刚体的基本运动
(完整版)刚体的基本运动(可编辑修改word版)
第三章刚体力学§3.1 刚体运动的分析§3.2 角速度矢量§3.3 刚体运动微分方程§3.4 刚体平衡方程§3.5 转动惯量§3.6 刚体的平动与定轴转动§3.7 刚体的平面平行运动§3.1 刚体运动的分析一、描述刚体位置的独立变量1.刚体是特殊质点组 dr ij=0,注意:它是一种理想模型,形变大小可忽略时可视为刚体。
2.描述刚体位置的独立变数描述一个质点需(x,y,z), 对刚体是否用 3n 个变量?否,由于任意质点之间的距离不变, 如确定不在同一直线上的三点,即可确定刚体的位置,需 9 个变量,由于两点间的距离保持不变,所以共需 9-3=6 个变量即可。
刚体的任意运动=质心的平动+绕质心的转动,描述质心可用(x,y,z), 描述转轴可由α, β,γ。
二、刚体的运动分类1.平动:刚体在运动过程中,刚体上任意直线始终平行.任意一点均可代表刚体的运动,通常选质心为代表.需要三个独立变量,可以看成质点力学问题.(注意:平动未必是直线运动)2.定轴转动: 刚体上有两点不动,刚体绕过这两点的直线转动,该直线为转轴. 需要一个独立变量φ3.平面平行运动: 刚体上各点均平行于某一固定平面运动。
可以用平行于固定平面的截面代表刚体。
需要三个独立变量。
4.定点运动: 刚体中一点不动,刚体绕过固定点的瞬转转动。
需三个独立的欧拉角。
5.一般运动: 平动+转动§3.2 角速度矢量定轴转动时角位移用有向线段表示,右手法确定其方向.有向线段不一定是矢量,必须满足平行四边形法则,对定点转动时,不能直接推广,因不存在固定轴.ω = lim ∆n=d n刚体在 dt 时间内转过的角位移为 d n ,则角速度定义为角速度反映刚体转动的快慢。
∆t →0 ∆t dt线速度与角速度的关系:d r =d n ⨯r , ∴ v =d rdt=ω ⨯rF 1 F ⨯ M§3.3 刚体运动微分方程一、 基础知识1.力系:作用于刚体上里的集合。
刚体的基本运动
转速:刚体每分钟转过的圈数。单位:r / min。 转速 n 与角速度 2n n 60 30
的关系:
(7-6)
角加速度
d d 2 lim 2 t 0 t dt dt
(7-7)
刚体的角加速度(Angular acceleration)
等于其角速度对时间的一阶导数,也等于其转角对
v r 0.4 50 20 m / s
an r 0.4 50 1000 m /s
2 2
2
例7-4 定轴轮系如图7-9所示,主动轮I通过轮齿
与从动轮II轮齿啮合实现转动传递。主动轮I和从动轮 II的节圆半径分别为r1、r2,齿数分别为z1、z2。设I轮 的角速度为 1 (转数为n1),角加速度为 1 ;II轮的 角速度为 2(转数为n2),角加速度为 2 。试求上
2 a a2 an (r )2 (rω2 )2 r 2 ω4
tan
a an
ω
2
(7-13)
在给定瞬时,刚体的角速度和角加速度有确 定的值,对刚体上任何点都是一样。因而,在同一瞬 时,转动刚体上各点的速度 v 和加速度 a 的大小均与
该点的转动半径 r 成正比;各点速度 v 的方向都垂直
O轴作定轴转动,其转动方程为 t 2 4t (1)当t = 1 s时,试求轮缘上M点速度和加速度;
(2)若轮上绕一不可伸长的绳索,并在绳索下端
悬一物体A,求当t = 1 s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速 a M 度和角加速度为 d 2t 4 rad / s
当
t 1s,直杆AB上D点的速度和加速度。
解:由于O1A与O2B平行等
3-1刚体的基本运动
3-1
刚体的基本运动
例3-1 一半径 r 0 .5 0 m 的飞轮,转速n 6 0 0 r m in 1 , 制动后转过 1 0 圈而静止.设转动过程中飞轮作匀变 速转动.求:(1)转动过程中飞轮的角加速度和经过的 时间;(2)在1 s末时,飞轮边缘某点的线速度、切向加 速度和法向加速度.
