第五章聚合方法

合集下载

第五章聚合方法

第五章聚合方法

第五章聚合方法一、名称解释1. 自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。

2. 离子聚合实施方法:主要有溶液聚合,淤浆聚合。

3. 逐步聚合实施方法:主要有熔融聚合,溶液聚合,界面聚合。

4. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。

5. 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

6. 悬浮作用:某些物质对单体有保护作用,能降低水的表面张力,能使水和单体的分散体系变为比较稳定的分散体系,这种作用称为悬浮作用。

7. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。

8. 溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。

9. 乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。

10. 分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。

(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。

11. 乳化剂:常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。

12. 胶束:当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。

13. 临界胶束浓度:乳化剂开始形成胶束时的浓度称为临界胶束浓度,简称CMC。

14. 亲水亲油平衡值(HLB):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。

第五章自由基溶液聚合原理及生产工艺

第五章自由基溶液聚合原理及生产工艺

二、溶液聚合的优缺点 1、优点

科学研究上,可选用 Cs 较小的溶剂,控制低转化率,容 易建立聚合速率、数均聚合度和单体浓度、引发剂浓度 的定量关系,方便动力学研究。 生产工艺上,散热控温容易,可避免局部过热,体系粘 度较低,可推迟自动加速现象出现,控制较低转化率可 消除自动加速现象,接近匀速反应,分子量分布窄。


四、溶剂的选择



产品为溶液,选择良溶剂;产品为固体,选择非溶剂;
成本低,毒性低。
五、向溶剂链转移的应用-----调节聚合
通过链自由基向溶剂或链转移剂的转移,可制备分子量 低的聚合物,也称低聚物,或调聚物,此过程称为调节聚合。 例如,乙烯在溶剂四氯化碳(调节剂)的作用下,制备低聚 物,反应原理如下:
因此当发生意外事故时,可通氧、降温;事故排 除后,可通氮、升温,恢复生产。
五、PVAc 的醇解反应 (1)直接水解法
醇解速率较慢, 醇解度较低,副 产物醋酸钠较难 回收,工业上一 般不采取此法。
醇解速率快,醇解度高(>90%),副产物主要是 (2)无水低碱醇解法 醋酸甲酯,醋酸钠较少,生产效率高、产品能满足 生产 PVF 纤维的要求,工业上一般采取此法。
生产工艺流程图
第三节 丙烯腈溶液聚合生产工艺
一、丙烯腈 丙烯腈在常温常压下是具有独特气味的无色透明、易流动液 体。相对分子质量为 53.06,沸点为 77.3℃,凝固点为-83.6℃, 相对密度为 0.8060 ,易燃、易爆,在空气中的爆炸极限为 3.05%~ 17.0%(体积)。 丙烯腈能与苯、甲苯、四氯化碳、甲醇、、乙醇、乙醚、丙 酮、醋酸乙酯等许多有机溶剂以任何比例互溶,丙烯腈也能溶于 水。 丙烯腈能与水、苯、甲醇、异丙醇、四氯化碳等形成二元共 沸物。其中丙烯腈与水的共沸温度为 71℃,含水 12%(质量)。 丙烯腈分子中含有碳-碳双键和腈基,化学性质很活泼,能进 行聚合反应(均聚和共聚)、加成反应、氰乙基化反应等。 贮存、运输过程要加入酚类、胺类阻聚剂。

高分子化学第5章

高分子化学第5章
–(1)水溶性有机高分子物质;
• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)

高分子化学第五章聚合方法

高分子化学第五章聚合方法
2、缺点
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽;重则 温度失调,引起爆聚。(关键:散热)
➢解决办法:分段聚合
预聚:在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度。
后聚:在模板中聚合,逐步升温,使聚合完全。
5
聚合实例:聚苯乙烯,有机玻璃(PMMA)
32
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂 少量在水相中
单体
引发剂 大部分在水中
大部分形成胶束 部分吸附于单体液滴
一部分增溶胶束内 大部分在单体液滴内
33
聚合场 所
水相中?
单体液滴?
胶束?
水相中单体浓度小, 反应成聚合物则沉 淀,停止增长,因 此不是聚合的主要 场所。
预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%。
后聚合:预聚体流入聚合塔,可以热聚合或加 少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
9
例二. 苯乙烯连续本体聚合
聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃, 典型的硬塑料,伸长率仅1%-3%。尺寸稳定性优, 电性能好,透明色浅,流动性好,易加工。性脆、不 耐溶剂、紫外、氧。
2). CMC: 形成胶束的临界浓度。不同乳化剂的CMC不同,愈小, 表示乳化能力愈强
3). 三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(使用最低温度)
高于此温度,溶解度突增,凝胶消失,乳化剂只以分子溶解和胶 束两种状态存在。
4). 浊点:非离子型乳化剂开始分相变浊时的温度。(使用最高温度)

