三角形“四心”的向量性质及其应用
三角形四心的向量性质及应用 学生版
---1---
五.欧拉线: △ABC 的外心 O ,重心 G ,垂心 H 三点共线(欧拉线),且 OG 1 GH . 2
测试题
一.选择题
1. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC) , 0, ,
则点 P 的轨迹一定通过 ABC 的( )
A.外心
B.内心
8.在 △ABC 中,动点
P
2
满足: CA
2
CB
2 AB
CP
,则
P
点轨迹一定通过△ABC
的(
)
A.外心 B.内心 C.重心 D.垂心
9.已知 ABC 三个顶点 A、B、C 及平面内一点 P ,满足 PA PB PC 0 ,若实数 满足: AB AC AP ,
则 的值为(
A.2
)
B. 3 2
,若
2
AB
AB
AC
AB CB
BC CA ,则 ABC 为(
)
A.等腰三角形 二.填空题
C.重心
D.垂心
2.(03 全国理 4) O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , 0, ,
AB AC
则点 P 的轨迹一定通过 ABC 的(
)
A.外心
B.内心
C.重心
D.垂心
3. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , R , AB cosB AC cosC
变式:已知 D,E,F 分别为 △ABC 的边 BC,AC,AB 的中点.则 AD BE CF 0 .
二、三角形的外心的向量表示及应用
2
2
三角形“四心”在平面向量中的应用
知识导航三角形“四心”在平面向量中的应用史平笔一、有关三角形“四心”的概述1.垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边. 2.内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等. 3.重心:三角形三条中线的交点叫重心.它到三角形顶点的距离与该点到对边中点距离之比为 2∶1. 4.外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等. 二、三角形“四心”与平面向量的关系设(,),则(GG GG )向量必平1.AB + AC λ∈0 +∞λGG GG 分,该向量必通过AB AC ∠BAC △ABC 的内心. GG GG 设(,),则()AB AC 2.λ∈0 +∞λAB GG cos B + AC GG cos C 向量必垂直于边BC ,该向量必通过△ABC 的垂心. GG GG GG 3.△ABC 中,AB +AC 一定过BC 的中点,通过△ABC 的重心. 4.点O 是△ABC 的外心GG 2 GG 2 GG 2 圳OA =OB =OC . 5.点O 是△ABC 的重心GG GG GG 軋圳OA +OB +OC =0. GG GG GG GG GG GG 6.点O 是△ABC 的垂心圳OA ·OB =OB ·OC =OC ·OA . GG GG GG 軋7.点O 是△ABC 的内心圳a ·OA +b ·OB +c ·OC =0 (其中 a 、b 、c 为△ABC 三边). 的外心、重心、垂心共线,即GG ∥GG . ABC O G H OG OH 三、探究教材内容,链接高考试题【题源】人教版 A 版《数学》必修四 B 组 P125 页第5 题:已知向量GG ,GG ,GG 满足条件GG +GG +GG = OP 1 OP 2 OP 3OP 1 OP 2 OP 3 0軋,GG OP 1 = GG OP 2 = GG OP 3 =1,求证:△P 1P 2P 3是正三角形.思路分析对于本题中的条件GG OP 1 = GG OP 2 = GG OP 3 =1,容易想到,点O 是△P 1P 2P 3的外心,而另一个条件GG GG GG 軋表明,点O 是△P 1P 2P 3 的重心故本OP 1 +OP 2 +OP 3 =0 .题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形证明由.可知,是GG = GG = GG =1 OP 1 OP 2 OP 3 O △P 1P 2P 3三角形的外心,由GG GG GG 軋可知O 是三角形的重心,OP 1 +OP 2 +OP 3 =0 △P 1P 2P 3 可知点 O 是正△P 1P 2P 3的中心,即△P 1P 2P 3是正三角形.(2016·四川高考理科·T10)在平面内,定点A ,B ,C ,D 满足DA GG = DB GG = DC GG GG GG GG GG GG ,DA ·DB =DB ·DC =DC ·GG =2 ,动点,满足GG =1 ,GG GG ,则GG 2 的数DA P M AP PM =MC BM 最大值是()学A. 43B. 49C. 37+6姨3D. 37+2姨33 篇44 4 4 解析由上例可知△ABC 是正三角形,且 D 是46 GG GG = GG GG cos ∠ADB= GG △ABC 的中心,DA ·DB DA DB DA。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r⇔G 为ABC ∆的重心. 2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故C tan B tan A tan =++3.O 是ABC ∆的外心⇔||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记,,的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ruu u r u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心 解析:因为AB是向量AB u u u r 的单位向量设AB u u u r与AC u u u r 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r ,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
三角形重心、垂心、内心、外心的向量性质及简单应用
中学数学研究
41
三角形重心、垂心、内心、外心的向量性质及简单应用
广东省珠海市斗门区第一中学 (519100) 陈水松
一、三角形四心的表述与性质
(一) 重心——三角形三条边上的中线的交点叫做三角
形的重心. 重心将中线长度分成 2: 1 的两部分. 1. −O→A + −O−→B + −O−→C = −→0 ⇔O 是 △ABC 的重心.
AC BC −→ + −−→
.
|AC| |BC|
|−B−B+−−→ →CCb| −B)−→C, 所
= 以
4.
−−→ PO
=
−→ aP A
−−→ + bP B + a+b+c
−−→ cP C
⇔
O
为
△ABC
的内心,
P 为平面上任意点.
