初中数学竞赛辅导讲义及习题解答_第18讲_圆的基本性质

合集下载

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中数学竞赛辅导讲义及习题解答  含答案  共30讲  改好278页

初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。

【例3】 解关于的方程。

思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。

初中数学专题讲义-圆(含答案)

初中数学专题讲义-圆(含答案)

初中数学专题讲义-圆【考纲说明】【知识梳理】一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

(1)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫做半圆。

(1)劣弧:小于半圆的弧。

(2)优弧:大于半圆的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质 1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:➢ 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

➢ 平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、点与圆的位置关系:设⊙O 的半径为r ,OP=d 。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d 表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;9、圆的切线判定。

(1)d=r 时,直线是圆的切线。

中考数学专题复习 第7章 圆 第18讲 圆的有关基本性质-人教版初中九年级全册数学试题

中考数学专题复习 第7章 圆 第18讲 圆的有关基本性质-人教版初中九年级全册数学试题

第18讲圆的有关基本性质☞【基础知识归纳】☜☞归纳1:弧、弦、圆心角之间的关系定理:在同圆或等圆中,相等..的圆心角所对的弧相等,所对的弦相等,推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【方法点拨】正确理解和使用圆心角、弧、弦三者的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.☞归纳2:圆周角定理定理:圆周角的度数等于它所对弧上的圆心角度数的一半推论1:同弧或等弧所对的圆周角相等推论2:半圆(或直径)所对的圆周角是___直角__;90°的圆周角所对的弦是直径推论3: 圆内接四边形的对角互补【方法点拨】在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧要掌握.【注意问题归纳】①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”---圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件☞归纳 3:圆的切线性质:圆的切线垂直于过切点的半径.如图所示,如果CD切⊙O于点A,那么OA⊥CD判定:过半径外端且垂直于这条半径的直线是圆的切线如图所示,如果AB是⊙O的直径,直线CD经过A点,且CD⊥AB,那么CD是⊙O的切线.☞【常考题型剖析】☜☺题型一、圆心(周)角、弧、弦之间的关系【例1】(2016某某)如图1,在⊙O中,=AB AC,∠AOB=40°,则∠ADC的度数是()图1图2A. 40°B. 30°C. 20°D. 15°【答案】C【解答】解:连接CO,如图:∵在⊙O中,=AB AC∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=12∠AOC=20°,【例2】(2016某某)如图2,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°【分析】根据∠ABC=50°求出ADC的度数为100°,求出BC的度数为80°,即可求出答案.【解答】解:∵∠ABC=50°,∴ADC的度数为100°,∵AB为直径,∴BC的度数为80°,∴∠BDC=12×80°=40°,【举一反三】1.(2016某某) 如图3,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()图3 图4A. 20°B. 40°C. 50°D. 70°【答案】C【分析】先根据圆周角定理求出∠B及∠ACB的度数,再由直角三角形的性质即可得出结论.【解答】解:∵∠D=40°,∴∠B=∠D=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-40°=50°.2.(2016某某)如图4,线段AB是⊙O的直径,弦CD⊥AB,∠CA B=40°,则∠ABD与∠AOD分别等于()A. 40°,80°B. 50°,100°C. 50°,80°D. 40°,100°【分析】求出∠AEC=90°,根据三角形内角和定理求出∠C=50°,根据圆周角定理即可求出∠ABD,根据OB=OD得出∠ABD=∠ODB=50°,根据三角形外角性质求出即可.【解答】解:∵CD⊥AB,∴∠AEC=90°,∵∠CAB=40°,∴∠C=50°,∴∠ABD=∠C=50°,∵OB=OD,∴∠ABD=∠ODB=50°,∴∠AOD=∠ABD+∠ODB=100°☺题型二、圆周角定理及推论【例3】(2016某某)如图1,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=度.【答案】60【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.【解答】解:∵∠AOB=120°,∴∠ACB=120°×12=60°,图1图2 图3【例4】(2016某某)如图2,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=度.【分析】根据圆内接四边形对角互补和,同弧所对的圆心角是圆周角的二倍可以解答本题.【解答】解:∵A,B,C,D是⊙O上的四个点,∠C=110°,∴四边形ABCD是圆内接四边形,∴∠C+∠A=180°,∴∠A=70°,∵∠BOD=2∠A,∴∠BOD=140°【举一反三】3.(2016湘西州)如图3,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.【答案】35°【分析】根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:∵圆心角∠AOB=70°,∴∠C=12∠AOB=12×70°=35°.4.(2016来宾)如图4,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=.【答案】140°【分析】在优弧AB上任取一点D,连接AD,BD,先由圆内接四边形的性质求出∠ADB的度数,再由圆周角定理求出∠AOB的度数即可.【解答】解:优弧AB上任取一点D,连接AD,BD,∵四边形ACBD内接与⊙O,∠C=110°,∴∠ADB=180°﹣∠C=180°﹣110°=70°,∴∠AOB=2∠ADB=2×70°=140°.