第五章聚合方法
高分子化学第五章 聚合实施方法
溶剂对聚合的影响:
溶剂对聚合活性有很大影响,因为溶剂难以做到完全惰 性,对引发剂有诱导分解作用,对自由基有链转移反应。 溶剂对引发剂分解速率依如下顺序递增: 芳烃、烷烃、醇类、醚类、胺类。 向溶剂链转移的结果使分子量降低。 向溶剂分子链转移: 水为零, 苯较小, 卤代烃较大。 溶剂对聚合物的溶解性能与凝胶效应有关: 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应
第五章 聚合方法
1、聚合方法和体系分类
2、本体聚合
3、溶液聚合 4、悬浮聚合 5、乳液聚合
聚合方法概述
本体聚合
自由基聚合方法
溶液聚合 悬浮聚合 乳液聚合 溶液聚合
离子和配位聚合方法
本体聚合
熔融缩聚
逐步聚合方法
溶液缩聚
界面缩聚
固相缩聚
一、聚合方法和体系分类 (一)按单体在介质中的分散状态分类
而且还常比形成的聚合物的熔融温度高出10-20℃ 。 整个聚合体系始终处于熔融状态的聚合反应;由于这类 反应常是固体单体的官能团的缩聚,故常称熔融缩聚。 这种聚合除有时加入少量催化剂外,一般均不加任何溶 剂,所以实质上它也是本体聚合。
界面缩聚— 两种单体分别溶于互不相溶的介质中,随后
把两种单体溶液倒在一起,后,即成纺丝液。
例二. 醋酸乙烯酯溶液聚合
以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率60%,过高
会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作合成纤维时, 聚合度1700,醇解度98%~100%(1799);用作分散剂和织物助剂 时,聚合度1700,醇解度88%左右(1788)。
高分子化学第5章
• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)
(完整版)高分子化学第五章答案
第五章聚合方法思考题5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。
答聚合方法有不同的分类方法,如下表:序号分类方法聚合物1 2 3按聚合体系中反应物的状态按聚合体系的溶解性按聚合的单体形态本体聚合、溶液聚合、悬浮聚合乳液聚合均相聚合、非均相聚合、沉淀聚合气相聚合、固相聚合按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。
溶液聚合是单体和引发剂溶于适当溶剂中的聚合。
悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。
当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。
聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。
思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。
答间歇本体聚合是制备有机玻璃板的主要方法。
为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。
①预聚合。
在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。
②聚合。
将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。
低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。
高分子化学第五章聚合方法
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽;重则 温度失调,引起爆聚。(关键:散热)
➢解决办法:分段聚合
预聚:在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度。
后聚:在模板中聚合,逐步升温,使聚合完全。
5
聚合实例:聚苯乙烯,有机玻璃(PMMA)
32
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂 少量在水相中
单体
引发剂 大部分在水中
大部分形成胶束 部分吸附于单体液滴
一部分增溶胶束内 大部分在单体液滴内
33
聚合场 所
水相中?
单体液滴?
胶束?
水相中单体浓度小, 反应成聚合物则沉 淀,停止增长,因 此不是聚合的主要 场所。
预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%。