0
0
第三章 刚体的定轴转动
3-1
刚体的基本运动
t d dt
瞬时角速度(角速度)
lim
t 0
刚体定轴转动(一维转动)的转动方向可以 用角速度的正负来表示 .
z
面对 O z 轴方向观察, 如果 0,刚体逆时 针转动;反之,刚体顺 时针转动.
z
0
0
1
3 1 .4 rad s
1
轮边缘某点的线速度
v r 0 .5 3 1 .4 m s
1
1 5 .7 m s
1
切向加速度
a t r 0 .5 3 1 .4 m s
2
1 5 .7 m s
2
法向加速度
a n r
3-1
刚体的基本运动
三、 匀变速转动公式 匀变速转动:当刚体绕定轴转动的角加速度为 恒量时的转动. 刚体匀变速转动与质点匀变速直线运动公式对比 质点匀变速直线运动
v v 0 at
x x0 v 0t 1 2 at
2
刚体绕定轴作匀变速转动
0 t
0 0t
第三章作业 P83
15、17、18、19、21、23
第三章 刚体的定轴转动
解 (1) 0 5 π rad s
第三章-刚体力学基础
薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O
理论力学08刚体的基本运动
[例5] 图示仪表机构中,已知各齿轮齿数 z1 = 6、z2 = 24、z3 = 8、 z4 = 32,齿轮 5 的啮合圆半径 R = 4 cm。如齿条 AB 下移1 cm,试 求指针 OC 转过的角度。
解: 轮 5 转过的角度
5
1 4
轮 4 转过的角度
4
5
1 4
轮 3 转过的角度
3
4
i43
z4 z3
aMn
a
n A
π202l
16
cos
2
πt 4
aMt 0
aM
aMn
π202l
16
[例3] 如图,鼓轮绕轴 O 转动,已知鼓轮的半径 R = 0.2 m,转动方
程 = -t2+4t (t 以 s 计, 以 rad 计);不可伸长的绳索缠绕在鼓
轮上,绳索的另一端悬挂重物 A。试求当 t = 1 s 时,轮缘上的点 M 和重物 A 的速度和加速度。
[例1] 杆AO 套在套筒 B 中绕轴 O 转动,套筒 B 在竖直滑道中运动。 已知套筒 B 以匀速 v = 1 m/s 向上运动,滑道与轴 O 的水平距离 l =
400 mm,运动初始时 = 0°。试求 = 30°时,杆AO 的角速度和角
加速度。
解: 杆AO 的转动方程
arctan
BB0 OB0
第二节 刚体绕定轴转动
一、绕定轴转动刚体的转动方程
t
说明:1)转角 为代数量,正负号表示
转向,一般可按右手螺旋法则 确定。
2)转角 的单位:rad(弧度)
z
A A0
二、绕定轴转动刚体的角速度
d
dt 说明:1)绕定轴转动刚体的角速度 为代数
量,其正负号表示转向,角速度 的正 负号规定与转角 一致。 2)角速度 的单位:rad/s 3)角速度 与转速 n (r/min) 的换算关系
第八章 刚体的基本运动
理论力学电子教程
第八章 刚体的基本运动
荡木用两条等长的钢索平行吊起,如图所示。 例8-1 荡木用两条等长的钢索平行吊起,如图所示。钢索长 为 长 l, 长 度 单 位 为 m。 当 荡 木 摆 动 时 钢 索 的 摆 动 规 律 , 。 π 为时间,单位为s;转角φ 为 ϕ =ϕ0 sin t ,其中 t 为时间,单位为 ;转角 0的单位为 4 rad,试求当 和t=2 s时,荡木的中点 的速度和加速度。 的速度和加速度。 ,试求当t=0和 时 荡木的中点M的速度和加速度
∴aτ =ε × r
∴a n =ω × v