图4 图55.(2016某某)如图5,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A. 75°B. 60°C. 45°D. 30°【答案】D【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°-∠ACB-∠ABC=30°.☺题型三、圆的切线【例5】(2016某某)如图6,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()图6图7A. 15°B. 30°C. 45°D. 60°【答案】B【分析】由切线的性质得出∠ABO=90°,由直角三角形的性质得出∠A=90°-∠AOB,即可得出结果.【解答】解:∵AB和⊙O相切于点B,∴∠ABO=90°,∴∠A=90°-∠AOB=90°-60°=30°;【举一反三】6.(2016株洲) 如图7,△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF=度.【答案】120【分析】首先根据∠A=75°,∠B=45°,求出∠C=60°;然后根据△ABC的内切圆的三个切点分别为D、E、F,可得∠OEC=∠OFC=90°,再根据四边形OEFC的内角和等于360°,求出圆心角∠EOF的度数是多少即可.【解答】解:∵∠A=75°,∠B=45°,∴∠C=180°-75°-45°=105°-45°=60°∵△ABC的内切圆的三个切点分别为D、E、F,∴∠OEC=∠OFC=90°,∵四边形OECF的内角和等于360°,∴∠EOF=360°-(90°+90°+60°)=360°-240°=120°7.(2016某某)如下图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【分析】(1)连接OC .只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD 的面积减去扇形COB 的面积.【解答】(1)证明:连接OC .∵AC=CD ,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC ,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A ﹣∠D ﹣∠2=90°.即OC ⊥CD ,∴CD 是⊙O 的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴BOC S 扇形=260223603ππ⨯= 在Rt △OCD 中,∵0tan 60CD OC=, ∴23CD =.∴t112232322BOC S OC CD =⨯=⨯⨯=R ∴图中阴影部分的面积为:2233π-☞【巩固提升自我】☜1.(2016某某)如图1,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )图1图2 图3A. 150° B . 140° C . 130° D . 120°【答案】A【分析】直接根据圆周角定理即可得出结论.【解答】解:∵A 、B 、C 是⊙O 上的三点,∠B=75°,∴∠AOC=2∠B=150°2.(2014某某)如图2,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为【答案】3【分析】作OC ⊥AB 于C ,连接OA ,根据垂径定理得到AC=BC=12AB=4, 然后在Rt △AOC 中利用勾股定理计算OC 即可.【解答】解:作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC=BC=12AB=12×8=4, 在Rt △AOC 中,OA=5,∴OC=2222543OA AC -=-=即圆心O 到AB 的距离为3.3.(2012某某)如图3,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是【答案】50°【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对AC∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.4.(2014某某)如下图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.【分析】(1)根据BD=BA得出∠BDA=∠BAD,再由∠BCA=∠BDA即可得出结论;(2)判断△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.(3)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断BE⊥OB,可得出结论.【解答】(1)证明:∵BD=BA,∴∠BDA=∠BAD,∵∠BCA=∠BDA(圆周角定理),∴∠BCA=∠BAD.(2)解:∵∠BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△BED∽△CBA,∴BD DEAC AB=,即121312DE=,解得:DE=14413(3)证明:连结OB ,OD ,在△ABO 和△DBO 中,AB DB BO BO OA OD =⎧⎪=⎨⎪=⎩∴△ABO ≌△DBO (SSS ),∴∠DBO=∠ABO ,∵∠ABO=∠OAB=∠BDC ,∴∠DBO=∠BDC ,∴OB ∥ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线.5.(2016某某改)如下图,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,∠ABC=30°, 过点B 作⊙O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E , 过点A 作⊙O 的切线AF ,与直径BC 的延长线交于点F.(1)求证:△ACF ∽△DAE ;(2)若3=4AOC S △,求DE 的长;【分析】(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;(2)根据S△3S△3ACF∽△DAE,求得S△93,过A作AH⊥DE于H,解直角三角形得到AH=33DH=34DE,由三角形的面积公式列方程即可得到结论;(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=12(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30°∴∠DAE=∠ACF=120°,∴△ACF ∽△DAE ;(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°, ∴∠CAF=30°,∴∠CAF=∠AFC ,∴AC=CF,∴OC=CF ,∵AOC S=4,∴ACF S=4, ∵∠ABC=∠AFC=30°,∴AB=AF ,∵AB=12BD ,∴AF=12BD , ∴∠BAE=∠BEA=30°,∴AB=BE=AF ,∴13AF DE =, ∵△ACF ∽△DAE ,∴21()9ACF DAE SAF S DE ==∴DAE S =4, 过A 作AH ⊥DE 于H,∴DE , ∴ADE S =12DE•AH=12•2DE, ∴DE=。

