北京市朝阳区2017届高三(上)期中数学试卷(理科)(解析版)
朝阳区20172018第一学期期中高三数学理试题及答案
朝阳区20172018第一学期期中高三数学理试题及答案朝阳区2017-2018学年第一学期试题及答案)理(期中高三数学.北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试2017.11数学试卷(理工类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. ,则,已知集合}?1?{x|xA}1xx?{|log?B?IBA2A. C.B.2}x1}x|1?x{{x| D. 0}2}x{|x?x{x|?x?2,则2. 已知实数满足条件的最大值2,y?yx,y?x26,y?x 为A.12B. 10C. 8D. 6π只需将函数要得到函数的图象,3.?sin(2xy?)y?sinx 3的图象上所有的点π个单位长度,再将横坐标伸先向右平移A. 3长为原来的倍,纵坐标不变2.π个单位长度,横坐标缩短为B. 先向右平移61倍,纵坐标不变原来的21倍,纵坐标不变,C. 横坐标缩短为原来的2π个单位长度再向右平移6D. 横坐标变伸长原来的倍,纵坐标不变,2π个单位长度再向右平移34. 已知非零平面向量,则“”是“存b?b?aa?ba,在非零实数,使”的ab=A.充分而不必要条件B.必要而不充分条件条件.充分必要CD.既不充分也不必要条件5.已知是等差数列( )的前项和,且aSnnnn,以下有四个命题:SSS465①数列中的最大项为②数列的公?aaS10nn差0?d③ ④ 0?S0?S1011其中正确的序号是()C.②③④B. ②③ A.②④ D. ①③④6. 如图,在直角梯形中,,,是*****D//CD?EABuuuruuur 的中点,,则*****?DC2AB?A. B. C. D. ?11? ECDBA的五个球,某位教师从袋子里有编号为7. 2,3,4,5,6教师把所取两球编. 袋中任取两个不同的球号的和只告诉甲,其乘积只告诉乙,再让甲、乙分别推断这两个球的编号..”甲说:“我无法确定.”乙说:“我也无法确定我现在可以确“甲听完乙的回答以后,甲说:定两个球的编号了.” 你可以推断出抽取的两球中根据以上,3 B.一定没有号球号球.一定有A3号球6可能有D. 号球5可能有C.在区已知函数与函数8. xx)?g(x)?)f(x?sin(cosx)?xcos(sin,,且间都为减函数,设xx?cos)(0,(0,)xx,x,? ***-*****的大小关系是,则,x?cos(sinx)sin(cosx)?xx,x,x***-***** )(C. A. B.xx?x?x?xxx?xx***-*****1 D. x?x?x123分)共第二部分(非选择题110分,共5二、填空题:本大题共6小题,每小题 . 分.把答案填在答题卡上30的值执行如下图所示的程序框图,则输出9. i为 .开始i=1,S=S i=i+ 否14S 是? 输结束(第9题图)1值10. 已知,小的最且,则?x1?x?y1x? y . 是11?x,?(),x? 22的图象与直线若已知函数11. ?)xf(?)f(x?1?.?,xlogx 12 2的取值范围有两个不同的交点,则实数kxy?k.为12. 已知函数同时满足以下条件:)(xf 定义域为;① R;值域为② [0,1].③ 0(?x)?ff(x)? . 试写出一个函数解析式?)f(x某罐头生产厂计划制造一种圆柱形的密封13.若罐头盒的S铁皮罐头盒,其表面积为定值.的函数关,则罐头盒的体积与底面半径为Vrr ;当系式为时,罐头盒?r的体积最大.14. 5个三元子集表示为它的将集合,2,3,1=M.(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为;请写出满足上述条件的集合的5个三元子集 . (只写出一M 组)680.解答应三、解答题:本大题共分小题,共. 写出文字说明,演算步骤或证明过程15. (本小题满分13分)已知数列的前项和为( ),满足aSnnnn.12aSnn(Ⅰ)求数列的通项公式;an(Ⅱ)若数列满足,求数列的前?bba=logbnn1nnn 2项和.Tn16. (本小题满分13分)已知函数. π)?x2sin?cos(xxf()? 3(Ⅰ)求函数的最小正周期;)f(x (Ⅱ)当时,求函数的取值范围. π)xf(][0,x? 217. (本小题满分13分),中,. 在π23c?ABC△?A b74 (Ⅰ)试求的值;Ctan(Ⅱ)若,试求的面积. ABC△5a?18. (本小题满分14分)已知函数,.x?2e?a(x)?x)?ax?(fRa?(Ⅰ)求函数的单调区间;)f(x(Ⅱ)设,其中为函数的导函数.)f(f)(xx)(xf)(gx?判断在定义域内是否为单调函数,并)(xg说明理由.)分14本小题满分19. (12.已知函数?ln)?x?(fx xxee(Ⅰ)求曲线在点处的切线方程;(1)1,f)(xy?f1;(Ⅱ)求证:?lnx? xe(Ⅲ)判断曲线是否位于轴下方,并说明x)f(xy?理由.20. (本小题满分13分)数列是正整数的任一排列,且nL,1,2,aL,,aa,12n同时满足以下两个条件:①;②当时,().2|?aa?1?|a1ni1,2,L,2?n1?i1i记这样的数列个数为. )(nf(I)写出的值;(4)(3),fff(2),(II)证明不能被4整除. (2018)f北京市朝阳区2017-2018学年度第一高三年级期中统一考试2017.11数学答案(理工类)一、选择题:题号12345678答案CBCABDDC二、填空题:9. 5 10. 3 11.11 U2)lnU(,?2?,0?2)[2,2ln 1 ?ln2?2?2ln2?,?1?xx?1,1?cosx或或(答案不12. f(x)?|?|sinx(fx)? 20,x?1或x1.?唯一)12?SS 13.;3)(0πSrVr?r? 2?214. 24;, ,,,(答案不唯?,,1815,7143,,,***-*****2,,,,4911 一).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)解:(Ⅰ)当时,.1?a1?n1,当时,S?a?S2n?1n?nn,即a?2?a2aa=2a1n?nnn?1n所以数列是首项为1,公比为2的等比数an列.故,. ┈┈ 8分1n=2aN?nn(Ⅱ)由已知得.1?nn=1?a=log2=logb1n1n 22,因为1)n)?b(2?n?b?(1?1nn?所以是首项为0,公差为的等差数列. b1?nn(1?n)项和故的前13分. ┈┈ b?Tn nn216. (本小题满分13分)解:因为,π)?x?cos(xf(x)?2sin 3 所以ππ)xsin?sin?)2sinx?(cosxcosf(x 33 2x3sin?xcosxsin 13 ?sin2x?(1?cos2x) 22 . 3π?)?sin(2x? 23(Ⅰ)函数的最小正周期为┈┈ . π2π)x(f?T? 2.8分(Ⅱ)因为,所以. πππ2π],?[?2x?]x?[0, 3332 所以.3π,1]?[sin(2x) 23 以. 所3][0,1f(x)2 分┈┈ 13) 17. (本小题满分13分 .(Ⅰ)因为,,所以解:2C3sinsinC23cπ?A π37Bsin7b4)Csin(? 4.所以π3 )?7sinC?3Csin(2 4.所以π33π )C?cossinC?32(sincosC7sin 44 所以. C3sin3cosC?7sinC? 所以.C3cosC?4sin所以. ┈┈ 7分3?Ctan 4 ,,(Ⅱ)因为,由余弦定理π2c3?5aA b74得222?2bccos?bA?ca .***-*****?bb25?b?(?b)?2277所以,. 23c?7b?所以积△面的ABC . ┈┈ 13分***** AbcS?sin?7?2?3 2222)分14本小题满分18. (解:(Ⅰ)函数的定义域为)xf(..x)eax?2)(xf?(x)( Rxx?① 当时,令,解得:或,为?a?x)(xf0?(x)f2x?a2?减函数;令,解得:,为增函数. ?)xf(0?xf)(2a?x?② 当时,恒成立,函数为x?2?0(x?2)fe(x))(xf2?a减函数;③ 当时,令,解得:或,函数?a?x0)?(xf22x?a?为减函数;)f(x令,解得:,函数为增函数. ?)(xf0?fx()ax?2?综上,当时,的单调递减区间为;单)a,),f(x)(2,(2?a调递增区间为;,2)a(当时,的单调递减区间为;)xf(),(2a?当时,的单调递减区间为;单)a,(,2),()f(x2?a调递增区间为. )(2,a┈ 8分(Ⅱ)在定义域内不为单调函数,以下说)(xg明:.x?2e?3a2]?xf[(x)?x(?a?4)xg()记,则函数为开口向上的二22?3x?(?xh()x?a4)?a)x(h次函数.方程的判别式恒成2202)44a?8?(aa?0?x)h(.立. 从而有正有负所以,有正有负. ?)h(x)x(g在定义域内不为单调函数. 故)xg(┈┈ 14分19. (本小题满分14分)解:函数的定义域为,)(0,112 (x)f 2xxexe11,(Ⅰ),又1?ff(1)(1)? ee曲线在处的切线方程为)xy?f(1x?111. 11)xy( eee12 即 . 0+1?(y)x ee 4分┈┈11. (Ⅱ)“要证明””等价于“?lnxx?xlnx,(?0) exe. 设函数x)x?xlng(1. ,解得令x0xx)=1+ln?g( e 111 x),(0,)(eee )(gx?0.1 )g(x?Z]e111.故的最小值为. 因此,函数)xg(lnxg(x)? eee1. 即lnx xe ┈┈ 9分(Ⅲ)曲线位于轴下方. 理由如下:x)xy?f(x*****. 由(Ⅱ)可知,所以)(?(x)lnxf xxexexexee1?xx1,则设. ?(x?k)k(x) xxeee令得;令得.0)k?k((x)?0x1?1x0?x?所以在上为增函数,上为减函数. 10,1,+)xk(所以当时,恒成立,当且仅当时,(1)=0?kk(x)1xx?0?.0?k(1)1,所以恒成立. 又因为0?f(x)0f(1)? e故曲线位于轴下方. x)x(?yf 14分┈┈) 20. (本小题满分13分. :)(Ⅰ解42,?(3)1,?(2)fff?(4)┈┈ 3分(Ⅱ)证明:把满足条件①②的数列称为项的n首项最小数列.对于个数的首项最小数列,由于,故或2?a1a?n213.,则构成项的首项最(1)若1?1,La,?2aa?1,a?1n?n223小数列,其个数为;1)?f(n(2)若,则必有,故构3?L,a?a3,aa3,a?23,a?4n*****成项的首项最小数列,其个数为;3)(n?f3n?则或. 若设是这数列中第一个3()aaa?53,=4?ak?1332是出现的偶数,则前项应该是,a1?,2k1,3,Lkk21k?或,即与是相邻整数.aa2k?2k?1k由条件②,这数列在后的各项要么都小于ak?1它,要么都大于它,因为2在之后,故aak?1k?1后的各项都小于它.这种情况的数列只有一个,即先排递增的奇数,后排递减的偶数.综上,有递推关系:,. 13)1)f(n?nf()?f(n?5?n由此递推关系和(I)可得,各(2018),f(2),f(3),Lf数被4除的余数依次为:1,1,2,0,2,1,2,1,3,2,0,0,3,0,1,1,2,0,…它们构成14为周期的数列,又,2?144?14?2018.所以被4除的余数与被4除的余数(2)f(2018)f相同,都是1,故不能被4整除. (2018)f 分13 ┈┈。
2017北京市朝阳区高三(上)期中数学(理)
2017北京市朝阳区高三(上)期中数 学(理) 2017.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{|1}A x x =>,2{|log 1}B x x =>,则AB =A. {|1}x x >B. {|12}x x <<C. {|2}x x >D. {|0}x x >2. 已知实数,x y 满足条件2,2,6,x y x y ≥⎧⎪≥⎨⎪+≤⎩则2x y +的最大值为A. 12B. 10C. 8D. 63.要得到函数πsin(2)3y x =−的图象,只需将函数sin y x =的图象上所有的点 A. 先向右平移π3个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变 B. 先向右平移π6个单位长度,横坐标缩短为原来的12倍,纵坐标不变C. 横坐标缩短为原来的12倍,纵坐标不变,再向右平移π6个单位长度D. 横坐标变伸长原来的2倍,纵坐标不变,再向右平移π3个单位长度4. 已知非零平面向量,a b ,则“+=+a b a b ”是“存在非零实数λ,使λb =a ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.已知n S 是等差数列{}n a (n *∈N )的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S > ④110S < 其中正确的序号是( )A. ②③B. ②③④C. ②④D. ①③④6. 如图,在直角梯形ABCD 中,AB //CD ,AD DC ⊥,E 是CD 的中点1DC =,2AB =,则EA AB ⋅=7. 袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,再让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲说:“我现在可以确定两个球的编号了.” 根据以上信息, 你可以推断出抽取的两球中A .一定有3号球 B.一定没有3号球 C.可能有5号球 D.可能有6号球8. 已知函数()sin(cos )f x x x =−与函数()cos(sin )g x x x =−在区间(0)2π,都为减函数,设123,,(0)2x x x π∈,,且11cos x x =,22sin(cos )x x =,33cos(sin )x x =,则123,,x x x 的大小关系是( ) A. 123x x x << B. 312x x x << C. 213x x x << D. 231x x x << 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 执行如下图所示的程序框图,则输出i 的值为 .(第9题图)开始 i =1,S =2 结束i =i +1S >14?输出i 是否S=S+2i ECDBA10. 已知1x >,且1x y −=,则1x y+的最小值是 . 11. 已知函数1211(),,22()1log ,.2xx f x x x ⎧≤⎪⎪=⎨⎪>⎪⎩若()f x 的图象与直线y kx =有两个不同的交点,则实数k 的取值范围为 .12. 已知函数()f x 同时满足以下条件: ① 定义域为R ; ② 值域为[0,1]; ③ ()()0f x f x −−=.试写出一个函数解析式()f x = .13. 某罐头生产厂计划制造一种圆柱形的密封铁皮罐头盒,其表面积为定值S . 若罐头盒的底面半径为r ,则罐头盒的体积V 与r 的函数关系式为 ;当r = 时,罐头盒的体积最大.14. 将集合=M {}1,2,3,...,15表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为 ;请写出满足上述条件的集合M 的5个三元子集 . (只写出一组)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知数列{}n a 的前n 项和为n S (n *∈N ),满足21n n S a =−.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足12=log n n b a ,求数列{}n b 的前n 项和n T .16. (本小题满分13分)已知函数π()2sin cos()3f x x x =⋅−.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈时,求函数()f x 的取值范围.17. (本小题满分13分)在ABC △中,π4A =,327c b =. (Ⅰ)试求tan C 的值;(Ⅱ)若5a =,试求ABC △的面积.18. (本小题满分14分)已知函数2()()e xf x x ax a −=−+⋅,a ∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()()g x f x '=,其中()f x '为函数()f x 的导函数.判断()g x 在定义域内是否为单调函数,并说明理由.19. (本小题满分14分)已知函数12()ln e e xf x x x=−−. (Ⅰ)求曲线()y f x =在点()1,(1)f 处的切线方程; (Ⅱ)求证:1ln e x x≥−; (Ⅲ)判断曲线()y f x =是否位于x 轴下方,并说明理由.20. (本小题满分13分)数列12,,,n a a a 是正整数1,2,,n 的任一排列,且同时满足以下两个条件:①11a =;②当2n ≥时,1||2i i a a +−≤(1,2,,1i n =−).记这样的数列个数为()f n . (I )写出(2),(3),(4)f f f 的值; (II )证明(2018)f 不能被4整除.数学试题答案一、 选择题: 题号 1 2 3 4 5 6 7 8 答案CBCABDDC二、 填空题:9. 5 10. 3 11. [2,2)1ln 2(,2ln 2)−∞−⋅ 1ln 21,02ln 2⎛⎫ ⎪− ⎪⎝⋅⎭12. ()|sin |f x x =或cos 12x +或2,11,()0,1 1.x x f x x x ⎧−≤≤=⎨><−⎩或(答案不唯一)13. 312π(0)22S V Sr r r π=−<<π; S6π6π14. 24;{}1815,,, {}3714,,,{}5613,,,{}21012,,,{}4911,,(答案不唯一) 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分) 解:(Ⅰ)当1n =时,11a =. 当2n ≥时,1n n n a S S −=−,122n n n a a a −=−,即1=2n n a a −所以数列{}n a 是首项为1,公比为2的等比数列. 故1=2n n a −, n *∈N . ┈┈ 8分 (Ⅱ)由已知得11122=log =log 2=1n n n b a n −−.因为1(1)(2)1n n b b n n −−=−−−=−,所以{}n b 是首项为0,公差为1−的等差数列. 