后聚合:预聚体流入聚合塔,可以热聚合或加 少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
9
例二. 苯乙烯连续本体聚合
聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃, 典型的硬塑料,伸长率仅1%-3%。尺寸稳定性优, 电性能好,透明色浅,流动性好,易加工。性脆、不 耐溶剂、紫外、氧。
2). CMC: 形成胶束的临界浓度。不同乳化剂的CMC不同,愈小, 表示乳化能力愈强
3). 三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(使用最低温度)
高于此温度,溶解度突增,凝胶消失,乳化剂只以分子溶解和胶 束两种状态存在。
4). 浊点:非离子型乳化剂开始分相变浊时的温度。(使用最高温度)
第五章共聚合
分子除以 k12 [M1][M2 ] 分母除以 k21[M2 ][M1]
1 k11 [M1]
d[M 1 ] d[M2 ]
1
k12 k 22
[M2 ] [M2 ]
k21 [M1]
d[M 1 ] d[M2 ]
1 r1 1 r2
[M1 ] [M2 ] [M2 ] [M1 ]
单体浓度比
单体竞争聚合能力 ——竞聚率
(1)理想恒比共聚,r1= r2=1
1.0
F1 f1
F1 0.5
0
0
0.5
1.0
f1
r1 =r2 = 1,恒分共聚的F1-f1曲线
(2)理想非恒比共聚,r1•r2=1,r1≠r2
r1
1 r2
,
d[M1 ] d[M2 ]
r1
[M1 ] [M2 ]
F1
r1f1 r1f1
f2
理想共聚的一个有实际 意义的结 论是随着两单体竟聚率差别增加, 要合成两种单体含量均很高的共 聚物很困难。
d[M1] k11[M1][M1] k21[M2 ][M1]
d[M2 ] k22 [M2 ][M2 ] k12 [M1][M2 ]
19
共聚物组成微分方程推导
根据稳态假设: k12 [M1][M2 ] k21[M2 ][M1]
d[M1] k11[M1][M1] k21[M2 ][M1] d[M2 ] k22 [M2 ][M2 ] k12 [M1][M2 ]
9
共聚物的组成
聚合物组成在通常与单体配料比差别很大, 且每时每刻都可能在发生变化。 共聚物组成指瞬时组成, 随聚合时间变化。 以自由基二元共聚为例,分析单体配比与共 聚物组成关系。 引发,增长,终止,三个基元反应
高分子化学第五章_聚合方法
1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。
溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。
高分子化学第五章答案
第五章聚合方法思考题 5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。
答聚合方法有不同的分类方法,如下表:按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。
溶液聚合是单体和引发剂溶于适当溶剂中的聚合。
悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。
当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。
聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。
思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。
答间歇本体聚合是制备有机玻璃板的主要方法。
为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。
①预聚合。
在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。
②聚合。
将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。
低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。
③高温后处理。
转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。
高分子化学第05章 聚合方法
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段:
9
预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在50℃ ~70℃下预聚至7%~11%转化率, 形成疏松的颗粒骨架。
2
5.2 本体聚合
