第10讲信号与系统课件
信号与系统ppt课件
方可利用冲激信号的抽样特性与筛选特性。
完整版ppt课件
25
二、奇异信号
3. 斜坡信号
定义:
r(t)
t 0
t 0 t 0
或 r(t)tu(t)
r (t )
1
0
1
t
完整版ppt课件
26
二、奇异信号
x(t)(t t0)x(t0)(t t0)
完整版ppt课件
x(t ) (1)
t t0 x(t) (t t0 )
( x(t0 ) ) t
t0
19
二、奇异信号
2. 冲激信号
(6) 冲激信号的性质
② 抽样特性
x(t)(tt0)dtx(t0)
证明:
x(t)(t t0)dt
利用筛
选特性
x(t0)(t t0)dt x(t0) (t t0)dt x(t0)
(7)e4t (22t) (8)e2tu(t)(t1)
完整版ppt课件
23
解:
(1 ) sit)n ((tπ 4)d t siπ 4 n )(2/2
(2 ) 2 3 e 5 t (t 1 )d t e 5 1 1 /e 5
(3) 4 6e2t (t8)dt0
(4 ) e t(2 2 t)d t e t1 2( t 1 )d t 2 1 e
(2) x ( t) u ( t 1 ) 2 r ( t) 2 r ( t 1 )
完整版ppt课件
28
二、奇异信号
4. 冲激偶信号 定义: '(t) d(t)
dt
信号与系统PPT课件
• 二、信号的分类
信号的分类方法很多,可以从不同的角度对信号 进行分类。
按实际用途划分: 电视信号,雷达信号,控制信号,通信信号,广播信 号,……
按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 一维信号与多维信号; 因果信号与反因果信号; 实信号与复信号; 左边信号与右边信号;等等。
•模拟信号:时间和幅值均为连续 的信号。
f t
抽
样
O
t
•抽样信号:时间离散的,幅值
f k
连续的信号。
量
化
O
k
•数字信号:时间和幅值均为离散
f k
的信号。
•连续信号与模拟信号,离散信号与数
字信号常通用。
O
k
3. 周期信号和非周期信号
定义在(-∞,∞)区间,每隔一定时间T (或整数N), 按相同规律重复变化的信号。
➢ 这里的“连续”指函数的定义域—时间是连续 的,但可含间断点,至于值域可连续也可不连续。 ➢ 用t表示连续时间变量。
值域连续
值域不连续
离散时间信号:
仅在一些离散的瞬间才有定义的信号,简称离散信号。
f(t)
2
2
1
1
t-1 o t1 t2 t3 t4
t
-1.5
上述离散信号可简画为
f(k)
1, k 1
由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其周期为 T1和T2的最小公倍数2π。
(2) cos2t 和sinπt的周期分别为T1= πs, T2= 2 s,由于 T1/T2为无理数,故f2(t)为非周期信号。
信号与系统课件
y(t) x2 (0 )
t
f ( )d
0
。
【解】根据线性系统定义,
(1) 该系统满足分解性,但不满足零态线性和零输入线性。
(2) 该系统满足分解性和零输入线性,但不满足零态线性。
(3) 该系统满足分解性和零态线性,但不满足零输入线性。
需要说明得就是,若用数学语言表述,线性系统就就是服从
线性方程得系统。这里得线性方程既可以就是线性代数方程、
由于激励信号得作用,系统状态有可能在t=t0时刻发生跳变, 为区分前后得数值,以t0-表示激励接入之前得瞬时,以t0+表示激励 接入以后得瞬时。系统得起始状态指得就是, 激励接入前一刹 那系统得状态,记为x1(t0-), x2(t0-), …,xn(t0-)。 显然,这组数据记录 了系统过去历史所有得相关信息。系统得初始状态指得就是, 激励接入后一刹那系统得状态,记为x1(t0+), x2(t0+), …, xn(t0+) 。
t= 0
S 激励 E
系统 R
C
响应 uC(t)
(a) 系 统 结 构
uC(t) E
0 t
(b) 没 有 起 始 状 态 的 响 应
图 2-2 没有起始状态得RC充电电路及其响应
在图2-3中,电路处于稳定状态,即uC(0-)=E1。t=0时刻把开
关S扳到2位,根据电路理论中得换路定律可知,电容得端电压不
输入信号 f (t)
系统
输出信号 y (t)
(a) 简 单 系 统
… …
… …
输入信号 f1(t) f2(t)
fn(t)
输出信号 y1(t)
系统
y2(t)
ym(t)
(b) 多 输 入 /多 输 出 系 统
信号与系统课件 PPT
x (t)
显然是周期的,其基波周期为:T 0
2 0
3、正弦信号
x(t)Acos( 0t) Aejej0t Aejej0t
非周 期信 号
连续时间 周期信号
离散时间周 期信号
周期信号
三.奇信号与偶信号:odd Signals and even Signals
如果有 x(t)x(t) 或 信号为奇信号(镜像奇对称)
则称该
如果有 x(t)或x(t) 则称该信号是
偶信号(镜像偶对称)
任何信号都能分解成一个偶信号与 一个奇信号之和。
提下信号与系统的统一。)