故{}n b 的前n 项和(1)2n n n T −=. ┈┈ 13分16. (本小题满分13分)π所以ππ()2sin (cos cossin sin )33f x x x x =⋅+ 2sin cos 3sin x x x =⋅+13sin 2(1cos2)22x x =+− π3sin(2)32x =−+. (Ⅰ)函数()f x 的最小正周期为2ππ2T ==. ┈┈ 8分 (Ⅱ)因为π[0,]2x ∈,所以ππ2π2[,]333x −∈−.所以π3sin(2)[,1]32x −∈−.所以3()[0,1]2f x ∈+. ┈┈ 13分17. (本小题满分13分)解:(Ⅰ)因为π4A =,327c b =,所以sin sin 323πsin 7sin()4C C B C ==−. 所以3π7sin 32sin()4C C =−.所以3π3π7sin 32(sin cos cos sin )44C C C =−.所以7sin 3cos 3sin C C C =+. 所以4sin 3cos C C =.所以3tan 4C =. ┈┈ 7分 (Ⅱ)因为5a =,π4A =,327c b =,由余弦定理2222cos a b c bc A =+−得 223232225()2772b b b b =+−⋅⋅. 所以7b =,32c =. 所以△ABC 的面积11221sin 7322222S bc A ==⋅⋅⋅=. ┈┈ 13分18. (本小题满分14分)解:(Ⅰ)函数()f x 的定义域为{}x x ∈R .()(2)()e xf x x x a −'=−−−.① 当2a <时,令()0f x '<,解得:x a <或2x >,()f x 为减函数;② 当2a =时,2()(2)e0xf x x −'=−−≤恒成立,函数()f x 为减函数;③ 当2a >时,令()0f x '<,解得:2x <或x a >,函数()f x 为减函数;令()0f x '>,解得:2x a <<,函数()f x 为增函数. 综上,当2a <时,()f x 的单调递减区间为(,),(2,)a −∞+∞;单调递增区间为(,2)a ; 当2a =时,()f x 的单调递减区间为(,)−∞+∞ ;当2a >时,()f x 的单调递减区间为(,2),(,)a −∞+∞;单调递增区间为(2,)a .┈┈ 8分(Ⅱ)()g x 在定义域内不为单调函数,以下说明:2()()[(4)32]e x g x f x x a x a −'''==−+++⋅.记2()(4)32h x x a x a =−+++,则函数()h x 为开口向上的二次函数. 方程()0h x =的判别式2248(2)40a a a ∆=−+=−+> 恒成立. 所以,()h x 有正有负. 从而()g x '有正有负.故()g x 在定义域内不为单调函数. ┈┈ 14分19. (本小题满分14分) 解:函数的定义域为(0,)+∞,2112()e e x f x x x'=−−+ (Ⅰ)1(1)1e f '=−,又1(1)e f =−,曲线()y f x =在1x =处的切线方程为111(1)1e e e y x +=−−+.即12()+10e ex y −1−−=. ┈┈ 4分(Ⅱ)“要证明1ln ,(0)e x x x≥−>”等价于“1ln e x x ≥−”.设函数()ln g x x x =. 1x 1(0,)e1e 1(,)e+∞ ()g x '−0 +()g x1e−因此,函数()g x 的最小值为11()e e g =−.故1ln ex x ≥−. 即1ln e x x≥−. ┈┈ 9分 (Ⅲ)曲线()y f x =位于x 轴下方. 理由如下:由(Ⅱ)可知1ln e x x ≥−,所以1111()()e e e ex x x f x x x ≤−=−. 设1()e e x x k x =−,则1()ex xk x −'=.令()0k x '>得01x <<;令()0k x '<得1x >. 所以()k x 在()0,1上为增函数,()1+∞,上为减函数.所以当0x >时,()(1)=0k x k ≤恒成立,当且仅当1x =时,(1)0k =. 又因为1(1)0ef =−<, 所以()0f x <恒成立. 故曲线()y f x =位于x 轴下方. ┈┈ 14分20. (本小题满分13分)(Ⅰ)解:(2)1,(3)2,(4)4f f f ===. ┈┈ 3分 (Ⅱ)证明:把满足条件①②的数列称为n 项的首项最小数列. 对于n 个数的首项最小数列,由于11a =,故22a =或3. (1)若22a =,则231,1,,1n a a a −−−构成1n −项的首项最小数列,其个数为(1)f n −;(2)若233,2a a ==,则必有44a =,故453,3,,3n a a a −−−构成3n −项的首项最小数列,其个数为(3)f n −;(3)若23,a =则3=4a 或35a =. 设1k a +是这数列中第一个出现的偶数,则前k 项应该是1,3,,21k −,1k a +是2k或22k −,即k a 与1k a +是相邻整数.由条件②,这数列在1k a +后的各项要么都小于它,要么都大于它,因为2在1k a +之后,故1k a +后的各项都小于它.这种情况的数列只有一个,即先排递增的奇数,后排递减的偶数.由此递推关系和(I )可得,(2),(3),,(2018)f f f 各数被4除的余数依次为:1,1,2,0,2,1,2,1,3,2,0,0,3,0,1,1,2,0,… 它们构成14为周期的数列,又2018141442=⨯+,所以(2018)f 被4除的余数与(2)f 被4除的余数相同,都是1,故(2018)f 不能被4整除. ┈┈ 13分word 下载地址。
朝阳区2017-2018学年度第一学期高三年级期中统一考试
北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学试卷(文史类) 2017.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{|1}A x x =>,2{|log 1}B x x =>,则A B =A. {|2}x x >B. {|12}x x <<C. {|1}x x >D. {|0}x x > 2. 执行如右图所示程序框图,则输出i 的值为 .A .3B .4C .5D .63. 已知,m n 表示两条不同的直线,α表示平面,下列说法正确的是A .若//m α,//n α,则//m nB .若//m α,m n ⊥,则n α⊥C .若m α⊥,m n ⊥,则//n αD .若m α⊥,//m n ,则n α⊥ 4. 要想得到函数πsin(2)3y x =-的图象,只需将函数sin y x =的图象上所有的点 A. 先向右平移π3个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变 B. 先向右平移π6个单位长度,横坐标缩短为原来的12倍,纵坐标不变C. 横坐标缩短为原来的12倍,纵坐标不变,再向右平移π6个单位长度D. 横坐标变伸长原来的2倍,纵坐标不变,再向右平移π3个单位长度5. 已知非零平面向量,a b ,则“+=+a b a b ”是“存在非零实数λ,使λb =a ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 6.一个几何体的三视图如图所示,则该几何体的体积为 A .5 B .6 C .7 D .87. 函数()f x 在其定义域内满足()xf x '()e xf x +=,(其中()f x '为函数()f x 的导函数),(1)e f =,则函数()f xA .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值又无极小值8. 袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中A .一定有3号球 B.一定没有3号球 C.可能有5号球 D.可能有6号球第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知数列{}n a 为等比数列,11a =,48a =,则{}n a 的前5项和5S =___________. 10.在平面直角坐标系xOy 中,已知点(0,1)A ,将线段OA 绕原点O 按逆时针方向旋转60︒,得到线段OB ,则向量OB的坐标为___________.11. 已知函数12log , 0< 1,()21, 1.x x x f x x -<⎧⎪=⎨⎪+≥⎩若方程()f x m =有2个不相等的实数根,则实数m 的正视图侧视图俯视图取值范围是 .12. 某四棱锥的三视图如图所示,该四棱锥的 体积为 ;表面积为 .13. 某品牌连锁便利店有n 个分店,A,B,C 三种商品在各分店均有销售,这三种商品的单价表1某日总店向各分店分配的商品A,B,C 的数量如表2所示:表2表3表示该日分配到各分店去的商品A,B,C 的总价和总重量:表3则a = ;b = . 14. 已知函数()f x 同时满足以下条件: ①定义域为R ; ②值域为[0,2]; ③()()0f x f x --=.试写出一个函数解析式()f x = .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数π()2sin cos()3f x x x =-. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈时,求函数()f x 的取值范围.16. (本小题满分13分)已知数列{}n a 的前n 项和为()n S n *∈N ,满足21n n S a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n a 的前n 项积为n T ,求n T .17. (本小题满分13分) 已知ABC ∆中,3B π=,(Ⅰ)若A ; (Ⅱ)若ABC ∆的面积为,求的值.18.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PA ⊥平面ABCD ,E 是棱PA 上的一个动点.(Ⅰ)若E 为PA 的中点,求证://PC 平面BDE ;a =b =2b(Ⅱ)求证:平面PAC ⊥平面BDE ;(Ⅲ)若三棱锥P BDE -的体积是四棱锥P ABCD -体积的13,求EA PA的值.19. (本小题满分13分) 已知函数1()(1)ln f x kx k x x=--+,k ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0k >时,若函数()f x 在区间(1,2)内单调递减,求k 的取值范围.20. (本小题满分14分)已知函数12()ln e e x f x x x=-- . (Ⅰ)求曲线()y f x =在点(1(1))f ,处的切线方程; (Ⅱ)求证:1ln e x x≥-; (Ⅲ)判断曲线()y f x =是否位于x 轴下方,并说明理由.北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学试题答案(文史类) 2017.11PADBE一、选择题三、解答题15. (本小题满分13分)解:因为π()2sin cos()3f x x x =⋅-,所以ππ()2sin (cos cos sin sin )33f x x x x =⋅+2sin cos x x x =⋅1sin 2cos 2)2x x =+- πsin(2)3x =-+(Ⅰ)函数()f x 的最小正周期为2ππ2T ==. ……………………………… 8分 (Ⅱ)因为π[0,]2x ∈,所以ππ2π2[,]333x -∈-.所以πsin(2)[3x -∈. 所以()[0,1f x ∈. ……………………………… 13分 16. (本小题满分13分) 解:(Ⅰ) 由21n n S a =-可得, 当1n =时,11a =.当2n ≥时1n n n a S S -=-,122n n n a a a -=-,即1=2n n a a - 则数列{}n a 为首项为1,公比为2的等比数列,即1=2n n a -,n *∈N . ………………………………8分 (Ⅱ)(1)0123(1)212322n n n n n T a a a a -++++⋅⋅⋅+-=⋅⋅⋅⋅⋅⋅⋅== ………………………………13分17. (本小题满分13分)(Ⅰ)解:由正弦定理sin 3=所以. 在三角形中,由已知,所以4A π=. ………………………………6分 (Ⅱ)由面积公式1sin 2S ac B =,解得由余弦定理知,所以………………………………13分18. (本小题满分14分)解:(Ⅰ)证明:如图,设AC 交BD 于O ,连接EO .因为底面ABCD 是菱形,所以O 是AC 的中点. 又因为E 为PA 的中点, 所以//EO PC .因为PC ⊄平面BDE , EO ⊂平面BDE , 所以//PC 平面BDE . ……………………4分 (Ⅱ)证明:因为底面ABCD 是菱形,所以AC BD ⊥.又因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥. 因为PA AC A = , 所以BD ⊥平面PAC . 因为BD ⊂平面BDE ,所以平面PAC ⊥平面BDE . ………………………………10分(Ⅲ)设四棱锥P ABCD -的体积为V .因为PA ⊥平面ABCD ,所以13ABCD V S PA ∆=⋅⋅. 又因为底面ABCD 是菱形,sin sin a b A B =sin 2A =b a >12=c =2222cos 218614b a c ac B =+-=+-=b =PADBOE PADBE所以12ABD BCD ABCD S S S ∆∆∆==, 所以1132P ABD ABD V S PA V -∆=⋅⋅=.根据题意,13P BDE V V -=,所以111236E ABD P ABD P BDE V V V V V V ---=-=-=.又因为13E ABD ABD V S EA -∆=⋅⋅,所以13E ABD P ABD V EA PA V --==. ………………………………14分 19. (本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.211()k f x k x x+'=-+ 22(1)1kx k x x -++= 2(1)(1)kx x x--=(1)当0k ≤时,令()0f x '>,解得01x <<,此时函数()f x 为单调递增函数;令()0f x '<,解得1x >,此时函数()f x 为单调递减函数.(2)当0k >时,①当11k<,即1k > 时, 令()0f x '>,解得10x k<<或1x >,此时函数()f x 为单调递增函数; 令()0f x '<,解得11x k<<,此时函数()f x 为单调递减函数. ②当1k = 时,()0f x '≥恒成立,函数()f x 在()0+∞,上为单调递增函数; ③当11k>,即01k << 时, 令()0f x '>,解得01x <<或1x k>,此时函数()f x 为单调递增函数; 令()0f x '<,解得11x k<<,此时函数()f x 为单调递减函数. ……………9分 综上所述,当时,函数的单调递增区间为,单调递减区间为; 0k ≤()f x ()0,1()1+∞,当时,函数的单调递增区间为,,单调递减区间为; 当时,函数的单调递增区间为; 当时,函数的单调递增区间为,,单调递减区间为. (Ⅱ)2(1)(1)()kx x f x x --'=,因为函数()f x 在(1,2)内单调递减,所以不等式在2(1)(1)0kx x x--≤在(1,2)上成立. 设()(1)(1)g x kx x =--,则(1)0,(2)0,g g ≤⎧⎨≤⎩即00210,k ≤⎧⎨-≤⎩,解得102k <≤. …………13分20. (本小题满分14分) 解:函数的定义域为(0,)+∞,2112()e e x f x x x'=--+. (Ⅰ)1(1)1e f '=-,又1(1)e f =-,曲线()y f x =在1x =处的切线方程为111(1)1e e e y x +=--+, 即12()+10e ex y -1--=. ┈┈ 4分(Ⅱ)“要证明1ln (0)e x x x ≥->”等价于“1ln e x x ≥-”设函数()ln g x x x =.令()=1+ln 0g x x '=,解得1ex =.因此,函数()g x 的最小值为()e e g =-.故ln ex x ≥-. 01k <<()f x ()0,1(+)k ∞1,(1)k1,1k =()f x ()0+∞,1k >()f x (0)k 1,()1+∞,(+)k∞1,即1ln e x x≥-. ┈┈ 9分 (Ⅲ)曲线()y f x =位于x 轴下方. 理由如下:由(Ⅱ)可知1ln e x x ≥-,所以1111()()e e e ex x x f x x x ≤-=-. 设1()e e x x k x =-,则1()ex xk x -'=.令()0k x '>得01x <<;令()0k x '<得1x >. 所以()k x 在()0,1上为增函数,()1+∞,上为减函数.所以当0x >时,()(1)=0k x k ≤恒成立,当且仅当1x =时,(1)0k =. 又因为1(1)0ef =-<, 所以()0f x <恒成立. 故曲线()y f x =位于x 轴下方. ………………………14分。
2017届北京市朝阳区高三(上)期中数学试卷(理科)(解析版)