a n =ω × v
理论力学电子教程
第八章 刚体的基本运动
三、定轴轮系的传动比 在实际工程中,不同机器的工作转速往往是不一样的, 在实际工程中,不同机器的工作转速往往是不一样的, 故需要利用轮系的传动来提高或降低机器转速。 故需要利用轮系的传动来提高或降低机器转速。常用的有 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 表示, 用i表示,即 表示 n主 ω主 i= = n从 ω 从 1.带传动 当主动轮Ⅰ转动时, 当主动轮Ⅰ转动时,利用胶带与带轮轮缘间的摩擦带动 从动轮Ⅱ转动。 从动轮Ⅱ转动。 不考虑胶带由于拉力引起的变形及胶带的厚度, 不考虑胶带由于拉力引起的变形及胶带的厚度,为此在 同一瞬时胶带上各点速度大小应相等, 同一瞬时胶带上各点速度大小应相等,即v1 = v = v2。若胶带 与带轮间没有滑动, 与带轮间没有滑动,则
理论力学 第二章 刚体的基本运动
0
nπ 式中n为转速 单位:转/ 分(r/min) 。 山东大学 土建与水利学院工程力学系 THEORETICAL MECHANICS 30
§ 2.2 刚体绕定轴的转动
3.角加速度
描述角速度变化的快慢程度
2
d d lim 2 t 0 t dt dt
单位:弧度/秒2 (rad/s2 ) α与同号,刚体加速转动;
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
§2.4 轮系的传动比
1 n1 r2 Z2 i1,2 2 n2 r1 Z1
此结论对于锥齿轮传动和带 轮传动同样适用。 在一些复杂轮系(如变速器) 中包含有几对齿轮。可将每一对 齿轮的传动算出后,将它们连乘 起来,变为可得总的传动比。
392.8 62.5 转 2π
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
例2- 3 轮子绕O点作定轴转动,其加速度方向和轮的半径
成60度角,求轮的转动方程,以及角速度和转角之间的关系。
00, 0.
M
O
a
60
THEORETICAL MECHANICS
解 : AB 杆 为 平 移 , O1A 为 定 轴 转 动 。 根 据 平移的特点,在同一瞬 时,M、A两点具有相同 的速度和加速度。
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
A点作圆周运动,其运动方程为
s O1 A 3π t
ds dv vA 3π (m/s) a A t 0 dt dt
§ 2.1 刚体的平行移动
第七章 刚体的基本运动
第二节 刚体绕定轴转动
一. 转动方程
(1)转角 Ⅰ和Ⅱ夹角 ,单位弧度(rad)
(2)转动方程 =f(t)
(3) 的正、负规定
对着z 轴正向看
逆时针为正 顺时针为负
第二节 刚体绕定轴转动
二、角速度
⑴ 平均角速度
t
⑵ 角速度(瞬时):表示刚
体转动快慢和转动方向的物
理量。
刚体平动→点的运动
第二节 刚体绕定轴转动
1.定义:当刚体运动时 ,刚体内(刚体外)有一 条直线始终保持不动。 2.刚体定轴转动的特点
(1) 始终保持不动的直线称为转轴; (2)其余各点都在垂直于转轴的平面 上以轴上的一点为圆心做圆周运动。
定轴转动实例:电机的转子、机床的主轴、变速箱中 的齿轮、绕固定铰链开关的门窗等!
转动 刚体上任一点的速度分布:
第三节 定轴转动刚体上点的速度和加速度
二.定轴转动刚体上点的加速度
点的加速度包括切向加速度和法向加速度!