本体聚合(Bulk Polymerization):是单体本身在不加溶 剂以及其它分散剂的条件下,由引发剂或直接由光热等作 用下引发的聚合反应。 优点:无杂质,产品纯度高,聚合设备简单。 缺点:体系粘度大,聚合热不易扩散,反应难以控制,易 局部过热,造成产品发黄。自动加速作用大,严重时可导 致暴聚。
39
乳化剂的作用主要有三点: 降低表面张力,使单体分散成细小的液滴 在液滴表面形成保护层,使乳液稳定 增溶作用:形成胶束,使单体增溶 乳化剂能形成胶束的最低浓度叫临界胶束浓度(简称CMC), CMC越小,越易形成胶束,乳化能力越强。
40
亲水亲油平衡值(HLB):衡量表面活性剂中亲水和亲油部分 对水溶性的贡献。其值越大亲水性越大。
32
乳液聚合的缺点 ①需要固体产品时,乳液需经凝聚、洗涤、脱水、干燥等工 序,成本较高 ②产品中留有乳化剂等杂质,难以完全除净,有损电性能等
33
乳液聚合应用
①聚合后分离成胶状或粉状固体产品
丁苯、丁腈、氯丁等合成橡胶;ABS、MBS等工程塑料和抗冲 改性剂;糊用聚氯乙烯树脂、聚四氟乙烯等特种塑料。
12
缺点: 单体浓度较低,聚合速率慢,设备生产能力较低; 单体浓度低和向溶剂链转移使聚合物的分子量降低; 使用有机溶剂时增加成本、污染环境; 溶剂分离回收费用高,除尽聚合物中残留溶剂困难。
高分子化学第五章 共聚合
4. r1<1,r2 < 1,有恒比点非理想(曲线2)
恒比点
A
A
r1=0.6 r2=0.3
r1=0.5 r2=0.5
F1~f1 曲线
恒比点的计算:
定义:与对角线有交点A,恒比点,:
(F1)=(f1)A, d[M1]/d[M2] = [M1]/[M2], 恒比点组成:
[M1] 1 r2 , [M 2 ] 1 r1
k12[M 2 ]
k 22
k12[M 2 ]2 k 21[ M 1 ]
同除k12k21并令
[M1] • k11k 21[M1] k12k 21[M 2 ] [M 2 ] k12k 21[M1] k 22k12[M 2 ]
r1
k11 k12
r2
k 22 k 21
[M1] • r1[M1] [M 2 ] [M 2 ] [M1] r2[M 2 ]
r1≠r2。共聚曲线不再呈点对称型
5. r1>1,r2>1
苯乙烯(r1=1.38)与异戊二烯(r2=2.05)
讨论:
1) 存在恒比点其共聚物组成曲线类似于 r1>1,r2<1的那种情况,只是形状 和位置恰恰相反;
2) r1 > 1, r2 > 1,两单体均聚倾向大于共 聚,当r1, r2 比“1”大很多时,倾向于 “block”,链段的长短取决于r1 和r2的 大小,一般都不长。
Mayo-Lewis方程
Mayo-lewis方程
d[M1 ] [M1 ] r1[M1 ] [M 2 ] d[M 2 ] [M 2 ] [M1 ] r2 [M 2 ]
式中各项意义:
1. d[M1]/d[M2]: 瞬时形成的聚合物组成
2. [M1]/[M2]:瞬时单体组成
第五章聚合方法
第五章聚合方法在数据处理领域中,聚合方法是一种将数据分组并计算每个组的指标或摘要统计量的技术。
聚合方法可用于对大规模数据进行分析和汇总,以便更好地理解数据集的特征和趋势。
聚合方法常用于数据分析和数据挖掘任务中,例如对市场销售数据进行统计分析、对客户行为数据进行分析等。
下面将介绍几种常见的聚合方法。
1.平均值聚合方法:这是最常见的一种聚合方法,即将一组数值求平均值。
平均值可以作为总体的中心位置指标,提供数据集的整体特征。
2.求和聚合方法:将一组数值进行求和,可以得到数据的总和。
求和适用于对数量的聚合,例如对销售额进行求和,得到总销售额。
3.计数聚合方法:计算数据集中满足一些条件的元素数量。
计数可以用于计算其中一种特定事件发生的频率或概率。
4.最大值和最小值聚合方法:分别计算数据集中的最大值和最小值,可以得到数据的范围。
最大值和最小值能够显示出数据集的极端值。
5.中位数聚合方法:将一组数值按照大小排序后,找出处于中间位置的数值。
中位数可以作为数据集的中心位置指标,与平均值不同的是,中位数不受极端值的影响。
6.众数聚合方法:计算数据集中出现频率最高的值。
众数可以用于找出数据集中的常见特征或模式。
7.方差和标准差聚合方法:方差和标准差是描述数据集分散程度的指标。
方差是各个数据与平均值之差的平方的平均值,标准差是方差的平方根。
聚合方法可以结合分组操作一起使用,根据一些属性将数据分组后再进行聚合计算。
例如,根据商品类型将销售数据进行分组,然后计算每个商品类型的平均销售额。
聚合方法在数据分析中发挥了重要作用,它可以帮助人们更好地理解数据集的特征和趋势,发现潜在的关联和模式。
而且,聚合计算可以提高数据分析的效率,减少数据处理的复杂性。
总之,聚合方法是一种对数据集进行统计和汇总的技术,常用于数据分析和数据挖掘任务中。