高分子化学第五章_乳液聚合-

高分子化学第五章_乳液聚合-
特点:在酸性介质中效果好,但乳化能力不足,应用较少。
(3)非离子型乳化剂 分子中不含阴、阳离子。活性部分呈分子状态。
如环氧乙烷聚合物,或与环氧丙烷共聚物、PVA等。
5.5 乳液聚合
主要类型:酯类、醚类、酰胺类等。
(1)OP系列:烷基酚基聚醚醇类 C9H10 - -O(C2H4O)nH
(2)Span系列:脱水山梨醇脂肪酸酯
73×10-3 N/m 30×10-3 N/m(浓度:0.016 mol/L)
5.5 乳液聚合
(2)形成胶束
胶束—乳化浓度高时,多余分子聚集成球状、层状或棒状的聚 集体,其亲油基团彼此靠在一起,而亲水基团向外伸向水相, 这种聚集体称为胶束(约50~150个分子) 。
聚集
乳化剂分子

亲油基 亲水基
珠状胶束
5.5 乳液聚合
4、应用
聚合后分离成胶状或粉末固体产品; 如丁苯、丁腈、氯丁等合成橡胶;ABS等工程塑料和抗冲
改性剂,糊用聚氯乙烯树脂、聚四氟乙烯等塑料。
聚合后直接用作涂料和胶粘剂; 如丁苯胶乳、聚醋酸乙烯胶乳、丙烯酸酯类胶乳等,可用
作内外墙涂料、纸张涂层、木器涂料及粘结剂。
颗粒用作颜料、粒径测定标样、免疫试剂的载体等。
HLB值范围 1.5~3.0
应用 消泡
3.0~6.0 7~9
W/O 润湿\渗透
8~18
O/W
乳液聚合:乳化剂一般属于O/W型;
5.5 乳液聚合
三相平衡点—乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(离子型乳化剂)
高于该温度,溶解度突增,凝胶消失,乳化剂为分子溶解 和胶束状态,起乳化作用。 低于该温度,将有凝胶析出,乳化能力减弱。
HO
CH2COOR

第五章 逐步聚合反应

第五章    逐步聚合反应

5.1 引言
近年来出现的一些新型聚合物如聚砜、聚酰亚胺、聚 苯醚和吡咙等也是通过逐步聚合反应合成的。 逐步聚合也是重要的一类聚合反应。 逐步聚合又可分为“缩聚”和“逐步加聚”两类。 缩聚中又分为 平衡缩聚、不平衡缩聚、
线型缩聚和体型缩聚等。
逐步加聚主要是聚氨酯的合成。 本章重点:
缩聚反应的机理、
线型缩聚物相对分子质量的控制方法 体型缩聚凝胶点的预测等问题。
nHO R OH
CH3 nHO Si OH CH3
H [ O R ]nOH + (n-1)H2O
CH3 H [ O Si ]nOH + (n-1)H2O CH3
5.2 缩聚反应概述
2. 具有同类官能团但不能相互作用的单体 这类单体为b-R’-b型,如二元羧酸HOOC-R’-COOH、 二元胺H2N-R-NH2、双酚A和光气等。 它们要进行缩聚反应时,必须在不同种类单体之间进行。 二元胺 H2N-R’-NH2:
O O O O O HO R O C R' C O R O C R' C O R O C R' COOH (f) + H2O
5.2 缩聚反应概述
首先是单体官能团间发生反应生成二聚体、三聚体等低 聚体,单体很快消失。每一步反应都是消耗掉一个 -COOH 和一个-OH生成一个 -COO-,缩去一个 H2O分子的缩合反应。 随着反应的进行 ,分子链逐步增长 ,聚合物的相对分子质 量逐步增加。 用一个简式表示这一系列的缩合反应:
nHO R OH + nHOOC R' COOH
O O 聚酯 H [ O R O C R' C ]nOH + (2n-1)H2O
含有两个(或两上以上)官能团的低分子化合物,在官能团之 间发生缩合反应 , 在缩去小分子的同时生成高聚物的逐步、可

第五章 聚合方法

第五章 聚合方法

缺点
产品中附有少量分散剂 残留物,要生产透明和 绝缘性能高的产品须将 残留分散剂除净。
理论基础
悬浮聚合的关键问题是悬浮粒子的形成与控制。
Winslow-Matreyek成粒过程模型
油状单体
1 搅拌剪切力
5 凝聚
4 黏合、凝聚
由于分散剂 生成的分子 层保护胶体 而稳定化
扩大
2 表面张力
3 黏合、凝聚
胶束的形状
球状 ( 低浓度时 ) 直径 4 ~ 5 nm
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
胶束的大小和数目取决于乳化剂的用量 乳化剂用量多,胶束的粒子小,数目多
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
本体聚合 Bulk Polymerization
本体聚合定义: 不加其它介质,只有单体本身,在引发剂、
热、光等作用下进行的聚合反应。说得简单点, 就是纯单体的聚合。
本体聚合的优点
产品纯度高; 生产设备简单,可连续生产; 可以得到高分子量的聚合物; 本体聚合很适于实验室研究。例如单体聚合能力 的初步评价,聚合物的试制、动力学研究及共聚 竞聚率的测定。
乳化剂在水中的情况
乳化剂浓度很低时,是以分子分散状态溶解在水中 达到一定浓度后,乳化剂分子开始形成聚集体(约50~ 150个分子),称为胶束 形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC) 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 乳液聚合的乳化剂浓度比CMC高2~3个数量级
4.5 乳液聚合
4 乳液聚合动力学
(1)聚合速率