(二) 垂心——三角形三条高线的交点叫做三角形的垂
证明
因为
O
为
△ABC
证 法 1 设 O(x, y), A(x1, y1), B(x2, y2), C(x3, y3),
−→ −−→ −−→ OA+OB+OC
=
−→0
⇔
x=
x1 + x2 + x3
(x1 − x) + (x2 − x) + (x3 − x) = 0 (y1 − y) + (y2 − y) + (y3 − y) = 0
=
−→0 ,
所以
−→ AO
=
2−O−→D,
所以
A、O、D
三点共线,
三角形重心、外心、垂心、内心地向量表示及其性质
三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(OC |BC ||BA |(OB AC|AB |(OA =⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (OC )e e (OB )e e (OA 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++ 。
若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心解析:因为ABAB 是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由0OA OB OC ++=得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
三角形四心的向量性质及应用(详细答案版)
三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
三角形“四心”向量形式的结论及证明
三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。
它们的位置可以用向量的形式来描述。
本文将分别介绍三角形“四心”的向量形式以及其证明。
1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。
证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。
而中线的坐标可以通过两个顶点的坐标的平均值得到。
因此,重心的坐标是三个顶点坐标的平均值。
根据向量加法的性质,可以得到上述结论。
2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。
用O表示外心。
假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。
其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。
证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。
根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。
根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用知识点总结1.O是的重心;若O是的重心,则故;为的重心.2.O是的垂心;若O是(非直角三角形)的垂心,则故3.O是的外心(或)若O是的外心则故4.O是内心的充要条件是引进单位向量,使条件变得更简洁。
如果记的单位向量为,则刚才O是内心的充要条件可以写成,O是内心的充要条件也可以是。
若O是的内心,则故;是的内心;向量所在直线过的内心(是的角平分线所在直线);xx 例(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的()(A)外心(B)内心(C)重心(D)垂心解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在xx,AP平分,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H是△ABC所在平面内任一点,点H是△ABC的垂心.由,同理,.故H是△ABC的垂心. (反之亦然(证略))例3.(xx)P是△ABC所在平面上一点,若,则P是△ABC的(D )A.外心B.内心C.重心D.垂心解析:由.即则所以P为的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G是△ABC所在平面内一点,=0点G是△ABC的重心.证明作图如右,图中连结BE和CE,则CE=GB,BE=GCBGCE为平行四边形D是BC的中点,AD为BC边上的中线.将代入=0,得=0,故G是△ABC的重心.(反之亦然(证略))例5. P是△ABC所在平面内任一点.G是△ABC的重心.证明∵G是△ABC的重心∴=0=0,即由此可得.(反之亦然(证略))例6 若为内一点,,则是的()A.内心B.外心C.垂心D.重心解析:由得,如图以OB、OC为相邻两边构作平行四边形,则,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。
(四) 将平面向量与三角形外心结合考查例7若为内一点,,则是的()A.内心B.外心C.垂心D.重心解析:由向量模的定义知到的三顶点距离相等。
平面向量中三角形“四心”与应用
平面向量种三角形“四心”与应用一.重要结论1.重心:三角形三条中线的交点,重心为O →→→→=++⇔0OC OB OA 证明:G 是ABC ∆所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明:作图如右,图中GEGC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))重心性质1.P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB P A PG ++=.证明:CG PC BG PB AG P A PG +=+=+=⇒)()(3PC PB P A CG BG AG PG +++++=∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB P A PG ++=3,由此可得)(31PC PB P A PG ++=.(反之亦然(证略))重心性质2.如图,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N两点,且AM xAB = ,AN y AC = ,则113x y+=.证明:点G 是ABC ∆的重心,知GA GB GC ++=O ,得()()AG AB AG AC AG -+-+-=O ,有1()3AG AB AC =+ .又M ,N ,G 三点共线(A不在直线MN 上),于是存在,λμ,使得(1)AG AM AN λμλμ=++=且,有AG xAB y AC λμ=+ =1()3AB AC +,得113x y λμλμ+=⎧⎪⎨==⎪⎩,于是得113x y +=2.