通过聚合计算,可以得到数据的摘要统计量,以更好地理解数据集的特征和趋势。
同时,聚合方法还可以与分组操作结合使用,进一步提高数据分析的精度和效率。
第四章习题答案: - 精品课程建设网 湖州师范学院
第五章聚合方法一、名称解释1. 自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。
2. 离子聚合实施方法:主要有溶液聚合,淤浆聚合。
3. 逐步聚合实施方法:主要有熔融聚合,溶液聚合,界面聚合。
4. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
5. 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
6. 悬浮作用:某些物质对单体有保护作用,能降低水的表面张力,能使水和单体的分散体系变为比较稳定的分散体系,这种作用称为悬浮作用。
7. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
8. 溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。
9. 乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
10. 分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。
(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。
11. 乳化剂:常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。
12. 胶束:当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。
13. 临界胶束浓度:乳化剂开始形成胶束时的浓度称为临界胶束浓度,简称CMC。
14. 亲水亲油平衡值(HLB):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。
第五章-链式共聚合
按照竞聚率旳定义r1 = k11/k12,它是同系链增长速率常数与交 叉链增长速率常数之比,也就是表达一种单体旳均聚能力与共聚 能力之比。
竞聚率是对于某一详细旳单体对而言,不能脱离详细旳单体对 来讨论。
➢ r1 = 0,表达M1旳均聚反应速率常数为0,不能进行自聚反 应,M1*只能与M2反应;
相应也有4个竞聚率:
r1 k111 k112
r2 k222 k221
r1 k211 k212
r2 k121
所以考虑前末端效应,共聚物方程为:
d[M1] =1 r1 x(r1x 1) / (r1 x 1) d[M2 ] 1 r2 x(r2 x) / (r2 x)
式中,x = [M1]/[M2]
接枝共聚物,构成主链旳单体名称放在前面,支链单体放在 背面。
5.1.2. 共聚反应旳意义 理论意义:
除了聚合机理、聚合速率、分子量等均聚反应所关心旳问题 之外,共聚反应中,共聚物构成和序列分布为更主要旳研究内 容,即理论研究旳范围扩展了。
另外,经过共聚反应研究可了解不同单体和链活性种旳聚合 活性大小、有关单体构造与聚合活性之间旳关系、聚合反应机 理多方面旳信息等,完善高分子化学理论体系。
M1*
M1M2* =
M2M2* =
M2*
即体系中就只存在两种链增长活性中心,这么共聚合旳链增 长反应就可简化为这两种活性中心分别与两种单体之间进行旳四 个竞争反应。
其中活性链末端与同种单体之间旳链增长反应称为同系链增 长反应(如反应I和IV);而与不同种单体之间旳链增长反应称为 交叉链增长反应(如反应II和III)。
而且聚合-解聚平衡与温度有关,所以共聚物构成与温度有关。 聚合温度从0℃升到100℃时,共聚物中a-甲基苯乙烯旳含量逐渐 降低。由此可见,共聚体系中有解聚倾向时,共聚情况比较复杂。
聚合方法
高 分 子 化 学
17
5.2 本体聚合
例三:氯乙烯间歇本体沉淀聚合
聚氯乙烯生产主要采用悬浮聚合法,占80%~82%。其 次是乳液聚合,占10%~12% 。近20年来发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段: I. 预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在 50℃ ~70℃下预聚至 7%~11%转 化率,形成疏松的颗粒骨架。
II. 聚合:预聚物、 大部分单体和另一部分引发剂加入另一 聚合釜内聚合,颗粒骨架继续长大。转化率可达90%。 III. 通常预聚1~2h,聚合5~9h。
高 分 子 化 学
18
5.2 本体聚合
例四:乙烯高压连续气相本体聚合