2016-2017学年北京市朝阳区高三〔上〕期中数学试卷〔理科〕一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=〔〕A.{x|0<x<1}B.{x|x<0} C.{x|x>2} D.{x|1<x<2}2.以下函数中,在其定义域上既是偶函数又在〔0,+∞〕上单调递减的是〔〕A.y=x2 B.y=x+1 C.y=﹣lg|x|D.y=﹣2x3.假设a=log,c=log0.6,则a,b,c的大小关系是〔〕A.a>b>c B.b>c>a C.c>b>a D.b>a>c4.已知函数f〔x〕=ax2﹣x,假设对任意x1,x2∈[2,+∞〕,且x1≠x2,不等式>0恒成立,则实数a的取值范围是〔〕A.B.C.D.5.设m∈R且m≠0,“不等式m+>4”成立的一个充分不必要条件是〔〕A.m>0 B.m>1 C.m>2 D.m≥26.已知三角形ABC外接圆O的半径为1〔O为圆心〕,且2++=0,||=2||,则•等于〔〕A.B.C.D.7.已知函数f〔x〕=则函数g〔x〕=f〔f〔x〕〕﹣的零点个数是〔〕A.4 B.3 C.2 D.18.5个黑球和4个白球从左到右任意排成一排,以下说法正确的选项是〔〕A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每题5分,共30分.把答案填在答题卡上.9.设平面向量=〔1,2〕,=〔﹣2,y〕,假设∥,则y=.10.函数f〔x〕=cos2x﹣sin2x的单调递减区间为.11.各项均为正数的等比数列{{a n}的前n项和为S n,假设a3=2,S4=5S2,则a1的值为,S4的值为.12.已知角A为三角形的一个内角,且,则tanA=,tan〔A+〕=.13.已知函数f〔x〕=在〔﹣∞,+∞〕上是具有单调性,则实数m的取值范围.14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知数列{a n}〔n∈N*〕是公差不为0的等差数列,a1=1,且,,成等比数列.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设数列{}的前n项和为T n,求证:T n<1.16.已知函数f〔x〕=asinx﹣cosx〔a∈R〕的图象经过点〔,0〕.〔Ⅰ〕求f〔x〕的最小正周期;〔Ⅱ〕假设x∈[,],求f〔x〕的取值范围.17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.〔Ⅰ〕求sin∠DBC;〔Ⅱ〕求AD.18.已知函数f〔x〕=﹣ax+cosx〔a∈R〕,x∈[﹣,].〔Ⅰ〕假设函数f〔x〕是偶函数,试求a的值;〔Ⅱ〕当a>0时,求证:函数f〔x〕在〔0,〕上单调递减.19.已知函数f〔x〕=e x〔x2﹣a〕,a∈R.〔Ⅰ〕当a=1时,求曲线y=f〔x〕在点〔0,f〔0〕〕处的切线方程;〔Ⅱ〕假设函数f〔x〕在〔﹣3,0〕上单调递减,试求a的取值范围;〔Ⅲ〕假设函数f〔x〕的最小值为﹣2e,试求a的值.20.设a,b是正奇数,数列{c n}〔n∈N*〕定义如下:c1=a,c2=b,对任意n≥3,c n是c n﹣1+c n﹣2的最大奇约数.数列{c n}中的所有项构成集合A.〔Ⅰ〕假设a=9,b=15,写出集合A ;〔Ⅱ〕对k ≥1,令d k =max {c 2k ,c 2k ﹣1}〔max {p ,q }表示p ,q 中的较大值〕,求证:d k +1≤d k ;〔Ⅲ〕证明集合A 是有限集,并写出集合A 中的最小数.2016-2017学年北京市朝阳区高三〔上〕期中数学试卷〔理科〕参考答案与试题解析一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=〔〕A.{x|0<x<1}B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x〔x﹣2〕<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩〔∁U B〕={x|0<x<1}.故选:A.2.以下函数中,在其定义域上既是偶函数又在〔0,+∞〕上单调递减的是〔〕A.y=x2 B.y=x+1 C.y=﹣lg|x|D.y=﹣2x【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】选项A:y=x2在〔0,+∞〕上单调递增,不符合条件;选项B:代入特殊值x=±1,可知f〔﹣1〕≠f〔1〕,且f〔﹣1〕≠﹣f〔1〕,故y=x+1是非奇非偶函数,不符合条件;选项C:先求出定义域,再根据奇偶性的定义,确定y=﹣lg|x|是偶函数,x>0时,y=﹣lg|x|=﹣lgx单调递减,故符合条件;选项D:代入特殊值x=±1,可知f〔﹣1〕≠f〔1〕,且f〔﹣1〕≠﹣f〔1〕,故y=x+1是非奇非偶函数,不符合条件;【解答】解:选项A:f〔x〕=x2的定义域为R,又∵f〔﹣x〕=〔﹣x〕2=x2,∴f〔﹣x〕=f 〔x〕,即f〔x〕是偶函数.但y=x2在〔0,+∞〕上单调递增,故A不正确;选项B:记f〔x〕=x+1,则f〔1〕=2,f〔﹣1〕=0,∵f〔﹣1〕≠f〔1〕,且f〔﹣1〕≠﹣f 〔1〕,∴y=x+1是非奇非偶函数,故B不正确;选项C:定义域为〔﹣∞,0〕∪〔0,+∞〕,记f〔x〕=﹣lg|x|,∵f〔﹣x〕=﹣lg|﹣x|=﹣lg|x|,∴f〔﹣x〕=f〔x〕,即f〔x〕是偶函数当x∈〔0,+∞〕时,y=﹣lgx.∵y=lgx在〔0,+∞〕上单调递增,∴y=﹣lgx在〔0,+∞〕上单调递减故C正确;选项D:记f〔x〕=﹣2x,则f〔1〕=﹣,f〔﹣1〕=﹣2,∵f〔﹣1〕≠f〔1〕,且f〔﹣1〕≠﹣f〔1〕,∴y=﹣2x是非奇非偶函数,故D不正确.故选:C.3.假设a=log,c=log0.6,则a,b,c的大小关系是〔〕A.a>b>c B.b>c>a C.c>b>a D.b>a>c【考点】对数值大小的比较.【分析】直接利用中间量“0”,“1”判断三个数的大小即可.【解答】解:a=log<>1,0<c=log<1∴b>c>a,故选:B.4.已知函数f〔x〕=ax2﹣x,假设对任意x1,x2∈[2,+∞〕,且x1≠x2,不等式>0恒成立,则实数a的取值范围是〔〕A.B.C.D.【考点】函数单调性的判断与证明.【分析】对进行化简,转化为a〔x1+x2〕﹣1>0恒成立,再将不等式变形,得到a>,从而将恒成立问题转变成求的最大值,即可求出a的取值范围【解答】解:不妨设x2>x1≥2,====a〔x1+x2〕﹣1,∵对任意x1,x2∈[2,+∞〕,且x1≠x2,>0恒成立,∴x2>x1≥2时,a〔x1+x2〕﹣1>0,即a>恒成立∵x2>x1≥2∴∴a,即a的取值范围为[,+∞〕故此题选D5.设m∈R且m≠0,“不等式m+>4”成立的一个充分不必要条件是〔〕A.m>0 B.m>1 C.m>2 D.m≥2【考点】必要条件、充分条件与充要条件的判断.【分析】根据基本不等式的性质,结合充分不必要条件的定义进行判断即可.【解答】解:当m<0时,不等式m+>4不成立,当m>0时,m+≥2=4,当且仅当m=,即m=2时,取等号,A.当m=2时,满足m>0,但不等式m+>4不成立,不是充分条件,B.当m=2时,满足m>1,但不等式m+>4不成立,不是充分条件,C.当m>2时,不等式m+>4成立,反之不一定成立,是充分不必要条件,满足条件.D.当m=2时,满足m≥2,但不等式m+>4不成立,不是充分条件,故选:C.6.已知三角形ABC外接圆O的半径为1〔O为圆心〕,且2++=0,||=2||,则•等于〔〕A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意可得三角形是以角A为直角的直角三角形,解直角三角形求出相应的边和角,代入数量积公式得答案.【解答】解:三角形ABC外接圆O的半径为1〔O为圆心〕,2++=0,∴O为BC的中点,故△ABC是直角三角形,∠A为直角.又||=2||,∴||=,||=2,∴||=,∴cosC===,∴•=﹣•=﹣×2×=﹣故选:A7.已知函数f〔x〕=则函数g〔x〕=f〔f〔x〕〕﹣的零点个数是〔〕A.4 B.3 C.2 D.1【考点】函数零点的判定定理.【分析】作出函数的图象,先求出f〔x〕=的根,然后利用数形结合转化为两个函数的交点个数即可.【解答】解:作出函数f〔x〕的图象如图:当x≤0时,由f〔x〕=得x+1=,即x=﹣1=﹣,当x>0时,由f〔x〕=得log2x=,即x==,由g〔x〕=f〔f〔x〕〕﹣=0得f〔f〔x〕〕=,则f〔x〕=﹣或f〔x〕=,假设f〔x〕=﹣,此时方程f〔x〕=﹣有两个交点,假设f〔x〕=,此时方程f〔x〕=只有一个交点,则数g〔x〕=f〔f〔x〕〕﹣的零点个数是3个,故选:B8.5个黑球和4个白球从左到右任意排成一排,以下说法正确的选项是〔〕A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个【考点】进行简单的合情推理.【分析】5个黑球和4个白球,5为奇数,4为偶数,分析即可得到答案.【解答】解:5为奇数,4为偶数,故总存在一个黑球,它右侧的白球和黑球一样多,故选:A二、填空题:本大题共6小题,每题5分,共30分.把答案填在答题卡上.9.设平面向量=〔1,2〕,=〔﹣2,y〕,假设∥,则y=﹣4.【考点】平行向量与共线向量.【分析】直接利用向量共线的坐标表示列式计算【解答】解:∵=〔1,2〕,=〔﹣2,y〕,∥,∴1×y=2×〔﹣2〕∴y=﹣4故答案为:﹣410.函数f〔x〕=cos2x﹣sin2x的单调递减区间为.【考点】二倍角的余弦;余弦函数的图象.【分析】由条件利用二倍角的余弦函数公式化简函数的解析式,再根据余弦函数的单调性求得函数的单调递减区间.【解答】解:对于函数y=cos2x﹣sin2x=cos2x,令2kπ≤2x≤2kπ+π,k∈Z,求得:kπ≤x≤kπ+,k∈Z,可得函数的单调递减区间是:.故答案为:.11.各项均为正数的等比数列{{a n}的前n项和为S n,假设a3=2,S4=5S2,则a1的值为,S4的值为.【考点】等比数列的前n项和.【分析】经分析等比数列为非常数列,设出等比数列的公比,有给出的条件列方程组求出a1和q的值,则S4的值可求.【解答】解:假设等比数列的公比等于1,由a3=2,则S4=4a3=4×2=8,5S2=5×2S3=5×2×2=20,与题意不符.设等比数列的公比为q〔q≠1〕,由a3=2,S4=5S2,得:,整理得,解得,q=±2.因为数列{a n}的各项均为正数,所以q=2.则.故答案为;.12.已知角A为三角形的一个内角,且,则tanA=,tan〔A+〕=﹣7.【考点】两角和与差的正切函数;同角三角函数间的基本关系.【分析】利用同角三角函数的基本关系求得sinA的值,可得tanA的值,再利用两角和的正切公式求得tan〔A+〕的值.【解答】解:已知角A为三角形的一个内角,且,则sinA=,∴tanA==.∴tan〔A+〕===﹣7,故答案为,﹣7.13.已知函数f〔x〕=在〔﹣∞,+∞〕上是具有单调性,则实数m的取值范围〔1,] .【考点】函数单调性的性质.【分析】函数f〔x〕在〔﹣∞,+∞〕上是具有单调性,需要对m分类讨论,当m>1,m<﹣1,m=±1、0,﹣1<m<0,0<m<1分别判断分段函数的单调性.【解答】解:令h〔x〕=mx2+1,x≥0;g〔x〕=〔m2﹣1〕2x,x<0;①当m>1时,要使得f〔x〕在〔﹣∞,+∞〕上是具有单调性,即要满足m2﹣1≤1⇒﹣≤m≤故:1<m≤;②当m<﹣1时,h〔x〕在x≥0上递减,g〔x〕在x<0上递增,所以,f〔x〕在R上不具有单调性,不符合题意;③当m=±1时,g〔x〕=0;当m=0时,h〔x〕=1;所以,f〔x〕在R上不具有单调性,不符合题意;④当﹣1<m<0 时,h〔x〕在x≥0上递减,g〔x〕在x<0上递减,对于任意的x≥0,g〔x〕<0;当x→0时,h〔x〕>0;所以,f〔x〕在R上不具有单调性,不符合题意;⑤当0<m<1时,h〔x〕在x≥0上递增,g〔x〕在x<0上递减;所以,f〔x〕在R上不具有单调性,不符合题意;故答案为:〔1,]14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第20天,两马相逢.【考点】等差数列的前n项和.【分析】利用等差数列的求和公式与不等式的解法即可得出.【解答】解:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m++97m+=200m+×≥2×3000,化为m2+31m﹣960≥0,解得m,取m=20.故答案为:20.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知数列{a n}〔n∈N*〕是公差不为0的等差数列,a1=1,且,,成等比数列.〔Ⅰ〕求数列{a n}的通项公式;〔Ⅱ〕设数列{}的前n项和为T n,求证:T n<1.【考点】数列的求和;数列递推式.【分析】〔Ⅰ〕利用已知列出关于工程师了公差方程求出公差;得到通项公式;〔Ⅱ〕利用〔Ⅰ〕的结论,将通项公式代入,利用裂项求和证明即可.【解答】解:〔Ⅰ〕设{a n}的公差为d.因为成等比数列,所以.即.化简得,即d2=a1d.又a1=1,且d≠0,解得d=1.所以有a n=a1+〔n﹣1〕d=n.…〔Ⅱ〕由〔Ⅰ〕得:.所以.因此,T n<1.…16.已知函数f〔x〕=asinx﹣cosx〔a∈R〕的图象经过点〔,0〕.〔Ⅰ〕求f〔x〕的最小正周期;〔Ⅱ〕假设x∈[,],求f〔x〕的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】〔Ⅰ〕根据函数f〔x〕的图象过点,代入函数解析式求出a的值,从而写出函数解析式并求出最小正周期;〔Ⅱ〕根据x的取值范围,计算f〔x〕的最值,从而求出它的取值范围.【解答】解:〔Ⅰ〕因为函数的图象经过点,所以,解得a=1;…所以,所以f〔x〕最小正周期为T=2π;…〔Ⅱ〕因为,所以;所以当,即时,f〔x〕取得最大值,最大值是2;当,即时,f〔x〕取得最小值,最小值是﹣1;所以f〔x〕的取值范围是[﹣1,2].…17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.〔Ⅰ〕求sin∠DBC;〔Ⅱ〕求AD.【考点】余弦定理;正弦定理.【分析】〔Ⅰ〕利用已知及同角三角函数基本关系式可求,进而利用正弦定理即可求得sin∠DBC的值.〔Ⅱ〕在△BDC中,由余弦定理可求DB的值,利用同角三角函数基本关系式可求,进而利用两角差的余弦函数公式可求cos∠ABD的值,在△ABD中,由余弦定理可求AD的值.【解答】〔本小题总分值13分〕解:〔Ⅰ〕在△BDC中,因为,所以.由正弦定理得,.…〔Ⅱ〕在△BDC中,由BC2=DC2+DB2﹣2DC•DBcos∠BDC,得,.所以.解得或〔舍〕.由已知得∠DBC是锐角,又,所以.所以cos∠ABD=cos=cos120°•cos∠DBC+sin120°•sin∠DBC==.在△ABD中,因为AD2=AB2+BD2﹣2AB•BDcos∠ABD=,所以.…18.已知函数f〔x〕=﹣ax+cosx〔a∈R〕,x∈[﹣,].〔Ⅰ〕假设函数f〔x〕是偶函数,试求a的值;〔Ⅱ〕当a>0时,求证:函数f〔x〕在〔0,〕上单调递减.【考点】函数单调性的判断与证明;函数奇偶性的性质.【分析】〔Ⅰ〕根据偶函数的定义,f〔﹣x〕=f〔x〕恒成立,求出a的值;〔Ⅱ〕利用导数大于0或小于0,判断函数f〔x〕是单调增函数单调减函数即可.【解答】解:〔Ⅰ〕因为函数f〔x〕是偶函数,所以f〔﹣x〕=﹣a〔﹣x〕+cos〔﹣x〕=+ax+cosx=f〔x〕=﹣ax+cosx恒成立,所以a=0;…〔Ⅱ〕由题意可知,设,则;注意到,a>0;由g'〔x〕<0,即,解得;由g'〔x〕>0,即,解得;所以g〔x〕在上单调递减,上单调递增;所以当,g〔x〕<g〔0〕=0﹣a<0,所以f〔x〕在单调递减,当,,所以f〔x〕在单调递减,所以当a>0时,函数f〔x〕在上单调递减.…19.已知函数f〔x〕=e x〔x2﹣a〕,a∈R.〔Ⅰ〕当a=1时,求曲线y=f〔x〕在点〔0,f〔0〕〕处的切线方程;〔Ⅱ〕假设函数f〔x〕在〔﹣3,0〕上单调递减,试求a的取值范围;〔Ⅲ〕假设函数f〔x〕的最小值为﹣2e,试求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】〔1〕利用导数求出x=0处的切线斜率,根据点斜式写出切线方程;〔2〕函数f〔x〕在〔﹣3,0〕上单调递减,即当x∈〔﹣3,0〕时,x2+2x﹣a≤0恒成立.要使得“当x∈〔﹣3,0〕时,x2+2x﹣a≤0恒成立”,等价于即所以a≥3.〔3〕根据函数的单调性,得出函数f〔x〕的最小值只能在处取得.【解答】解:由题意可知f'〔x〕=e x〔x2+2x﹣a〕.〔Ⅰ〕因为a=1,则f〔0〕=﹣1,f'〔0〕=﹣1,所以函数f〔x〕在点〔0,f〔0〕〕处的切线方程为y﹣〔﹣1〕=﹣〔x﹣0〕.即x+y+1=0.〔Ⅱ〕因为函数f〔x〕在〔﹣3,0〕上单调递减,所以当x∈〔﹣3,0〕时,f'〔x〕=e x〔x2+2x﹣a〕≤0恒成立.即当x∈〔﹣3,0〕时,x2+2x﹣a≤0恒成立.显然,当x∈〔﹣3,﹣1〕时,函数g〔x〕=x2+2x﹣a单调递减,当x∈〔﹣1,0〕时,函数g〔x〕=x2+2x﹣a单调递增.所以要使得“当x∈〔﹣3,0〕时,x2+2x﹣a≤0恒成立”,等价于即所以a≥3.〔Ⅲ〕设g〔x〕=x2+2x﹣a,则△=4+4a.①当△=4+4a≤0,即a≤﹣1时,g〔x〕≥0,所以f'〔x〕≥0.所以函数f〔x〕在〔﹣∞,+∞〕单增,所以函数f〔x〕没有最小值.②当△=4+4a>0,即a>﹣1时,令f'〔x〕=e x〔x2+2x﹣a〕=0得x2+2x﹣a=0,解得随着x变化时,f〔x〕和f'〔x〕的变化情况如下:xf'+0 ﹣0 +〔x〕f〔x〕↗极大值↘极小值↗当x ∈时,.所以.所以f〔x〕=e x〔x2﹣a〕>0.又因为函数f〔x〕的最小值为﹣2e<0,所以函数f〔x 〕的最小值只能在处取得.所以.所以.易得.解得a=3.以下证明解的唯一性,仅供参考:设因为a>0,所以,.设,则.设h〔x〕=﹣xe x,则h'〔x〕=﹣e x〔x+1〕.当x>0时,h'〔x〕<0,从而易知g〔a〕为减函数.当a∈〔0,3〕,g〔a〕>0;当a∈〔3,+∞〕,g〔a〕<0.所以方程只有唯一解a=3.20.设a,b是正奇数,数列{c n}〔n∈N*〕定义如下:c1=a,c2=b,对任意n≥3,c n是c n﹣1+c n﹣2的最大奇约数.数列{c n}中的所有项构成集合A.〔Ⅰ〕假设a=9,b=15,写出集合A;〔Ⅱ〕对k ≥1,令d k =max {c 2k ,c 2k ﹣1}〔max {p ,q }表示p ,q 中的较大值〕,求证:d k +1≤d k ;〔Ⅲ〕证明集合A 是有限集,并写出集合A 中的最小数. 【考点】集合的表示法. 【分析】〔Ⅰ〕利用列举法写出数列{c n },易得集合A ;〔Ⅱ〕由题设,对n ≥3,c n ﹣2,c n ﹣1都是奇数,所以c n ﹣1+c n ﹣2是偶数.从而c n ﹣1+c n ﹣2的最大奇约数,结合不等式的性质进行解答;〔Ⅲ〕有限集是指元素的个数是有限个的集合,从而确定答案. 【解答】解:〔Ⅰ〕数列{c n }为:9,15,3,9,3,3,3,…. 故集合A={9,15,3}.〔Ⅱ〕证明:由题设,对n ≥3,c n ﹣2,c n ﹣1都是奇数,所以c n ﹣1+c n ﹣2是偶数. 从而c n ﹣1+c n ﹣2的最大奇约数,所以c n ≤max {c n ﹣1,c n ﹣2},当且仅当c n ﹣1=c n ﹣2时等号成立. 所以,对k ≥1有c 2k +1≤max {c 2k ,c 2k ﹣1}=d k , 且c 2k +2≤max {c 2k +1,c 2k }≤max {d k ,d k }=d k .所以d k +1=max {c 2k +2,c 2k +1}≤d k ,当且仅当c 2k =c 2k ﹣1时等号成立. 〔Ⅲ〕由〔Ⅱ〕知,当n ≥3时,有c n ≤max {c n ﹣1,c n ﹣2}. 所以对n ≥3,有c n ≤max {c 1,c 2}=max {a ,b }.又c n 是正奇数,且不超过max {a ,b }的正奇数是有限的, 所以数列{c n }中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是a ,b 的最大公约数.。