外心:三角形三条中垂线的交点.外心O →→→==⇔OC OB OA 222OCOB OA ==⇔→→→→→→→→→=⋅⎪⎭⎫⎝⎛+=⋅⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛+⇔0CA OA OC BC OC OB AB OB OA 外心性质:如图,O 为ABC ∆的外心,证明:1.2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.2.)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.3.)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:结合三角形中线向量公式及极化恒等式即可完成证明.附:如图,直角三角形ABC 中,2||→→→=⋅AB AC AB .3.内心.三角形三条角平分线的交点.内心为O 0=⋅+⋅+⋅⇔→→→→→→OC AB OB CA OA BC 内心性质.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()A.外心B.内心C.重心D.垂心解:ABAB AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.4.垂心:三角形三条高线的交点.垂心为O →→→→→→⋅=⋅=⋅⇔OAOC OC OB OB OA 垂心性质.点H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心.(反之亦然(证略))二.典例分析1.若O 在△ABC 所在的平面内,a ,b ,c 是△ABC 的三边,满足以下条件0a OA b OB c OC ⋅+⋅+⋅=,则O 是△ABC 的()A .垂心B .重心C .内心D .外心解析:,OB OA AB OC OA AC =+=+ 且0a OA b OB c OC ⋅+⋅+⋅=,()0a b c OA b AB c AC ∴++⋅+⋅+⋅=,化简得bc AB AC AO a b c AB AC ⎛⎫ ⎪=+⎪++⎝⎭,设AB AC AP AB AC =+ ,又AB AB与AC AC 分别为AB 和AC 方向上的单位向量,AP ∴平分BAC ∠,又,AO AP共线,故AO 平分BAC ∠,同理可得BO 平分ABC ∠,CO 平分ACB ∠,故O 是△ABC 的内心.故选:C.2.在ABC 中,向量AB 与AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且2||||BA BC BA BC ⋅=,则ABC为()A .等边三角形B .直角三角形C .锐角三角形D .等腰直角三角形解析:∵0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,∴BAC ∠的角平分线垂直于BC ,根据等腰三角形三线合一定理得到ABC为等腰三角形,又∵2||||BA BC BA BC ⋅= ,∴=45ABC ∠︒,则ABC 为等腰直角三角形,故选:D.3.已知D 是ABC 内部(不含边界)一点,若::5:4:3ABD BCD CAD S S S =△△△,AD xAB y AC =+,则x y +=()A .23B .34C .712D .1解析:如图,连接AD 并延长交BC 与点M,设点B 到直线AD 的距离为B d ,点C 到直线AD 的距离为C d ,因为::5:4:3ABD BCD CAD S S S =△△△,所以设5,4,3ABD BCD CAD S k S k S k ===△△△,因为AM 与向量AD 共线,设AM AD xAB y AC ==+ λλλ,BM BC = μ,AM AB BM ∴=+AB BC =+ μ()(1),AB AC AB AB AC =+-=-+ μμμ所以1x y λμλμ=-⎧⎨=⎩,即11x y μμλλλ-+=+=,AM AD DM AD AD +==λ()()()B C B C AD DM d d AD d d +⨯+=⨯+111()53432221153222B B c B C C AD d AD d d d k k k k k AD d AD d ⨯+⨯+⨯+++===+⨯+⨯,所以123x y +==λ故选:A4.已知点P 是ABC 所在平面内的动点,且满足AB AC OP OA AB AC λ⎛⎫⎪=++⎪ ⎪⎝⎭(0)λ>,射线AP 与边BC 交于点D ,若23BAC π∠=,||1AD = ,则||BC 的最小值为()AB .2C.D.解析:AB AB 表示与AB 共线的单位向量,AC AC表示与AC共线的单位向量,所以点P 在BAC ∠的平分线上,即AD 为BAC ∠的角平分线,在ABD △中,3BAD π∠=,||1AD = ,利用正弦定理知:2sin sin 3sin AD BD B Bπ=⨯=同理,在ACD △中,2sin sin 3sin AD CD C Cπ=⨯=,1122sin sin 2sin sin BC BD CD B C B C ⎫=+==+⎝⎭,其中3B C π+=,分析可知当6B C π==时,BC取得最小值,即min 12sin 6BC π=⨯=5.已知点O 是锐角ABC 的外心,8AB =,12AC =,3A π=,若AO x AB y AC =+ ,则69x y +=()A .6B .5C .4D .3解析:如图所示,过点O 分别作⊥OD AB ,OE AC ⊥,垂足分别为D ,E ;则D ,E 分别为AB ,AC 的中点,∴221183222AO AB AB ⋅==⨯= ,2211127222AO AC AC ⋅==⨯= ;又3A π=,∴812cos 483AB AC π⋅=⨯⨯= ,∵AO x AB y AC =+ ,∴2AO AB xAB y AC AB ⋅=+⋅ ,2AO AC xAC AB y AC ⋅=⋅+ ,化为326448x y =+①,7248144x y =+②,联立①②解得16x =,49y =;∴695x y +=.故选:B6.已知ABC 外接圆圆心为O ,G 为ABC 所在平面内一点,且0GA GB GC ++=.若AB AC += 52AO,则sin BOG ∠=()A .12B .14C.4D解析:取BC 的中点D ,连接AD ,由0GA GB GC ++=,知G 为ABC 的重心,则G 在AD 上,所以12()33AG AB AC AD =+= ,而24()55AO AB AC AD =+=,所以A ,G ,O ,D 四点共线,所以AB AC =,即AD BC ⊥,不妨令5AD =,则4AO BO ==,1OD =.所以sin sin 4BD BOG BOD BO ∠=∠==.故选:C .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos ABC ∠=______.