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心,线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。

圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。

圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。

以A、B为端点的弧记作ABAB或弧AB。

等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。

弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

九年级数学竞赛讲座圆的基本性质附答案

九年级数学竞赛讲座圆的基本性质附答案

【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( ) A .2 B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M . (1)求∠COA 和∠FDM 的度数; (2)求证:△FDM ∽△COM ;(3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.⌒ ⌒⌒⌒注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3. (1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积. 思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是 cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a.是轴对称图形但不是中心对称图形.b.既是轴对称图形又是中心对称图形.4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ) A.12cm B.10cm C. 8cm D.6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .3166.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数. 9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F . (1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程); (3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系⌒⌒是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根. (1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒ ⌒参考答案。

(完整版)初三数学圆的经典讲义

(完整版)初三数学圆的经典讲义

圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

竞赛讲座圆

竞赛讲座圆

竞赛讲座09—圆基础知识如果没有圆,平面几何将黯然失色.圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何着名的几何定理”,“共圆、共线、共点”,“直线形”将构成圆的综合问题的基础.本部分着重研究下面几个问题:1•角的相等及其和、差、倍、分;2.线段的相等及其和、差、倍、分;3.二直线的平行、垂直;4•线段的比例式或等积式;5.直线与圆相切;6•竞赛数学中几何命题的等价性.命题分析例1.已知A为平面上两个半径不等的O O i和O O2的一个交点,两圆的外公切线分别为RP20Q2, M i、M2 分别为RQ i、P2Q2的中点,求证:NO!AO2 =NM!AM2例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形.例3.延长AB至D,以AD为直径作半圆,圆心为H , G是半圆上一点,• ABG为锐角.E在线段BH 上,Z在半圆上,EZ II BG,且EH ED =EZ2, BT II HZ .求证:TBG 工1 ABG .3例4•求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等.例5 .设.A是厶ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T .证明:AU =TB - TC .例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作O O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ II NP .例7.O O1和O O2与厶ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P .求证:直线PA与BC垂直.例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过D,E,MMB MD NC NE的圆在E点的切线分别交直线BC、AC于F,G .已知如二t,求些(用t表示).AB EF 例9 .设点D和E是厶ABC的边BC上的两点,使得• BAD 二/CAE .又设M和N分别是△1111ABD、△ ACE的内切圆与BC的切点.求证:— ^二丄•丄.例10.设厶ABC满足.A = 90 , . B <C,过A作厶ABC外接圆W的切线,交直线BC于D , 设A关于直线BC的对称点为E ,由A到BE所作垂线的垂足为X , AX的中点为Y , BY交W于Z 点,证明直线BD 为厶ADZ外接圆的切线.例11 •两个圆M和:2被包含在圆:内,且分别现圆:相切于两个不同的点M和N •丨i经过:2 的圆心.经过M 和丨2的两个交点的直线与〕相交于点A和B,直线MA和直线MB分别与丨i相交于点C和D •求证:CD与:2相切.例12•已知两个半径不相等的O O i和O 02相交于M、N两点,且O O i、O O2分别与O O内切于S、T两点•求证:OM _MN的充要条件是S、N、T三点共线.例13.在凸四边形ABCD中,AB与CD不平行,O O1过A、B且与边CD相切于点P , O O2过C、D且与边AB相切于点Q • O O1和O O2相交于E、F ,求证:EF平分线段PQ的充要条件是BC II AD •例14・设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行•点P 为线段AB 与CD的垂直平分线的交点,且在四边形的内部•求证:A、B、C、D四点共圆的充要条件为S pAB二S p CD训练题1 •△ ABC内接于O O , ■ BAC ::: 90,过B、C两点O O的切线交于P , M为BC的中点, 求证:(1)如二cos BAC ;(2)BAM =/PAC •AP2 •已知A,B,C •分别是厶ABC外接圆上不包含A, B,C的弧BC,CA,AB的中点,BC分别和CA \ AB •相交于M、N两点,CA分别和A B、BC •相交于P、Q两点,AB分别和BC、C A相交于R、S两点•求证:MN二PQ二RS的充要条件是△ ABC为等边三角形.3•以△ ABC的边BC为直径作半圆,与AB、CA分别交于点D和E,过D、E作BC的垂线,垂足分别为F、G •线段DG、EF交于点M •求证:AM _ BC •4•在厶ABC中,已知.B内的旁切圆与CA相切于D,■ C内的旁切圆与AB相切于E,过DE 和BC的中点M和N作一直线,求证:直线MN平分△ ABC的周长,且与• A的平分线平行.5•在厶ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F •在BC边上取点P使1得3BP 二BC •求证:BFP B •26•半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M ( MB :::MA, MC ::: MD )•设K是厶AOC与厶DOB的外接圆除点O外之另一交点•求证:• MKO为直角•7•已知,AD是锐角△ ABC的角平分线,• BAC h、,• ADC = ,且cos二=c c s2一:•求证:2AD 二BD DC •8. M为厶ABC的边AB上任一点,r1,r2,r分别为△ AMC、△ BMC、△ ABC的内切圆半径;匚匚亍分别为这三个三角形的旁切圆半径(在• ACB内部).求证:L L L L = L .P i P2 P9 •设D是厶ABC的边BC上的一个内点,AD交厶ABC外接圆于X,P、Q是X分别到AB 和AC的垂足,0是直径为XD的圆.证明:PQ与O O相切当且仅当AB=AC .10•若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF ,连CD, DE分别交AB于X,Y ,则MX 二MY.11 •设H为厶ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X •证明:EX II AP .12•在△ ABC中,.C的平分线分别交AB及三角形的外接圆于明:(1)ID IK —1 •ID IKD和K , I是内切圆圆心•证。

