二次函数练习题(包含详细答案)
二次函数经典习题(含答案)
二次函数经典复习习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s2、 下列函数:① y = ()21y x x x =-+;③ ()224y xx x =+-;④ 21y x x=+;⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x -+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A. B .C .D .6、已知函数24m m y m x --=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线对应的二次函数的关系式.ttt1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中正确的是 . 4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 . 5、已知函数2)(22+-+=x m m mxy 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积. 6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小 的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由. 12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y m x x m m =++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么ac b=4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______. 5、已知二次函数c bx ax y ++=2的图象如图所示, 则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示, 则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点,求a 、b 、c15、试求抛物线2y ax bx c =++与x 轴两个交点间的距离(240b ac ->)练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得抛物线的解析式为 . 3、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点 (2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式. 7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值 8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、 如图:(1)求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围. 11、已知抛物线22y x m x m =-+-.(1)、求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22y x m x m =-+-与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B.若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十 二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种 蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬 菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计..为 y (万元),且 y =ax 2+bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度.4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少? 5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元? ③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元? 6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m , 跨度为 10m ,如图所示,把它的图形放在直角坐标系中. ①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?7、 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m. (1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d 表示h 的函数关系式; (3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,若行车道总宽度AB 为6m ,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m ).参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4)2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aac b 42-参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5 参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254 (x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。
完整版)初中数学二次函数专题经典练习题(附答案)
完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。
(C)有且只有两个交点。
(D)有且只有三个交点。
2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。
5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。
6.无法正确反映函数$y=ax+b$图象的选项已删除。
7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。
8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。
则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。
9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。
10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。
11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。
12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。
二次函数练习题(含答案)
二次函数练习题(含答案)形,如图所示。
将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。
解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。
由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。
由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。
将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。
将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。
1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。
2.对于每段话进行小幅度的改写,使其更加简洁明了。
1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。
根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。
答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。
求菱形OBAC的面积。
5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。
设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。
二次函数测试题及答案
二次函数测试题及答案一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = x + 2B. y = x^2 + 3x + 1C. y = 2x^3D. y = 1/x答案:B2. 二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b, a)B. (-b/a, c)C. (-b/2a, 4ac - b^2/4a)D. (-b/2a, 4ac + b^2/4a)答案:C3. 如果二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么a、b、c之间的关系是:A. b^2 - 4ac > 0B. b^2 - 4ac < 0C. b^2 - 4ac = 0D. b^2 - 4ac ≠ 0答案:A二、填空题4. 二次函数y = -3x^2 + 6x - 5的顶点坐标是______。
答案:(1, -2)5. 如果二次函数y = ax^2 + bx + c的图像开口向上,那么a的值是______。
答案:> 0三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点。
解:令y = 0,得到方程2x^2 - 4x + 3 = 0。
通过求解这个方程,我们可以得到x的值。
首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4 * 2 * 3 = 16 - 24 = -8。
因为Δ < 0,所以这个二次方程没有实数解,即二次函数的图像与x轴没有交点。
7. 已知二次函数y = 3x^2 + 6x - 5,求其图像的对称轴。
解:二次函数y = ax^2 + bx + c的对称轴是x = -b/(2a)。
将a= 3, b = 6代入公式,得到对称轴为x = -6 / (2 * 3) = -1。
四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 1000,其中x表示产品的数量。
二次函数练习题及答案
二次函数练习题(1)1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.22.二次函数c bx ax y ++=2的图象如图所示,下列结论:①0<c ;②0>b ;③024>++c b a ;④042>-ac b .其中正确的有 ( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________.4.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________.5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.6.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________.8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 .10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )图1(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<111、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
二次函数练习题附答案
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
26.如图,抛物线 (a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
28.求a的值
29.当m≠3时,求S与m的函数关系式.
30.如图②,设直线PE交射线OC于点R,交抛物线于点Q.以RQ为一边,在RQ的右侧作矩形RQMN,其中RN= .直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
参考答案
【答案】B
【解析】分析:根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.