解析:H 是ABC ∆的垂心⇔::tan :tan :tan BHC CHA AHB S S S A B C∆∆∆=⇔tan tan tan 0A HAB HBC HC∙∙∙++=由题设得tan tan tan345A B Cλ===.再由tan tan tan tan tan tan A B C A B C ++=,得λ=,tan 5B =.故cos 21ABC ∠=.故答案为:218.已知点O 为三角形ABC 所在平面内的一点,且满足1OA OB OC ===,3450OA OB OC ++=,则AB AC ⋅= ___.解析:∵1OA OB OC === ,3450OA OB OC ++= ,∴345OA OB OC +=-,两边同时平方可得,9162425OA OB ++⋅= ,∴0OA OB ⋅=,∵3455OC OA OB =--,则()()AB AC OB OA OC OA ⋅=-⋅- ()8455OB OA OA OB ⎛⎫=-⋅-- ⎪⎝⎭2284845555OB OA OB OA OB OA =-⋅-++⋅ 48400555=-++=,故答案为45.。
平面向量三角形四心(有详解)
平面向量三角形四心(有详解)平面向量三角形四心(有详解)平面向量是数学中的重要概念,可以用来表示空间中的点、线、面等几何对象。
在平面向量的运算和应用中,三角形是常见的几何形状之一。
本文将介绍平面向量与三角形四心的关系,并详细解析其性质和应用。
1. 三角形的四心概述三角形的四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。
这四个点有着各自的特点和性质,对于研究三角形的形状和性质非常重要。
1.1 重心三角形的重心是三条中线的交点,即三角形三个顶点与对应中点的连线交于一点。
重心在三角形中心位置,对称性较强,具有重要的几何意义。
1.2 外心三角形的外心是外接圆的圆心,即三角形三个顶点的垂直平分线的交点。
外心离三角形各顶点的距离相等,是三角形的外接圆的圆心。
1.3 内心三角形的内心是内切圆的圆心,即三角形三条边的角平分线的交点。
内心到三角形三边的距离相等,是三角形的内切圆的圆心。
1.4 垂心三角形的垂心是三条高线的交点,即三角形三个顶点与对边垂线的交点。
垂心所在的直线被称为垂心线,与三角形的三条边垂直。
2. 平面向量与四心关系的性质平面向量与三角形的四心之间具有一些重要的几何性质和关系,下面将分别介绍。
2.1 重心与向量以三角形的重心为原点建立直角坐标系,三角形三个顶点的位置向量相对于重心的位置向量之和为零。
即,三角形三个顶点的位置向量和为零向量。
2.2 外心与向量三角形的三个顶点为A、B、C,以外心O为原点建立直角坐标系。
则三角形顶点A、B、C的位置向量之和等于三倍的外心O的位置向量。
即,OA + OB + OC = 3OO。
2.3 内心与向量设三角形的内心为I,以内心I为原点建立直角坐标系。
则三角形三个顶点的位置向量与对边的位置向量之和分别为倍数的内心I的位置向量。
即,AI + BI = CI = 2II。
2.4 垂心与向量以三角形的垂心为原点建立直角坐标系,三角形三个顶点的位置向量与对边垂线的位置向量之和为零。
三角形“四心”问题与向量的关系
三角形“四心”问题与向量的关系一、三角形的重心与向量重心是三角形三条中线的交点,它到三角形顶点的距离与它到该顶点的对边中点的距离之比为2∶1.在向量表达形式中,设点G是△ABC所在平面内的一点,则当点G是△ABC 的重心时,有+ +=0或=(++)(其中P为平面内的任意一点);若+ += 0,则点G 是△ABC的重心;设λ∈[0,+∞),则λ(+)是BC边上的中线AD 上的任意向量,其所在直线必过重心.例1 已知O是△ABC所在平面内的一点,若+ += 0,则点O是△ABC的A.外心B.内心C.重心D.垂心解若+ +=0,则+ =-.以,为邻边作平行四边形OAC1B.设OC1与AB交于点D ,可知D为线段AB的中点,由+ =,可得=-,即C,O,D,C1四点共线.同理,设AO与BC交于点E,BO与AC交于点F,可知AE,BF也是△ABC的中线.所以,点O 是△ABC的重心.选C.例2 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ?(+),λ∈[0,+∞),动点P的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解由已知有=λ(+).由正弦定理可知||sin B=||sin C,则=(+).设边BC的中点为D,则由平行四边形法则,可知点P在边BC的中线AD所在的射线上,所以动点P 的轨迹一定通过△ABC的重心.选A.二、三角形的垂心与向量垂心是三角形三条高的交点,它与顶点的连线垂直于该顶点的对边.在向量表达形式中,若H是△ABC的垂心,则?=?=?或2+2=2+2=2+2;若?=?=?,则H是△ABC的垂心;设λ∈(0,+∞),则向量λ(+)垂直于边BC,该向量所在的直线通过△ABC的垂心.例3 已知O是△ABC所在平面内的一点,?=?=?,则点O是△ABC的A.外心B.内心C.重心D.垂心解由?=?,得?-?=0,即?(-)=0,可得?=0,所以⊥.同理可证⊥,⊥,所以点O是△ABC的垂心.选D.例4 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ(+),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解由已知得=λ(+),则?=λ(+)=λ?(+)=0,可知⊥,所以动点P的轨迹通过△ABC的垂心.选B.三、三角形的内心与向量内心是三角形三条内角平分线的交点,也是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点O是△ABC的内心,则有||?+||?+||?=0;若||?+||?+||?= 0,则点O是△ABC的内心;设λ∈(0,+∞),则向量λ(+)所在的直线必过三角形的内心.例5 已知O是平面内的一个定点,A,B,C是平面内不共线的三个点,动点P满足=+λ?(+),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC的A.外心B.内心C.重心D.垂心解由已知得= λ(+),是方向上的单位向量,是方向上的单位向量.根据平行四边形法则,可知以和为邻边构成的平行四边形是菱形,点P在∠BAC的角平分线上,故动点P 的轨迹通过△ABC的内心.选B.四、三角形的外心与向量外心是三角形三条边的中垂线的交点,也是三角形外接圆的圆心,它到三角形三个顶点的距离相等.在向量表达形式中,若点O是△ABC的外心,则(+)?=(+)?=(+)?=0(或||=||=||);若||=||= ||,则点O是△ABC的外心.例6 已知O是平面内的一个定点,若A,B,C是平面内不共线的三个点,动点P满足=+λ(+),λ∈(0,+∞),则动点P的轨迹一定通过△ABC的A.重心B.垂心C.外心D.