x * -5y + 3y * 4x + 3y * -5y = 8x^2 - 10xy + 12xy - 15y^2= 8x^2 + 2xy - 15y^2例题2:(a+2b)(a-2b)解析:按照乘法运算的规则,我们将每个项相乘并合并同类项。

复习教案-初二-整式的乘法与因式分解(学生版)

复习教案-初二-整式的乘法与因式分解(学生版)

3.若(x+2)是多项式4x2+5x+m的一个因式,则m等于()A.–6 B.6 C.–9 D.9三、课堂练习1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为(),A.25 B.20 C.15 D.103.已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥04.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是.}5.若a﹣b=3,b﹣c=2,那么a2+b2+c2﹣ab﹣ac﹣bc=.6.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.7.已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=.8.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为.9.已知2x2﹣ax﹣2=0,则下列结论中正确的是.①其中x的值不可能为0;②当x=2时,;③若a=1时,;④若a=2时,x3﹣4x2+2x=﹣3.10.设n为整数,则(2n+1)2﹣一定能被()—A.2整除B.4整除C.6整除D.8整除11.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和6712.对于算式20183﹣2018,下列说法错误的是()A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除;13.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.14.若a2﹣b﹣1=0,且(a2﹣1)(b+2)<a2b.(Ⅰ)求b的取值范围;(Ⅱ)若a4﹣2b﹣2=0,求b的值.:15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC的形状是三角形.16.△ABC的两边a,b满足a4+b4﹣2a2b2=0,且∠A=60°,则△ABC的形状是三角形.17.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,》例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)所得结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片,①请按要求利用所给的纸片拼出一个几何图形,并画在图3所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2,②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=.【18.阅读理解。

《整式的乘法复习》课件

《整式的乘法复习》课件

学习建议与展望
深入理解概念
建议学生深入理解整式乘法的 概念和性质,掌握其本质,以
便更好地应用所学知识。
提高运算能力
强调学生应通过多做练习题提 高整式乘法的运算能力,掌握 常用的运算技巧。
拓展应用领域
建议学生将整式乘法的应用拓 展到其他学科领域,如物理、 化学等,以增强跨学科应用能 力。
展望未来发展
$(x+y)(x^2+y^2) = (x^2+y^2)(x+y)$,可用于交换多项式相乘的顺序。
整式乘法的综合练
04

基础练习题
总结词
掌握基本概念和规则
详细描述
包括单项式与单项式相乘、单项式与多项式相乘、多项式与 多项式相乘等基础题型,旨在帮助学生掌握整式乘法的基本 概念和规则。
提高练习题
总结词
学习方法总结
主动参与
强调在学习整式乘法过程中,学 生应积极参与课堂讨论,主动思
考问题,提高自主学习能力。
实践应用
建议学生在课后多做练习题,通过 实践应用加深对整式乘法的理解, 提高运算能力和解决问题的能力。
归纳总结
鼓励学生对所学知识进行归纳总结 ,形成知识体系,以便更好地掌握 整式乘法的核心概念和运算规则。
小。
整式乘法的技巧与
03
注意事项
乘法公式的运用
01
02
03
平方差公式
$(a+b)(a-b) = a^2 b^2$,可用于简化整式 乘法。
完全平方公式
$(a+b)^2 = a^2 + 2ab + b^2$,可用于展开整 式和简化整式乘法。
平方差公式
$(a-b)^2 = a^2 - 2ab + b^2$,可用于展开整式 和简化整式乘法。

整式的乘法知识点总结—

整式的乘法知识点总结—

八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:()()()2443][-a a a a -+-∙∙例题二、计算:3222132213⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛-+xy y y x例题三、计算:()()()()y x y x y x y x 4333223+--++【知识点二】利用幂的运算法则解决问题例题一、已知510=a ,610=b ,求b a 3210+的值。

例题二、解方程:486331222=-++x x例题三、已知0352=-+y x ,求y x 324∙的值。

【知识点三】整式除法的运用例题一、已知()p n y mx y x y x 72323212--=⎪⎭⎫ ⎝⎛-÷,求n,m,p 的值。

例题二、已知一个多项式与单项式457-y x 的积为()2234775272821y x y y x y x +-,求这个多项式【知识点四】整式化简求值例题一、先化简,再求值:()()()x x x x x x x x -+-----321589622,其中61-=x例题二、先化简,再求值:()()()⎪⎭⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .【知识点五】开放探求题例题一、若多项式()()4322+-++xxnmxx展开后不含有3x项和2x项,试求m,n的值。

例题二、甲乙二人共同计算一道整式乘法:()()bxax++32,由于甲抄错了第一个多项式中a的符号,得到的结果为101162-+xx;由于乙漏抄了第二个多项式中x的系数,得到的结果为10922+-xx。