聚合条件:压力 150~200MPa, 温度 180~200℃ ,微 量氧(10-6~10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留时 间几分钟,单程转化率 15%~30% 。易发生分子内转移和 分子间转移,前者形成短支链,后者长支链。平均每个分 子含有50个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低,仅 55% ~ 65%,Tm为105~110℃,密度:0.91~0.93。故称“低密度 聚乙烯”。熔体流动性好,适于制备薄膜。
高 分 子 化 学
8
5.1 引言
虽然不少单体可以选择四种聚合方法中的任何一种进 行聚合,但是实际上从实施聚合的难易和生产成本的高低 等因素考虑,往往仅有一两种方法最适合该种单体的聚合。 本体聚合和溶液聚合方法也适用于离子型聚合,只是 其具体的聚合条件如引发剂、溶剂的选择以及温度的确定 等与自由基聚合有所不同。 各种聚合方法的基本配方和特点列于下表。
第五章 聚合方法
聚合方法
Polymerization Methods
1
5.1 聚合方法概述 前几章我们已定量描述了聚合反应规律,例如自由基聚合: 聚合速率方程
] Rp = k p ( fktd )1 2 [ I 12 [M ] k
r1 f12 + f1 f 2 F1 = r1 f12 + 2 f1 f 2 + r2 f 22
28
形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC), 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 胶束的形状
球状(低浓度时) 直径 4~5 nm
棒状(高浓度时) 直径100 ~300nm
胶束的大小和数目取决于乳化剂的用量;乳化 剂用量多,胶束的粒子小,数目多。
29
在形成胶束的水溶液中加入单体后 极小部分单 体以分子分散状 态溶于水中 小部分单 体可进入胶束 的疏水层内
搅拌强度(一般强度愈大,颗粒愈细)
颗粒形 态的影 响因素
分散剂种类和浓度 水与单体比例(水油比) 聚合温度 引发剂种类和用量 单体种类
22
剪切力
剪 切 力:使单体液层分散成液滴 界面张力:使微小液滴聚集
界面张力
搅拌(Agitation)即施以剪切 力,加分散剂(Dispersant)一定 程度上降低界面张力。
CH3 − CH2 − CH 2 .......CH 2 −O(CH 2 CH 2 O) n −1 CH 2 CH 2 OH
疏水基 亲水基
非离子乳化剂对pH变化不敏感,较稳定;但乳化能 力仍不如阴离子型,一般不单独使用,常与阴离子型乳 化剂合用(以改善纯阴离子乳化体系对pH 值、电解质等 的敏感性。 非离子乳化剂无三相平衡点,却有一个浊点(非离 子乳液体系随温度升高开始分相时的温度)。
第五章聚合方法
第五章聚合方法思考题 5.2 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。
答间歇本体聚合是制备有机玻璃板的主要方法。
为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。
①预聚合。
在90-95 C下进行,预聚至10%〜20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。
②聚合。
将预聚物灌入无机玻璃平板模,在(40-50 C)下聚合至转化率90%。
低温(40〜50C)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100 C),在无机玻璃平板模中聚合的目的在于增加散热面。
③高温后处理。
转化率达90%以后,在高于PMMA的玻璃化温度的条件(100〜120C)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。
其散热问题可由预聚和聚合两段来克服。
苯乙烯是聚苯乙烯的良溶剂,聚苯乙烯本体聚合时出现自动加速较晚。
因此预聚时聚合温度为80〜90 C,转化率控制在30%〜35%,此时未出现自动加速效应,该阶段的聚合温度和转化率均较低,体系黏度较低,有利于聚合热的排除。
后聚合阶段可在聚合塔中完成,塔顶温度为100C,塔底温度为200C,从塔顶至塔底温度逐渐升高,目的在于逐渐提高单体转化率,尽量使单体完全转化,减少残余单体,最终转化率在99%以上。
思考题 5.3 溶液聚合多用离子聚合和配位聚合,而较少用自由基聚合,为什么?答离子聚合和配位聚合的引发剂容易被水、醇、二氧化碳等含氧化合物所破坏,因此不得不采用有机溶剂进行溶液聚合。