高分子化学第五章_聚合方法

高分子化学第五章_聚合方法
第五章 聚合方法
1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。

溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。

高分子化学第五章答案

高分子化学第五章答案

第五章聚合方法思考题 5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。

答聚合方法有不同的分类方法,如下表:按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。

溶液聚合是单体和引发剂溶于适当溶剂中的聚合。

悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。

当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。

聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。

思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答间歇本体聚合是制备有机玻璃板的主要方法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。

第五章 聚合方法

第五章 聚合方法
聚集 乳化剂分子 或
亲油基
亲水基
珠状胶束 (low concentration)
棒状胶束 (high concentration)
在形成胶束的水溶液中加入单体的情况
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
直径增至6 ~10 nm 直径约为 1000 nm 在搅拌和乳化剂的作用下,不溶于水的单体绝大部分(~95%) 被分散成稳定的乳化单体液滴,另有一小部分单体可渗入到胶束
的疏水(亲油)内部,形成所谓的增溶胶束,这种由于乳化剂的
存在而增大了难溶单体在水中的溶解性的现象称为胶束增溶现象。
乳化剂的作用主要有三点:
(i)降低表面张力,便于单体分散成细小的液滴,即分散单体; (ii)在单体液滴表面形成保护层,防止凝聚,使乳液稳定; (iii)增溶作用:当乳化剂浓度超过一定值时,就会由50~100 个分子聚集一起形成胶束,胶束呈球状或棒状,胶束中乳化剂分
对于第三阶段 单体液滴消失,乳胶粒内单体浓度[M]不断下降 因此,Rp不断下降
Rp
10 3 N k p [ M ]
可见: 乳液聚合速率取决于乳胶粒数 N,与引发速率无关
N高达1014 个/ cm3,[M· ]可达10-7 mol / L,比典型自由 基聚合高一个数量级 乳胶粒中单体浓度高达5 mol / L,故乳液聚合速率较快
阶段Ⅲ:聚合后期(完成)阶段
这阶段乳胶粒数目虽然不变,但单体液滴消失,乳胶粒内单 体得不到补充,所以乳胶粒内单体浓度逐步减小,聚合速率不断 降低,直至聚合完全停止,因此又称减速期。聚合完成后乳胶粒 熟化,外层由乳化剂包围的聚合物颗粒,其相态特征是只有乳胶

高分子化学第五章 共聚合

高分子化学第五章 共聚合

4. r1<1,r2 < 1,有恒比点非理想(曲线2)
恒比点
A
A
r1=0.6 r2=0.3
r1=0.5 r2=0.5
F1~f1 曲线
恒比点的计算:
定义:与对角线有交点A,恒比点,:
(F1)=(f1)A, d[M1]/d[M2] = [M1]/[M2], 恒比点组成:
[M1] 1 r2 , [M 2 ] 1 r1
k12[M 2 ]
k 22
k12[M 2 ]2 k 21[ M 1 ]
同除k12k21并令
[M1] • k11k 21[M1] k12k 21[M 2 ] [M 2 ] k12k 21[M1] k 22k12[M 2 ]
r1
k11 k12
r2
k 22 k 21
[M1] • r1[M1] [M 2 ] [M 2 ] [M1] r2[M 2 ]
r1≠r2。共聚曲线不再呈点对称型
5. r1>1,r2>1
苯乙烯(r1=1.38)与异戊二烯(r2=2.05)
讨论:
1) 存在恒比点其共聚物组成曲线类似于 r1>1,r2<1的那种情况,只是形状 和位置恰恰相反;
2) r1 > 1, r2 > 1,两单体均聚倾向大于共 聚,当r1, r2 比“1”大很多时,倾向于 “block”,链段的长短取决于r1 和r2的 大小,一般都不长。
Mayo-Lewis方程
Mayo-lewis方程
d[M1 ] [M1 ] r1[M1 ] [M 2 ] d[M 2 ] [M 2 ] [M1 ] r2 [M 2 ]
式中各项意义:
1. d[M1]/d[M2]: 瞬时形成的聚合物组成
2. [M1]/[M2]:瞬时单体组成