(1)你能知道式子中b a,的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。

例题三、若x是整数,求证121223+-+--x x xxx是整数。

【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)(2)若能,则该正方体贮水池的棱长_________dm;(3)若不能,你能说出理由吗?(不要求作答)例题三、太阳可以近似的看作是球体,如果用V 、R 分别代表球的体积和半径,那么34 V π3R ,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。

整式的乘除知识点及题型复习

整式的乘除知识点及题型复习

整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。

积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

同底数幂相除,底数不变,指数相减。

例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。

3、23132--⎛⎫-+ ⎪⎝⎭= 。

4、322(3)---⨯- = 。

5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。

A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。

人教版八年级数学上册第14章 整式的乘法与因式分解 小结与复习

人教版八年级数学上册第14章   整式的乘法与因式分解 小结与复习

四、乘法公式 1. 平方差公式
两数___和___与这两数__差____的积,等于这两数的
_平__方__差___. (a + b)(a - b) = _a_2_-__b__2 .
2. 完全平方公式
两个数的和(或差)的平方,等于它们的_平__方__和__,
加上(或减去)它们的__积____的 2 倍.
针对训练
7.下列计算中,正确的是 ( C )
A.(a+b)2=a2-2ab+b2
B.(a-b)2=a2-b2
C.(a+b)(-a+b)=b2-a2
D.(a+b)(-a-b)=a2-b2
8.已知 (x+m)2=x2+nx+36,则 n 的值为 ( B )
A.±6 B.±12
C.±18 D.±72
9.若 a+b=5,ab=3,则 2a2+2b2=___3_8__.
(a + b)2 = _a_2_+__2_a_b__+__b_2.
五、因式分解 1. 因式分解的定义
把一个多项式化为几个__整__式__的__积____的形式,像
这样的式子变形叫做这个多项式的因式分解,也叫做
把这个多项式分解因式.
步骤:
2. 因式分解的方法
1. 提公因式;
(1) 提公因式法
2. 套用公式;
=a2-(b-3)2=a2-b2+6b-9. (3) 原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4.
11. 用简便方法计算 (1) 2002-400×199+1992; (2) 999×1001.
解:(1) 原式 = (200-199)2 = 1. (2) 原式 = (1000-1)(1000+1) = 10002-1 = 999999.

初中数学整式的乘法(含答案)

初中数学整式的乘法(含答案)

第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。

初二数学第1讲:整式乘法和因式分解

初二数学第1讲:整式乘法和因式分解

初二数学第1讲: 整式计算与因式分解复习乘法公式:重点例题:1.计算:(1) (2a –b+3c)(2a+b –3c) (2) (x+y-z)(x –y+z)–(x+y+z)(x –y –z)222121⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+y x y x (4) )9)(3)(3()9(222+---++a a a a2. 已知a 2+b 2=14,a+b=4,求a 4+b 4的值,试一试能求a 6+b 6=?3. 已知a+b=4,ab=1,求a 2+b 2=? a 3+b 3=? a 4+b 4=? a 5+b 5=?a 6+b 6=? a 7+b 7=?4. 请发现规律,并根据你所发现的规律解决两个问题(a –1)(a+1)=a 2–1 (a –1)(a 2+a+1)=a 3–1 (a –1)(a 3+a 2+a+1)=a 4–1(a –1)(a 4+a 3+a 2+a+1)= (a –1)(a n-1+a n-2+……+a+1)=用上述规律求解:(a –b)(a 5+a 4b+ a 3b 2+ a 2b 3+ ab 4+b 5)=(2x –1) (16x 4+8x 3+4x 2+2x+1)=5. 求–x 2–2y 2-2x+8y –5的最大值,并求出此时的x,y 的值。