陕西省2018年中考数学复习课件:第一编第18课时圆的基本性质.pptx

陕西省2018年中考数学复习课件:第一编第18课时圆的基本性质.pptx

《中考内参(数学)2018》配套课件
第18课时:圆的基本性质
B
【点评】本题综合考查同弧(等弧)所对的圆 周角相等、圆内接四边形对角互补、三角形一 个外角等于不相邻的两个内角之和等知识,掌
握上述知识点并能灵活运用是解题的关键.
《中考内参(数学)2018》配套课件
第18课时:圆的基本性质
例3(2017年,海南省)如图,AB是⊙O的弦,AB=5,点C是⊙O上的
第六单元 圆
第18课时:圆的基本性质
~
《中考内参(数学)2018》配套课件
第18课时:圆的基本性质
《中考内参(数学)2018》配套课件
第18课时:圆的基本性质
《中考内参(数学)2018》配套课件
第18课时:圆的基本性质
B
【解答】解:连接AC, ∵AB为⊙O的直径,∴∠ACB=90°, ∵∠AED=20°,∴∠ACD=20°, ∴∠BCD=∠ACB+∠ACD=110°,故选B. 【点评】此题主要考查同弧或等弧所对的圆周角相等,直径所 对的圆周角是直角,正确作出辅助线是解决本题的关键.
一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的
最大值是 . 【点评】本题考查三
角形的中位线定理、 直径所对的圆周角是 直角、等腰直角三角 形的性质及三角函数 等知识,掌握三角形 的中位线定理,知道 MN与弦BC之间的等量 关系是解题的关键.
《中考内参(数学)2018》配套课件
•早在人类文化发展的上古时期,文化的发展就不是一个模式,而是形成多个文化体系,呈现多样形态。此后,不同文化并不是孤立地、互不联系地发展,而是在相互交流、对话、学习、碰撞中前行,逐渐形成“你中有我、我中有你”的格局。而不同文明的接触,常常成为人类进步的里程碑: 希腊学习埃及,罗马学习希腊,阿拉伯学习罗马帝国,中世纪欧洲学习阿拉伯,文艺复兴时期的欧洲又学习东罗马帝国。欧洲文化的发展状况是这样,东亚也是如此:日本明治维新之前,日本学习借鉴中国;明治维新之后,中国通过日本学习世界。中国从印度引入佛教,之后中国佛教影响东 亚、东南亚大片区域。人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的 需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展 中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断

初中数学《圆》全章讲义有例题

初中数学《圆》全章讲义有例题

初中数学《圆》全章讲义有例题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《圆》内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;5、切线及切线长定理;6、弧长及扇形面积。