第五章聚合方法

第五章聚合方法

第五章聚合方法在数据处理领域中,聚合方法是一种将数据分组并计算每个组的指标或摘要统计量的技术。

聚合方法可用于对大规模数据进行分析和汇总,以便更好地理解数据集的特征和趋势。

聚合方法常用于数据分析和数据挖掘任务中,例如对市场销售数据进行统计分析、对客户行为数据进行分析等。

下面将介绍几种常见的聚合方法。

1.平均值聚合方法:这是最常见的一种聚合方法,即将一组数值求平均值。

平均值可以作为总体的中心位置指标,提供数据集的整体特征。

2.求和聚合方法:将一组数值进行求和,可以得到数据的总和。

求和适用于对数量的聚合,例如对销售额进行求和,得到总销售额。

3.计数聚合方法:计算数据集中满足一些条件的元素数量。

计数可以用于计算其中一种特定事件发生的频率或概率。

4.最大值和最小值聚合方法:分别计算数据集中的最大值和最小值,可以得到数据的范围。

最大值和最小值能够显示出数据集的极端值。

5.中位数聚合方法:将一组数值按照大小排序后,找出处于中间位置的数值。

中位数可以作为数据集的中心位置指标,与平均值不同的是,中位数不受极端值的影响。

6.众数聚合方法:计算数据集中出现频率最高的值。

众数可以用于找出数据集中的常见特征或模式。

7.方差和标准差聚合方法:方差和标准差是描述数据集分散程度的指标。

方差是各个数据与平均值之差的平方的平均值,标准差是方差的平方根。

聚合方法可以结合分组操作一起使用,根据一些属性将数据分组后再进行聚合计算。

例如,根据商品类型将销售数据进行分组,然后计算每个商品类型的平均销售额。

聚合方法在数据分析中发挥了重要作用,它可以帮助人们更好地理解数据集的特征和趋势,发现潜在的关联和模式。

而且,聚合计算可以提高数据分析的效率,减少数据处理的复杂性。

总之,聚合方法是一种对数据集进行统计和汇总的技术,常用于数据分析和数据挖掘任务中。

通过聚合计算,可以得到数据的摘要统计量,以更好地理解数据集的特征和趋势。

同时,聚合方法还可以与分组操作结合使用,进一步提高数据分析的精度和效率。

第五章__聚合方法

第五章__聚合方法

Rp
10 3 N k p [ M ] 2N A
0
时 间
乳液聚合速率取决于乳胶粒数 N,与引发速率无关
N高达1014 个/ cm3,[M· ]可达10-6 至10-7 mol / L,比典
型自由基聚合( 10-7 至10-9 )高一个数量级
[M ]
10 3 N n NA
乳胶粒中单体浓度高达5 mol / L,故乳液聚合速率较快
单体液滴也不是聚合场所; 原因
聚合场所在胶束内 胶束比表面积大,内部单体浓度 很高,提供了自由基进入引发 聚合的条件 液滴中的单体通过水相可补充胶 束内的聚合消耗。
I
R
I
R
单体三种存在形式—聚合 的三个场所—三种成核机理
成核机理(经过聚合反应而形成含有聚合物粒子-乳胶粒的过程. --成核)
成核是指形成聚合物乳胶粒的过程。有三种途径
胶束成核:自由基在水相生成,而后进入胶束引发增长的过程 均相成核:在水相沉淀出来的短链自由基,从水相和单体液滴上吸附 乳化剂而稳定,继而又有单体扩散进入形成聚合物乳胶粒的过程 液滴成核:1.油溶性引发剂;2.水溶性引发剂,液滴与胶束表面积相近
5.4.4 乳液聚合动力学
(1)聚合速率——即恒速阶段 自由基聚合速率可表示为
有关乳化剂注意事项:
1。三相平衡点:是指乳化剂处于分子溶解状态、胶束、 凝胶三相平衡时温度。高于此温度,溶解度突增,凝 胶消失,乳化剂只以分子溶解和胶束两种状态存在在 三相平衡点以下将以凝胶析出,失去乳化能力 C11H23COONa 36℃; C15H31COONa 62℃; 2。常用的阴离子乳化剂 在碱性溶液中比较稳定,遇酸、金属盐、硬水会失效
颗粒大小与形态
悬浮聚合得到的是粒状树脂,粒径在0.01 ~ 5 mm 范围 粒径在1 mm左右,称为珠状聚合