[实用参考]北京市第四中学2017届高三上学期期中考试数学(理)试题含答案.doc
2
], k Z .
3
7
1
(Ⅱ)因为 0 x ,所以
2x
,所以
sin(2 x ) 1 ,
2
6
66
2
6
于是 1 2sin(2 x ) 2 ,所以 2 f ( x) 1 .
6
当且仅当 x
时 f ( x) 取最小值 f ( x ) min f ( ) 2 ;
2
2
当且仅当 2 x
,即 x 时最大值 f ( x) max f ( ) 1 .
所以 A B B A . 由定义可知: f A B ( x) f A ( x ) f B ( x) . 所以对任意元素 x , f ( A B ) C ( x ) f A B ( x ) fC ( x) f A ( x) f B ( x) f C ( x ) , f A ( B C ) ( x) f A ( x) fB C ( x) f A ( x) f B ( x ) fC ( x) .
d a4 a1 12 3 3.
3
3
所以 an a1 ( n 1) d 3n, n
N.
设等比数列 bn an 的公比为 q ,由题意得
3
q
b4 a4
20 12 8 ,解得 q 2 .
b1 a1 4 3
所以 bn an
n1
n1
b1 a1 q
2.
n1Βιβλιοθήκη n1从而 bn an 2
3n 2 , n N .
n1
(Ⅱ)由(Ⅰ)知 bn 3n 2 , n N .
(Ⅰ)写出 f A (1) 和 f B (1) 的值,并用列举法写出集合 A B ;
(Ⅱ)用 Card (M ) 表示有限集合 M 所含元素的个数, 求 Card ( X A) Card ( X B ) 的最小值; (Ⅲ)有多少个集合对 P,Q ,满足 P, Q A B ,且 ( P A) ( Q B) A B ?
2017-2018北京市朝阳区高三第一学期理科数学期中试卷
北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学试卷(理工类)2017.11(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|1}A x x =>,2{|log 1}B x x =>,则AB =A.{|1}x x > B.{|12}x x << C.{|2}x x > D.{|0}x x >2.已知实数,x y 满足条件2,2,6,x y x y ≥⎧⎪≥⎨⎪+≤⎩则2x y +的最大值为A.12B.10C.8D.63.要得到函数πsin(2)3y x =-的图象,只需将函数sin y x =的图象上所有的点A.先向右平移π3个单位长度,再将横坐标伸长为原来的2倍,纵坐标不变B.先向右平移π6个单位长度,横坐标缩短为原来的12倍,纵坐标不变C.横坐标缩短为原来的12倍,纵坐标不变,再向右平移π6个单位长度D.横坐标变伸长原来的2倍,纵坐标不变,再向右平移π3个单位长度4.已知非零平面向量,a b ,则“+=+a b a b ”是“存在非零实数λ,使λb =a ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知n S 是等差数列{}n a (n *∈N )的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d <③100S >④110S <其中正确的序号是()A.②③B.②③④C.②④D.①③④子川教育--致力于西城区名校教师课外辅导6.如图,在直角梯形ABCD 中,AB //CD ,AD DC ⊥,E 是CD 的中点1DC =,2AB =,则EA AB ⋅=5B.5C.1D.1-7.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球.教师把所取两球编号的和只告诉甲,其乘积只告诉乙,再让甲、乙分别推断这两个球的编号.甲说:“我无法确定.”乙说:“我也无法确定.”甲听完乙的回答以后,甲说:“我现在可以确定两个球的编号了.”根据以上信息,你可以推断出抽取的两球中A .一定有3号球B.一定没有3号球C.可能有5号球D.可能有6号球8.已知函数()sin(cos )f x x x =-与函数()cos(sin )g x x x =-在区间(0)2π,都为减函数,设123,,(0)2x x x π∈,,且11cos x x =,22sin(cos )x x =,33cos(sin )x x =,则123,,x x x 的大小关系是()A.123x x x << B.312x x x << C.213x x x << D.231x x x <<第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.执行如下图所示的程序框图,则输出i 的值为.开始i =1,S =2结束i =i +1S >14?输出i 是否S=S+2i(第9题图)10.已知1x >,且1x y -=,则1x y+的最小值是.11.已知函数1211(,,22()1log ,.2xx f x x x ⎧≤⎪⎪=⎨⎪>⎪⎩若()f x 的图象与直线y kx =有两个不同的交点,则实数k 的取值范围为.12.已知函数()f x 同时满足以下条件:①定义域为R ;②值域为[0,1];③()()0f x f x --=.试写出一个函数解析式()f x =.13.某罐头生产厂计划制造一种圆柱形的密封铁皮罐头盒,其表面积为定值S .若罐头盒的底面半径为r ,则罐头盒的体积V 与r 的函数关系式为;当r =时,罐头盒的体积最大.14.将集合=M {}1,2,3,...,15表示为它的5个三元子集(三元集:含三个元素的集合)的并集,并且这些三元子集的元素之和都相等,则每个三元集的元素之和为;请写出满足上述条件的集合M 的5个三元子集.(只写出一组)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知数列{}n a 的前n 项和为n S (n *∈N ),满足21n n S a =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足1=log n n b a ,求数列{}n b 的前n 项和n T .16.(本小题满分13分)已知函数π()2sin cos()3f x x x =⋅-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)当π[0,2x ∈时,求函数()f x 的取值范围.17.(本小题满分13分)在ABC △中,π4A =,327c b=.(Ⅰ)试求tan C 的值;(Ⅱ)若5a =,试求ABC △的面积.18.(本小题满分14分)已知函数2()()e xf x x ax a -=-+⋅,a ∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()()g x f x '=,其中()f x '为函数()f x 的导函数.判断()g x 在定义域内是否为单调函数,并说明理由.19.(本小题满分14分)已知函数12()ln e e x f x x x=--.(Ⅰ)求曲线()y f x =在点()1,(1)f 处的切线方程;(Ⅱ)求证:1ln e x x≥-;(Ⅲ)判断曲线()y f x =是否位于x 轴下方,并说明理由.20.(本小题满分13分)数列12,,,n a a a 是正整数1,2,,n 的任一排列,且同时满足以下两个条件:①11a =;②当2n ≥时,1||2i i a a +-≤(1,2,,1i n =-).记这样的数列个数为()f n .(I )写出(2),(3),(4)f f f 的值;(II )证明(2018)f 不能被4整除.北京市朝阳区2017-2018学年度第一学期高三年级期中统一考试数学答案(理工类)2017.11一、选择题:题号12345678答案CBCABDDC二、填空题:9.510.311.2,2)1(,2ln 2)-∞-⋅1ln 21,02ln 2⎛⎫ ⎪- ⎪⎝⋅⎭12.()|sin |f x x =或cos 12x +或2,11,()0,1 1.x x f x x x ⎧-≤≤=⎨><-⎩或(答案不唯一)13.312π(0)22SV Sr r r π=-<<π;S6π6π14.24;{}1815,,,{}3714,,,{}5613,,,{}21012,,,{}4911,,(答案不唯一)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)解:(Ⅰ)当1n =时,11a =.当2n ≥时,1n n n a S S -=-,122n n n a a a -=-,即1=2n n a a -所以数列{}n a 是首项为1,公比为2的等比数列.故1=2n n a -,n *∈N .┈┈8分(Ⅱ)由已知得11122=log =log 2=1n n n b a n --.因为1(1)(2)1n n b b n n --=---=-,所以{}n b 是首项为0,公差为1-的等差数列.故{}n b 的前n 项和(1)2n n n T -=.┈┈13分16.(本小题满分13分)解:因为π()2sin cos()3f x x x =⋅-,所以ππ()2sin (cos cos sin sin )33f x x x x =⋅+2sin cos 3sin x x x=⋅13sin 2(1cos 2)22x x =+-π3sin(2)32x =-+.(Ⅰ)函数()f x 的最小正周期为2ππ2T ==.┈┈8分(Ⅱ)因为π[0,2x ∈,所以ππ2π2[,]333x -∈-.所以π3sin(2)[3x -∈.所以3()[0,12f x ∈+.┈┈13分17.(本小题满分13分)解:(Ⅰ)因为π4A =,32c =sin sin 323πsin 7sin()4C C B C ==-.所以3π7sin 32)4C C =-.所以3π3π7sin 32(sin cos cos sin )44C C C =-.所以7sin 3cos 3sin C C C =+.所以4sin 3cos C C =.所以3tan 4C =.┈┈7分(Ⅱ)因为5a =,π4A =,327c b=,由余弦定理2222cos a b c bc A =+-得223232225()2772b b =+-⋅⋅.所以7b =,32c =所以△ABC 的面积11221sin 7322222S bc A ==⋅⋅=.┈┈13分18.(本小题满分14分)解:(Ⅰ)函数()f x 的定义域为{}x x ∈R .()(2)()exf x x x a -'=---.1当2a <时,令()0f x '<,解得:x a <或2x >,()f x 为减函数;令()0f x '>,解得:2a x <<,()f x 为增函数.2当2a =时,2()(2)e0xf x x -'=--≤恒成立,函数()f x 为减函数;3当2a >时,令()0f x '<,解得:2x <或x a >,函数()f x 为减函数;令()0f x '>,解得:2x a <<,函数()f x 为增函数.综上,当2a <时,()f x 的单调递减区间为(,),(2,)a -∞+∞;单调递增区间为(,2)a ;当2a =时,()f x 的单调递减区间为(,)-∞+∞;当2a >时,()f x 的单调递减区间为(,2),(,)a -∞+∞;单调递增区间为(2,)a .┈┈8分(Ⅱ)()g x 在定义域内不为单调函数,以下说明:2()()[(4)32]e x g x f x x a x a -'''==-+++⋅.记2()(4)32h x x a x a =-+++,则函数()h x 为开口向上的二次函数.方程()0h x =的判别式2248(2)40a a a ∆=-+=-+>恒成立.所以,()h x 有正有负.从而()g x '有正有负.故()g x 在定义域内不为单调函数.┈┈14分19.(本小题满分14分)解:函数的定义域为(0,)+∞,2112()e e x f x x x'=--+(Ⅰ)1(1)1e f '=-,又1(1)e f =-,曲线()y f x =在1x =处的切线方程为(1)1e e e y x +=--+.即12()+10e ex y -1--=.┈┈4分(Ⅱ)“要证明1ln ,(0)e x x x≥->”等价于“1ln e x x ≥-”.设函数()ln g x x x =.令()=1+ln 0g x x '=,解得1ex =.x 1(0,)e1e1(,)e+∞()g x '-0+()g x 1e-因此,函数()g x 的最小值为11(e e g =-.故1ln ex x ≥-.即1ln e x x≥-.┈┈9分(Ⅲ)曲线()y f x =位于x 轴下方.理由如下:由(Ⅱ)可知1ln e x x ≥-,所以1111()()e e e ex x x f x x x ≤-=-.设1()e e x x k x =-,则1()ex xk x -'=.令()0k x '>得01x <<;令()0k x '<得1x >.所以()k x 在()0,1上为增函数,()1+∞,上为减函数.所以当0x >时,()(1)=0k x k ≤恒成立,当且仅当1x =时,(1)0k =.又因为1(1)0ef =-<,所以()0f x <恒成立.故曲线()y f x =位于x 轴下方.┈┈14分20.(本小题满分13分)(Ⅰ)解:(2)1,(3)2,(4)4f f f ===.┈┈3分(Ⅱ)证明:把满足条件①②的数列称为n 项的首项最小数列.对于n 个数的首项最小数列,由于11a =,故22a =或3.(1)若22a =,则231,1,,1n a a a ---构成1n -项的首项最小数列,其个数为(1)f n -;(2)若233,2a a ==,则必有44a =,故453,3,,3n a a a ---构成3n -项的首项最小数列,其个数为(3)f n -;(3)若23,a =则3=4a 或35a =.设1k a +是这数列中第一个出现的偶数,则前k 项应该是1,3,,21k -,1k a +是2k 或22k -,即k a 与1k a +是相邻整数.由条件②,这数列在1k a +后的各项要么都小于它,要么都大于它,因为2在1k a +之后,故1k a +后的各项都小于它.这种情况的数列只有一个,即先排递增的奇数,后排递减的偶数.综上,有递推关系:()(1)(3)1f n f n f n =-+-+,5n ≥.由此递推关系和(I )可得,(2),(3),,(2018)f f f 各数被4除的余数依次为:1,1,2,0,2,1,2,1,3,2,0,0,3,0,1,1,2,0,…它们构成14为周期的数列,又2018141442=⨯+,所以(2018)f 被4除的余数与(2)f 被4除的余数相同,都是1,故(2018)f 不能被4整除.┈┈13分。
北京市朝阳区2017届高三上学期期末数学试卷理科含解析
2016-2017学年北京市朝阳区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|2x<1},B={x|x﹣2<0},则(∁U A)∩B=()A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是()A.y=cosx B.y=﹣x2C.D.y=|sinx|4.若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是()A.6 B.8 C.10 D.126.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.47.在Rt△ABC中,∠A=90°,点D是边BC上的动点,且||=3,||=4,=λ+μ(λ>0,μ>0),则当λμ取得最大值时,||的值为()A.B.3 C.D.8.某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知双曲线的一条渐近线方程为3x+2y=0,则b等于.10.已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=,S10=.11.执行如图所示的程序框图,则输出S的结果为.12.在△ABC中,已知,则∠C=.13.设D为不等式组表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是,的取值范围是.14.若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q都是封闭的.对于封闭的集合M(M⊆R),f:M→M 是从集合到集合的一个函数,①如果都有f(x+y)=f(x)+f(y),就称是保加法的;②如果∀x,y∈M都有f(xy)=f(x)•f(y),就称f是保乘法的;③如果f既是保加法的,又是保乘法的,就称f在M上是保运算的.在上述定义下,集合封闭的(填“是”或“否”);若函数f(x)在Q上保运算,并且是不恒为零的函数,请写出满足条件的一个函数f(x)=.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=2sinxcosx+2cos2x﹣1(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.16.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:8281797895889384乙:9295807583809085(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望Eξ.17.在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2.(Ⅰ)求证:AC∥平面DEF;(Ⅱ)若二面角D﹣AB﹣E为直二面角,(i)求直线AC与平面CDE所成角的大小;(ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出的值;若不存在,请说明理由.18.已知椭圆上的动点P与其顶点,不重合.