【知识要点1】圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF是平行四边形.【知识要点2】点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;【知识要点3】直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d rdrd=rrd【知识要点4】圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;rRd图3rR d【知识要点5】垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

初中数学重点梳理:圆的基本性质

初中数学重点梳理:圆的基本性质

圆的基本性质知识定位圆在初中几何或者竞赛中占据非常大的地位,它的有关知识如圆与正多边形的关系,圆心角、三角形外接圆、弧、弦、弦心距间的关系,垂径定理是今后我们学习综合题目的重要基础。

圆的基本性质以及应用,必须熟练掌握。

本节我们通过一些实例的求解,旨在介绍数学竞赛中圆相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理1、圆的定义:(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径.⊙”,(3)圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O读作“圆O”。

(4)同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.2、弦和弧:(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.(3)弦心距:从圆心到弦的距离叫做弦心距.、为端点的圆弧记作AB,读作(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B弧AB.(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3、垂径定理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.4、圆心角和圆周角:(1)圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(4)圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.5、正多边形:各边相等,各角也相等的多边形是正多边形。

北师大九年级圆讲义教师版带答案

北师大九年级圆讲义教师版带答案

北师大九年级圆讲义教师版带答案Document number:PBGCG-0857-BTDO-0089-PTT1998圆知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。

2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

圆上任意两点间的部分叫做圆弧,简称弧。

连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

在同圆或等圆中,能够重合的两条弧叫做等弧。

例 P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.解题思路:圆内最长的弦是直径,最短的弦是和OP垂直的弦,答案:10 cm,8 cm.知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r 时,点在圆外。

当点在圆上时,d=r;反过来,当d=r 时,点在圆上。

当点在圆内时,d<r;反过来,当d<r 时,点在圆内。

例如图,在Rt ABC△中,直角边3AB=,4BC=,点E,F分别是BC,AC 的中点,以点A为圆心,AB的长为半径画圆,则点E在圆A的_________,点F在圆A 的_________.解题思路:利用点与圆的位置关系,答案:外部,内部练习:在直角坐标平面内,圆O的半径为5,圆心O的坐标为(14)--,.试判断点(31)P-,与圆O的位置关系.答案:点P在圆O上.知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。

3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。

圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

#初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

#初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

第十八讲 圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 . 作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,使用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175 思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解. 【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM . 思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它. 【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论. 思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;⌒ ⌒ ⌒ ⌒(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ;(2)边长为lcm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ;(3)长为2cm ,宽为lcm 的矩形被两个半径都为r 的圆所覆盖,r 的最小值是 cm . (2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 (分别用下面三个图的代号a ,b ,c 填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片, ⌒ ⌒ ⌒ ⌒ ⌒ ⌒叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; ⌒ ⌒ ⌒ ⌒ ⌒(2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD×CB时,求C点坐标;(3)在⊙O,上是否存在点P,使S△POD=S△ABD?若存在,求出P点坐标;若不存在,请说明理由.参考答案。

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中奥林匹克数学竞赛知识点总结及训练题目-圆的基本性质

初中数学竞赛辅导讲义---圆的基本性质到定点(圆心)等于定长(半径)的点的集合叫圆,圆常被人们看成是最完美的事物,圆的图形在人类进程中打下深深的烙印.圆的基本性质有:一是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.熟悉如下基本图形、基本结论:【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .作出辅助线,解直角三角形,注意AB 与AC 有不同的位置关系.注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结 合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45D .16175思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 如图甲,⊙O 的直径为AB ,过半径OA 的中点G 作弦C E ⊥AB ,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F ,M .(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ; (3)如图乙,若将垂足G 改取为半径OB 上任意一点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线AB 于点F 、M ,试判断:此时是否有△FDM ∽△COM? 证明你的结论.思路点拨 (1)在Rt △COG 中,利用OG=21OA=21OC ;(2)证明∠COM=∠FDM ,∠CMO= ∠FMD ;(3)利用图甲的启示思考.注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).【例5】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒ ⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.学历训练1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答下列问题:(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.(2003年南京市中考题)3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下面三个图的代号a,b,c填空).(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形.4.如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25C .3D .316 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )A .AB+CD =EFB .AB+CD=FC . AB+CD<EFD .不能确定7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB=.11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )A .一个圆B .一条直线C .一条线段D .两条射线②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长.16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB×AC .⌒ ⌒ ⌒17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒参考答案。