溶液聚合可以降低聚合体系的黏度,改善混合和传热、温度易控、减弱凝胶效应,可避免局部过热。
但是溶液聚合也有很多缺点:①单体浓度较低,聚合速度慢,设备生产能力低;②单体浓度低,加上向溶剂的链转移反应,使聚合物的分子量较低;③溶剂分离回收费高,难以除尽聚合物中的残留溶剂。
第五章 聚合方法 重点、难点指导
第五章 聚合方法重点、难点指导一、重要概念悬浮聚合、分散剂、乳液聚合、乳化剂、乳液聚合动力学、种子乳液聚合、核壳乳液聚合、无皂乳液聚合、微乳液聚合、反相乳液聚合、分散聚合二、重要公式乳液聚合恒速期速率方程:AN N n M kp Rp ][= 聚合物的平均聚合度:iR N n M kp ri rp Xn ][== 乳胶粒数:5/35/2)((S a k N s μρ=三、难点悬浮聚合机理,乳液聚合机理1、悬浮聚合机理因悬浮聚合实质是本体聚合,其聚合机理和动力学行为与本体聚合相似。
这里应明确成粒机理及分散剂和搅拌对应粒的影响。
液一液分散和成粒过程如下所述:如果不镕(或微溶)于水中的单体投人水中,单体将浮在水面上,分成上下两层。
搅拌时在剪切力的作用下,单体分散成掖滴,变形,继续分散成小液滴,由于单体与水相界面张力作用,将使单体液滴保持球形,使小液滴聚成大液筋。
搅拌剪切力与界面张力对液滴作用相反,构成了一个动态平衡过程.最后达到一定平均细度。
当搅拌停止后.液滴将聚集变大,最后仍与水分层。
因此单靠搅拌形成的分散是不稳定的。
向体系中加入一定量的分散剂,在液滴表面形成一层保护胺,可防止戳结,但搅拌停止,当转化串达到20%一70%时,液滴仍会酞结。
因此,在悬浮聚合中,分散剂和搅拌是两个重要因素。
2、乳液聚合机理根据乳胶粒的数目和单体液滴是否存在,可把乳液聚合分三个阶段。
第一阶段——乳胶粒生成期、成核期。
从开始引发直到胶束消失为止。
此阶段,体系中含有单体液滴、胶束:乳胶粒三种粒子,乳胶粒数不断增加,单体液滴数不变,但体积不断缩小,聚合速率在这个阶段不断增加。
未成核的胶束全部消失是这一阶段结束的标志。
第二阶段——恒速阶段,自胶束消失开始到单体液滴消失为止。
胶束消失后,乳胶粒数恒定,单体液滴仍起着仓库的作用,不断向乳胶粒提供单休。
此阶段乳胶粒数恒定,乳胶粒内单体浓度恒定,故聚合速率恒定,直到单体液滴消失为止。
这一阶段体系中,含有乳胶粒和单体液滴两种粒子。
第五章 逐步聚合反应
5.1 引言
近年来出现的一些新型聚合物如聚砜、聚酰亚胺、聚 苯醚和吡咙等也是通过逐步聚合反应合成的。 逐步聚合也是重要的一类聚合反应。 逐步聚合又可分为“缩聚”和“逐步加聚”两类。 缩聚中又分为 平衡缩聚、不平衡缩聚、
线型缩聚和体型缩聚等。
逐步加聚主要是聚氨酯的合成。 本章重点:
缩聚反应的机理、
线型缩聚物相对分子质量的控制方法 体型缩聚凝胶点的预测等问题。
nHO R OH
CH3 nHO Si OH CH3
H [ O R ]nOH + (n-1)H2O
CH3 H [ O Si ]nOH + (n-1)H2O CH3
5.2 缩聚反应概述
2. 具有同类官能团但不能相互作用的单体 这类单体为b-R’-b型,如二元羧酸HOOC-R’-COOH、 二元胺H2N-R-NH2、双酚A和光气等。 它们要进行缩聚反应时,必须在不同种类单体之间进行。 二元胺 H2N-R’-NH2:
O O O O O HO R O C R' C O R O C R' C O R O C R' COOH (f) + H2O
5.2 缩聚反应概述
首先是单体官能团间发生反应生成二聚体、三聚体等低 聚体,单体很快消失。每一步反应都是消耗掉一个 -COOH 和一个-OH生成一个 -COO-,缩去一个 H2O分子的缩合反应。 随着反应的进行 ,分子链逐步增长 ,聚合物的相对分子质 量逐步增加。 用一个简式表示这一系列的缩合反应:
nHO R OH + nHOOC R' COOH
O O 聚酯 H [ O R O C R' C ]nOH + (2n-1)H2O
含有两个(或两上以上)官能团的低分子化合物,在官能团之 间发生缩合反应 , 在缩去小分子的同时生成高聚物的逐步、可
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.3 离子型溶液聚合 采用有机溶剂。水、醇、氧、二氧化碳等含 氧化合物会破坏离子和配位引发剂, 单体和溶 剂含水量必须低。 分类: 均相聚合, 沉淀聚合。 离子型溶液聚合选择溶剂的原则: 首先考虑溶剂化能力,即溶剂对活性种离子 对紧密程度和活性影响,这对聚合速率、分子 量及分布、聚合物的微结构都有影响;其次考 虑链转移反应。
缺点
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽 重则温度失调,引起爆聚
5.2 本体聚合
解决办法
预聚