(Ⅰ)求证:直线PA与PB的斜率乘积为定值;(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN 的面积.19.设函数f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)e x+ax2,a∈R.(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;(Ⅱ)若函数g(x)有两个零点,试求a的取值范围;(Ⅲ)证明f(x)≤g(x)20.设m,n(3≤m≤n)是正整数,数列A m:a1,a2,…,a m,其中a i(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列A m满足:只要存在i,j(1≤i<j≤m)使a i+a j≤n,总存在k(1≤k≤m)有a i+a j=a k,则称数列A m是“好数列”.(Ⅰ)当m=6,n=100时,(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?(Ⅱ)若数列A m是“好数列”,且m是偶数,证明:.2016-2017学年北京市朝阳区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|2x<1},B={x|x﹣2<0},则(∁U A)∩B=()A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}【考点】交、并、补集的混合运算.【分析】根据集合补集和交集的定义进行求解即可.【解答】解:A={x|2x<1}={x|x<0},B={x|x﹣2<0}={x|x<2},∁U A={x|x≥0},则(∁U A)∩B={x|0≤x<2},故选:B2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限.故选:D.3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是()A.y=cosx B.y=﹣x2C.D.y=|sinx|【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的定义和性质进行判断即可.【解答】解:A.y=cosx是偶函数,在区间[0,1]上单调递减,不满足条件.B.y=﹣x2是偶函数,在区间[0,1]上单调递减,不满足条件.C.是偶函数,当x≥0时=()x在区间[0,1]上单调递减,不满足条件.D.y=|sinx|是偶函数,在区间[0,1]上单调递增,满足条件.故选:D4.若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数单调性之间的关系以及充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=a x在R上是减函数,则0<a<1,此时2﹣a>0,则函数y=(2﹣a)x3在R上是增函数成立,即充分性成立,若函数y=(2﹣a)x3在R上是增函数,则2﹣a>0,即0<a<2,则函数y=a x在R 上不一定是减函数,即必要性不成立,即“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的充分不必要条件,故选:A.5.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是()A.6 B.8 C.10 D.12【考点】排列、组合及简单计数问题.【分析】由题意,末尾是0,2,4,分类求出相应的偶数,即可得出结论.【解答】解:由题意,末尾是0,2,4末尾是0时,有4个;末尾是2时,有3个;末尾是4时,有3个,所以共有4+3+3=10个故选C.6.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.4【考点】由三视图求面积、体积.【分析】由三视图知:几何体为四棱锥,且四棱锥的高为,底面是边长为2,矩形,把数据代入锥体的体积公式计算.【解答】解:由三视图知:几何体为四棱锥,且四棱锥的高为,底面是边长为2,矩形,∴几何体的体积V==.故选B.7.在Rt△ABC中,∠A=90°,点D是边BC上的动点,且||=3,||=4,=λ+μ(λ>0,μ>0),则当λμ取得最大值时,||的值为()A.B.3 C.D.【考点】平面向量的基本定理及其意义.【分析】根据条件建立坐标系,利用基本不等式的性质进行求解即可.【解答】解:将三角形放入坐标系中,则C(0,4),B(3,0),∵=λ+μ(λ>0,μ>0),∴λ+μ=1,则1=λ+μ≥2,即λμ≤,当且仅当λ=μ=时取等号,此时=λ+μ=+=(3,0)+(0,4)=(,2)则||==,故选:C8.某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19【考点】Venn图表达集合的关系及运算.【分析】设这两项成绩均合格的人数为x,根据集合关系建立方程进行求解即可.【解答】解:设这两项成绩均合格的人数为x,则跳远合格掷实心球不合格的人数为26﹣x,则26﹣x+23+3=32,得x=20,即这两项成绩均合格的人数是20人,故选:B二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知双曲线的一条渐近线方程为3x+2y=0,则b等于3.【考点】双曲线的简单性质.【分析】求出双曲线(a>0)的渐近线和3x+2y=0相比较,得到b的值.【解答】解:双曲线的一条渐近线方程为3x+2y=0,∴=,解得b=3,故答案为:310.已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=4,S10=110.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1=2,S2=a3,∴2a1+d=a1+2d,即2=d,∴a2=2+2=4.S10=10××2=110.故答案为:4,110.11.执行如图所示的程序框图,则输出S的结果为30.【考点】程序框图.【分析】根据程序框图进行模拟计算即可得到结论.【解答】解:第一次,i=1,满足条件,i<6,i=1+2=3,S=6,第二次,i=3,满足条件,i<6,i=3+2=5,S=6+10=16,第三次,i=5,满足条件,i<6,i=5+2=7,S=16+14=30,第四次,i=7,不满足条件i<6,程序终止,输出S=30,故答案为:3012.在△ABC中,已知,则∠C=105°.【考点】正弦定理.【分析】由正弦定理可得角A,再运用三角形的内角和定理,计算即可得到C.【解答】解:由题意:已知,即b=a由正弦定理=,则有sinA=,∵0°<A<135°∴A=30°则C=180°﹣30°﹣45°=105°故答案为:105°13.设D为不等式组表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是,的取值范围是[﹣,0] .【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.判断的符号,利用构造法转化为函数的最值,结合可行域求出范围即可.【解答】解:先根据约束条件不等式组画出可行域:当直线2x+y=t过点A时,2x+y取得最大值,由,可得A(,)时,z最大是2×=,由约束条件x﹣y≤0,可知≤0,令z=,可得z2==1﹣,令t=,由可行域可得∈(﹣∞,﹣1]∪[1,+∞).求解的最小值,就是解z2的最大值,即1﹣的最大值,可知∈(﹣∞,﹣1],显然=﹣1时,z2取得最大值2.所以z,的取值范围是[﹣,0).故答案为:.[﹣,0).14.若集合M满足:∀x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q都是封闭的.对于封闭的集合M(M⊆R),f:M→M 是从集合到集合的一个函数,①如果都有f(x+y)=f(x)+f(y),就称是保加法的;②如果∀x,y∈M都有f(xy)=f(x)•f(y),就称f是保乘法的;③如果f既是保加法的,又是保乘法的,就称f在M上是保运算的.在上述定义下,集合是封闭的(填“是”或“否”);若函数f (x)在Q上保运算,并且是不恒为零的函数,请写出满足条件的一个函数f(x)=f(x)=x,x∈Q.【考点】进行简单的合情推理.【分析】设x=m+n,y=a+b,m,n,a,b∈Q,利用新定义证明即可,设当f (x)=x,x∈Q满足条件,设m,n∈Q,根据新定义验证即可.【解答】解:设x=m+n,y=a+b,m,n,a,b∈Q,∴x+y=m+n+a+b=(m+a)+(n+b),m+a,n+b∈Q,即f(x+y)=f(x)+f(y),∴xy=(m+n)(a+b)=3ma+(mb+an)+bn=(mb+an)+(bn+3ma),mb,an,bn,3ma∈Q,∴f(xy)=f(x)•f(y),∴上述定义下,集合是封闭的,当f(x)=x,x∈Q满足条件,设m,n∈Q,∴f(m+n)=m+n=f(m)+f(n),f(mn)=mn=f(m)•f(n),故答案为:是,f(x)=x,x∈Q三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=2sinxcosx+2cos2x﹣1(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.【考点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)先逆用二倍角公式,然后逆用两角和的正弦公式化成正弦型函数的标准形式,利用周期公式T=求周期;(Ⅱ)根据正弦函数的最值结合定义域求函数y=2sin(2x+)最值.【解答】解:(Ⅰ)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)∴T=.(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,]∴﹣1≤2sin(2x+)≤2∴函数f(x)在区间[﹣,]上的最小值为﹣1,最大值为2.16.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:8281797895889384乙:9295807583809085(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望Eξ.【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【分析】(Ⅰ)作出茎叶图.(II)利用平均数、方差的计算公式即可得出.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于8”为事件A,.随机变量ξ的可能取值为0,1,2,3,且.可得,k=0,1,2,3.【解答】解:(Ⅰ)作出茎叶图如下:(Ⅱ)派甲参赛比较合适.理由如下:,,(88﹣85)2+(93﹣85)2+(95﹣85)2]=35.5,(90﹣85)2+(92﹣85)2+(95﹣85)2]=41.因为=,,所以,甲的成绩较稳定,派甲参赛比较合适.注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如派乙参赛比较合适.理由如下:从统计的角度看,甲获得8以上(含85分)的频率为,乙获得8以上(含85分)的频率为.因为f2>f1,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于8”为事件A,.随机变量ξ的可能取值为0,1,2,3,且.∴,k=0,1,2,3.所以变量ξ的分布列为:ξ0123P.(或.)17.在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2.(Ⅰ)求证:AC∥平面DEF;(Ⅱ)若二面角D﹣AB﹣E为直二面角,(i)求直线AC与平面CDE所成角的大小;(ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出的值;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面所成的角.【分析】(Ⅰ)连结BD,设AC∩BD=O,设G为DE的中点,连结OG,FG,推导出四边形AOGF为平行四边形,从而AC∥FG,由此能证明AC∥平面DEF.(Ⅱ)(i)以A为原点,AD,AB,AF分别为x,y,z轴建立空间直角坐标系,利用向量法能求出直线AC与平面CDE所成角的大小.(ii)假设棱DE上存在点P,使得BP⊥平面DEF.设,则.设P(x,y,z),求出P点坐标为(2﹣2λ,2λ,2λ),从而.由此能求出DE上存在点P,使得BP⊥平面DEF,且.(另解)假设棱DE上存在点P,使得BP⊥平面DEF.设,则.设P(x,y,z),求出平面DEF的一个法向量,由此能求出DE上存在点P,使得BP⊥平面DEF,且.【解答】(本小题满分14分)证明:(Ⅰ)连结BD,设AC∩BD=O,因为四边形ABCD为正方形,所以O为BD中点.设G为DE的中点,连结OG,FG,则OG∥BE,且.由已知AF∥BE,且,所以AF∥OG,OG=AF.所以四边形AOGF为平行四边形.所以AO∥FG,即AC∥FG.因为AC⊄平面DEF,FG⊂平面DEF,所以AC∥平面DEF.…解:(Ⅱ)(i)由已知,AF∥BE,AB⊥BE,所以AF⊥AB.因为二面角D﹣AB﹣E为直二面角,所以平面ABCD⊥平面ABEF.所以AF⊥平面ABCD,所以AF⊥AD,AF⊥AB.四边形ABCD为正方形,所以AB⊥AD.所以AD,AB,AF两两垂直.以A为原点,AD,AB,AF分别为x,y,z轴建立空间直角坐标系(如图).因为AB=BE=2AF=2,所以A(0,0,0),B(0,2,0),C(2,2,0),D(2,0,0),E(0,2,2),F (0,0,1),所以.设平面CDE的一个法向量为n=(x,y,z),由得即取x=1,得n=(1,0,1).设直线AC与平面CDE所成角为θ,则,因为0≤θ≤90°,所以θ=30°.即直线AC与平面CDE所成角的大小为30°.…(ii)假设棱DE上存在点P,使得BP⊥平面DEF.设,则.设P(x,y,z),则,因为,所以(x﹣2,y,z)=λ(﹣2,2,2).所以x﹣2=﹣2λ,y=2λ,z=2λ,所以P点坐标为(2﹣2λ,2λ,2λ).因为B(0,2,0),所以.又,所以,解得.因为,所以DE上存在点P,使得BP⊥平面DEF,且.(另解)假设棱DE上存在点P,使得BP⊥平面DEF.设,则.设P(x,y,z),则,因为,所以(x﹣2,y,z)=λ(﹣2,2,2).所以x﹣2=﹣2λ,y=2λ,z=2λ,所以P点坐标为(2﹣2λ,2λ,2λ).因为B(0,2,0),所以.设平面DEF的一个法向量为=(x0,y0,z0),则,由,得取x0=1,得=(1,﹣1,2).由,即(2﹣2λ,2λ﹣2,2λ)=μ(1,﹣1,2),可得解得.因为,所以DE上存在点P,使得BP⊥平面DEF,且.…18.已知椭圆上的动点P与其顶点,不重合.(Ⅰ)求证:直线PA与PB的斜率乘积为定值;(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN 的面积.【考点】椭圆的简单性质.【分析】(Ⅰ)设点设P(x0,y0),从而可得直线PA与PB的斜率乘积为(Ⅱ)设方程为y=kx+m,由两点M,N满足OM∥PA,ON∥PB及(Ⅰ)得直线OM,ON的斜率乘积为﹣,可得到m、k的关系,再用弦长公式及距离公式,求出△OMN的底、高,表示:△OMN的面积即可.【解答】(本小题满分13分)解:(Ⅰ)证明:设P(x0,y0),则.所以直线PA与PB的斜率乘积为.…(Ⅱ)依题直线OM,ON的斜率乘积为.①当直线MN的斜率不存在时,直线OM,ON的斜率为,设直线OM的方程是,由得,y=±1.取,则.所以△OMN的面积为.②当直线MN的斜率存在时,设直线MN的方程是y=kx+m,由得(3k2+2)x2+6kmx+3m2﹣6=0.因为M,N在椭圆C上,所以△=36k2m2﹣4(3k2+2)(3m2﹣6)>0,解得3k2﹣m2+2>0.设M(x1,y1),N(x2,y2),则,.=.设点O到直线MN的距离为d,则.所以△OMN的面积为…①.因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为,所以.所以=.由,得3k2+2=2m2…②由①②,得.综上所述,.…19.设函数f(x)=ln(x﹣1)+ax2+x+1,g(x)=(x﹣1)e x+ax2,a∈R.(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;(Ⅱ)若函数g(x)有两个零点,试求a的取值范围;(Ⅲ)证明f(x)≤g(x)【考点】利用导数研究函数的单调性;函数零点的判定定理;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(2),f′(2)的值,求出切线方程即可;(Ⅱ)求出函数g(x)的导数,通过讨论a的范围,判断函数g(x)的单调性结合函数零点的个数确定a的范围即可;(Ⅲ)设h(x)=(x﹣1)e x﹣ln(x﹣1)﹣x﹣1,其定义域为(1,+∞),只需证明h(x)≥0即可,根据函数的单调性求出h(x)的最小值,从而证出结论.【解答】解:(Ⅰ)函数f(x)的定义域是(1,+∞),.当a=1时,f'(2)=4a+2=6,f(2)=4a+3=7.所以函数f(x)在点(2,f(2))处的切线方程为y﹣7=6(x﹣2).即y=6x﹣5.…(Ⅱ)函数g(x)的定义域为R,由已知得g'(x)=x(e x+2a).①当a=0时,函数g(x)=(x﹣1)e x只有一个零点;②当a>0,因为e x+2a>0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(0,+∞)时,g'(x)>0.所以函数g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.又g(0)=﹣1,g(1)=a,因为x<0,所以x﹣1<0,e x<1,所以e x(x﹣1)>x﹣1,所以g(x)>ax2+x﹣1取,显然x0<0且g(x0)>0所以g(0)g(1)<0,g(x0)g(0)<0.由零点存在性定理及函数的单调性知,函数有两个零点.③当a<0时,由g'(x)=x(e x+2a)=0,得x=0,或x=ln(﹣2a).ⅰ)当,则ln(﹣2a)>0.当x变化时,g'(x),g(x)变化情况如下表:x(﹣∞,0)0(0,ln(﹣2a))ln(﹣2a)(ln(﹣2a),+∞)g'(x)+0﹣0+g(x)↗﹣1↘↗注意到g(0)=﹣1,所以函数g(x)至多有一个零点,不符合题意.