23.已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y= x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
《二次函数》练习题及答案
《二次函数》练习题与答案一、 选择题1,下列函数中,是二次函数の是( ) A,12-=x y B,x x y +=3C,312++=x x y D,2==x y 2,(2012广州)将二次函数y=x 2の图象向下平移一个单位,则平移以后の二次函数の解析式为( ) A .y=x 2﹣1 B .y=x 2+1 C .y=(x ﹣1)2 D .y=(x+1)2 3,(2012兰州)抛物线y=-2x 2+1の对称轴是( ) A.直线12x =B. 直线12x =- C. y 轴 D. 直线x=2 4,(2012北海)已知二次函数y =x 2-4x +5の顶点坐标为( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)5,(2011XX 台北,6)若下列有一图形为二次函数y =2x 2-8x +6の图形,则此图为何?( )6,(2012滨州)抛物线234y x x =--+ 与坐标轴の交点个数是( ) A .3 B .2 C .1 D .07, ( 2012巴中)对于二次函数y =2(x +1)(x -3)下列说法正确の是( ) A. 图象开口向下 B. 当x >1时,y 随x の增大而减小 C. x <1时,y 随x の增大而减小 D. 图象の对称轴是直线x= - 1 8,(2011XX 威海,7,3分)二次函数223y x x =--の图象如图所示. 当y <0时,自变量x の取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >39,(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上の三点,则1y ,2y ,3y の大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>10,(2012菏泽)已知二次函数2y ax bx c =++の图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中の图像大致是( )xy(第3题)O11(1,-2)cbx x y ++=2-1 A . B .C .D .,11,(2012泰安)二次函数2()y a x m n =++の图象如图,则一次函数y mx n =+の图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限12,(2012•资阳)如图是二次函数y=ax 2+bx+c の部分图象,由图象可知 不等式ax 2+bx+c <0の解集是( )A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5二、填空题1.(2011江津,18,4)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4 个单位等到の抛物线是_ _ ___.2.(2012XX )二次函数622+-=x x y の最小值是.3. (2011XX 舟山,15,4)如图,已知二次函数c bx x y ++=2の图象经过 点(-1,0),(1,-2),当y 随x の增大而增大时,x の取值范围是. 4.(2012无锡)若抛物线y=ax 2+bx+c の顶点是A (2,1),且经过点B (1,0), 则抛物线の函数关系式为.5. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB の长为____ ___.6.(2011XX 日照,17,4)如图是二次函数y =ax 2+bx +c (a ≠0)の图象の一 部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0の两根分别为-3和1; ④a -2b +c >0.其中正确の命题是 .(只要求填写正确命题の序号) 7. (2012广安)如图,把抛物线y=21x 2平移得到抛物线m ,抛物线m 经过点 A (-6,0)和原点O (0,0),它の顶点为P ,它の对称轴与抛物线y=21x 2交于点Q ,则图中阴影部分の面积为________________.三、解答题1.(2011广东东莞,15,6分)已知抛物线212y x x c =++与x 轴没有交点. (1)求c の取值范围;(2)试确定直线y =cx +1经过の象限,并说明理由.2.(2012•佳木斯)如图,抛物线y=x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线の解析式;(2)写出顶点坐标与对称轴; (3)若抛物线上有一点B ,且S △OAB =3,求点B の坐标.3.(2012•嘉兴)某汽车租赁公司拥有20辆汽车.据统计,当每辆车の日租金为400元时,可全部租出;当每 辆车の日租金每增加50元,未租出の车将增加1辆;公司平均每日の各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车の日租金为 _________ 元(用含x の代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司の日收益不盈也不亏?4.(2012•鸡西)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线の解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线の对称轴上,是否存在一点P,使得△BDPの周长最小?若存在,请求出点Pの坐标;若不存在,请说明理由.5.(2012•XX)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点),与y轴交于点C.(1)写出A、B两点の坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象の两条相同の性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出kの值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EFの长度是否会发生变化?如果不会,请求出EFの长度;如果会,请说明理由.答 案一,选择题.1,解:)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数の一般式。
《二次函数》练习题及答案
《二次函数》练习一.选择题(共8小题)1.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点 3 43.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③5 6 7 8二.填空题(共4小题)9.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.10.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.11.二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为.12.若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为.三.解答题(共8小题)13.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?14.天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?16.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C 是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.17.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.18.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.20.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.2.(2016•广州)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.3.