高中化学选修五第五章第一节合成高分子化合物的基本方法

高中化学选修五第五章第一节合成高分子化合物的基本方法

高中化学选修五第五章第一节合成高分子化合物的基本方法合成高分子化合物是化学领域的一个重要研究方向。

高分子化合物广泛应用于塑料制品、纤维材料、涂料、胶粘剂、医药材料等领域。

本文将介绍合成高分子化合物的基本方法。

一、聚合反应是合成高分子化合物的主要方法之一、聚合反应是指将单体分子在一定条件下发生共价键的形成,形成线性、支化、交联或三维网络结构的高分子化合物。

聚合反应包括链聚合、开环聚合和交联聚合等。

1.链聚合是最常用的聚合反应之一,通过单体分子上的反应中心引发聚合链的生长。

链聚合反应有自由基聚合、阴离子聚合和阳离子聚合等。

自由基聚合反应广泛应用于合成塑料和橡胶,而阴离子聚合反应常用于制备高分子材料。

2.开环聚合是通过单体分子的环状结构反应性上的开环产生线性链的聚合过程。

开环聚合反应包括环氧树脂聚合、环丁烷聚合等。

3.交联聚合是通过在聚合过程中引入交叉链接结构,在高分子材料中形成三维网络结构。

交联聚合反应主要包括热交联反应和辐射交联反应等。

二、缩聚反应是合成高分子化合物的另一种方法。

缩聚反应是指通过两个或多个单体分子间的反应生成高分子化合物。

缩聚反应通常是通过脱水或脱溴等反应,在单体分子之间形成共价键。

缩聚反应主要包括酯化反应、酰胺化反应、缩醛反应等。

缩聚反应可选择性强,可以合成不同结构、性质和用途的高分子化合物。

三、改变分子结构的方法也是合成高分子化合物的重要手段。

改变分子结构可以通过引入官能团或交联剂等方式实现。

引入官能团可以改变分子的相容性、热稳定性、力学性能等。

交联剂可以引入交联结构,增强高分子材料的耐热性、耐溶剂性和力学性能等。

四、模板聚合是一种特殊的方法,它可以通过模板分子的存在,控制高分子聚合的反应过程和产物的结构。

模板聚合可以合成具有特殊功能和结构的高分子材料,如分子印迹聚合物和电导聚合物。

综上所述,合成高分子化合物的基本方法包括聚合反应、缩聚反应、改变分子结构的方法和模板聚合等。

这些方法具有一定的选择性和可控性,可以合成不同结构和性质的高分子化合物,广泛应用于材料科学、医学和工业领域。

第5章 聚合方法

第5章 聚合方法

C、出现凝胶效应,放热速率提高。 此时如散热不良,轻则造成局部过热, 使分子量分布变宽,最后影响到聚合物的 机械强度;重则温度失控,引起爆聚。
表4-3 本体聚合工业生产举例
聚合物 过程要求 聚甲基丙烯酸甲酯 第一阶段预聚至约10%转化率的粘稠浆液, (有机玻璃板) 然后浇模分段升温聚合,最后脱模成板材 聚苯乙烯 第一阶段:80~85℃预聚至33%~35%转化率, 然后在100~220℃温度递增的条件下聚合, 最后熔体挤出造粒 第一阶段预聚至7%-11%转化率,形成颗粒骨 架,然后在第二反应器内继续沉淀聚合,最 后以粉状出料 选用管式或釜式反应器连续聚合,控制单程 转化率15%-30%,最后熔体挤出造粒,未反 应单体经精制后循环使用
第四章
聚合方法
4.1 引言
1、自由基聚合的四种实施方法:
本体聚合、溶液聚合、悬浮聚合、乳液聚合
2、离子聚合的实施方法: 溶液聚合、淤浆聚合
3、逐步聚合(缩聚)实施方法: 本体聚合、溶液聚合以及界面聚合
均相体系:本体、溶液
从工程角度:
非均相体系:悬浮、乳液
例如: PS——均相体系 PVC——非均相体系
(MMA沸点为100.5℃)
高温热处理阶段——转化率达90%以后,进一步 升温至PMMA玻璃化温度以上(例如100-120℃) 进行高温热处理,使残余单体充分聚合。 高温聚合结束——冷却、脱模、修边,即成有机 玻璃板成品。 这样由本体浇铸聚合法制成的有机玻 璃,分子量可达106,而注射用的悬浮法 PMMA分子量一般约5-l0万。
缺点: ①单体浓度较低,聚合速率较慢,生产效 率较低; ②聚合物分子量降低 ;(单体浓度低和向溶剂链
转移的结果)
③溶剂回收代价大; ④除尽聚合物中残留溶剂困难。

聚合方法

聚合方法

高 分 子 化 学
17
5.2 本体聚合
例三:氯乙烯间歇本体沉淀聚合
聚氯乙烯生产主要采用悬浮聚合法,占80%~82%。其 次是乳液聚合,占10%~12% 。近20年来发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段: I. 预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在 50℃ ~70℃下预聚至 7%~11%转 化率,形成疏松的颗粒骨架。
II. 聚合:预聚物、 大部分单体和另一部分引发剂加入另一 聚合釜内聚合,颗粒骨架继续长大。转化率可达90%。 III. 通常预聚1~2h,聚合5~9h。
高 分 子 化 学
18
5.2 本体聚合
例四:乙烯高压连续气相本体聚合
聚合条件:压力 150~200MPa, 温度 180~200℃ ,微 量氧(10-6~10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留时 间几分钟,单程转化率 15%~30% 。易发生分子内转移和 分子间转移,前者形成短支链,后者长支链。平均每个分 子含有50个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低,仅 55% ~ 65%,Tm为105~110℃,密度:0.91~0.93。故称“低密度 聚乙烯”。熔体流动性好,适于制备薄膜。
高 分 子 化 学
8
5.1 引言
虽然不少单体可以选择四种聚合方法中的任何一种进 行聚合,但是实际上从实施聚合的难易和生产成本的高低 等因素考虑,往往仅有一两种方法最适合该种单体的聚合。 本体聚合和溶液聚合方法也适用于离子型聚合,只是 其具体的聚合条件如引发剂、溶剂的选择以及温度的确定 等与自由基聚合有所不同。 各种聚合方法的基本配方和特点列于下表。