⒈ 切向加速度
a
dv dt
d dt
(R)
d
dt
R
R
垂直转动半径,并指向刚体转动的一方。
⒉法向加速度
an
v2 R
(R)2
R
R 2
始终指向转轴O
⒊ 全加速度
⑴ 大小 : a a 2 an2 R 2 4
⑵
方向 :
tg
| a an
|
R| | R 2
| | 2
转动刚体内任一点的切向加速度的大小,等于该点的 转动半径与刚体角加速度的乘积,方向沿轨迹的切线 (垂直于转动半径的方向),指向与ε的转向一致。
第五章刚体的运动
ω θ
=[3gsinθ/(2l)]dθ
θ
p O N
ωdω= 0 [3gsinθ/(2l)]dθ 0 ω=[3g(1–cosθ)/l]1/2
例题 一根轻绳跨过一个半径为r,质量为M的 定滑轮,绳的两端分别系有质量为m1和m2的物 体 ,如图所示。假设绳不能伸长,并忽略轴的 摩擦,绳与滑轮也无相对滑动。求:定滑轮转 动的角加速度和绳的张力。
L
O
·
*质点作匀速率圆周运动时, 对圆心的角动量的大小为 v R L Rmv m 方向圆平面不变。
*同一质点的同一运动,如果选取的固定点不同, 其角动量也会不同。
锥摆
O
L 0 ro m m v
Lo ' r mv
L 0 lm v
方向变化
L o ' lm v sin
②积分形式:
其中:
t2 t1
t2 t1
M d t L 2 L1
M d t 称冲量矩
—力矩对时间的积累作用
例题 锥摆的角动量
r ①对O点: om T 0 rom m g l sin ( mg )
锥摆
O
T l
m
v mg
解: m1, m2 及定滑轮切向受力如 图, 以运动方向为坐标正向. T1–m1g=m1a1 m2g–T2=m2a2
T1 m1 T1
T2
T2 m2
T2R2–T1R1=Jβ
β=a1/R1=a2/R2 J=M1R1
2/2+M 2R2 2/2
m1g
m2g
2(m2R2–m1R1)g 解得 β= 2m1R12+2m2R22+M1R12+M2R22
刚体的基本运动
三、刚体平面运动的运动方程 刚 体 平 面 运 动 建立如图的静坐标系, 建立如图的静坐标系, 基点。 点称为基点 将 O′点称为基点。 当刚体作平面运动时, 当刚体作平面运动时, xO′,yO′ 和 均随时间连续变 化,它们均为时间的单值连 续函数, 续函数,即 x = f (t ) (t
1 O′ yO′ = f 2 (t ) = f 3 (t )
O
vO
O
ω
A B
O
ω
O1
二、刚体平面运动的简化 刚 体 平 面 运 动 如图所示, 如图所示,刚体作平面 运动时, 运动时,刚体上所有与空间 某固定平面距离相等的点所 构成的平面图形就保持在它 自身所在的平面内运动。 自身所在的平面内运动。
A1
π
A
S
经分析可得如下结 论:
π0
A2
刚体的平面运动可以简化为平面图形S 刚体的平面运动可以简化为平面图形 在其自身所在的平面内运动。 在其自身所在的平面内运动。
静 平 面 动
z
= (t )
平 面
这就是刚体的转动方程。 开门 这就是刚体的转动方程。(开门 转动方程 开门)
刚体上任意一点的轨迹都为圆。
O
二、角速度、角加速度 角速度、
刚体绕定轴转动的角速度等于其位置角对时 8.2 间的一阶导数,用ω 表示,即 间的一阶导数, 表示,
刚 体 的 定
d ω= = dt
绝对运动中,动点的速度与加速度称为绝对速度 va 与绝对加速度
aa
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度 ar 牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 牵连点 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。 四.动点的选择原则: 动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有 运动的点。 五.动系的选择原则: 动系的选择原则 动点对动系有相对运动,且相对运动的轨迹是已知的, 或者能直接看出的。
刚体的基本运动
刚体的基本运动
答案:
刚体的基本运动形式包括平动、转动(分为定轴转动和非定轴转动)以及平面运动(随质心的平动、绕质心的转动)。
平动是指刚体在运动过程中,整体上以同一速度沿直线运动的现象,其特点是刚体内各点的运动轨迹完全相同。
转动则是刚体绕某一轴心进行旋转的运动,根据轴心的位置不同,可以分为定轴转动和非定轴转动。
平面运动则包括了随质心的平动和绕质心的转动,这种运动形式在工程实际中也是常见的。
复合运动,即平动和转动的组合运动,是刚体运动的一种特殊形式。
例如,自行车在平地上行驶时,既有整车质心的平动,又有轮胎相对于地面的转动。
因此,复合运动确实是刚体的基本运动形式之一。
延伸:
刚体指在运动中和受力作用后,形状和大小不变,而且内部各点相对位置不变的物体。
绝对刚体实际上只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。