(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.4.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.5.(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.6.(2016•兰州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵b=2a,∴2a﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y值是最大值,∴a﹣b+c>2,所以④正确.故选C.7.(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c <0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.8.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B二.填空题(共4小题)9.(2016•徐州)若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是m>1.【解答】解:∵二次函数y=x2+2x+m的图象与x轴没有公共点,∴方程x2+2x+m=0没有实数根,∴判别式△=22﹣4×1×m<0,解得:m>1;故答案为:m>1.10.(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.11.(2016•无锡二模)二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为﹣16.【解答】解:∵二次函数y=x2+mx+n的图象经过点(1,﹣2),∴1+m+n=﹣2,∴m+n=﹣3,∴(m+n﹣1)(1﹣m﹣n)=(﹣3﹣1)(1+3)=﹣16.故答案为:﹣16.12.(2016•微山县一模)若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为m且m≠0.【解答】解:由题意知:,解得m且m≠0,故答案为m且m≠0.三.解答题(共8小题)13.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.14.(2016•天水)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)【解答】解:(1)设李红第x天生产的粽子数量为260只,根据题意得20x+60=260,解得x=10,答:李红第10天生产的粽子数量为260只;(2)根据图象得当0≤x≤9时,p=2;当9<x≤19时,设解析式为y=kx+b,把(9,2),(19,3)代入得,解得,所以p=x+,①当0≤x≤5时,w=(4﹣2)•32x=64x,x=5时,此时w的最大值为320(元);②当5<x≤9时,w=(4﹣2)•(20x+60)=40x+120,x=9时,此时w的最大值为480(元);③当9<x≤19时,w=[4﹣(x+)]•(20x+60)=﹣2x2+52x+174=﹣2(x﹣13)2+512,x=13时,此时w的最大值为512(元);综上所述,第13天的利润最大,最大利润是512元.15.(2016•丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.16.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.17.(2016•威海)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.18.(2016•黔东南州)如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0),∵y=﹣x+3过点C,易知C(0,3),∴c=3.又∵抛物线过x轴上的A,B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0).又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),∴解得:∴该抛物线的解析式为:y=x2﹣4x+3;(2)如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,又∵B(3,0),C(0,3),∴PC===2,PB==,∴BC===3,又∵PB2+BC2=2+18=20,PC2=20,∴PB2+BC2=PC2,∴△PBC是直角三角形,∠PBC=90°,∴S△PBC=PB•BC=××3=3;(3)如图2,由y=x2﹣4x+3=(x﹣2)2﹣1,得P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=.由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=3.假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似.①当=,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即=,解得:BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0).②当=,∠QBP=∠ABC=45°时,△QBP∽△ABC.即=,解得:QB=.∵OB=3,∴OQ=OB﹣QB=3﹣,∴Q2的坐标是(,0).③当Q在B点右侧,则∠PBQ=180°﹣45°=135°,∠BAC<135°,故∠PBQ≠∠BAC.则点Q不可能在B点右侧的x轴上,综上所述,在x轴上存在两点Q1(0,0),Q2(,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.19.(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2+5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.20.(2016•河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).。
二次函数经典测试题附答案
二次函数经典测试题附答案二次函数经典测试题附答案一、选择题1.小明从如图所示的二次函数 $y=ax^2+bx+c$ 的图像中,观察得出了下面五条信息:①$c0$,③$a-b+c>0$,④$b^2>4ac$,⑤$2a=-2b$,其中正确结论是().A。
①②④B。
②③④C。
③④⑤D。
①③⑤解析】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
由抛物线的开口方向判断 $a$ 的符号,由抛物线与 $y$ 轴的交点判断 $c$ 的符号,然后根据对称轴及抛物线与 $x$ 轴交点情况进行推理,进而对所得结论进行判断。
详解】①由抛物线交 $y$ 轴于负半轴,则 $c0$;由对称轴在 $y$ 轴右侧,对称轴为 $x=-\frac{b}{2a}$,又 $a>0$,故$b0$,故②错误;③结合图像得出 $x=-1$ 时,对应 $y$ 的值在 $x$ 轴上方,故 $y>0$,即 $a-b+c>0$,故③正确;④由抛物线与 $x$ 轴有两个交点可以推出 $b^2-4ac>0$,故④正确;⑤由图像可知:对称轴为 $x=-\frac{b}{2a}$,则 $2a=-2b$,故⑤正确;故正确的有:③④⑤。
故选:C。
点睛】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
2.二次函数 $y=ax^2+bx+c$($a\neq0$)图像如图所示,下列结论:①$abc>0$;②$2a+b^2=2$;③当 $m\neq1$ 时,$a+b>am^2+bm$;④$a-b+c>0$;⑤若$ax_1+bx_1=ax_2+bx_2$,且 $x_1\neq x_2$,则 $x_1+x_2=2$。
其中正确的有()A。
①②③B。
②④C。
②⑤D。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
(完整版)初中数学二次函数专题经典练习题(附答案)
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
二次函数的练习题及答案
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