内心解设线段BC的中点为D,则=.由已知有=λ(+).由?=λ(+)=λ?(+)=0,可知DP⊥BC,所以点P在线段BC的垂直平分线上,动点P的轨迹通过△ABC的外心.选C.五、三角形的“四心”与向量的综合例7 设H,G,O分别是△ABC的垂心、重心、外心,求证:H,G,O三点共线.证明如右图,圆O为△ABC的外接圆.作圆O的直径BD,连接DA,DC,有=-,DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,则CH∥DA,AH∥DC,可知AHCD是平行四边形.=+=+=+-=++,故=++.由点G是△ABC的重心,可知=(++).于是可得=,所以H,G,O三点共线.(责任编校?筑冯琪)。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形“四心”向量形式的充要条件应用1. 0 是AABC 的重心 O OA+OB + OC=0=AAOe = AAOB若0 是AABC 的重心,则“g AAX一故OA+OB + OC = 0;PC = 4-(戸N + RS + OG 为A4BC的心.ABoe △ABC2. 0 是AABC的垂心o OA OB =OB OC = OC・OA ;若0是AABC (非宜角三角形)的垂心,则^ABOC:S MO"S DB = tan A:taii B:taii C 故tan AOA + tan BOB + tan COC= 03. 0 是AABC的外心o lOAimOBITOCI (或dX? =OB^ =OC^)若0 是AABC 的外心则'ABOC:S^OB = sinZBOCtsinZAOC :slnZAOB = $ln2A ; sIn2B:sln2C故sInZAOA + slnlBOB + sInZCOC =CAI CAI ICBI4. 0是内心AABC的充要条件是6^"珞-篦川页务-壬引进单位向量,使条件变得更简洁。
如果记而,,不的单位向量为引,则刚才0是IBCIAABC 内心的充要条件可以写成OA. (Cj+63)= OB.(e,+€2)= 00.(62+63) = 0AABC内心的充要条件也可以是aOA + bOB+cOC = 0 。
若o是AABC的内心,则S QM; S4WB = 3: bj c故aOA + b 而 + cOC = OsSsInAOA + sInBOT + sInCOC = 0I丽1疙+|5?1莎+1乙5lP5 = 6oP是AABC的内心;向助鴿+ 所在直线过WC的内心(是ZBAC的角平广n分线所在直线);(一)将平面向量与三角形内心结合考査例1. 0是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足OP = OA + 2(AB AC —+),A € [0,4-3)JOO P点的轨迹一定通过M3C的()A Cl(A)外心(B)内心(C)重心(D)垂心4 R解析:因为A"_是向量廳的单位向量设廳与疋方向上的单位向量分别为勺和又AB "OP-OA = AP,则原式可化为川>=久2|+勺),由菱形的基本性质知AP平分Z3AC,那么在MBC中,AP平分ZBAC,则知选B.(二)将平面向量与三角形垂心结合考査“垂心定理”例2. 〃是△磁所在平面内任一点,HA H B^HB HC^HC HA O点〃是△磁的垂心.由蔽帀=帀汞0帀蔽-丽=0 0市益-oo丽丄衣,同理花丄而,HA±^•故〃是△磁的垂心•(反之亦然(证略))例3.(湖南)P是△ABC所在平面上一点,若PA・PB = PB、PC = P CPA,则P是ZkABC的(D )D.垂心A.外心B.内心C.重心解析:由莎•而=而•尢得莎而一而药=0.即PB・(PA — PC)=(X即PB・C4 = 0则PB丄(X同理PA丄BUPC丄AB所以P为MBC的垂心•故选D.(三)将平面向量与三角形重心结合考査“重心定理”例4. G是△磁所在平面内一点,刃+而+云=0o点G是△磁的重心.线. 证明作图如右,图中^ + GC = GE连结朋和⑦ 则d包,庞曲70 磁F为平行四边形=>e是%的中点,Q为%边上的中将而+云=52代入方+而+炭=0,得^ + ^=0=> ^ = -GE = -2GD,故G是△磁的重心•(反之亦然(证略))例5. P是△磁所在平面内任F G是△磁的重心。
高一三角形“四心”的向量性质及其应用(含解析)
1 1 1 1 1 定义 f ( P) = (λ , λ , λ ) ,若 f (G) = ( 1 , , ), f (Q) = ( , , ) 则( ) 3 3 3 2 3 6 A.点 Q 在 ∆ABG 内 B.点 Q 在 ∆BCG 内 C.点 Q 在 ∆CAG 内 D.以上皆不对 解析: G 为重心,画图得知 例 8. 如图,已知点 G 是 ∆ABC 的重心,过 G 作直线与 AB, AC 两边分别交于 M , N 两点,
=
1 5
2 1 AB + AC ,用 O 拆开得: 2 ⋅ OA + 2⋅ OB + OC = 0 , 法 2: AO = 5 5
由奔驰定理可得: S
∆BOC
: S ∆COA : S ∆AOB = 2 : 2 : 1
,则 S
∆ABC
: S ∆AOB = (2 + 2 + 1) : 1 = 5 .
A
2 1 4 1 AB + AC = AD + AC , 法 3: AO = 5 (取 D 为 AB 边的中点) , 5 5 5
∆ABC ∆ABC
∆AOC ∆ABC
⋅ AB +
S ∆AOB ⋅ AC S ∆ABC
A
O B C
两边乘以 S 整理可得: − S 移项整理为 (S − S − S 即得 S ⋅ OA + S ⋅ OB + S 注:若简记三个面积: S = S , S
∆ABC ∆AOC ∆OBC ∆OCA ∆OBC A
A
=λ
,S S
∆AOB ∆ABC
=µ
,S S
三角形重心外心垂心内心的向量表示及其性质
为三角形的 A 外心 B 内心
C 重心
D 垂心
(B
)
6.在三角形
ABC
中,动点
P
满足:
2
CA
2
CB
2AB• CP ,则
P
点轨迹一定通过△ABC
的:
(B) A 外心
B 内心
C 重心
D 垂心
7.已知非零向量A→B与A→C满足(|AA→→BB|
A→C +|A→C|
)·B→C=0 且|AA→→BB|
·|AA→→CC|
若 O 是 ABC (非直角三角形)的垂心,则 S BOC:S AOC:S AOB tan A:tan B:tan C
故 tan AOA tan BOB tan COC 0
3.O
是 ABC 的外心
|
OA
||
OB
||
OC
|
(或
2
OA
2
OB
2
OC
)
若 O 是 ABC 的外心则 SBOC:SAOC:SAOB sinBOC:sinAOC:sinAOB sin2A : sin2B : sin2C
例 11. 设 O、G、H 分别是锐角△ABC 的外心、重心、垂心.
求证 OG 1 OH
3
证明 按重心定理 G 是△ABC 的重心 OG 1 (OA OB OC)
3
按垂心定理 OH OA OB OC
由此可得 OG 1 OH .