初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

初中数学竞赛辅导讲义及习题解答 第18讲 圆的基本性质

第十八讲圆的基本性质形,又是一中心对称图形.用圆的基本性质解题应注意:
三角形,常与勾股定理和解直角三角形知识结
(3)如图乙,若将垂足G改取为半径OB上任意一点,点D改取在EB上,仍作直线CD、
ED,分别交直线AB于点F、M,试判断:此时是否有△FDM∽△COM? 证明你的结论.
形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法(主要是指全等与相似).∠B=∠CAE,EF:FD=4:3.
⌒⌒


(3)寻找相似三角形,运用比例线段求出x的值.
圆相关问题的关键.
形A被这些圆所覆盖.
轴对称和中心对称性.
要长、宽都是1cm的正方形小硅片若干.如果晶圆片的直径为10.05cm,问:一张这种晶圆片能否切
中,不写推理过程);
最小值为.
换叫作反演变换,点P与点P′叫做互为反演点.
的周长.
根.

⌒⌒
⌒。

初中数学竞赛辅导讲义及习题解答第18讲圆的基本性质

初中数学竞赛辅导讲义及习题解答第18讲圆的基本性质

第十八讲圆的基天性质到定点 (圆心 )等于定长 (半径 )的点的会合叫圆,圆常被人们当作是最完满的事物,圆的图形在人类进度中打下深深的烙印.圆的基天性质有:一是与圆有关的基本观点与关系,如弦、弧、弦心距、圆心角、圆周角等;二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.用圆的基天性质解题应注意:1.娴熟运用垂径定理及推论进行计算和证明;2.认识弧的特征及中介作用;3.擅长促成同圆或等圆中不一样名称等量关系的转变.熟习以下基本图形、基本结论:【例题求解】【例 1】在半径为 1 的⊙ O 中,弦 AB 、AC 的长分别为 3 和 2 ,则∠BAC度数为.作出协助线,解直角三角形,注意AB 与 AC 有不一样的地点关系.注:由圆的对称性可引出很多重要定理,垂径定理是此中比较重要的一个,它交流了线段、角与圆弧的关系,应用的一般方法是结构直角三角形,常与勾股定理和解直角三角形知识结合起来.圆是一个对称图形,注意圆的对称性,可提升解与圆有关问题周祥性.【例 2】如图,用 3 个边长为 1 的正方形构成一个对称图形,则能将其完整覆盖的圆的最小半径为 ()A .2B .5C.5D.5 174216思路点拨所作最小圆圆心应在对称轴上,且最小圆应尽可能经过圆形的某些极点,经过设未知数求解.⌒⌒【例 3】如图,已知点 A 、B、C、D 按序在⊙ O 上,AB=BD ,BM ⊥AC 于 M ,求证:AM=DC+CM .思路点拨用截长 (截 AM) 或补短 (延伸 DC) 证明,将问题转变成线段相等的证明,证题的重点是促进不一样量的相互变换并打破它.⌒【例 4】如图甲,⊙ O的直径为AB,过半径OA 的中点 G 作弦 C E ⊥AB ,在 CB 上取一点 D ,分别作直线 CD、 ED ,交直线 AB 于点 F, M .(1)求∠ COA 和∠ FDM 的度数;(2)求证:△ FDM ∽△ COM ;⌒(3)如图乙,若将垂足 G 改取为半径 OB 上随意一点,点CD 、D 改取在 EB 上,仍作直线ED ,分别交直线 AB 于点 F、M ,试判断:此时能否有△FDM ∽△ COM? 证明你的结论.思路点拨(1) 在 Rt△COG 中,利用 OG= 11OC; (2)证明∠ COM= ∠ FDM ,∠ CMO= 2OA= 2∠FMD ; (3) 利用图甲的启迪思虑.注:擅长促成同圆或等圆中不一样名称的相互转变是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题供给新的解题思路,而在解与圆有关问题经常用到直线形的知识与方法(主假如指全等与相像).【例 5】已知:在△ ABC 中, AD 为∠ BAC 的均分线,以 C 为圆心, CD 为半径的半圆交 BC 的延伸线于点 E,交 AD 于点 F,交 AE 于点 M ,且∠ B= ∠CAE , EF: FD= 4:3.(1)求证: AF = DF;(2)求∠ AED 的余弦值;(3)假如 BD = 10,求△ ABC 的面积.(1) 证明∠ ADE =∠ DAE ;(2) 作 AN ⊥BE 于 N ,cos∠AED =EN,设 FE=4x, FDAE=3x ,利用有关知识把有关线段用 x 的代数式表示; (3)找寻相像三角形,运用比率线段求出 x 的值.注:本例的解答,需运用相像三角形、等腰三角形的判断、面积方法、代数化等知识方法思想,综合运用直线形有关知识方法思想是解与圆有关问题的重点.学历训练1.D 是半径为5cm 的⊙ O 内一点,且 OD= 3cm,则过点 D 的全部弦中,最小弦AB=.2.阅读下边资料:对于平面图形A,假如存在一个圆,使图形 A 上的随意一点到圆心的距离都不大于这个圆的半径,则称图形 A 被这个圆所覆盖.对于平面图形 A ,假如存在两个或两个以上的圆,使图形 A 上的随意一点到此中某个圆的圆心的距离都不大于这个圆的半径,则称图形 A 被这些圆所覆盖.比如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.