二次函数练习题及答案(解析版)
二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
二次函数练习题(含答案)
二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数基础练习题(含答案)
二次函数练习题〔一〕1、 一个小球由静止开场在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s 〔米〕与时间t 〔秒〕的数据如下表:写出用t 表示s 的函数关系式.2、 以下函数:① 23y x ;②()21y x x x =-+;③()224y x x x =+-;④ 21yx x ; ⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-〔m 为常数〕是关于x 的二次函数4、当____m =时,函数2221m m y m m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数6、假设点 A ( 2, m ) 在函数 12-=x y 的图像上,那么 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是〔 〕A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x 〔cm 〕的小正方形,用余下的局部做成一个无盖的盒子.(1)求盒子的外表积S 〔cm 2〕与小正方形边长x 〔cm 〕之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的外表积.9、矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2,① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,那么猪舍的总面积S 〔米2〕与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题〔二〕-----函数2ax y =的图象与性质1、填空:〔1〕抛物线221x y =的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;〔2〕抛物线221x y -=的对称轴是 〔或 〕,顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =以下说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的选项是 .3、抛物线 y =-x 2 不具有的性质是〔 〕A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2〔g =9.8〕,那么 s 与 t 的函数图像大致是〔 〕A B C D5、函数2ax y =与b ax y +-=的图象可能是〔 〕A .B .C .D . 6、函数24m m ymx 的图象是开口向下的抛物线,求m 的值.st O s t O s t O s t O7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x =-交于点,2b ,求这条抛物线所对应的二次函数的关系式.二次函数练习题〔三〕-----函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都一样;②对称轴都一样;③形状一样;④都有最底点.其中判断正确的选项是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 〔填大或小〕值,是 .5、函数2)(22+-+=x m m mx y 的图象关于y 轴对称,那么m =________; 6、二次函数c ax y +=2()0≠a 中,假设当x 取x 1、x 2〔x 1≠x 2〕时,函数值相等,那么当x 取x 1+x 2时,函数值等于 .二次函数练习题〔四〕-----函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 . 2、试写出抛物线23x y =经过以下平移后得到的抛物线的解析式并写出对称轴和顶点坐标.〔1〕右移2个单位;〔2〕左移32个单位;〔3〕先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质〔至少2个〕.4、二次函数()2h x a y -=的图象如图:21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.〔1〕求出此函数关系式.〔2〕说明函数值y 随x 值的变化情况.7、抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题〔五〕-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以〔2, 3〕为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 抛物线的顶点坐标为2,1,且抛物线过点3,0,那么抛物线的关系式是6、 如下图,抛物线顶点坐标是P 〔1,3〕,那么函数y 随自变量x 的增大而减小的x 的取值范围是〔 〕A 、x>3B 、x<3C 、x>1D 、x<17、函数()9232+--=x y . (1) 确定以下抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、函数()412-+=x y . (1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 假设图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 假设将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象答复:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.二次函数练习题〔六〕-----c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为〔0,3〕的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,那么 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,那么两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____; 8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,那么b 与c 分别等于〔 〕 A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为〔 〕 A 、22 B 、23 C 、32 D 、3310、通过配方,写出以下函数的开口方向、对称轴和顶点坐标:〔1〕12212+-=x x y ; 〔2〕2832-+-=x x y ; 〔3〕4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,假设有,求出该最大值;假设没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、一次函数的图象过抛物线223yx x 的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,假设将每台提高一个单位价格,那么会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题〔七〕-----c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,那么此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,那么b 的值为______.5、二次函数c bx ax y ++=2的图象如下图,那么a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,那么直线bc ax y +=的图象不经过第 象限.7、二次函数2y ax bx c 〔0≠a 〕的图象如下图,那么以下结论:1〕,a b 同号; 2〕当1x和3x 时,函数值一样;3〕40a b;4〕当2422b b acy a-±-=-时,x 的值只能为0;其中正确的选项是8、二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,那么m= 9、二次函数2yx ax b 中,假设0a b ,那么它的图象必经过点〔 〕A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如下图,那么以下选项中正确的选项是〔 〕A 、0,0>>c abB 、0,0><c ab1C 、0,0<>c abD 、0,0<<c ab11、函数c bx ax y ++=2的图象如下图,那么函数b ax y +=的图象是〔 〕12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有〔 〕A .4个B .3个C .2个D .1个 13、抛物线的图角如图,那么以下结论: ①>0;②;③>;④<1.