3
补充练习
1.已知 A、B、C 是平面上不共线的三点,O 是三角形 ABC 的重心,动点 P 满足
3
证明 PG PA AG PB BG PC CG 3PG ( AG BG CG) (PA PB PC)
三角形四心的向量性质及证明
符号说明:“AB”表示向量,“|AB|”表示向量的模【一些结论】:以下皆是向量1 若P是△ABC的重心PA+PB+PC=02若P是△A BC的垂心PA*PB=PB*P C=PA*PC(内积)3 若P是△AB C的内心a PA+bP B+cPC=0(ab c是三边)4 若P是△ABC的外心|P A|=|P B|=|P C|(A P就表示A P向量|AP|就是它的模)5 AP=λ(AB/|AB|+AC/|A C|),λ∈[0,+∞) 则直线AP经过△ABC内心6 A P=λ(A B/|AB|cosB+AC/|AC|co sC),λ∈[0,+∞) 经过垂心7AP=λ(AB/|A B|sin B+AC/|AC|s inC),λ∈[0,+∞)或 AP=λ(AB+A C),λ∈[0,+∞) 经过重心8.若aOA=b OB+cO C,则0为∠A的旁心,∠A及∠B,∠C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知a OA向量+bOB向量+cOC向量=0向量,延长C O交AB于D,根据向量加法得:OA=O D+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+c OC=0,因为OD与OC共线,所以可设OD=kO C,上式可化为(k a+kb+c) OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:k a+kb+c=0,a DA+bD B=0向量,由aD A+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠A CB的平分线,同理可证其它的两条也是角平分线。
三角形重心、外心、垂心、内心的向量表示及其性质97114
三角形“四心”向量形式的充要条件应用知识点总结1.O 是ABC 的重心OA OB OC 0;若O 是ABC 的重心,u u urPG 1 (31则S B OC S AOC S AOB3S AB C故OA OB OC 0 ;u uur u u ur u u urPA PB PC ) G 为ABC的重心.2.O 是ABC 的垂心OA OB OB OC OC OA ;若O 是ABC ( 非直角三角形) 的垂心,则S BOC :S AOC :S AOB tan A :tan B :tan C故tan AOA tan BOB tan COC 03.O 是ABC 的外心 2 2 2|OA | |OB | |OC |(或OA OB OC )若O 是ABC 的外心则S BOC:S AOC:S AOB sin BOC:sin AOC:sin AOB sin2A : sin 2B : sin2C故sin 2A OA sin 2BOB sin 2COC 0OA ( AB AC ) OB ( BA BC ) OC ( CA CB ) 04.O 是内心ABC 的充要条件是|AB | AC |BA | |BC | | CA | |CB |引进单位向量,使条件变得更简洁。
如果记AB,BC,CA 的单位向量为e1 ,e2 ,e3 ,则刚才O 是ABC 内心的充要条件可以写成OA (e1 e3) OB (e1 e2) OC (e2 e3) 0,O 是ABC 内心的充要条件也可以是aOA bOB cOC 0 。
若O 是ABC 的内心,则S BOC :S AOC :S AOB a:b :c故aOA bOB cOC 0或sin A OA sin BOB sin COC 0; uuur uuur uuur uuur uuuruuur r| AB|PC |BC |PA |CA|PB 0 P 是ABC的内心;uuur uuur向量( u A u B ur u A u C ur )( 0)所在直线过ABC的内心( 是BAC的角平| AB| |AC |分线所在直线) ;范例(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足AB ACOP OA ( ),0, 则P点的轨迹一定通过ABC的( )AB ACA )外心( B)内心( C)重心( D)垂心COP OA AP ,则原式可化为 AP (e 1 e 2) ,由菱形的基本性质知ABC 中, AP 平分 BAC ,则知选 B.(二)将平面向量与三角形垂心结合考查“垂心定理”例 2 . H 是△ ABC 所在平面内任一点, HA HB HB HC HC HA 点 H 是△ ABC 的垂心 . 由 HA HB HB HC HB (HC HA ) 0 HB AC 0 HB AC ,同理HC AB ,HA BC .故H 是△ ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若 PA PB PB PC PC PA ,则P 是△ ABC 的(D ) A .外心B .内心C .重心D .垂心解析:由 PA PB PB PC 得PA PB PB PC 0.即PB (PA PC ) 0,即PB CA 0 则 PB CA,同理 PA BC,PC AB 所以 P 为 ABC 的垂心 . 故选 D.(三)将平面向量与三角形重心结合考查“重心定理”例 4. G 是△ ABC 所在平面内一点, GA GB GC =0 重心.连结 BE 和CE ,则CE=GB ,BE=GC BGCE 为平行四边形 D 是BC 的中点, AD 为BC 边 上的中线 .将 GB GC GE 代入 GA GB GC =0 ,得GA EG =0 GA GE 2GD ,故 G 是△ABC 的重心.(反之亦然(证略)) 例 5. P 是△ABC 所在平面内任一点 .G 是△ABC 的重心 PG 1(PA PB PC ). 3∵G 是△ ABC 的重心 ∴GA GB GC =0 AG BG CG =0,即3PG PA PB PC 由此可得 PG 13(PA PB PC) .(反之亦然(证略))3解析: 因为uuur 是向量 AB 的单位向量设 uuur uuurAB 与 AC 方向上的单位向量分e 1和 e 2 ,AP 平分 BAC ,那么在证明 作图如右,图中 GB GC GE证明 PG PA AG PB BG PC CG3PG (AG BG CG) (PA PB PC) uuur uuur例6 若O 为 ABC 内一点, OA OBu u u r,则 O 是 ABC 的( )A .内心B .外心C .垂心D .重心AB2y 3uuur uuur uuur r uuur uuuruuur解析:由 OA OB OC 0得OB OC OA ,如图以 OB 、 OC为相邻两边构作平行四边形,则uuur uuur uuur uuur uuurOB OC OD ,由平行四边形性质知 OE 1OD , OA 2 OE ,同理可证其它两边上的这个性 质,所以是重心,选 D 。
三角形“四心”向量形式的充要条件应用知识总结
三角形“四心”向量形式的充要条件应用1.O 是的重心;若O 是的重心,则故;1()3PG PA PB PC =++u u u r u u u r u u u r u u u r ⇔G 为ABC ∆的重心.2.O 是的垂心;若O 是(非直角三角形)的垂心,则故3.O 是的外心(或) 若O 是的外心则故 4.O是内心的充要条件是引进单位向量,使条件变得更简洁。