6.已知a 2+b 2–4a –4b+a 2b 2+6ab+8=0,求ba ab +的值 7.设10a b -=,求222a bc ab bc ac ++---的最小值.复习因式分解的方法:8. 分解因式 (1) 2222)(9)(34)(b a b a b a ++-+- (2) 4a 2b 2–(a 2+b 2–c 2)2(3)(1–a 2)(1–b 2)–4ab (4) (ab –1)2+(a+b –2ab)(a+b –2)(5)(x 2+x –2) (x 2+x –12)+24 (6) x 3–9x+8(7) (1+n)2–2m 2(1+n 2)+m 4(1–n)29. 已知长方形周长是16cm ,它的两边a ,b 是整数,且满足a –b –a 2+2ab –b 2+2=0,则长方形面积是10. 已知x 2+2(m –3)x+36是完全平方式,则m=11. 如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和.12. 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式乘法 2015.7.20
知识要点
1.乘法法则:
(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
(2)单项式与多项式相乘,•就是根据乘法分配律用单项式去乘多项多的每一项,再把所得的积相加.
(3)多项式与多项式相乘,•先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
2.注意:相同字母的幂相乘是运用同底数幂相乘的性质:底数不变,•指数相加.对于只在一个单项式里出现的字母要连同它的指数写在积里,千万不能遗漏.
3.幂的运算法则:
完全平方公式:
平方差公式:
复习题
一、选择题
1.式子x 4m+1可以写成( )
A .(x m+1)4
B .x·x 4m
C .(x 3m+1)m
D .x 4m +x
2.下列计算的结果正确的是( )
A .(-x 2)·(-x )2=x 4
B .x 2y 3·x 4y 3z=x 8y 9z
C .(-4×103)·(8×105)=-3.2×109
D .(-a-b )4·(a+b )3=-(a+b )7
3.下列各题计算正确的是( )
A .(ab-1)(-4a b 2)=-4a 2b 3-4a b 2
B .(3x 2+xy-y 2)·3x 2=9x 4+3x 3y-y 2
C .(-3a )(a 2-2a+1)=-3a 3+6a 2
D .(-2x )(3x 2-4x-2)=-6x 3+8x 2+4x
4.计算(-5ax )·(3x 2y )2的结果是( )
A .-45a x 5y 2
B .-15a x 5y 2
C .-45x 5y 2
D .45a x 5y 2
5.下列各式计算正确的是( )
A .(x+5)(x-5)=x 2-10x+25
B .(2x+3)(x-3)=2x 2-9
C .(3x+2)(3x-1)=9x 2+3x-2
D .(x-1)(x+7)=x 2-6x-7
二、填空题
1.9910022)
()(-+-=( ) 2.已知a+2b=0,则式子a 3+2ab (a+b )+4b 3的值是___________. 3.已知(x+3)(x-2)=x 2+ax+b ,则a 、b 的值分别是( )
4.已知a m =2,a n =3,则a 3m+n =_________;a 2m+3n =_________.
5.一种电子计算机每秒可以做6×108次运算,它工作8×102秒可做_______次运算.
6.已知1纳米=910-米,则1400纳米=( )米.
7.将一个长为x ,宽为y 的长方形的长减少1,宽增加1,则面积增加________.
8.四个连续自然数,中间的两个数的积比前后两个数的积大_________.
9.=-⋅-23)()(a b b a ( )
10.若52=n ,则n 28
的值为( )
三、解答题
1.若1+2+3+…+n =a ,求代数式))(())()(123221n n n n n xy y x y x y x y x --- (的值.
2.(2a+b )(a-2b )(2a-b)
3.201020092010)2.1()6
5()
1(-⨯⨯-
4.如果的值求12),0(020*******++≠=+a a a a a .
5.若0)
1x (1x 2=--,则x 为多少?
6.若单项式-3a 2m-n b 2与4a 3m+n b 5m+8n 同类项,那么这两个单项式的积是多少?
7.若2a =3,2b =5,2c =30,试用含a 、b 的式子表示c .
8.比较5553
-,4444-,3335-的大小。

9.若(x 2+mx+8)(x 2-3x+n )的展开式中不含x 3和x 2项,求m 和n 的值.
10.请先阅读下列解题过程,再仿做下面的题.
已知x 2+x-1=0,求x 3+2x 2+3的值.
解:x 3+2x 2+3=x 3+x 2-x+x 2+x+3
=x (x 2+x-1)+x 2+x-1+4
=0+0+4=4
如果1+x+x 2+x 3=0,求x+x 2+x 3+x 4+x 5+x 6+x 7+x 8的值.
11.解方程: 723921=-+n n 48x = 125.02x =-
()2231x -=+ 165.01x =+ 3x 2x 2=-
四、乘法公式的应用
例1.已知2=+b a ,1=ab ,求22b a +和(a-b)2
的值。

例2.已知8-=b a ,2=ab ,求22b a +的值。

例3:计算19992-2000×1998
例4:已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

例5:判断(2+1)(22+1)(24+1)……(2
2048+1)+1的个位数字是几?
例6.解下列各式
(1)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

(2)已知a (a -1)-(a 2
-b )=2,求22
2a b ab +-的值。

(3)已知13x x -
=,求,221x
x +441x x +的值。

变式:已知0132=++x x ,求221x x +
例7. 计算:()()()()
111124-+++a a a a
例8.计算 (1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)
例9、已知m 2+n 2
-6m+10n+34=0,求m+n 的值
例10.求出的最小值x 4x 2-.
五、面积与乘法公式
例1. 如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________。

例 2. 阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:()()22322a b a b a ab b ++=++ 就可以用图4或图5等图表示。

(1)请写出图6中所表示的代数恒等式____________;
(2)试画出一个几何图形,使它的面积能表示:
()()a b a b a ab b ++=++34322
(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形。

相关文档
最新文档