• 信号的变换分析:傅立叶级 数、傅立叶变换、拉氏变换、 z 变换。(送你一双看穿表象的慧眼。)
• 抽样定理 (风马牛不相及的两种信号
之间的联系,数字化时代的基石。)
信号与系统问题无处不在
• 什么是信号? • 信号是消息的表现形式,消息则是信
号的具体内容。 • 什么是系统? Hale Waihona Puke 系统是物理器件的集合,对给定的信
1
t
0
1
0 1/2 3/2
x(3t 1 )
t 3t
2
1
t
0 1/6 1/2
二. 周期信号与非周期信号:
周期信号: x(tT)x(t)
满足此关系的正实数(正整数)中最小
的一个,称为信号的基波周期 T 0(N 0)。 x(t) c 可视为周期信号,但它的基波周期
没有确定的定义。 可以视为周期信号,其基波周期 N 0 1
x(t) Ceat 其中 C, a 为复数
1. 实指数信号: C,a 为实数
a 0 呈单调指数上升。
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
信号与系统ppt课件
02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
信号与系统ppt课件
结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统PPT全套课件
T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与系统ppt课件
a 0 呈单调指数上升。
精品课件
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x (t) ej 0 t c o s0 tjsin0 t
• 连续时间情况下:
E lT im T Tx(t)2d t x(t)2dt
•离散时间情况下:
N
E N l i m nNx(n)2n x(n)2
精品课件
在无限区间内的平均功率可定义为:
x(t) P
lim1 T2T
T T
2
dt
PN l i m 2N 11nN Nx(n)2
精品课件
1.2 自变量变换
究确知信号。
精品课件
连续时间信号的例子:
精品课件
离散时间信号的例子:
精品课件
连续时间信号在离散 时刻点上的样本可以构成一个 离散时间信号。
精品课件
二. 信号的能量与功率:
连续时间信号在 [ t1 , t 2 ] 区间的能量定义 为:
E t2 x(t) 2 dt t1
连续时间信号在 [ t1 , t 2 ]
率定义为:
区间的平均功
P 1 t2 x(t)2 dt
t2 t1 t1
精品课件
离散时间信号在 [ n1 , n 2 ]
的能量定义为n2
E
x(n) 2
n n1
区间
离散时间信号在 [ n1 , n 2 ] 平均功率为
P 1
n2 x(n)2
n2 n11nn1
精品课件
区间的
在无限区间上也可以定义信号的总 能量:
•给定信号和系统求变换后的 信号。
信号与系统课件ch10 z变换-lec[10-3]
上讲回顾由零极点图对傅里叶变换进行几何求值分析一阶、二阶系统Z变换的性质(表10.1)常用Z变换对(表10.2)信号与系统课程组© 20142大纲310.1 Z 变换定义10.2 Z 变换的收敛域10.3 Z 逆变换10.4 由零极点图对傅里叶变换进行几何求值10.5 Z 变换的性质10.6 常用Z 变换对10.7 用Z 变换分析与表征LTI 系统10.8 系统函数的代数属性与方框图表示10.9 单边z 变换信号与系统课程组10.7 利用z 变换分析和表征LTI 系统•系统函数)()(z X n x )(n h [])()(n h ZT z H =)()()()()()(z H z X z X n h n x n y =∗= : 称为系统函数/ 传递函数410.7 利用z 变换分析和表征LTI 系统5这就是LTI 系统的傅里叶分析。
即是系统的频率响应。
如果 的ROC 包括单位圆,则 和 的ROC 必定包括单位圆,以 代入,即有()()()ωωωj j j e H e X e Y ⋅= LTI 系统的性质直接与 在z 平面的特性(零极点及收敛域)相联系!信号与系统课程组•10.7.1 因果性(Causality )–一个具有有理系统函数 的DT LTI 系统是因果的,当且仅当:•(a) 收敛域必须位于最外层极点的外边,且无限远点必须在收敛域内;且•(b) 若 表示成z 的多项式之比,其分子多项式的阶次不大于分母的阶次。
)(216)(317)(n u n u n x nn ⎪⎭⎫⎝⎛−⎪⎭⎫⎝⎛=NN N N MM M M z a z a z a z a a z b z b z b z b b z D z N z X ++++++++++==−−−−112210112210)()()( NM ≤710.7 利用z 变换分析和表征LTI 系统信号与系统课程组•10.7.2 稳定性(Stability )–一个DT LTI 系统,当且仅当它的系统函数 的收敛域包括单位圆 1时,该系统稳定。
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。