如果记的单位向量为,则刚才O 是内心的充要条件可以写成 ,O 是内心的充要条件也可以是 。
若O 是的内心,则故;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u u r u u u r u u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠u u u r u u u ru u ur u u u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心是向量AB u u u r 的单位向量设AB u u u r 与AC u u ur 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略)) 例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D)A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅即则AB PC BC PA CA PB⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心. 证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线. 将=+代入++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3+++++= ∵G 是△ABC 的重心 ∴++=0⇒++=0,即++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略)) 例6 若O 为ABC ∆内一点,0OA OB OC ++=u u u r u u u r u u u r r,则O 是ABC ∆ 的()A .内心B .外心C .垂心D .重心解析:由0OA OB OC ++=u u u r u u u r u u u r r 得OB OC OA +=-u u u r u u u r u u u r ,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=u u u r u u u r u u u r,由平行四边形性质知12OE OD =u u u r u u u r,2OA OE=,同理可证其它两边上的这个性质,所以是重心,选D 。
三角形重心、外心、垂心、内心的向量表示及其性质
三角形重心、外心、垂心、内心的向量表示及其性质三角形“四心”向量形式的充要条件应用知识点总结1.O 是ABC ∆的重心⇔0OC OB OA =++;若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔||||||==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是(((=⋅=⋅=⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是c b a =++ 。
若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);范 例(一例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足(ACAB++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心A CB1e 2e P解析:因为AB是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA 得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中GE GC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心AB(x 1C(x 2,yx H Q G D EF解析:由0OA OB OC ++=得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形“四心”的向量性质及其应用东阳市中天高级中学数学组:蔡航英自从2003年高考(江苏卷)第5题向量考出彩后,在中学数学向量教学时,挖掘三角形“四心”向量性质及其应用,引起了广泛重视。
与三角形的“四心”(重心、垂心、外心、内心)有关的向量问题是一类极富思考性和挑战性,又具有相当深度和难度的重要题型,备受各级各类考试命题者的青睐,频频出现在各级各类考试卷中,凸现出较好的区分和选拔功能,是考查学生数学能力和素养的极好素材,现将有关三角形“四心”向量性质及其应用罗列如下:一、三角形的重心的向量表示及应用命题一 已知A B C ,,是不共线的三点,G是A B C△内一点,若G A G B G C ++=0.则G是A B C △的重心.证明:如图1所示,因为G A G B G C ++=0,所以 ()G AG B G C =-+.以G B,G C为邻边作平行四边形B G C D ,则有G D G B G C =+,所以G D G A=-.又因为在平行四边形B G C D 中,B C 交G D 于点E , 所以B EE C=,G EE D=.所以A E 是A B C △的边B C 的中线. 故G 是A B C △的重心.点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,A B C △的重心为G O ,为坐标原点,O A=a,=O Bb,=O C c,试用a b c ,,表示O G.解:设A G 交B C 于点M ,则M 是B C 的中点,⎪⎩⎪⎨⎧=-=-=-GC OG c GB OG b GA OG aGCGB GA OG c b a ++=-++∴而03=-++∴OG c b a3cb a OG ++=∴点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.变式:已知D E F ,,分别为A B C△的边B C A CA ,,的中点.则A DB EC F ++=0.证明:如图的所示,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=GC CF GBBE GA AD 232323)(23GC GB GA CF BE AD ++-=++∴=++GC GB GAA DB EC F ∴++=..变式引申:如图4,平行四边形A B C D 的中心为O ,P 为该平面上任意一点,则1()4P O P A P B P C P D =+++.证明:1()2P O P A P C =+,1()2P O P B P D =+,1()4P O P A P B P C P D ∴=+++.点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P图3图2与O 重合,则上式变为O A O BO C O D +++=0.二、三角形的外心的向量表示及应用 命题二:已知G 是A B C △==,则点M 为△ABC 的外心。
例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过点(0,1),并与曲线交于P 、Q 两点,且满足0=⋅OQ OP,求直线l 的方程。