ⅱ)当,则ln(﹣2a)=0,g(x)在(﹣∞,+∞)单调递增,函数g(x)至多有一个零点,不符合题意.若,则ln(﹣2a)≤0.当x变化时,g'(x),g(x)变化情况如下表:x(﹣∞,ln(﹣2a))ln(﹣2a)(ln(﹣2a),0)0(0,+∞)g'(x)+0﹣0+g(x)↗↘﹣1↗注意到当x<0,a<0时,g(x)=(x﹣1)e x+ax 2<0,g(0)=﹣1,所以函数g (x)至多有一个零点,不符合题意.综上,a的取值范围是(0,+∞).…(Ⅲ)证明:g(x)﹣f(x)=(x﹣1)e x﹣ln(x﹣1)﹣x﹣1.设h(x)=(x﹣1)e x﹣ln(x﹣1)﹣x﹣1,其定义域为(1,+∞),则证明h(x)≥0即可.因为,取,则,且h'(2)>0.又因为,所以函数h'(x)在(1,+∞)上单增.所以h'(x)=0有唯一的实根x0∈(1,2),且.当1<x<x0时,h'(x)<0;当x>x0时,h'(x)>0.所以函数h(x)的最小值为h(x0).所以=1+x0﹣x0﹣1=0.所以f(x)≤g(x).…20.设m,n(3≤m≤n)是正整数,数列A m:a1,a2,…,a m,其中a i(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若数列A m满足:只要存在i,j(1≤i<j≤m)使a i+a j≤n,总存在k(1≤k≤m)有a i+a j=a k,则称数列A m是“好数列”.(Ⅰ)当m=6,n=100时,(ⅰ)若数列A6:11,78,x,y,97,90是一个“好数列”,试写出x,y的值,并判断数列:11,78,90,x,97,y是否是一个“好数列”?(ⅱ)若数列A6:11,78,a,b,c,d是“好数列”,且a<b<c<d,求a,b,c,d共有多少种不同的取值?(Ⅱ)若数列A m是“好数列”,且m是偶数,证明:.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)(ⅰ)由“好数列”定义能求出x,y的值,并判断数列:11,78,90,x,97,y是一个“好数列”.(ⅱ)由数列必含89,100两项,若剩下两项从90,91,…,99中任取,有种;若剩下两项从79,80,…,88中任取一个,有10种.由此分类讨论,能求出a,b,c,d共有多少种不同的取值.(Ⅱ)一个“好数列”各项任意排列后,还是一个“好数列”.设a1<a2<…<a m.把数列配对:,只要证明每一对和数都不小于n+1即可.例用反证法,能证明.【解答】(本小题13分)解:(Ⅰ)(ⅰ)∵m=6,n=100,数列A6:11,78,x,y,97,90是一个“好数列”,∴x=89,y=100,或x=100,y=89,数列:11,78,90,x,97,y也是一个“好数列”.…(ⅱ)由(ⅰ)可知,数列必含89,100两项,若剩下两项从90,91,…,99中任取,则都符合条件,有种;若剩下两项从79,80,…,88中任取一个,则另一项必对应90,91,…,99中的一个,有10种;若取68≤a≤77,则79≤11+a≤88,90≤22+a≤99,“好数列”必超过6项,不符合;若取a=67,则11+a=78∈A6,另一项可从90,91,…,99中任取一个,有10种;若取56<a<67,则67<11+a<78,78<22+a<89,“好数列”必超过6项,不符合;若取a=56,则b=67,符合条件,若取a<56,则易知“好数列”必超过6项,不符合;综上,a,b,c,d共有66种不同的取值.…证明:(Ⅱ)由(Ⅰ)易知,一个“好数列”各项任意排列后,还是一个“好数列”.又“好数列”a1,a2,…,a m各项互不相同,所以,不妨设a1<a2<…<a m.把数列配对:,只要证明每一对和数都不小于n+1即可.用反证法,假设存在,使a j+a m+1﹣j≤n,<a1+a m﹣j+1<a2+a m﹣j+1<…<a j+a m﹣j+1≤n,因为数列单调递增,所以a m﹣j+1又因为“好数列”,故存在1≤k≤m,使得a i+a m+1﹣j=a k(1≤i≤j),显然a k>a m+1﹣j,故k>m+1﹣j,所以a k只有j﹣1个不同取值,而a i+a m+1﹣j有j个不同取值,矛盾.所以,每一对和数都不小于n+1,故,即.…2017年2月15日。
【最新经典文档】2017-2018学年北京市朝阳区高三(上)期中数学试卷和答案(理科)
第 5 页(共 18 页)
3.(5 分)要想得到函数
的图象,只需将函数 y=sinx 的图象上所
有的点( ) A.先向右平移 个单位长度,再将横坐标伸长为原来的 2 倍,纵坐标不变
B.先向右平移 个单位长度,横坐标缩短为原来的 倍,纵坐标不变
C.横坐标缩短为原来的 倍,纵坐标不变,再向右平移 个单位长度
2017-2018 学、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选 项中,选出符合题目要求的一项 . 1.(5 分)已知集合 A={ x| x>1} ,B={ x| log2x>1} ,则 A∩B=( ) A.{ x| x>1} B.{ x| 1<x<2} C. { x| x>2} D.{ x| x> 0}
个元素的集合) 的并集, 并且这些三元子集的元素之和都相等, 则每个三元集的
元素之和为
;请写出满足上述条件的集合 M 的 5 个三元子集
.(只
写出一组)
第 3 页(共 18 页)
三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明
过程 . 15.( 13 分)已知数列 { an} 的前 n 项和为 Sn(n∈N*),满足 Sn=2an﹣1.
.
第 2 页(共 18 页)
10.( 5 分)已知 x>1,且 x﹣ y=1,则 的最小值是
.
11.(5 分)已知函数
若 f(x)的图象与直线 y=kx 有两个
不同的交点,则实数 k 的取值范围为
.
12.( 5 分)已知函数 f( x)同时满足以下条件:
①定义域为 R;
②值域为 [ 0,1] ;
③ f(x)﹣ f(﹣ x)=0.
2017届朝阳高三期中理科数学
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U A B =I ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0u u u r u u u r u u u r , ||2||OA AB =u u u r u u u r,则CA BC ⋅u u u r u u u r 等于A .154-B.2- C .154 D.27.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是 A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=o,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分(Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++L . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-=解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2;当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.-所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos BDC ∠=sin BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =14DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,24127DB DB =+-⋅⋅.所以2307DB DB --=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠o=cos120cos sin120sin DBC DBC ⋅∠+⋅∠o o1=214214-⋅+=-14.在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724()2714+-⨯-=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分(Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2xg x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >.由()0g x '<,即1cos 02x -<,解得π03x <<.由()0g x '>,即1cos 02x ->,解得ππ32x <<.所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减,所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-. (Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0x f x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增. 所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”, 等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:当x ∈( , 1-∞-时,22( 12x a ≥-=++.所以220x a -≥+>. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -= 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
北京市朝阳区高三上学期期中考试数学理试题含答案精编版
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞B .1[,)2+∞C .1(,)4+∞D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B.C .154 D7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= .13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分(Ⅱ)由(Ⅰ)得:11111(1)1nn a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.3f π==解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2;当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.-所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos BDC ∠=sin BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠= …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以230DB DB --=. 解得DB =DB =. 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-+=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分(Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2xg x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >.由()0g x '<,即1cos 02x -<,解得π03x <<.由()0g x '>,即1cos 02x ->,解得ππ32x <<.所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减,所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-. (Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0x f x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增. 所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”, 等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:当x ∈( , 1-∞-时,22( 12x a ≥-=++.所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -= 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。
2017年北京市朝阳区高三第一学期期末数学(理)试题及答案
北京市朝阳区2016-2017学年度第一学期统一考试高三年级数学试卷(理工类) 2017.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}12<=xx A ,{}20B x x =-<,则()U A B = ðA . {|2}x x >B . {}02x x ≤<C . {|02}x x <≤D . {|2}x x ≤2.在复平面内,复数21i+对应的点位于 A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 3.下列函数中,既是偶函数,又在区间[0,1]上单调递增的是 A.cos y x = B.2y x =- C.1()2xy = D.|sin |y x =4.若0a >,且1a ≠,则“函数x y a =在R 上是减函数”是“函数3(2)y a x =- 在R 上是增函数 ”的A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 5.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是 A .6 B .8 C .10 D .12 6.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A.3B .43 CD .47.在Rt ABC ∆中,90A ∠=︒,点D 是边BC 上的动点,且3AB = ,4AC =,AD AB AC λμ=+(0,0λμ>>),则当λμ取得最大值时,AD 的值为 A .72B .3C .52D .1258.某校高三(1)班32名学生全部参加跳远和掷实心球两项体育测试.跳远和掷实心球两项测试 成绩合格的人数分别为26人和23人,这两项成绩都不合格的有3人,则这两项成绩都合格的人数是A . 23B . 20C . 21D .第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知双曲线2221(0)4x y b b-=>的一条渐近线方程为320x y +=,则b 等于 .10.已知等差数列}{n a 的前n 项和为n S .若12a =,32a S =,则2a = ,10S = .11.执行如图所示的程序框图,则输出S 的结果为 .12.在△ABC 中,已知45,B AC ∠=︒=,则C ∠= .13.设D 为不等式组0,0,+33x y x y x y ≥-≤≤+⎧⎪⎨⎪⎩表示的平面区域,对于区域D 内除原点外的任一点(,)A x y 则2x y +的最大值是_______的取值范围是 .14.若集合M 满足:,x y ∀∈,都有,y M xy M +∈∈,则称集合M 是封闭的.显然,整数集Z ,有理数集Q 都是封闭的.对于封闭的集合M (M ⊆R ),f :M M →是从集合M 到集合M 的一个函数,①如果,x y M ∀∈都有()()()f x y f x f y +=+,就称f 是保加法的;②如果,x y M ∀∈都有()()()f xy f x f y =⋅,就称f 是保乘法的;③如果f 既是保加法的,又是保乘法的,就称f 在M 上是保运算的.在上述定义下,集合},n m n +∈Q 封闭的(填“是”或“否”);若函数()f x 在Q 上保运算,并且是不恒为零的函数,请写出满足条件的一个函数()=f x . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()cos 2cos 1f x x x x =+-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值. 16.(本小题满分13分)甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (Ⅰ)用茎叶图表示这两组数据;俯视图 正视图侧视图(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由; (Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望E ξ.17.(本小题满分14分)在如图所示的几何体中, 四边形ABCD 为正方形,四边形 ABEF 为直角梯形,且//,,AF BE AB BE ⊥平面ABCD 平面,ABEF AB = 22AB BE AF ===.(Ⅰ)求证://AC 平面DEF ; (Ⅱ)若二面角D AB E --为直二面角,(i )求直线AC 与平面CDE 所成角的大小;(ii )棱 DE 上是否存在点P ,使得BP ⊥平面DEF ? 若存在,求出DPDE的值;若不存在,请说明理由. 18. (本小题满分13分)已知椭圆22:132x y C +=上的动点P 与其顶点(A , B 不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值; (Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.19.