其中正确的结论是〔 〕.〔A 〕①② 〔B 〕②③ 〔C 〕②④ 〔D 〕③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c 与x 轴两个交点间的距离〔240b ac 〕二次函数练习题〔八〕-----确定二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,那么a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,那么所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,那么函数的关系式为4、根据条件求二次函数的解析式〔1〕抛物线过〔-1,-6〕、〔1,-2〕和〔2,3〕三点〔2〕抛物线的顶点坐标为〔-1,-1〕,且与y 轴交点的纵坐标为-3 〔3〕抛物线过〔-1,0〕,〔3,0〕,〔1,-5〕三点;〔4〕抛物线在x 轴上截得的线段长为4,且顶点坐标是〔3,-2〕;5、二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、二次函数的图象与x 轴交于A 〔-2,0〕、B 〔3,0〕两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题〔九〕-----二次函数与方程和不等式1、二次函数772--=x kx y 与x 轴有交点,那么k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,那么抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为〔 〕 A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是〔 〕 A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,假设有一个交点在x 轴上,那么k 为〔 〕 A 、0 B 、-1 C 、2 D 、41 6、假设方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线〔 〕A 、x =-3 B 、x =-2 C 、x =-1 D 、x =1 7、二次函数2y x px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。
九年级数学二次函数专项训练含答案精选5篇
九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( ) A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:(30﹣15﹣x)(60+10x)=1100,整理得:x2﹣9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30﹣x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;(3)设水果商每天获得的利润为y元,根据题意得:w=(30﹣x﹣15)(60+10x)=﹣10x2+90x+900=﹣10(x﹣)2+1102.5,∵﹣10<0,∴当x=时,y有最大值,最大值为1102.5,此时30﹣x=30﹣4.5=25.5,答:将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.解:(1)把A(﹣1,0)、B(4,0)代入得:,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的对称轴是直线x=,在y=x2﹣x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),①若线段DE与线段BC关于点K成中心对称,C的对应点D在对称轴上,B的对应点在抛物线上,如图:设D(,m),E(n,n2﹣n﹣2),而B(4,0),C(0,﹣2),∵K是DC的中点,也是BE的中点,∴,解得,∴D(,);②若线段DE与线段BC关于点T成中心对称,B的对应点D在对称轴上,C的对应点在抛物线上,如图:设D(,m'),E(n',n'2﹣n'﹣2),而B(4,0),C(0,﹣2),∵T是EC的中点,也是BD的中点,∴,解得,∴D(,);综上所述,落在对称轴上的点的坐标为(,)或(,);(3)由B(4,0),C(0,﹣2)可得直线BC解析式为y=x﹣2,设M(t,t2﹣t﹣2),由M(t,t2﹣t﹣2),C(0,﹣2)可得直线MC解析式为:y=(t﹣)x﹣2,由MN∥BC设直线MN解析式为y=x+p,将M(t,t2﹣t﹣2)代入得:t2﹣t﹣2=t+p,∴p=t2﹣2t﹣2,∴直线MN解析式为y=x+t2﹣2t﹣2,由得或,∴N(﹣t+4,t2﹣t),由B(4,0),N(﹣t+4,t2﹣t)可得直线NB的解析式为y=(﹣t+)x+2t﹣10,解(﹣t+)x+2t﹣10=(t﹣)x﹣2得x=2,∴P的横坐标为2.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.解:(1)∵﹣5<0,∴y'=﹣y=2,∴点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2),故答案为:(﹣5,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上.∵“可控变点”Q的纵坐标y′是7,∴当﹣x2+16=7时,解得x=3;当x2﹣16=7,解得x=﹣;综上所述“可控变点”Q的横坐标为或3;(3)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上,∵﹣16≤y'≤16,∴﹣16=﹣x2+16,∴x=,当x=﹣5时,x2﹣16=9,当y'=9时,x=,∴a的取值范围是.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2).(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.解:(1)把A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x;(2)设直线AB解析式为y=mx+n,把A(﹣4,0),C(2,6)代入得:,解得,∴直线AB解析式为y=x+4,∵y=x2+2x=(x+2)2﹣2,∴抛物线的顶点M坐标为(﹣2,﹣2);故答案为:y=x+4,(﹣2,﹣2);(3)∵A(﹣4,0),A,A'关于y轴对称,∴A'(4,0),设直线A'Q解析式为y=m'x+n',把A'(4,0),M(﹣2,﹣2)代入得:,解得,∴直线A'Q解析式为y=x﹣,令x=0得y=﹣,∴Q(0,﹣);(4)存在点N,使以点A,O,C,N为顶点的四边形是平行四边形,理由如下:设N(p,q),又A(﹣4,0),O(0,0),C(2,6),①若AN,OC为对角线,则AN,OC的中点重合,∴,解得,∴N(6,6);②若ON,AC为对角线,则ON,AC的中点重合,∴,解得,∴N(﹣2,6);③若CN,AO为对角线,则CN,AO的中点重合,∴,解得,∴N(﹣6,﹣6).综上所述,N的坐标为(6,6)或(﹣2,6)或(﹣6,﹣6).九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,。
(完整版)二次函数练习题及答案
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y= x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.