解 (1)设C (x,y ),则G (3,3y x ),图5其中0,≠yx ,由于GM ∥AB , 故my m=,外心M (0,3y ),为外心M ∴MC MA =,得222)3(1)3()0(y y y x +=-+-∴轨迹E 的方程是3322=+yx )0(≠xy(2)略。
三、三角形的垂心的向量表示及应用 命题三:已知G 是A B C △内一点,满足GCGB GC GA GB GA ⋅=⋅=⋅,则点G 为垂心。
(2005全国文12)证明:由0=⋅-⋅⋅=⋅PC PB PB PA PC PB PB PA得.即0,0)(=⋅=-⋅CA PB PC PA PB 即 则ABPC BC PA CA PB⊥⊥⊥,,同理所以P 为ABC ∆的垂心. 点评:本题将平面向量有关运算、“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识巧妙结合。
变式:若H 为△ABC 所在平面内一点,+=+=+则点H 是△ABC 的垂心 证明: 2222BCCA HB HA -=-BA CB CA BA HB HA ∙+=∙+∴)()(=∙--+BA CB CA HB HA )(得0即=∙+BA HC HC)(0HCAB ⊥∴ 同理HBAC⊥,HABC⊥故H 是△ABC 的垂心四、三角形的内心的向量表示及应用 命题四:O 是内心ABC ∆的充要条件是|CB ||CA |OC |BC ||BA |OB AC|AB |OA =-⋅=-⋅=-⋅变式1:如果记CA,BC ,AB 的单位向量为321e ,e ,e ,则O 是ABC ∆内心的充要条件是0)e e (OC )e e (OB )e e (OA322131=+⋅=+⋅=+⋅变式2:如果记CA,BC ,AB 的单位向量为321e ,e ,e ,则O 是ABC ∆内心的充要条件也可以是0OC c OB b OAa =++。
例4(2003江苏)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,满足AC AB OA OP ++=λ,[)+∞∈,0λ,则P 的轨迹一定通过△ABC的内心 。
解: 如图APOA OP+=由已知OA OP ++=λ,AC AB AP +=λ ,[)+∞∈,0λ∴[)+∞∈,0λ设ADAB =λ,AEAC =λ,∴D 、E 在射线AB 和AC 上。
∴AEAD AP +=∴AP 是平行四边行的对角线。
又= ,∴ADPE 是菱形。
∴点P 在EAD ∠ 即CAD ∠ 的平分线上。
故P 点的轨迹一定通过△ABC 的内心。
五、三角形外心与重心的向量关系及应用命题五:设△ABC 的外心为O ,则点G 为△ABC 重心的充要条件为:)(31OC OB OA OG ++=证明:如图8,设G 为重心,连结AG 并延长,交BC 于D ,则D 为BC的中点。
∴ )(3132AC AB OA AD OA AG OA OG ++=+=+=)(31)(31OC OB OA OA OC OA OB OA ++=-+-+=C图8反之,若)(31OC OB OA OG ++=,则由上面的证明可知:)(31AC AB AG +=设D 为BC 的中点,则)(21AC AB AD +=,从而ADAG 32=,∴G 在中线AD 上且AG=32AD ,即G 为重心。
六、三角形外心与垂心的向量关系及应用命题六:设△ABC 的外心为O ,则点H 为△ABC 的垂心的充要条件是OCOB OA OH ++=。
证明:如图2,若H 为垂心,以OB 、OC 为邻边作平行四边形OBDC , 则 OC OB OD +=∵O 为外心, ∴OB=OC ,∴平行四边形OBDC 为菱形 ∴ OD ⊥BC ,而AH ⊥BC , ∴ AH ∥OD ,∴存在实数λ,使得OC OB OD AH λλλ+== ∴ OC OB OA AH OA OH λλ++=+=①。
同理,存在实数μ,ω,使得OAOC OB BH OB OH μμ++=+= ②OB OA OC CH OC OH ωω++=+=③ 比较①、②、③可得,1===ωμλ,DB图9∴ OC OB OA OH ++=反之,若OC OB OA OH ++=,则OC OB AH +=,∵ O 为外心,∴OB=OC∴0||||)()(22=-=-∙+=∙OC OB OC OB OC OB CB AH ∴AH ⊥CB ,同理,BH ⊥AC 。
∴ H 为垂心。
例6、已知H 是△ABC 的垂心,且AH=BC ,试求∠A 的度数 解:设△ABC 的外接圆半径为R ,点O 是外心。
∵ H 是△ABC 的垂心 ∴OC OB OA OH ++= ∴OCOB OA OH AH +=-=∴)2cos 21(2)(||2222A R OC OB AH AH +=+==∵OBOC BC -= ,∴)2cos 21(2)(||2222A R OB OC BC BC-=-==∵AH=BC ,∴ A A 2cos 212cos 21-=+ ∴ 02cos =A而∠A 为△ABC 的内角,∴ 0<2A <360° 从而2A=90°或270° ∴ ∠A 的度数为45°或135°。
七、三角形的外心、重心、垂心的向量关系及应用命题七:△ABC 的外心、重心、垂心分别为O 、G 、H ,则O 、G 、H 三点共线(O 、G 、H 三点连线称为欧拉线),且OG=21GH 。
证明:如图10,由命题五、六知,连结AG 并延长,交BC 于D ,则D 为BC 的中点。
)(31OC OB OA OG ++=,OC OB OA OH ++=,∴OG OH 3=BC图10图11∴O 、G 、H 三点共线,且OG=21GH 。
例7、已知O (0,0),B (1,0),C (b ,c ),是OBC 的三个顶点。
试写出OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线。
(2002年全国)解:重心G 为)3,31(cb +,设H 点的坐标为),(0y b∵BCOH ⊥,BC =(b-1,c ),)1(0=++cy b b ,故cb b y)1(0-=H 点的坐标为))1(,(cb b b -设外心F 的坐标为),21(1y 由|FO |=|FC |,得ccb b y 2)1(21+-=,所以F 点的坐标为(,)。
从而可得出GH =(,),FH =(,)FH32GH =,GH ∥FH ,F 、G 、H 三点共线。
点评:向量不仅是平面解析几何入门内容,而且是解在关数形结合问题的重要工具。
它一般通过概念的移植、转化,将坐标与向量结合起来,从而使一些难题在思路上获得新的突破。
例8、已知P 是非等边△ABC 外接圆上任意一点,问当P 位于何处时,PA 2+PB 2+PC 2取得最大值和最小值。
解:如图11,设外接圆半径为R ,点O 是外心,则 PA 2+PB 2+PC 2=222)()()(OC PO OB PO OA PO +++++)(262OC PO OB PO OA PO R ⋅+⋅+⋅+= )(262OC OB OA PO R++⋅+=OHPO R⋅+=262(由命题六知:H 为垂心,)∴当P 为OH 的反向延长线与外接圆的交点时,有最大值6R 2+2R ·OH当P为OH的延长线与外接圆的交点时,有最小值6R2-2R·OH随着新课改的深入,向量成为高中新教材中新增加的重要内容之一,近几年高考都将向量放在显著的位置。