在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度
后聚
在模板物 PMMA 工 艺 过 程 要 点 预聚阶段转化率控制在10%左右,制备 黏稠浆液,然后浇模分段升温聚合,最后脱 模成材。 在80~85℃下预聚至转化率为33%~35% 的聚合物,流入聚合塔,温度从100℃递增至 220℃,最后熔体挤出造粒。 制备转化率为7%~11%的预聚物,形成 颗粒骨架,继续进行沉淀聚合,最后以粉状 出料。 选用管式或釜式反应器,连续聚合,控 制单程转化率约为15% ~20%,最后熔体挤 出造粒。
5.3 溶液聚合
溶液聚合 是将单体和引发剂溶于适当溶剂这进行的聚合反应
基本组分
单体 引发剂 溶剂
聚合场所:在溶液内
5.3 溶液聚合
优点
散热控温容易,避免局部过热 体系粘度较低,能消除凝胶效应
缺点 溶剂回收麻烦,设备利用率低 聚合速率慢,分子量不高
5.3 溶液聚合
工业上,溶液聚合多用于聚合
例三. (甲基)丙烯酸酯类溶液聚合 (甲基)丙烯酸酯类单体有一个很大的家族,包括甲基 丙烯酸甲酯、乙酯、丁酯、乙基己酯;丙烯酸甲酯、 乙酯、 丁酯、 乙基己酯等,还有(甲基)丙烯酸β-羟乙酯、羟丙 酯等。除了甲基丙烯酸甲酯之外,这类单体很少采用均聚 合,大多进行共聚。 丙烯酸甲酯、 乙酯、 丁酯、 乙基己酯均聚物的玻璃化温 度为8 ℃ 、 -22 ℃ 、- 54 ℃ 、- 70℃ 。可根据需要进行 共聚调节。也可与苯乙烯、醋酸乙烯酯共聚,以苯、醋酸丁 酯等为溶剂,BOP为引发剂,聚合温度60~80。
教学难点:乳液聚合的三个阶段 教学方法及手段:课堂学习,课堂讨论,课 后提问,课下作业
教学时间:4学时 时间分配: 1. 开始部分 ( 5分钟) 2. 讲授课程 ( 170分钟) 3. 课堂讨论 ( 5 分钟) 4. 内容小结 ( 5 分钟) 5. 习题讲解 ( 15 分钟)
5.1
引 言
( Polymerization Process )
上述工艺中无脱挥装臵,聚合物中残留单体较多,影响 质量。 近20年来发展了许多新型反应器,能有效保证搅拌和传 热,降低残留单体含量。 聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃,典型的 硬塑料,伸长率仅1%-3%。尺寸稳定性优,电性能好,透 明色浅,流动性好,易加工。性脆、不耐溶剂、紫外、氧。 采用上述同一设备,还可生产HIPS,SAN,ABS等。
5.2 本体聚合
何谓本体聚合 不加其它介质,只有单体本身,在引发剂、热、光等作 用下进行的聚合反应
基本组分
单体 引发剂 助剂
包括气态、液态和固态单体 一般为油溶性 色料 增塑剂 润滑剂
聚合场所:本体内
5.2 本体聚合
•优点
产品纯净,不存在介质分离问题 可直接制得透明的板材、型材 聚合设备简单,可连续或间歇生产
PS
PVC
LDPE
例一. 聚甲基丙烯酸甲酯板材的制备 将MMA单体, 引发剂BPO或AIBN, 增塑剂和脱模剂臵于 普通搅拌釜内, 90~95℃下反应至10~20%转化率, 成为粘稠的 液体。停止反应。将预聚物灌入无机玻璃平板模具中,移入 热空气浴或热水浴中,升温至45~50℃,反应数天,使转化 率达到90%左右。然后在100~120℃高温下处理一至两天, 使残余单体充分聚合。 PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐光耐 候性均十分优异,透光性达90%以上,俗称“有机玻璃”。 广 泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌、牙 托粉等。
例三. 氯乙烯间歇本体沉淀聚合 聚氯乙烯生产主要采用悬浮聚合法,占80%~82%。其 次是乳液聚合,占10%~12% 。近20年来发展了本体聚合。 聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段: 预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在50℃ ~70℃下预聚至7%~11%转化 率,形成疏松的颗粒骨架。 聚合:预聚物、 大部分单体和另一部分引发剂加入另一 聚合釜内聚合,颗粒骨架继续长大。转化率可达90%。 通常预聚1~2h, 聚合5~9h。
自由基聚合方法 逐步聚合方法
5.1
引 言
聚合反应工程考虑的三个层次
聚合机理和动力学(mechanism and kinetics)
连锁:自由基、阴离子、阳离子、配位
逐步:缩聚、聚加成、开环等
聚合过程(polymerization process)
实施方法:本体、溶液、悬浮、乳液(自由基) 相态变化:分散情况、是否沉淀、是否存在界面等
第四章 聚合方法
表5-5 离子型溶液聚合示例