27.求OA所在直线的解析式
二次函数练习题及答案
一、选择题
1.将抛物线 先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )
A. B.
C. D.
2.将抛物线 向右平移1个单位后所得抛物线的解析式是………………( )
A. ;B. ;
C. ;D. .
3.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
考点:二次函数的性质
17.m≥1.二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的自变量的取值范围.
二、填空题
8.二次函数y=-2(x-5)2+3的顶点坐标是.
9.已知二次函数 中函数 与自变量 之间的部分对应值如下表所示,点 、 在函数图象上,当 时,则 (填“ ”或“ ”).
0
1
二次函数测试题及答案
二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。
2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。
在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。
3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。
抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。
(完整版)二次函数练习题及答案
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
12.已知(-2,y1),(-1,y2),(2,y3)是二次函数y=x2-4x+m上的点,
则y1,y2,y3从小到大用 “<”排列是__________.
13.(2011•攀枝花)在同一平面内下列4个函数;①y=2(x+1)2﹣1;②y=2x2+3;③y=﹣2x2﹣1;④ 的图象不可能由函数y=2x2+1的图象通过平移变换得到
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
19.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.
20.如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对任意实数x,下列函数中的奇函数是()
A.y=2x-3 B.y=-3x2
C.y=ln5x D.y=-|x|cos x
答案 C
2.对于定义在R上的任意奇函数f(x),均有()
A.f(x)-f(-x)>0 B.f(x)-f(-x)≤0
C.f(x)·f(-x)>0 D.f(x)·f(-x)≤0
答案 D
解析∵f(-x)=-f(x),∴f(-x)f(x)=-f2(x)≤0.
3.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是() A.奇函数B.偶函数
C.非奇非偶函数D.既奇又偶函数
答案 A
解析由f(x)是偶函数知b=0,∴g(x)=ax3+cx是奇函数.
4.(2013·山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1
x,则f(-1)
=()
A.2 B.1
C.0 D.-2
答案 D
解析由f(x)为奇函数知f(-1)=-f(1)=-2.
5.函数f(x)在定义域R上不是常数函数,且f(x)满足:对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),则f(x)是()
A.奇函数但非偶函数
B.偶函数但非奇函数
C.既是奇函数又是偶函数
D.非奇非偶函数
解析依题意,得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数,所以f(-x+2)=f(-x).又f(2+x)=f(2-x),因此有f(-x)=f(x),即f(x)是偶函数;若f(x)是奇函数,则有f(-x)=-f(x)=f(x),得f(x)=0,这与“f(x)不是常数函数”相矛盾,因此f(x)是偶函数但不是奇函数,选B.
6.(2011·湖北)若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=()
A.e x-e-x B.1
2(e
x+e-x)
C.1
2(e
-x-e x) D.
1
2(e
x-e-x)
答案 D
解析由f(x)+g(x)=e x,可得f(-x)+g(-x)=e-x.又f(x)为偶函数,g(x)为
奇函数,可得f(x)-g(x)=e-x,则两式相减,可得g(x)=e x-e-x
2,选D.