回答以下问题:(1) 边长为 lcm 的正方形被一个半径为r 的圆所覆盖, r 的最小值是cm;(2)边长为 lcm 的等边三角形被一个半径为r 的圆所覆盖, r 的最小值是cm;(3)长为 2cm,宽为 lcm 的矩形被两个半径都为r 的圆所覆盖, r 的最小值是cm.(2003 年南京市中考题 )3.世界上由于有了圆的图案,万物才显得富裕活力,以下来自现实生活的图形中都有圆:它们看上去多么漂亮与和睦,这正是由于圆拥有轴对称和中心对称性.(1) 请问以下三个图形中是轴对称图形的有,是中心对称图形的有(分别用下边三个图的代号a, b, c 填空 ).(2)请你在下边的两个圆中,按要求分别画出与上边图案不重复的图案(草图 ) (用尺规画或徒手画均可,但要尽可能正确些,雅观些).a .是轴对称图形但不是中心对称图形.b .既是轴对称图形又是中心对称图形. 4.如图, AB 是⊙ O 的直径, CD 是弦,若 AB=10cm , CD = 8cm ,那么 A 、B 两点到直线CD的距离之和为 A .12cm()B . 10cmC .8cmD .6cm5.一栽花边是由如图的弓形构成的,ACB 的半径为 5,弦 AB = 8,则弓形的高 CD 为 ( )5 C .3D .16A .2B .236.如图,在三个等圆上各自有一条劣弧⌒ ⌒ ⌒ ⌒ ⌒ ⌒与AB 、CD 、EF ,假如 AB+CD=EF ,那么 AB+CDE 的大小关系是( )A .AB+CD = EFB . AB+CD=FC . AB+CD<EFD .不可以确立7.电脑 CPU 芯片由一种叫 “单晶硅” 的资料制成, 未切割前的单晶硅资料是一种薄形圆片,叫“晶圆片” .现为了生产某种 CPU 芯片,需要长、宽都是 1cm 的正方形小硅片若干.假如晶圆片的直径为 10. 05cm ,问:一张这类晶圆片可否切割出所需尺寸的小硅片 66 张 ?请说明你的方法和原因 (不计切割消耗 ).8.如图,已知⊙ O 的两条半径 ⌒ 2 2 2OA 与 OB 相互垂直, C 为 AmB 上的一点, 且 AB +OB =BC ,求∠ OAC 的度数.9.可是圆心的直线 l 交⊙ O 于 C 、D 两点, AB 是⊙ O 的直径, AE ⊥ l ,垂足为 E ,BF ⊥ l ,垂足为 F .(1) 在下边三个圆中分别补画出知足上述条件的拥有不一样地点关系的图形;(2) 请你察看 (1) 中所绘图形,写出一个各图都拥有的两条线段相等的结论 (不再标明其余字母,找结论的过程中所连协助线不可以出此刻结论中,不写推理过程 );(3) 请你选择 (1) 中的一个图形,证明 (2) 所得出的结论.10.以 AB 为直径作一个半圆,圆心为O, C 是半圆上一点,且 OC2= AC × BC ,则∠ CAB=.⌒11.如图,把正三角形 ABC 的外接圆对折,使点,则A 落在 BC 的中点 A ′上,若 BC=5折痕在△ ABC 内的部分 DE 长为.12.如图,已知 AB 为⊙ O 的弦,直径 MN 与 AB 订交于⊙ O 内, MC ⊥AB 于 C,ND ⊥ AB于 D,若 MN=20 ,AB= 8 6,则 MC—ND=.13.如图,已知⊙ O 的半径为 R,C、D 是直径 AB 同侧圆周上的两点,⌒的度数为 96°,ACBD 的度数为 36°,动点 P 在 AB 上,则 CP+PD 的最小值为.14.如图 1,在平面上,给定了半径为使得 OP× OP′ =r2,这类把点 P 变成点演点.r 的圆 O,对于随意点P,在射线OP 上取一点P′,P′的变换叫作反演变换,点P 与点 P′叫做互为反(1) 如图 2,⊙ O 内外各有一点 A 和 B,它们的反演点分别为 A ′和 B′,求证:∠ A′ =∠B ;(2)假如一个图形上各点经过反演变换获得的反演点构成另一个图形,那么这两个图形叫做互为反演图形.①选择:假如不经过点O 的直线与⊙ O 订交,那么它对于⊙ O 的反演图形是 ()A .一个圆B .一条直线 C.一条线段 D .两条射线②填空:假如直线 l 与⊙ O 相切,那么它对于⊙ O 的反演图形是,该图形与圆 O 的地点关系是.15.如图,已知四边形ABCD 内接于直径为 3 的圆 O,对角线 AC 是直径,对角线AC 和BD 的交点为 P, AB=BD ,且 PC=0. 6,求四边形 ABCD 的周长.22⌒16.如图,已知圆内接△ ABC 中,AB>AC ,D 为 BAC 的中点,DE ⊥ AB 于 E,求证:BD -AD=AB ×AC .17.将三块边长均为 l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径起码是多少?(不考虑其余要素,精准到 0. 1cm)18.如图,直径为 13 的⊙ O ′,经过原点 O ,而且与 x 轴、 y 轴分别交于 A 、B 两点,线段 OA 、 OB(OA>OB) 的长分别是方程 x 2 kx 60 0 的两根.(1) 求线段 OA 、 OB 的长;(2) ⌒ 上,连接 2已知点 C 在劣弧 OA BC 交 OA 于 D ,当 OC =CD × CB 时,求 C 点坐标;(3) 在⊙ O ,上能否存在点 P ,使 S △POD =S △ ABD ?若存在,求出 P 点坐标;若不存在,请说明理由.参照答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛辅导讲义及习题解答
学历训练