第五章 聚合方法

第五章 聚合方法
第五章
聚合方法
Polymerization Methods
1
5.1 聚合方法概述 前几章我们已定量描述了聚合反应规律,例如自由基聚合: 聚合速率方程
] Rp = k p ( fktd )1 2 [ I 12 [M ] k
r1 f12 + f1 f 2 F1 = r1 f12 + 2 f1 f 2 + r2 f 22
28
形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC), 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 胶束的形状
球状(低浓度时) 直径 4~5 nm
棒状(高浓度时) 直径100 ~300nm
胶束的大小和数目取决于乳化剂的用量;乳化 剂用量多,胶束的粒子小,数目多。
29
在形成胶束的水溶液中加入单体后 极小部分单 体以分子分散状 态溶于水中 小部分单 体可进入胶束 的疏水层内
搅拌强度(一般强度愈大,颗粒愈细)
颗粒形 态的影 响因素
分散剂种类和浓度 水与单体比例(水油比) 聚合温度 引发剂种类和用量 单体种类
22
剪切力
剪 切 力:使单体液层分散成液滴 界面张力:使微小液滴聚集
界面张力
搅拌(Agitation)即施以剪切 力,加分散剂(Dispersant)一定 程度上降低界面张力。
CH3 − CH2 − CH 2 .......CH 2 −O(CH 2 CH 2 O) n −1 CH 2 CH 2 OH
疏水基 亲水基
非离子乳化剂对pH变化不敏感,较稳定;但乳化能 力仍不如阴离子型,一般不单独使用,常与阴离子型乳 化剂合用(以改善纯阴离子乳化体系对pH 值、电解质等 的敏感性。 非离子乳化剂无三相平衡点,却有一个浊点(非离 子乳液体系随温度升高开始分相时的温度)。

第五章聚合方法

第五章聚合方法

第五章聚合方法思考题 5.2 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答间歇本体聚合是制备有机玻璃板的主要方法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90-95 C下进行,预聚至10%〜20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40-50 C)下聚合至转化率90%。

低温(40〜50C)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100 C),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(100〜120C)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。

其散热问题可由预聚和聚合两段来克服。

苯乙烯是聚苯乙烯的良溶剂,聚苯乙烯本体聚合时出现自动加速较晚。

因此预聚时聚合温度为80〜90 C,转化率控制在30%〜35%,此时未出现自动加速效应,该阶段的聚合温度和转化率均较低,体系黏度较低,有利于聚合热的排除。

后聚合阶段可在聚合塔中完成,塔顶温度为100C,塔底温度为200C,从塔顶至塔底温度逐渐升高,目的在于逐渐提高单体转化率,尽量使单体完全转化,减少残余单体,最终转化率在99%以上。

思考题 5.3 溶液聚合多用离子聚合和配位聚合,而较少用自由基聚合,为什么?答离子聚合和配位聚合的引发剂容易被水、醇、二氧化碳等含氧化合物所破坏,因此不得不采用有机溶剂进行溶液聚合。