分类:连续信号、离散信号、模拟信号、数字信号等。
1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。
图形方法:波形图、频谱图、相位图等。
第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
2.2 连续系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。
齐次运算:连续信号的常数倍仍然是连续信号。
第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。
有限能量:能量信号的能量有限。
有限带宽:带宽有限的信号。
3.2 离散系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。
齐次运算:离散信号的常数倍仍然是离散信号。
第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。
特点:连续性、模拟性、无限可再生性。
4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。
模拟调制:将信息信号与载波信号进行合成。
第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。
特点:离散性、数字化、抗干扰性强。
5.2 数字系统的特性线性特性:叠加原理、齐次性原理。
时不变特性:输入信号的延迟不会影响输出信号。
信号与系统PPT课件
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
《信号与系统》第十章Z变换【最经典的奥本海默信号与系统课件,PDF版】
x[ n] z
n
n
a z
n n 1
1
n
a z 1 a z 1 1 1 a z 1 az n 1
1 即 a u[ n 1] 1 1 az
n Z
z a
说明: 1)Z变换由代数表达式和收 敛域组成; 2)例1和例2的零极点图和收 敛域如图所示. 3)如果X(z)的ROC包括单位 圆,则x[n]的DTFT 存在。
3. Z域尺度变换:
X ( z / z0 ) z R 时 X ( z )收敛,故 | z / z0 | R 时,
0
收敛。 j z e z z0 R 当 0 时,即为频移特性。 若 z0是一般复数
0 z0 r0 e j,则 X ( z / z0 )的零极点
不仅要将 X ( z ) 的零极点逆时针旋转一个角 度0 ,而且在径向有 r0 倍的尺度变化。
lim( z 1) X ( z ) Res[ X ( z ),1]
z 1
Z平面上极点位置与信号模式的关系示意图
10.3 Z-反变换
一.Z-反变换:
The Inverse Z-Transform
令
z re
j
dz jre d jzd
j
当ω从0→2π时,z沿着ROC内半径为 r 的圆变化一周。 其中 C 是 ROC 中逆时针 方向的圆周。 二. 反变换的求取: 1. 部分分式展开法: 当X(z)是有理函数时,可将其展开为部分 分式 Ai X (z) 1 1 aiz i
Properties of the Z-transform
Z变换的许多性质与DTFT的性质相似,其 推 论方法也相同。故主要讨论ROC的变化。 1. 线性:
信号与系统课件ppt
4.能量信号与功率信号
信号可看作是随时间变化的电压或电流,信号 f (t)在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间
区间所消耗的总能量和平均功率分别定义为:
能量信号:信号总能量为有限值而信号平均功率为零。 功率信号:平均功率为有限值而信号总能量为无限大。
特点:
信号 f (t)可买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
如果包含有(t)及其各阶导数,说明相应的0-状态到0+状态 发生了跳变。
0+ 状态的确定 已知 0- 状态求 0+ 状态的值,可用冲激函数匹配法。 求 0+ 状态的值还可以用拉普拉斯变换中的初值定理求出。
各种响应用初始系统零输入响应时,用的是 0- 状态初始值。 在求系统零状态响应时,用的是 0+ 状态初始值,这时的零状态是 指 0- 状态为零。
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
产生的响应。 LTI的全响应:y(t) = yx(t) + yf(t)] 2、零输入响应 (1)即求解对应齐次微分方程的解 3、零状态响应 (1)即求解对应非齐次微分方程的解
《信号与系统》课件
系统的稳定性评估
了解如何评估系统的稳定性,包括绝对稳定性和相对稳定性,以及其对信号 处理和通信系统的影响。
应用示例
通过实际的应用示例,展示信号与系统在通信、音频处理、图像处理等领域中的重要性和应用。
《信号与系统》PPT课件
欢迎来到《信号与系统》PPT课件!这个课程将带你深入了解信号与系统的定 义、概述以及应用示例。让我们开始这个令人兴奋的学习之旅吧!