(本小题满分14分)设函数2()ln(1)1f x x ax x =-+++,2()(1)e x g x x ax =-+,R a ∈.(Ⅰ)当1a =时,求函数()f x 在点(2,(2))f 处的切线方程; (Ⅱ)若函数()g x 有两个零点,试求a 的取值范围;(Ⅲ)证明()()f x g x ≤. 20.(本小题满分13分)设(3)m,n m n ≤≤是正整数,数列:m A 12m a ,a ,,a L ,其中(1)i a i m ≤≤是集合{123},,,,n L 中互不相同的元素.若数列m A 满足:只要存在1i,j i j m ≤<≤()使i j a a n +≤,总存在1k k m ≤≤()有i j k a a a +=,则称数列m A 是“好数列”.(Ⅰ)当6100m ,n ==时,(ⅰ)若数列6:11789790A ,,x,y,,是一个“好数列”,试写出x,y 的值,并判断数列:11789097,,,x,,y 是否是一个“好数列”?(ⅱ)若数列6:1178A ,,a,b,c,d 是“好数列”,且a b c d <<<,求a,b,c,d共有多少种不同的取值?(Ⅱ)若数列m A 是“好数列”,且m 是偶数,证明:1212m a a a n m ++++≥L .北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2017.1一、选择题:三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ)因为2()cos 2cos 12cos 22sin(2)6f x x x x x x x π=+-=+=+.所以)(x f 的最小正周期为π. ………………………………………………………7分(Ⅱ)因为2,2.64663x x πππππ-≤≤≤+≤所以-当2,626x x πππ+==即时,)(x f 取得最大值2; 当2,,()666x x f x πππ+=-=-即时取得最小值1-.…………………………13分16.(本小题满分13分)解:(Ⅰ)作出茎叶图如右:………………………………4分 (Ⅱ)派甲参赛比较合适.理由如下: ()1x 70280490289124835858=⨯+⨯+⨯++++++++=甲,()1x 70180490350035025858=⨯+⨯+⨯++++++++=乙,()()()()()()()()2222222221s 7885798581858285848588859385958535.58⎡⎤=-+-+-+-+-+-+-+-=⎣⎦甲,()()()()()()()()2222222221s 7585808580858385858590859285958541.8⎡⎤=-+-+-+-+-+-+-+-=⎣⎦乙因为 x =甲x 乙,22s s <乙甲,所以,甲的成绩较稳定,派甲参赛比较合适.…………………………8分F AD C BE 甲乙9884215350035025789注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为138f =,乙获得85分以上(含85分)的频率为24182f ==.因为21f f >,所以派乙参赛比较合适.(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A ,()63A 84P ==.………………… 9分 随机变量ξ的可能取值为0,1,2,3,且3(3,)4ξB ∼.∴()3331C 44k kk P k ξ-⎛⎫⎛⎫== ⎪ ⎪,k 0,1,2,3=.所以变量ξ的分布列为: ……11分 190123646464644Eξ=⨯+⨯+⨯+⨯=.(或3.44nP Eξ==⨯=)……………………13分17.(本小题满分14分)证明:(Ⅰ)连结BD ,设AC BD O = ,因为四边形ABCD 为正方形,所以O 为BD 中点.设G 为DE 的中点,连结,OG FG ,则//OG BE ,且12OG BE =.由已知//AF BE ,且12AF BE =,所以//,AF OG OG AF =.所以四边形AOGF 为平行四边形.所以//AO FG ,即//AC FG .因为AC ⊄平面DEF ,FG ⊂平面DEF ,所以AC //平面DEF . ……………………………5分(Ⅱ)由已知,//,AF BE AB BE ⊥,所以AF AB ⊥.因为二面角D AB E --为直二面角,所以平面ABCD ⊥平面ABEF .所以AF ⊥平面ABCD ,所以,AF AD AF AB ⊥⊥.四边形ABCD 为正方形,所以AB AD ⊥.所以,,AD AB AF 两两垂直.以A 为原点,,,AD AB AF 分别为,,x y z 轴建立空间直角坐标系(如图).因为22AB BE AF ===,所以(000),(0,2,0),(2,2,0),(200),(0,2,2),(0,0,1)A B C D E F ,,,,,所以(2,2,0),(0,2,0),(2,0,2)AC CD CE ==-=-.(i )设平面CDE 的一个法向量为(,,)x y z =n , 由 0,CD CE ⎧⋅=⎪⎨⋅=⎪⎩n n 得20, 220. y x z -=⎧⎨-+=⎩即0, 0. y x z =⎧⎨-=⎩取1x =,得(1,0,1)=n .设直线AC 与平面CDE 所成角为θ,则1sin cos ,2AC θ=〈〉== n ,因为090θ≤≤︒,所以30θ=︒. 即直线AC 与平面CDE 所成角的大小为30︒.……………………………9分(ii )假设棱DE 上存在点P ,使得BP ⊥平面DEF .设(01)DPDEλλ=≤≤,则DP DE λ=.设(,,)P x y z ,则(2,,)DP x y z =- ,因为(2,2,2)DE =- ,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=-- . 又(2,0,1),(0,2,1)DF EF =-=-- ,所以2(22)20,2(22)20.BP DF BP EF λλλλ⎧⋅=--+=⎪⎨⋅=---=⎪⎩解得 23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥平面DEF ,且23DP DE =. (另解)假设棱DE 上存在点P ,使得BP ⊥平面DEF . 设(01)DPDEλλ=≤≤,则DP DE λ= .设(,,)P x y z ,则(2,,)DP x y z =-,因为(2,2,2)DE =- ,所以(2,,)(2,2,2)x y z λ-=-.所以22,2,2x y z λλλ-=-==,所以P 点坐标为(22,2,2)λλλ-.因为(0,2,0)B ,所以(22,22,2)BP λλλ=--.设平面DEF 的一个法向量为000(,,)x y z =m ,则 0,m DF m EF ⎧⋅=⎪⎨⋅=⎪⎩由(2,0,1),(0,2,1)DF EF =-=-- ,得000020, 20. x z y z -+=⎧⎨--=⎩ 取01x =,得(1,1,2)=-m .由m BP μ=,即(22,22,2)(1,1,2)λλλμ--=-,可得22, 22, 22.λμλμλμ-=⎧⎪-=-⎨⎪=⎩解得23λ=.因为2[0,1]3∈,所以DE 上存在点P ,使得BP ⊥F ADCBEOG平面DEF ,且23DP DE =. ………………………………………………………………14分 18.(本小题满分13分)解:(Ⅰ)设00(,)P x y ,则2200132x y +=.所以直线PA 与PB2200220062233(3)3y x x x -===---.……4分 (Ⅱ)依题直线,OM ON 的斜率乘积为23-.①当直线MN 的斜率不存在时,直线,OM ON的斜率为OM的方程是3y x =,由22236,,3x y y x ⎧+=⎪⎨=⎪⎩得2x =±,1y =±.取(,)2M ,则(,1)2N -.所以OMN ∆的面积为2②当直线MN 的斜率存在时,设直线MN 的方程是y kx m =+,由22,2360y kx m x y =+⎧⎨+-=⎩得222(32)6360k x kmx m +++-=. 因为M ,N 在椭圆C 上,所以2222364(32)(36)0k m k m ∆=-+->,解得22320k m -+>.设11(,)M x y ,22(,)N x y ,则122632km x x k +=-+,21223632m x x k -=+.MN === 设点O 到直线MN 的距离为d,则d =.所以OMN ∆的面积为12OMN S d MN ∆=⨯⨯=⋅⋅⋅⋅⋅⋅①. 因为//OM PA ,//ON PB ,直线OM ,ON 的斜率乘积为23-,所以121223y y x x =-.所以2212121212121212()()()y y kx m kx m k x x km x x m x x x x x x +++++==2222636m k m -=-. 由222262363m k m -=--,得22322k m +=.⋅⋅⋅⋅⋅⋅② 由①②,得2OMN S ∆===.综上所述,OMN S ∆=………………………13分 19.(本小题满分14分)解:(Ⅰ)函数()f x 的定义域是(1,)+∞,(221)()1x ax a f x x -+'=-.当1a =时,(2)426f a '=+=,(2)437f a =+=.所以函数()f x 在点(2,(2))f 处的切线方程为76(2)y x -=-.即65y x =-.…………………4分 (Ⅱ)函数()g x 的定义域为R ,由已知得()(e 2)x g x x a '=+.①当0a =时,函数()(1)e x g x x =-只有一个零点;②当0a >,因为e 20x a +>,当(,0)x ∈-∞时,()0g x '<;当(0,)x ∈+∞时,()0g x '>.所以函数()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.又(0)1g =-,(1)g a =,因为0x <,所以10,1x x e -<<,所以(1)1x e x x ->-,所以2()1g x ax x >+-,取0x =00x <且0()0g x >,所以(0)(1)0g g <,0()(0)0g x g <.由零点存在性定理及函数的单调性知,函数有两个零点.③当0a <时,由()(e 2)0x g x x a '=+=,得0x =,或ln(2)x a =-.ⅰ) 当1a <-,则ln(2)0a ->.当x 变化时,(),()g x g x '变化情况如下表: 注意到,所以函数至多有一个零点,不符合题意.ⅱ) 当12a =-,则ln(2)0a -=,()g x 在(,)-∞+∞单调递增,函数()g x 至多有一个零点,不符合题意.若12a >-,则ln(2)0a -≤x (),()g x g x '变化情况如下表:注意到当时,()(1)e 0g x x ax =-+<,,所以函数至多有一个零点,不符合题意. 综上,a 的取值范围是(0,).+∞…………………………………………9分(Ⅲ)证明:()()(1)e ln(1)1x g x f x x x x -=-----.设()(1)e ln(1)1x h x x x x =-----,其定义域为(1,)+∞,则证明()0h x ≥即可.因为1()e (e )11xx x h x x x x x '=-=---,取311e x -=+,则1311()(e e )0x h x x '=-<,且(2)0h '>.又因为21()(1)e 0(1)xh x x x ''=++>-,所以函数()h x '在(1,)+∞上单增.所以()0h x '=有唯一的实根0(1,2)x ∈,且001e 1x x =-.当01x x <<时,()0h x '<;当0x x >时,()0h x '>.所以函数()h x 的最小值为0()h x . 所以00000()()(1)e ln(1)1xh x h x x x x ≥=-----00110x x =+--=.所以()().f x g x ≤……………………14分 20.(本小题13分)解:(Ⅰ)(ⅰ) 89100x ,y ==,或10089x ,y ==; 数列:11789097,,,x,,y 也是一个“好数列”. …………………………………3分(ⅱ)由(ⅰ)可知,数列必含89100,两项,若剩下两项从909199,,,L 中任取,则都符合条件,有21045C =种;若剩下两项从798088,,,L 中任取一个,则另一项必对应909199,,,L 中的一个,有10种;若取6877a ≤≤,则791188a ≤+≤,902299a ≤+≤,“好数列”必超过6项,不符合;若取67a =,则61178a A +=∈,另一项可从909199,,,L 中任取一个,有10种;若取5667a <<,则671178a <+<,782289a <+<,“好数列”必超过6项,不符合;若取56a =,则67b =,符合条件,若取56a <,则易知“好数列”必超过6项,不符合;综上,a,b,c,d 共有66种不同的取值.………………7分 (Ⅱ)证明:由(Ⅰ)易知,一个“好数列”各项任意排列后,还是一个“好数列”.又“好数列”12m a ,a ,,a L 各项互不相同,所以,不妨设12m a a a <<<L .把数列配对:121122m m m m a a ,a a ,,a a -++++L ,只要证明每一对和数都不小于1n +即可.用反证法,假设存在12mj ≤≤,使1j m j a a n +-+≤,因为数列单调递增, 所以111211m j m j m j j m j a a a a a a a n -+-+-+-+<+<+<<+≤L ,又因为“好数列”,故存在1k m ≤≤,使得1(1)i m jk a a a i j +-+=≤≤,显然1>k m j a a +-,故1k m j >+-,所以k a 只有1j -个不同取值,而1i m j a a +-+有j 个不同取值,矛盾.所以,121122m m m m a a ,a a ,,a a -++++L 每一对和数都不小于1n +,故12(1)2m ma a a n +++≥+L ,即1212m a a a n m ++++≥L .…………………13分。
2017年北京市朝阳区高三上学期期末数学试卷与解析答案(理科)
2016-2017学年北京市朝阳区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|2x<1},B={x|x﹣2<0},则(?U A)∩B=()A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}2.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)下列函数中,既是偶函数,又在区间[0,1]上单调递增的是()A.y=cosx B.y=﹣x2C.D.y=|sinx|4.(5分)若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是()A.6 B.8 C.10 D.126.(5分)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.47.(5分)在Rt△ABC中,∠A=90°,点D是边BC上的动点,且||=3,||=4,=λ+μ(λ>0,μ>0),则当λμ取得最大值时,||的值为()A.B.3 C.D.8.(5分)某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)已知双曲线的一条渐近线方程为3x+2y=0,则b等于.10.(5分)已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=,S10=.11.(5分)执行如图所示的程序框图,则输出的结果是.12.(5分)在△ABC中,已知,则∠C=.13.(5分)设D为不等式组表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是,的取值范围是.14.(5分)若集合M满足:?x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q都是封闭的.对于封闭的集合M(M?R),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年北京市朝阳区高三(上)期中数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0} C.{x|x>2} D.{x|1<x<2}2.下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是()A.y=x2 B.y=x+1 C.y=﹣lg|x|D.y=﹣2x3.若a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是()A.a>b>c B.b>c>a C.c>b>a D.b>a>c4.已知函数f(x)=ax2﹣x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,则实数a的取值范围是()A.B.C.D.5.设m∈R且m≠0,“不等式m+>4”成立的一个充分不必要条件是()A.m>0 B.m>1 C.m>2 D.m≥26.已知三角形ABC外接圆O的半径为1(O为圆心),且2++=0,||=2||,则•等于()A.B.C.D.7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.18.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.设平面向量=(1,2),=(﹣2,y),若∥,则y=.10.函数f(x)=cos2x﹣sin2x的单调递减区间为.11.各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.12.已知角A为三角形的一个内角,且,则tanA=,tan(A+)=.13.已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围.14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知数列{a n}(n∈N*)是公差不为0的等差数列,a1=1,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{}的前n项和为T n,求证:T n<1.16.已知函数f(x)=asinx﹣cosx(a∈R)的图象经过点(,0).