溶液聚合可以降低聚合体系的黏度,改善混合和传热、温度易控、减弱凝胶效应,可避免局部过热。

但是溶液聚合也有很多缺点:①单体浓度较低,聚合速度慢,设备生产能力低;②单体浓度低,加上向溶剂的链转移反应,使聚合物的分子量较低;③溶剂分离回收费高,难以除尽聚合物中的残留溶剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
第五章 聚合方法
5.4.2 液—液分散和成粒过程 分散剂的作用是防止已经剪切分散的单体液滴和
聚合物颗粒重新聚集。转化率20%左右时,单体— 聚合物液滴表面发粘, 容易粘结,因此需要分散剂进 行保护。
图5—1 悬浮单体液 滴分散聚集示意图
23
第五章 聚合方法
5.4.3 分散剂和分散作用
1. 水溶性高分子物质: 聚乙烯醇、苯乙烯—马来酸酐
18
第五章 聚合方法
例三. (甲基)丙烯酸酯类溶液聚合 (甲基)丙烯酸酯类单体有一个很大的家族,包
括甲基丙烯酸甲酯、乙酯、丁酯、乙基己酯;丙烯酸 甲酯、 乙酯、 丁酯、 乙基己酯等,还有(甲基)丙 烯酸β-羟乙酯、羟丙酯等。除了甲基丙烯酸甲酯之 外,这类单体很少采用均聚合,大多进行共聚。
丙烯酸甲酯、 乙酯、 丁酯、 乙基己酯均聚物的 玻璃化温度为8 ℃ 、 -22 ℃ 、- 54 ℃ 、- 70℃ 。 可根据需要进行共聚调节。也可与苯乙烯、醋酸乙烯 酯共聚。
脱除单体后,即成纺丝液,
17
第五章 聚合方法
例二. 醋酸乙烯酯溶液聚合 以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率
60%。过高会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。固
体物冷流性较大 。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作
合成纤维时,聚合度1700,醇解度98%~100% (1799);用作分散剂和织物助剂时,聚合度1700, 醇解度88%左右(1788)。
34
第五章 聚合方法
图5—3 乳化剂在水中的溶解和胶束的形成
胶束由50~150个分子聚集而成。浓度低时呈球状, 直径4~5nm;浓度高时呈棒状,长度100~300nm。
35
第五章 聚合方法
乳化剂从分子分散的溶液状态到开始形成胶束的转 变的浓度称为临界胶束浓度(CMC)。在乳液聚合 中,乳化剂浓度约为CMC的100倍,因此大部分乳化 剂分子处于胶束状态。
20
第五章 聚合方法
聚合物
聚乙烯 聚丙烯
顺丁橡胶
异戊橡胶 乙丙橡胶 丁基橡胶
表5—3 离子型溶液聚合示例
引发体系
溶剂
溶解情况 引发剂 聚合物
TiCl5—AlEt2Cl
TiCl3—AlEt2Cl Ni盐—AlR3—
BF3·OEt2 AlBu
VOCl3—AlEt3Cl3 AlCl3
加氢汽油 加氢汽油
烷烃或芳烃
33
第五章 聚合方法
5.5.1.2 乳化作用 乳化剂使互不相容的油、水转变为相当稳定难
以分层的乳液的过程,称为乳化。 当乳化剂溶于水时,若浓度很低,则大部分乳
化 剂以分子状态分散于水中,并在水面上定向排列。 亲水基团伸向水中,亲油基团指向空气层。但浓度 达到一定值时,乳化剂分子在水面上排满,多余的 分子就会在水中聚集成胶束(图5—3) 。
聚合:预聚物、 大部分单体和另一部分引发剂 加入另一聚合釜内聚合,颗粒骨架继续长大。转化 率可达90%。
通常预聚1~2h, 聚合5~9h。
11
第五章 聚合方法
例四. 乙烯高压连续气相本体聚合 聚合条件:压力150~200MPa, 温度180~200℃ ,
微量氧 (10-6~ 10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留
对聚合物溶解性差→沉淀剂→沉淀聚合→ 凝胶效应显著。
16
第五章 聚合方法
例一. 丙烯腈连续溶液聚合 第二单体:丙烯酸甲酯,降低分子间作用力,提
高加工性,增加柔性和手感,有利于染料分子的扩 散。第三单体:衣糠酸,有利于染色。
在硫氰化钠水溶液中进行连续均相溶液聚合。以 AIBN为引发剂,体系pH = 5,聚合温度75~80 ℃ 。 最终转化率70~75%。
14
第五章 聚合方法
5.3.1.2 溶剂的选择 溶剂对聚合活性有很大影响,因为溶剂难以做到
完全惰性,对引发剂有诱导分解作用,对自由基有链 转移反应。
溶剂对引发剂分解速率依如下递增: 芳烃、烷烃、 醇类、醚类、胺类。
向溶剂链转移: 水为零, 苯较小, 卤代烃较大。
15
第五章 聚合方法
对聚合物溶解性好→良溶剂→均相聚合→ 可消除凝胶效应。
PVC糊用树脂,丁苯橡胶,苯丙乳胶漆,PVAc 胶粘剂等。
30第五章 聚合方法 Nhomakorabea5.5.1 乳化剂及乳化作用 5.5.1.1 乳化剂
分子中既含有亲水(极性)基团,又含有亲油 (非极性)基团的表面活性剂中的一种。可分为阴离 子型、阳离子型和非离子型三种。
31
第五章 聚合方法