把许多固体视为刚体,所得到的结果在工程上一般已有足够的准确度。
刚体的特点:刚体上任意两点的连线在平动中是平行且相等的。
刚体上任意质元的位置矢量不同,相差一恒矢量,但各质元的位移、速度和加速度却相同。
因此,常用“刚体的质心”来研究刚体的平动。
第六章 刚体的基本运动
z R a M
n
a = α × r + ω× v
aτ = α × r
α × r = α ⋅ r sin θ = α ⋅ R
O
aτ
v
α ω θ r
ω× r
a
n
= ω × v
ω ⋅ v = ω ⋅ ω ⋅ R = ω
dθ = ωo 其中: dt
所以: bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
dϕ =ω dt
*
rcos(θ + ϕ ) ω 解得: ω o = bcosθ − rcos(θ + ϕ )
方程*两边对时间取导数,得:
bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
一 、角速度的矢量表示
z
ω
k k
ω
z
ω=ω k
右手螺旋规则:右手的四指代表转动的方向,拇指代表角 速度矢量 ω 的方向。
二、角加速度的矢量表示
角加速度矢量定义:
dω α= dt
角加速度矢
α 为角速度矢 ω 对时间的一阶导数
d dω α = ( ωk) = k dt dt
dω d ϕ = 2 α= dt dt
为描述变速的程度,引入传动比的概念。
ω1 R2 z 2 = = 传动比: i12 = ω 2 R1 z1
ω1 n1 α1 R2 z 2 i12 = = = = = ω 2 n2 α 2 R1 z1
二 、皮带轮传动
n1 R1
vB A vA B R2
刚体基本运动
解: aτ a sin 60 r
a n a cos 60 r 2
两式相除:
Oφ
a
பைடு நூலகம்
tg60
2
3 2
d 3 2
dt
d d 3 2 dt d
d 3 2 d
d 3d
d
0
0
3d
0e 3
vA
它们的方向铅直向下。
aA
M
R O
v
B
s
A
半径R=20 cm的滑轮可绕 水平轴O转动,轮缘上绕有不 能伸长的细绳,绳的另一端与 滑轮固连,另一端则系有重物 A,设物体A从位置B出发,以 匀加速度a =4.9 m·s-2向下降 落,初速v0=4 m·s-1,求当物 体落下距离s =2 m时轮缘上一 点 M 的速度和加速度。
ds dt
l
A0
A
an
B v
vA vB vC l
d2s dv aτ dt2 dt 0
C
aA a 2 an2 an l 2
an
v2
(l )2
l
l 2
aC aA an l 2
§7-2 刚体绕定轴的转动
在一般情况下,运动的
第七章 刚体的简单运动
§7-1 刚体的平行移动(平动)
如果刚体在运动过程中,其上任一条直线始终与它的最初位置平 行,这种运动称为刚体的平行移动,简称平动或移动。
vA
A
A1 A2
rA
vB aA
平面平行四连杆机构
B rB
aB B1
B2
刚体
牵连速度
r r r a = a'+a0
牵连 加速度
三、加利略变换 系相对于S系作匀速直线平动 若S′系相对于 系作匀速直线平动,则: 系相对于 系作匀速直线平动,
v u = 常矢量 v v du a0 = =0 dt v v a = a′
设t=0时两坐标系的原点 时两坐标系的原点 重合, 系相对于 系相对于S系以 重合,S′系相对于 系以 速率u朝 正方向运动 正方向运动,则 速率 朝x正方向运动 则
1-6
相对运动
一、运动描述具有相对性
车上的人观察
地面上的人观察
运动是相对的 静止参考系、 静止参考系、运动参考系也是相对的
二、“绝对运动”、牵连运动、相对运动 绝对运动” 牵连运动、 三者应具有如下变换关系 “绝对位矢” 绝对位矢” 绝对位矢 1、位移变换关系 相对位矢 、
v v v r = r′ + r0
A x
dy d 2 2 (2) v = = ( 8.5 + t − 8.5) dt dt t v= 8.52 + t 2
dv d t a= ) = ( dt dt 8.52 + t 2 8.52 a= (8.52 + t 2 )3 2
3、一质点在 、一质点在OXY平面内运动,运动学方程为: 平面内运动, 平面内运动 运动学方程为: X=2t, Y=19-2t2 (1) 质点的运动轨道方程 (2)写出 写出t=1s和t=2s时刻质点的位矢;并计算这一秒 时刻质点的位矢; 写出 和 时刻质点的位矢 内质点的平均速度; 内质点的平均速度; (4)在什么时刻质点的位矢与其速度恰好垂直 ? 这 在什么时刻质点的位矢与其速度恰好垂直? 在什么时刻质点的位矢与其速度恰好垂直 它们的X、 分量各为多少 分量各为多少? 时,它们的 、Y分量各为多少? (3)t=1s和t=2s时刻的速度和加速度; 时刻的速度和加速度; 和 时刻的速度和加速度 (5)在什么时刻,质点离原点最近?距离是多少? 在什么时刻, 在什么时刻 质点离原点最近?距离是多少?