7.(2013·辽宁)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg2)+f(lg 1
2)=()
A.-1 B.0
C.1 D.2
答案 D
解析由已知,得f(-x)=ln(1+9x2+3x)+1,所以f(x)+f(-x)=2.因为
lg2,lg 1
2互为相反数,所以f(lg2)+f(lg
1
2)=2.
8.f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x -2,则f(log1
2
6)的值等于()
A.-4
3B.-
7
2
C.1
2D.-
1
2
解析f(log1
26)=-f(-log1
2
6)=-f(log26)
9.(2014·湖北八校)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2 013)+f(-2 014)的值为()
A.-2 B.-1
C.1 D.2
答案 C
解析依题意得,x≥0时,f(x+4)=-f(x+2)=f(x),即x≥0时,f(x)是以4为周期的函数.
因此,f(2 013)+f(-2 014)=f(2 013)+f(2 014)=f(1)+f(2).而f(2)=-f(0)=-log2(0+1)=0,f(1)=log2(1+1)=1,故f(2 013)+f(-2 014)=1.
10.下列判断中正确的是________.
①f(x)=(x)2是偶函数;
②f(x)=x3是奇函数;
③y=x0及y=(x-1)0都是偶函数;
④f(x)=ln(1-x2-x)是非奇非偶函数;
⑤f(x)=3-x2+
9
1-|x|
是偶函数.
答案⑤
11.函数f(x)=x3+sin x+1的图像关于________点对称.
答案(0,1)
解析f(x)的图像是由y=x3+sin x的图像向上平移一个单位得到的.
12.(2014·金华十校联考)定义在R上的偶函数f(x)满足对任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]时,f(x)=4-x,则f(2 015)的值为________.
解析∵f(4)=0,∴f(x+8)=f(x),∴T=8. ∴f(2 015)=f(7)=f(-1)=f(1)=3.
13.已知定义在R上的函数f(x)满足f(x)=-f(x+3
2),且f(1)=3,则f(2 014)
=________.
答案 3
解析∵f(x)=-f(x+3 2),
∴f(x+3)=f[(x+3
2)+
3
2]=-f(x+
3
2)=f(x).
∴f(x)是以3为周期的周期函数.
则f(2 014)=f(671×3+1)=f(1)=3.
14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为________.
答案-4
15.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y
=f(x+2)为偶函数,则f(-1),f(4),f(51
2)的大小关系是__________.
答案f(51
2)<f(-1)<f(4)
解析∵y=f(x+2)为偶函数,
∴y=f(x)关于x=2对称.
又y=f(x)在(-∞,2)上为增函数,
∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5),
∴f(51
2)<f(-1)<f(4).
16.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f (x )是周期函数; ②f (x )关于直线x =1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上是减函数; ⑤f (2)=f (0).
其中正确的序号是________. 答案 ①②⑤
解析 由f (x +1)=-f (x ),得 f (x +2)=-f (x +1)=f (x ). ∴f (x )是周期为2的函数,①正确. f (x )关于直线x =1对称,②正确. f (x )为偶函数,在[-1,0]上是增函数,
∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确.
17.设函数f (x )=x 3+x ,若0≤θ≤π
2时,f (m cos θ)+f (1-m )>0恒成立,求实数m 的取值范围.
答案 (-∞,1)
解析 f (x )=x 3是R 上的奇函数与增函数,因此,由f (m cos θ)+f (1-m )>0,得f (m cos θ)>-f (1-m )=f (m -1),m cos θ>m -1,即m (1-cos θ)<1对任意θ∈[0,
π
2]恒成立.而当θ=0时,不等式m (1-cos θ)<1成立,当θ∈(0,π
2]时,cos θ∈[0,1),1-cos θ∈(0,1],
1
1-cos θ∈[1,+∞).由m (1-cos θ)<1,得m <1
1-cos θ,即m <1.
因此,m 的取值范围是(-∞,1).
18.若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.
答案-4
解析由题意知,当x>0时,F(x)≤8.
∵f(x),g(x)都是奇函数,且当x<0时,-x>0.
∴F(-x)=af(-x)+bg(-x)+2
=-af(x)-bg(x)+2
=-[af(x)+bg(x)+2]+4≤8.
∴af(x)+bg(x)+2≥-4.
∴F(x)=af(x)+bg(x)+2在(-∞,0)上有最小值-4.。