信号与系统的定义与概述
在本节中,我们将介绍信号与系统的基本概念和定义,以及它们在不同领域 中的应用。深入了解信号与系统的重要性和用途。
信号的分类与特性
连续信号与离散信号
了解连续信号和离散信号之间的区别以及它们 的应用场景。
能量信号与功率信号
学习能量信号和功率信号的不同,并了解它们 在通信系统中的应用。
周期信号与非周期信号
探索周期信号和非周期信号的特性和重要性。
模拟信号与数字信号
介绍模拟信号与数字信号之间的区别,并探究 的基本原理和方 法,并探索不同类型的滤波器。
系统的定义与分类
线性系统与非线性系统
了解线性系统和非线性系统 的特性和区别,并掌握它们 在实际应用中的概念。
因果系统与非因果系统
探索因果系统和非因果系统 之间的差异,并了解它们在 信号处理中的重要性。
时变系统与时不变系统
学习时变系统和时不变系统 的特性和应用,以及它们如 何影响信号处理结果。
时域分析
1
时域表示
学习如何使用时域来表示信号及其特性。
时域运算
2
了解信号在时域中的运算及其在系统分
析中的重要性。
3
卷积与相关
深入了解卷积和相关运算,并探索它们 在信号处理中的应用。
信号与系统 课件 ppt
02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1,求
L
1
4 s 2 11s 10 2 s 2 5s 3
解 ①将F(s)化为真分式
4s 11s 10 s4 1 s4 F ( s) 2 2 2 s 2 5s 3 2 s 2 5s 3 2 s2 5 s 3 2 2
at
0
f (t )e e dt f (t )e( s a )t dt F (s a)
at st 0
由此得到本题解答
L te
at
1 ( s a)2
( >-a)
5、冲激函数A(t)的拉普拉斯变换,根据其抽样性质得
L A (t ) 0
16 1 j 2 2
由洛比塔法则求系数 D’(s) = 2s+2 N (s) 1 j2 1 s K1 ( 2 j1) j4 4 D ' ( s ) s s 1 j 2 2 s 2 s 1 j 2
2
③分解后的F(s)
1 6 1 5 F ( s) 2 2 s 1 2 s 3 2 5 3 2 2 3 s 1 s 2
④反变换结果
5 f (t ) 2 (t ) 3e e 2
t
2013-5-18 信号与线性系统-第10讲
2013-5-18
A (t )e st dt Ae0 A ( >-)
7
信号与线性系统-第10讲
§5.4常用函数的拉普拉斯变换
f1(t)
1
f2(t)
1
f3(t)
e
at
e – a t (t)
-1 0
e – a (t+1) (t+1)
1
e –at
0
0
(a)
(t 0)
(b)
(t -1)
(c)
三个具有相同单边形状的函数
(a) F(s) = s+a
1
1
-a
(b)
Fd(s) = s+a
-1{
es
> -a
L -1{ s+a } = e – a t (t)
(c) Fd(s) = s+a + 1 -s+a a> > -a
1
L
– a( t+1) (t+1) s+a } = e
s- 4 s2+s-1
-5s2-4s+1 -5s2-5s+5
s-4
前面两项反变换 L
-1{5}=
5 (t) ,
L -1{3s}=3’(t)
10
2013-5-18
信号与线性系统-第10讲
§5.5拉普拉斯反变换-部分分式(无重根 )
(1)m < n , D(s) = 0 的根无重根情况 因 D(s) 是 s 的 n 次多项式故可分解因式如下
工程中常用的函数有两大类
时间t的指数函数 时间t的正整数幂函数 其他信号可以看成这两类函数变换组合
信号与线性系统-第10讲 4
2013-5-18
§5.4常用函数的拉普拉斯变换
2、单边指数函数e
L e at (t ) 0
a t
(t) (a 为常数)
0
e at e st dt
2013-5-18
信号与线性系统-第10讲
6
§5.4常用函数的拉普拉斯变换
4、te –at (t)的拉普拉斯变换
函数 f(t) 与指数函数 e –at 乘积的拉普拉斯变换 ,等于 函数 f(t) 的拉普拉斯变换中以 s+a 代替s 所得的结果。 证明:
L
f (t )e
es
L -1{
2a
a