1.D是半径为5cm的⊙O内一点,且OD=3cm,则过点D的所有弦中,最小弦AB= .2.阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
(1)边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;
(2)边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;
(3)长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm.
(2003年南京市中考题) 3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
(1)请问以下三个图形中是轴对称图形的有,是中心对称图形的有
(分别用下面三个图的代号a,b,c填空).
(2)请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案(草图) (用尺规画或徒手画均可,但要尽可能准确些,美观些).
a.是轴对称图形但不是中心对称图形.
b.既是轴对称图形又是中心对称图形.
4.如图,AB是⊙O的直径,CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( )
A.12cm B.10cm C.8cm D.6cm
5.一种花边是由如图的弓形组成的,ACB 的半径为5,弦AB =8,则弓形的高CD 为( )
A .2
B .25
C .3
D .3
16 6.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与E 的大小关系是( )
A .AB+CD =EF
B .AB+CD=F
C . AB+CD<EF
D .不能确定
7.电脑CPU 芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种CPU 芯片,需要长、宽都是1cm 的正方形小硅片若干.如果晶圆片的直径为10.05cm ,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由(不计切割损耗).
8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,
求∠OAC 的度数.
9.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .
(1)在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
10.以AB 为直径作一个半圆,圆心为O ,C 是半圆上一点,且OC 2=AC ×BC , 则∠CAB= .
⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒
11.如图,把正三角形ABC 的外接圆对折,使点A 落在BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .
12.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .
13.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC 的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .
14.如图1,在平面上,给定了半径为r 的圆O ,对于任意点P ,在射线OP 上取一点P ′,使得OP ×OP ′=r 2,这种把点P 变为点P ′的变换叫作反演变换,点P 与点P ′叫做互为反演点.
(1)如图2,⊙O 内外各有一点A 和B ,它们的反演点分别为A ′和B ′,求证:∠A ′=∠B ;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
①选择:如果不经过点O 的直线与⊙O 相交,那么它关于⊙O 的反演图形是( )
A .一个圆
B .一条直线
C .一条线段
D .两条射线
②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .
15.如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点为P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 16.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .
17.将三块边长均为l0cm 的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少?(不考虑其他因素,精确到0.1cm)
18.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.
⌒ ⌒
(1)求线段OA 、OB 的长; (2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;
(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.
参考答案
⌒。

相关文档
最新文档