(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,],求f(x)的取值范围.17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.18.已知函数f(x)=﹣ax+cosx(a∈R),x∈[﹣,].(Ⅰ)若函数f(x)是偶函数,试求a的值;(Ⅱ)当a>0时,求证:函数f(x)在(0,)上单调递减.19.已知函数f(x)=e x(x2﹣a),a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若函数f(x)在(﹣3,0)上单调递减,试求a的取值范围;(Ⅲ)若函数f(x)的最小值为﹣2e,试求a的值.20.设a,b是正奇数,数列{c n}(n∈N*)定义如下:c1=a,c2=b,对任意n≥3,c n是c n﹣1+c n﹣2的最大奇约数.数列{c n}中的所有项构成集合A.(Ⅰ)若a=9,b=15,写出集合A ;(Ⅱ)对k ≥1,令d k =max {c 2k ,c 2k ﹣1}(max {p ,q }表示p ,q 中的较大值),求证:d k +1≤d k ;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.2016-2017学年北京市朝阳区高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1}B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.2.下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是()A.y=x2 B.y=x+1 C.y=﹣lg|x|D.y=﹣2x【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】选项A:y=x2在(0,+∞)上单调递增,不符合条件;选项B:代入特殊值x=±1,可知f(﹣1)≠f(1),且f(﹣1)≠﹣f(1),故y=x+1是非奇非偶函数,不符合条件;选项C:先求出定义域,再根据奇偶性的定义,确定y=﹣lg|x|是偶函数,x>0时,y=﹣lg|x|=﹣lgx单调递减,故符合条件;选项D:代入特殊值x=±1,可知f(﹣1)≠f(1),且f(﹣1)≠﹣f(1),故y=x+1是非奇非偶函数,不符合条件;【解答】解:选项A:f(x)=x2的定义域为R,又∵f(﹣x)=(﹣x)2=x2,∴f(﹣x)=f (x),即f(x)是偶函数.但y=x2在(0,+∞)上单调递增,故A不正确;选项B:记f(x)=x+1,则f(1)=2,f(﹣1)=0,∵f(﹣1)≠f(1),且f(﹣1)≠﹣f (1),∴y=x+1是非奇非偶函数,故B不正确;选项C:定义域为(﹣∞,0)∪(0,+∞),记f(x)=﹣lg|x|,∵f(﹣x)=﹣lg|﹣x|=﹣lg|x|,∴f(﹣x)=f(x),即f(x)是偶函数当x∈(0,+∞)时,y=﹣lgx.∵y=lgx在(0,+∞)上单调递增,∴y=﹣lgx在(0,+∞)上单调递减故C正确;选项D:记f(x)=﹣2x,则f(1)=﹣,f(﹣1)=﹣2,∵f(﹣1)≠f(1),且f(﹣1)≠﹣f(1),∴y=﹣2x是非奇非偶函数,故D不正确.故选:C.3.若a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是()A.a>b>c B.b>c>a C.c>b>a D.b>a>c【考点】对数值大小的比较.【分析】直接利用中间量“0”,“1”判断三个数的大小即可.【解答】解:a=log2.10.6<0,b=2.10.6>1,0<c=log0.50.6<1∴b>c>a,故选:B.4.已知函数f(x)=ax2﹣x,若对任意x1,x2∈[2,+∞),且x1≠x2,不等式>0恒成立,则实数a的取值范围是()A.B.C.D.【考点】函数单调性的判断与证明.【分析】对进行化简,转化为a(x1+x2)﹣1>0恒成立,再将不等式变形,得到a>,从而将恒成立问题转变成求的最大值,即可求出a的取值范围【解答】解:不妨设x2>x1≥2,====a(x1+x2)﹣1,∵对任意x1,x2∈[2,+∞),且x1≠x2,>0恒成立,∴x2>x1≥2时,a(x1+x2)﹣1>0,即a>恒成立∵x2>x1≥2∴∴a,即a的取值范围为[,+∞)故本题选D5.设m∈R且m≠0,“不等式m+>4”成立的一个充分不必要条件是()A.m>0 B.m>1 C.m>2 D.m≥2【考点】必要条件、充分条件与充要条件的判断.【分析】根据基本不等式的性质,结合充分不必要条件的定义进行判断即可.【解答】解:当m<0时,不等式m+>4不成立,当m>0时,m+≥2=4,当且仅当m=,即m=2时,取等号,A.当m=2时,满足m>0,但不等式m+>4不成立,不是充分条件,B.当m=2时,满足m>1,但不等式m+>4不成立,不是充分条件,C.当m>2时,不等式m+>4成立,反之不一定成立,是充分不必要条件,满足条件.D.当m=2时,满足m≥2,但不等式m+>4不成立,不是充分条件,故选:C.6.已知三角形ABC外接圆O的半径为1(O为圆心),且2++=0,||=2||,则•等于()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意可得三角形是以角A为直角的直角三角形,解直角三角形求出相应的边和角,代入数量积公式得答案.【解答】解:三角形ABC外接圆O的半径为1(O为圆心),2++=0,∴O为BC的中点,故△ABC是直角三角形,∠A为直角.又||=2||,∴||=,||=2,∴||=,∴cosC===,∴•=﹣•=﹣×2×=﹣故选:A7.已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.1【考点】函数零点的判定定理.【分析】作出函数的图象,先求出f (x )=的根,然后利用数形结合转化为两个函数的交点个数即可.【解答】解:作出函数f (x )的图象如图:当x ≤0时,由f (x )=得x +1=,即x=﹣1=﹣,当x >0时,由f (x )=得log 2x=,即x==,由g (x )=f (f (x ))﹣=0得f (f (x ))=,则f (x )=﹣或f (x )=,若f (x )=﹣,此时方程f (x )=﹣有两个交点,若f (x )=,此时方程f (x )=只有一个交点,则数g (x )=f (f (x ))﹣的零点个数是3个,故选:B8.5个黑球和4个白球从左到右任意排成一排,下列说法正确的是( )A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个【考点】进行简单的合情推理.【分析】5个黑球和4个白球,5为奇数,4为偶数,分析即可得到答案.【解答】解:5为奇数,4为偶数,故总存在一个黑球,它右侧的白球和黑球一样多, 故选:A二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.设平面向量=(1,2),=(﹣2,y ),若∥,则y= ﹣4 .【考点】平行向量与共线向量.【分析】直接利用向量共线的坐标表示列式计算【解答】解:∵=(1,2),=(﹣2,y ),∥,∴1×y=2×(﹣2)∴y=﹣4故答案为:﹣410.函数f(x)=cos2x﹣sin2x的单调递减区间为.【考点】二倍角的余弦;余弦函数的图象.【分析】由条件利用二倍角的余弦函数公式化简函数的解析式,再根据余弦函数的单调性求得函数的单调递减区间.【解答】解:对于函数y=cos2x﹣sin2x=cos2x,令2kπ≤2x≤2kπ+π,k∈Z,求得:kπ≤x≤kπ+,k∈Z,可得函数的单调递减区间是:.故答案为:.11.各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.【考点】等比数列的前n项和.【分析】经分析等比数列为非常数列,设出等比数列的公比,有给出的条件列方程组求出a1和q的值,则S4的值可求.【解答】解:若等比数列的公比等于1,由a3=2,则S4=4a3=4×2=8,5S2=5×2S3=5×2×2=20,与题意不符.设等比数列的公比为q(q≠1),由a3=2,S4=5S2,得:,整理得,解得,q=±2.因为数列{a n}的各项均为正数,所以q=2.则.故答案为;.12.已知角A为三角形的一个内角,且,则tanA=,tan(A+)=﹣7.【考点】两角和与差的正切函数;同角三角函数间的基本关系.【分析】利用同角三角函数的基本关系求得sinA的值,可得tanA的值,再利用两角和的正切公式求得tan(A+)的值.【解答】解:已知角A为三角形的一个内角,且,则sinA=,∴tanA==.∴tan(A+)===﹣7,故答案为,﹣7.13.已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围(1,] .【考点】函数单调性的性质.【分析】函数f(x)在(﹣∞,+∞)上是具有单调性,需要对m分类讨论,当m>1,m<﹣1,m=±1、0,﹣1<m<0,0<m<1分别判断分段函数的单调性.【解答】解:令h(x)=mx2+1,x≥0;g(x)=(m2﹣1)2x,x<0;①当m>1时,要使得f(x)在(﹣∞,+∞)上是具有单调性,即要满足m2﹣1≤1⇒﹣≤m≤故:1<m≤;②当m<﹣1时,h(x)在x≥0上递减,g(x)在x<0上递增,所以,f(x)在R上不具有单调性,不符合题意;③当m=±1时,g(x)=0;当m=0时,h(x)=1;所以,f(x)在R上不具有单调性,不符合题意;④当﹣1<m<0 时,h(x)在x≥0上递减,g(x)在x<0上递减,对于任意的x≥0,g(x)<0;当x→0时,h(x)>0;所以,f(x)在R上不具有单调性,不符合题意;⑤当0<m<1时,h(x)在x≥0上递增,g(x)在x<0上递减;所以,f(x)在R上不具有单调性,不符合题意;故答案为:(1,]14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第20天,两马相逢.【考点】等差数列的前n项和.【分析】利用等差数列的求和公式与不等式的解法即可得出.【解答】解:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m++97m+=200m+×12.5≥2×3000,化为m2+31m﹣960≥0,解得m,取m=20.故答案为:20.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知数列{a n}(n∈N*)是公差不为0的等差数列,a1=1,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{}的前n项和为T n,求证:T n<1.【考点】数列的求和;数列递推式.【分析】(Ⅰ)利用已知列出关于工程师了公差方程求出公差;得到通项公式;(Ⅱ)利用(Ⅰ)的结论,将通项公式代入,利用裂项求和证明即可.【解答】解:(Ⅰ)设{a n}的公差为d.因为成等比数列,所以.即.化简得,即d2=a1d.又a1=1,且d≠0,解得d=1.所以有a n=a1+(n﹣1)d=n.…(Ⅱ)由(Ⅰ)得:.所以.因此,T n<1.…16.已知函数f(x)=asinx﹣cosx(a∈R)的图象经过点(,0).(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,],求f(x)的取值范围.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)根据函数f(x)的图象过点,代入函数解析式求出a的值,从而写出函数解析式并求出最小正周期;(Ⅱ)根据x的取值范围,计算f(x)的最值,从而求出它的取值范围.【解答】解:(Ⅰ)因为函数的图象经过点,所以,解得a=1;…所以,所以f(x)最小正周期为T=2π;…(Ⅱ)因为,所以;所以当,即时,f(x)取得最大值,最大值是2;当,即时,f(x)取得最小值,最小值是﹣1;所以f(x)的取值范围是[﹣1,2].…17.如图,已知A,B,C,D四点共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.【考点】余弦定理;正弦定理.【分析】(Ⅰ)利用已知及同角三角函数基本关系式可求,进而利用正弦定理即可求得sin∠DBC的值.(Ⅱ)在△BDC中,由余弦定理可求DB的值,利用同角三角函数基本关系式可求,进而利用两角差的余弦函数公式可求cos∠ABD的值,在△ABD中,由余弦定理可求AD的值.【解答】(本小题满分13分)解:(Ⅰ)在△BDC中,因为,所以.由正弦定理得,.…(Ⅱ)在△BDC中,由BC2=DC2+DB2﹣2DC•DBcos∠BDC,得,.所以.解得或(舍).由已知得∠DBC是锐角,又,所以.所以cos∠ABD=cos=cos120°•cos∠DBC+sin120°•sin∠DBC==.在△ABD中,因为AD2=AB2+BD2﹣2AB•BDcos∠ABD=,所以.…18.已知函数f(x)=﹣ax+cosx(a∈R),x∈[﹣,].(Ⅰ)若函数f(x)是偶函数,试求a的值;(Ⅱ)当a>0时,求证:函数f(x)在(0,)上单调递减.【考点】函数单调性的判断与证明;函数奇偶性的性质.【分析】(Ⅰ)根据偶函数的定义,f(﹣x)=f(x)恒成立,求出a的值;(Ⅱ)利用导数大于0或小于0,判断函数f(x)是单调增函数单调减函数即可.【解答】解:(Ⅰ)因为函数f(x)是偶函数,所以f(﹣x)=﹣a(﹣x)+cos(﹣x)=+ax+cosx=f(x)=﹣ax+cosx恒成立,所以a=0;…(Ⅱ)由题意可知,设,则;注意到,a>0;由g'(x)<0,即,解得;由g'(x)>0,即,解得;所以g(x)在上单调递减,上单调递增;所以当,g(x)<g(0)=0﹣a<0,所以f(x)在单调递减,当,,所以f(x)在单调递减,所以当a>0时,函数f(x)在上单调递减.…19.已知函数f(x)=e x(x2﹣a),a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若函数f(x)在(﹣3,0)上单调递减,试求a的取值范围;(Ⅲ)若函数f(x)的最小值为﹣2e,试求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)利用导数求出x=0处的切线斜率,根据点斜式写出切线方程;(2)函数f(x)在(﹣3,0)上单调递减,即当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立.要使得“当x∈(﹣3,0)时,x2+2x﹣a≤0恒成立”,等价于即所以a≥3.(3)根据函数的单调性,得出函数f(x)的最小值只能在处取得.【解答】解:由题意可知f'(x)=e x(x2+2x﹣a).(Ⅰ)因为a=1,则f(0)=﹣1,f'(0)=﹣1,所以函数f(x)在点(0,f(0))处的切线方程为y﹣(﹣1)=﹣(x﹣0).即x+y+1=0.(Ⅱ)因为函数f(x)在(﹣3,0)上单调递减,所以当x ∈(﹣3,0)时,f'(x )=e x (x 2+2x ﹣a )≤0恒成立. 即当x ∈(﹣3,0)时,x 2+2x ﹣a ≤0恒成立.显然,当x ∈(﹣3,﹣1)时,函数g (x )=x 2+2x ﹣a 单调递减, 当x ∈(﹣1,0)时,函数g (x )=x 2+2x ﹣a 单调递增. 所以要使得“当x ∈(﹣3,0)时,x 2+2x ﹣a ≤0恒成立”, 等价于即所以a ≥3.(Ⅲ)设g (x )=x 2+2x ﹣a ,则△=4+4a .①当△=4+4a ≤0,即a ≤﹣1时,g (x )≥0,所以f'(x )≥0.所以函数f (x )在(﹣∞,+∞)单增,所以函数f (x )没有最小值.②当△=4+4a >0,即a >﹣1时,令f'(x )=e x (x 2+2x ﹣a )=0得x 2+2x ﹣a=0, 解得x f x f'x当x ∈时,.所以.所以f (x )=e x (x 2﹣a )>0.又因为函数f (x )的最小值为﹣2e <0, 所以函数f (x )的最小值只能在处取得.所以.所以.易得.解得a=3. 以下证明解的唯一性,仅供参考: 设因为a >0,所以,. 设,则. 设h (x )=﹣xe x ,则h'(x )=﹣e x (x +1).当x >0时,h'(x )<0,从而易知g (a )为减函数. 当a ∈(0,3),g (a )>0;当a ∈(3,+∞),g (a )<0. 所以方程只有唯一解a=3.20.设a ,b 是正奇数,数列{c n }(n ∈N *)定义如下:c 1=a ,c 2=b ,对任意n ≥3,c n 是c n ﹣1+c n ﹣2的最大奇约数.数列{c n }中的所有项构成集合A . (Ⅰ)若a=9,b=15,写出集合A ;(Ⅱ)对k ≥1,令d k =max {c 2k ,c 2k ﹣1}(max {p ,q }表示p ,q 中的较大值),求证:d k +1≤d k ;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数. 【考点】集合的表示法. 【分析】(Ⅰ)利用列举法写出数列{c n },易得集合A ;(Ⅱ)由题设,对n ≥3,c n ﹣2,c n ﹣1都是奇数,所以c n ﹣1+c n ﹣2是偶数.从而c n ﹣1+c n ﹣2的最大奇约数,结合不等式的性质进行解答;(Ⅲ)有限集是指元素的个数是有限个的集合,从而确定答案. 【解答】解:(Ⅰ)数列{c n }为:9,15,3,9,3,3,3,…. 故集合A={9,15,3}.(Ⅱ)证明:由题设,对n ≥3,c n ﹣2,c n ﹣1都是奇数,所以c n ﹣1+c n ﹣2是偶数.从而c n ﹣1+c n ﹣2的最大奇约数,所以c n ≤max {c n ﹣1,c n ﹣2},当且仅当c n ﹣1=c n ﹣2时等号成立. 所以,对k ≥1有c 2k +1≤max {c 2k ,c 2k ﹣1}=d k , 且c 2k +2≤max {c 2k +1,c 2k }≤max {d k ,d k }=d k .所以d k +1=max {c 2k +2,c 2k +1}≤d k ,当且仅当c 2k =c 2k ﹣1时等号成立. (Ⅲ)由(Ⅱ)知,当n ≥3时,有c n ≤max {c n ﹣1,c n ﹣2}. 所以对n ≥3,有c n ≤max {c 1,c 2}=max {a ,b }.又c n 是正奇数,且不超过max {a ,b }的正奇数是有限的, 所以数列{c n }中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是a ,b 的最大公约数.。