阴离子型:极性基团为—COO-、—SO3-、—SO4等,非极性基团为C11~C17的直链烷基或311~C8的 烷基与苯基的组合基团 。乳化能力强。
26
第五章 聚合方法
例:甲基丙烯酸甲酯模塑料的制备
配方(wt):
聚合工艺:
MMA St AIBN Na2CO3 MgSO4 H2O
70
温度 /℃
80~90
30
搅拌速度 r/min 80~150
0.5
反应时间 /h
8~10
0.1
0.1
Na2CO3+MgSO4
MgCO3+Na2SO4
300
27
第五章 聚合方法
生产特征
产物特性
本体聚合
溶液聚合
悬浮聚合
乳液聚合
单体、引发剂
单体引发剂、溶剂
单体、引发剂、分 散剂、水
单体、引发剂、乳 化剂、水
单体内
溶剂内
单体内
胶束内
自由基聚合一般机 理,聚合速度上升 聚合度下降
设备简单,易制备 板材和型材,一般 间歇法生产,热不 容易导出
聚合物纯净。分子 量分布较宽
容易向溶剂转移, 聚合速率和聚合度 都较低
5.5 乳液聚合 5.5.1 概述
单体在介质中由乳化剂分散成乳液状态进行聚合。 与悬浮聚合区别: (1)粒径:悬浮聚合物50~2000 µm ,乳液聚合物 0.1~0.2 µm (2)引发剂:悬浮聚合采用油溶性引发剂,乳液聚 合采用水溶性引发剂 (3)聚合机理:悬浮聚合相当于本体聚合,聚合发 生在单体液滴中;乳液聚合发生在胶束中。
典型例子:十二烷基硫酸钠、二丁基萘磺酸钠、 硬脂酸钠等。
阳离子型:极性基团为—N+R3等。因乳化能力 不足,并对引发剂有分解作用,故在自由基聚合中 不常用。
32
第五章 聚合方法
非离子型:分子中不含阴、阳离子。典型代表为 环氧乙烷聚合物,如:R[O C H 2C H 2]nO H,其中R为 C10~C16的烷基或烷苯基,n一般4~ 30。如OP类、 OS类非离子型乳化剂等。这类乳化剂不含离子,所 以对pH不敏感,所制备的乳液化学稳定性好。但乳 化能力略低于阴离子型。常与阴离子型乳化剂共用, 也可单独使用。
13
第五章 聚合方法
5.3 溶液聚合 5.3.1 自由基溶液聚合 5.3.1.1 自由基溶液聚合的特点
优点: 体系粘度低, 混合和传热容易, 温度易控制, 较少凝胶效应。
缺点: 聚合速率低,设备利用率低,链转移使分 子量低,需溶剂回收。
多用于聚合物溶液直接使用场合,如油漆、粘 合剂、涂料、合成纤维纺丝液等。
5.2 本体聚合
配方: 单体 + 引发剂,选择性加入少量色料、增塑 剂、润滑剂、分子量调节剂等。
优点: 聚合物纯净,后处理简单。 缺点: 聚合热不易扩散, 反应温度较难控制, 容易 局部受热, 反应不均匀, 分子量分布宽, 有气泡, 可能 爆聚。
5
第五章 聚合方法
例一. 聚甲基丙烯酸甲酯板材的制备 将MMA单体, 引发剂BPO或AIBN, 增塑剂和脱模
7
第五章 聚合方法
例二. 苯乙烯连续本体聚合 20世纪40年代开发釜—塔串联反应器,分别承
担预聚合和后聚合的作用。 预聚合:立式搅拌釜内进行,80~90℃ ,BPO或
AIBN引发,转化率30%~35%。 后聚合:预聚体流入聚合塔,可以热聚合或加
少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
剂置于普通搅拌釜内, 90~95℃下反应至10~20%转化 率, 成为粘稠的液体。停止反应。将预聚物灌入无机 玻璃平板模具中,移入热空气浴或热水浴中,升温至 45~50℃,反应数天,使转化率达到90%左右。然后 在100~120℃高温下处理一至两天,使残余单体充分 聚合。
6
第五章 聚合方法
PMMA为非晶体聚合物,Tg=105 ℃,机械性 能、耐光耐候性均十分优异,透光性达90%以上, 俗称“有机玻璃”。广泛用作航空玻璃、光导纤维、 标牌、指示灯罩、仪表牌、牙托粉等。
82%。其次是乳液聚合,占10%~12% 。近20年来 发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程 中发生聚合物的沉淀。本体聚合分为预聚合和聚合 两段:
10
第五章 聚合方法
预聚合:小部分单体和少量高活性引发剂(过氧 化乙酰基磺酰)加入釜内,在50℃ ~70℃下预聚至 7%~11%转化率,形成疏松的颗粒骨架。
25
第五章 聚合方法
3. 分散剂的选择: (1)用量 < 0.1% (2)PVC:紧密型,明胶; 疏松型,1788聚乙烯醇。 (3)助分散剂: 表面活性剂。
5.5.4 影响悬浮聚合的因素 1. 搅拌强度;2. 分散剂的性质和浓度;3. 水/单体比; 5. 温度;5. 引发剂用量和种类;6. 单体种类
抽余油 抽余油 CH3Cl
非均相 非均相
非均相
均相 非均相
均相
沉淀 沉淀
均相
均相 均相 沉淀
21
第五章 聚合方法
5.4 悬浮聚合 5.4.1 概述 体系主要组成:单体、引发剂、水、分散剂 优点: 传热容易, 分子量高。 缺点: 附有少量分散剂残留物。 均相悬浮聚合: 苯乙烯, MMA等。 沉淀悬浮聚合: 氯乙烯。
相关文档
最新文档