刚体的基本运动
轮2的角速度和角加速度。
解:AB平动,所以轮B上D点处 :
v v
D A
a a a a
n D A A
t
A
因轮1,2啮合,所以2轮上D点速度与1轮上D点速度相同, 切向加速度也相同。 v lb cos t 0 v l lb cost r r
t
2
A
A
2
2
2
啮 合 大 观
啮合大观
啮合大观
AB O O ,齿轮1和半径 为r 的齿轮2啮合,齿轮2可绕O2轴转动且和曲柄 O B 没有联系。 π s 时, 设O A O B l , b sin t ,试确 定 t 2
[例]图示机构中齿轮1紧固在杆AC上,
2
1 2 2 1 2
x
O
逆时针为正
顺时针为负
三.定轴转动的角速度和加速度 1.角速度:
定义:
Δ d lim Δ t 0 Δ t dt
(代数量)
工程中常用单位:
n = 转/分(r / min)
则n与的关系为:
2n n n (rad/s) 60 30 10
二.角加速度 与an ,a 的关系
a R,
an v2
R 2
a全 ||an a | an 2 a 2 R 2 4 |
a R t g 2 an R 2
各点速度分布图
各点加速度分布图
[例] 已知曲柄O1A以匀角速1转
r 2 1 l r 2 0
(2)当 = 1t = 90o亦即O1A与O1O2垂直时,
r2 2 2 2 1 r l
2
l r rl r l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 刚体的基本运动
一、目的要求
1.明确刚体平行移动(平动)和刚体绕定轴转动的特征,能正确地判断作平动的刚体和定轴转动的刚体。
2.对刚体定轴转动时的转动方程、角速度和角加速度及它们之间的关系要清晰的理解,熟知匀速和匀变速转动的定义与公式。
3.能熟练地计算定轴转动刚体上任一点的速度和加速度。
4.掌握传动比的概念及其公式的应用。
5.对角速度矢、角加速度矢以及用矢积表示定轴转动刚体上任一点的速度和加速度有初步了解。
二、基本内容
刚体的平动;刚体绕定轴转动;转动刚体内各点的速度和加速度;轮系的转动比;以矢量表示角速度和角加速度,以矢积表示点的速度和加速度。
(1)基本概念
刚体平动与定轴转动的定义,刚体在作这两种运动时刚体上各点速度、加速度的分布规律。
(2)主要公式
平动刚体上,任意两点之间均有
B A v v =,B A a a =
定轴转动刚体上任一点的速度和加速度为
ωr v =,ατr a =,2ωr a n =,22n a a a +=τ,n a a tg τθ=
以矢积表示的刚体上一点的速度与加速度为
r v ⨯=ω
v r a ⨯+⨯=ωα
三、重点和难点
1.重点
(1)刚体平动及其运动特征。
(2)刚体的定轴转动,转动方程,角速度与角加速度。
(3)转动刚体内各点的速度与加速度。
2.难点:
用矢积表示刚体上任一点的速度与加速度。
四、学习建议
(1)对刚体平动强调“三相同”。
(2)对刚体绕定轴转动的特征及其上点的速度,加速度分布规律要讲透,让学生熟练掌握已知刚体转动规律会求其上一点的运动规律,反之,已知转动刚体上一点的运动规律要会求其上各点的运动规律及整体的转动规律。
(3)对轮系传动比作一般介绍。
(4)对ω ,α 方向的确定要介绍练习,对速度和加速度用矢积表示只作一
般介绍以供推导公式用。