聚合物 聚乙烯 聚丙烯 顺丁橡胶 异戊橡胶 乙丙橡胶 引发体系 TiCl4—AlEt2Cl TiCl3—AlEt2Cl Ni盐—AlR3—BF3· 2 OEt AlBu VOCl3—AlEt3Cl3 溶剂
加氢汽油 加氢汽油 烷烃或芳烃 抽余油 抽余油 CH3Cl
例二. 醋酸乙烯酯溶液聚合
以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率 60%。过高会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。固 体物冷流性较大 。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作合成 纤维时,聚合度1700,醇解度98%~100% (1799);用作分散剂和织物助剂时,聚合度1700, 醇解度88%左右(1788)。
聚合反应器(reactor):流动特性、传热传质、反应器构型
操作方式:间歇、连续、半连续
5.1
引 言
聚合方法概述
本体聚合
自由基聚合方法
5
溶液聚合 悬浮聚合 乳液聚合 超临界CO2聚合
5.1
引 言
聚合方法概述
熔融缩聚
逐步聚合方法
溶液缩聚 界面缩聚
超临界CO2缩聚
5.1
引 言
连锁聚合反应四种聚合方法的示例
聚合方法 本体聚合 溶液聚合 悬浮聚合 单体-介质 均相 均相 非均相 聚合物-单体(或溶剂)
均相聚合
苯乙烯(液相) 甲基丙烯酸甲酯(液相) 苯乙烯-苯 丙烯酰胺-水 苯乙烯 甲基丙烯酸甲酯 醋酸乙烯酯 丁二烯-苯乙烯 氯丁二烯
沉淀聚合
氯乙烯 苯乙烯-甲醇 四氟乙烯-水 氯乙烯 偏二氯乙烯 氯乙烯
乳液聚合
第五章
聚合方法
本体聚合 溶液聚合 悬浮聚合 乳液聚合
本章主要内容:
1. 引言 2. 本体聚合 3. 溶液聚合 4. 悬浮聚合
5. 乳液聚合
教学目的及要求:
1. 了解:各种聚合方法的特点; 2. 掌握:乳液聚合的优点及三个阶段的特点; 3. 了解:悬浮聚合、乳液聚合机理及动力学。
教学重点:自由基聚合的实施方法的优缺点; 乳液聚合的三个阶段;乳化剂及悬浮剂的选 择;乳液聚合三个阶段的特点,开始和结束 的标志。
效应
劣溶剂(沉淀剂),凝胶效应显著,Rp 不良溶剂,介于两者之间
★自由基溶液聚合的工业实例
单 体 溶 剂 引发剂 聚合温 度/℃ 聚合液用途
丙烯腈与丙烯 酸甲酯
醋酸乙烯酯 丙烯酸酯类 丙烯酰胺
二甲基甲 酰胺或硫 氰化钠水 溶液 甲醇 醋酸乙酯 水
AIBN
75-80
纺丝液
AIBN BPO 过硫酸铵
例二. 苯乙烯连续本体聚合 20世纪40年代开发釜—塔串联反应器,分别承担预聚 合和后聚合的作用。 预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%, 后聚合:透明粘稠的预聚体流入聚合塔,可以热聚合 或加少量低活性引发剂,料液从塔顶缓慢流向塔底, 温度从100 ℃增至200 ℃,聚合转化率99%以上。
溶解情况 引发剂 非均相 非均相 非均相 均相 非均相 聚合物 沉淀 沉淀 均相 均相 均相
丁基橡胶
AlCl3
均相
沉淀
离子型、配位型溶液聚合的工业实例
聚合物 催化剂体系 溶剂 溶解情况
催化剂 HDPE PP 顺丁橡胶 异戊橡胶 乙丙橡胶 丁基橡胶 TiCl4-Al(C2H5)2Cl Ti3-Al(C2H5)2Cl Ni盐-AlR3BF3•O(C2H5)2 LiC4H9 VOCl3-Al(C2H5)2Cl AlCl3 加氢汽油 加氢汽油 烷烃或芳烃 抽余油 抽余油 一氯甲烷 非均相 非均相 非均相 均相 非均相 均相 聚合 物 沉淀 沉淀 均相 均相 均相 沉淀
例四. 乙烯高压连续气相本体聚合 聚合条件:压力150~200MPa, 温度180~200℃ ,微量氧 (10-6~ 10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留时间几 分钟,单程转化率15%~30%。 易发生分子内转移和分子间转移,前者形成短支链,后者 长支链。平均每个分子含有50个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低,仅55%~65%, Tm为105~110 ℃,密度:0.91~0.93。故称“低密度聚乙烯。” 熔体流动性好,适于制备薄膜。
50 回流 回流
醇解制聚乙烯醇 涂料、黏合剂 涂料、黏合剂
例一. 丙烯腈连续溶液聚合 第二单体:丙烯酸甲酯,降低分子间作用力,增 加柔性和手感,有利于染料分子的扩散。 第三单体:衣糠酸,有利于染色。 丙烯腈与第二、第三单体在硫氰化钠水溶液 中进行连续均相溶液聚合。以AIBN为引发剂, 体系的pH = 5,聚合温度75~80 ℃ 。最终转 化率70~75%。脱除单体后,即成纺丝液