2-s 2
} = e – a t (t)+e a t (-t)
8
2013-5-18
信号与线性系统-第10讲
§5.5拉普拉斯反变换
1、反变换求取的数学手段
依据反变换公式,这是复变函数广义积分问题 使用复变函数中围线积分和留数定理来解决 如函数是有理函数,也可通过部分分式展开的方 式来求解。
1
s 1 K2 (2 j1) 4 2s 2 s s1 1 j 2
e at sin t (t )
1 (e ( a j ) t e ( a j ) t ) 2 j
( >0)
单边衰减正弦函数
L e at sin t (t ) L
1 1 1 2 j ( s a ) j ( s a ) j ( s a) 2 2
信号与线性系统-第10讲 11
§5.5拉普拉斯反变换-部分分式(无重根 )
采用罗彼塔法则,可得另一求取 Kk 的计算公式
d ( s sk ) N ( s ) ds ( s sk ) N ( s ) K k lim lim s sk s sk d D( s) D( s) ds N ( s ) ( s sk ) N ( s ) N ( s) lim s sk D( s ) D( s ) s sk
D( s) ( s s1 )(s s2 ) ( s sk ) ( s sn ) ( s sk )
k 1
n
因 D(s) =0 的根无重根,故 s1, s2, ---, sk,---, sn,彼此不等,于是
F (s) N (s) N (s) D( s) ( s s1 )(s s2 ) ( s sk ) ( s sn )
L
1 t 2 s
( >0)
t n st n n 1 st e t e dt s s 0 0 n t n 1e st dt s 0 n L t n L t n 1 s n n 1 L t n2 s s n n 1 211 s s s s s n! n 1 ( >0) s
N (s) K1 ( s s1 ) D( s) s s1
s4 s4 ( s s1 ) 6 3 3 s ( s 1)( s ) 2 s 1 2 s 1
K2
3 s4 ( s ) 5 2 ( s 1)(s 3 ) 2 s 3
信号与线性系统-第10讲
( >-a )
5
2013-5-18
§5.4常用函数的拉普拉斯变换
3、t的正幂函数
L
t
n
0
t n e st dt
tn (t)
(n 为正整数 )
利用分部积分求解 u=tn, d v = e– s t dt
得到递推公式 依次类推,得到:
特例:n=1时
e ( s a ) t dt
1 sa
( >a ) ( >0)
单位阶跃函数 上式a =0,可得 单边正弦函数,利用欧拉公式
L (t ) 1
s
L sin t (t ) L
1 jt jt 1 1 1 (e e ) 2 2 2 j 2 j s j s j s
2
2013-5-18
信号与线性系统-第10讲
13
§5.5拉普拉斯反变换-部分分式(无重根 )
②将分母进行因式分解
2 D(s) (s
5 2
s
3 2
) ( s 1 )( s
3 2
)
将F(s) 中的真分式写成部分 分式,
计算系数
s4 1 K1 K2 2 s 2 5s 3 2 s 1 s 3 2
2013-5-18
信号与线性系统-第10讲
9
§5.5拉普拉斯反变换-部分分式
2、部分分式展开
设F(s)为有理函数,它可由两个s的多项式之比来表示。
bm s m bm1s m1 b1s b0 N ( s) F ( s) D( s) an s n an 1s n 1 a1s a0
k1 kk kn k2 s s1 s s2 s sk s sn
式中K1, K2,--, Kk,--, Kn 为待定系数。两边乘(s-sk),再令s=sk, 则
Kk
2013-5-18
N (s) ( s s k ) D ( s ) s sk
信号与线性系统-第10讲 2
拉普拉斯变换的收敛区
2013-5-18
开讲前言-本讲导入
拉普拉斯变换的计算
信号分析的方法的有效性,通过其工程应用价值 来体现; 拉普拉斯变换的价值就在于其计算复杂度低; 分析几种常用信号拉普拉斯变换,其他信号都可 以据此导出。
拉普拉斯反变换的计算
简单反变换,视察法可以求解; 工程应用,留数定理给出简单计算算法。
2013-5-18