第四章 三角形 第五节 相似三角形(含位似)

合集下载

中考复习:相似三角形的性质、图形的位似(共17张PPT)

中考复习:相似三角形的性质、图形的位似(共17张PPT)

典型例题评析
(2)问题探究:如图②,在四边形 ABCD 中,AB∥DC, AF 与 DC 的延长线交于点 F,E 是 BC 的中点,若 AE 是∠ BAF 的平分线,试探究 AB,AF,CF 之间的等量关系,并 证明你的结论 (3)问题解决:如图③,AB∥CF,AE 与 BC 交于点 E,BE: EC=2:3,点 D 在线段 AE 上,且∠EDF=∠BAE,试判断 AB、DF、CF 之间的数量关系,并证明你的结论. .
回归课本
1.(2016.重庆市 A 卷)△ABC 与△DEF 的相似比为 1: 4 ,则△ ABC 与△ DEF 的周长比为( )A.1:2 B.1:3 C.1:4 D.1:16 2. (2016.广西南宁)有 3 个正方形如图所示放置,阴 影部分的面积依次记为 S1,S2,则 S1:S2 等于( ) A.1: B.1:2 C.2:3 D.4:9 .
巩固训练
1、 (2017 毕节)如图,在正方形 ABCDAF=45°,将△ABE 绕点 A 顺时针旋转 90°,使点 E 落 在点 E'处,则下列判断不正确的是( )
A.△AEE′是等腰直角三角形 B.AF 垂直平分 EE' C.△E′EC∽△AFD D.△AE′F 是等腰三角形 2. (2017 绥化)如图,△A′B′C′是△ABC 以点 O 为位似中心 经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是 4:9,则 OB′:OB 为( )
随堂检测反馈
1.1.(2015·东莞)若两个相似三角形的周长比为 2∶3,则
它们的面积比是__ 2.(2015·沈阳)如图, △ABC 与△DEF 位似, 位似中心为点 O, 且△ABC 的面积等于△DEF 面积的 ,则 AB︰DE=__. 3.(2015·酒泉)如图, D、 E 分别是△ABC 的边 AB、 BC 上的点, DE∥AC,若 S△BDE:S△CDE=1:3,则 S△DOE:S△AOC 的值 为( ) A. B. C. D.

相似三角形知识点

相似三角形知识点

相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

(完整版)初中相似三角形基本知识点和经典例题

(完整版)初中相似三角形基本知识点和经典例题

初三相似三角形知识点与经典题型知识点 1 相关相似形的看法(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 若是两个边数同样的多边形的对应角相等,对应边成比率,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比率线段的相关看法( 1)若是采用同一单位量得两条线段a,b 的长度分别为 m, n ,那么就说这两条线段的比是a mbn ,或写成 a : bm : n .注:在求线段比时,线段单位要一致。

的比,那么这四条线段a,b,c, d 叫做成比率线段,( )在四条线段a, b, c, d 中,若是a 和b 的比等于c 和d 2简称比率线段. 注:①比率线段是有次序的, 若是说 a 是 b, c, d 的第四比率项, 那么应得比率式为:bd .②在比率式ac(a : bcac : d)中,a 、d 叫比率外项, b 、c 叫比率内项 , a 、c 叫比率前项, b 、d 叫比率后b d此时有 b 2项, d 叫第四比率项,若是 b=c ,即a :b b :d 那么 b 叫做 a 、 d 的比率中项, ad 。

( 3)黄金切割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比率中项,即AC 2AB BC ,叫做把线段 AB 黄金切割,点 C 叫做线段 AB 的黄金切割点,其中AC5 1 AB ≈20.618 AB .即ACBC 5 1 简记为:长=短=5 1ABAC 2全 长2注:黄金三角形:顶角是360 的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点 3比率的性质( 注意性质立的条件:分母不能够为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比率式只可化成一个等积式,而一个等积式共可化成八个比率式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项 )cd( 2) 更比性质 ( 交换比率的内项或外项) :ac d()c ,交换外项b db ad b.同时交换内外项)ca( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b dac( 4)合、分比性质:a c ab cd .b d bd注:实质上,比率的合比性质可扩展为:比率式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比率仍建立.如:a cac 等等.b da b c da bc d( 5)等比性质:若是ac e m(bdfn 0) ,那么 acem a .b d fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样能够减少未知数的个数,这种方法是相关比率计算变形中一种常用方法.②应用等比性质时,要考虑到分母可否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也建立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比率线段的相关定理1. 三角形中平行线分线段成比率定理: 平行于三角形一边的直线截其他两边( 或两边的延长线) 所得的对应线段成比率 .A由 DE ∥ BC 可得:ADAE 或 BD EC 或 ADAE DB ECADEAABACDE注:BC①重要结论:平行于三角形的一边, 而且和其他两边订交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比率定理的逆定理: 若是一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比率 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比率式证平行线 .③平行线的应用:在证明相关比率线段时,辅助线经常做平行线, 但应依照的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比率定理: 三条平行线截两条直线, 所截得的对应线段成比率 .A D 已知 AD ∥ BE ∥CF,B E可得AB DE AB DE BC EFBC EFAB BCCFBC EF或DF或或AC 或DE 等.AC AB DE DFEF注:平行线分线段成比率定理的推论:平行线均分线段定理: 两条直线被三条平行线所截, 若是在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。

中考数学一轮复习第二讲空间与图形第四章三角形4.4相似三角形课件

中考数学一轮复习第二讲空间与图形第四章三角形4.4相似三角形课件

,=且������+b���������1���+( b2b+,d…≠+0 bn≠).0,那么������������11++������������22++… …++������������������������
=
������������11.
特别提醒
有关等比性质的注意事项:( 1 )等比性质的证明运用了“设 k 法”( 即引入新的参数
特别提醒 这些相似三角形的基本图形只是最基本的,也是为了让同学们尽快地熟悉常见的相似 三角形的情况,但在实际问题中,两个相似三角形的位置各种各样、千变万化,脑海中不 能仅局限于以上这几种情况.
考点扫描
名师考点精讲
考点1 考点2 考点3 考点4
典例3 ( 2018·亳州利辛县模拟 )在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法
解答题
23(

2
分值 5
)5
) )
10
4
5 )5
2019 年中考命题预测
考查内容:相似三角形的判定和性 质. 考查题型:从安徽省近几年的中考 试题可以看出,有关相似形的题目 每年都会考,有时是选择题,有时是 解答题( 含作图题 ),分值在 5~10 分不等,且有分值在增大、越来越重 视的趋势. 中考趋势:预测 2019 年的中考,会延 续近几年的趋势,考 1~2 个有关相似 形的题目,可能是选择题,也可能是 解答题( 含作图题 ),如果是解答 题,很可能是与其他知识的综合,“相 似形”会是题目中的 1~2 个小问.
4.4 相似三角形
考纲解读
了解比例的基本性质,了解线段的比、成比例线段的概念,了解黄金分割.了解图形相 似的概念,了解相似多边形和相似比,理解相似三角形的概念和性质.理解并掌握两条直 线被一组平行线所截,所得的对应线段成比例.理解并掌握相似三角形的判定定理.能够 利用相似三角形的判定定理和相似三角形的性质定理证明和解决有关的问题.了解位 似图形的概念,能够利用位似将一个图形放大或缩小,能利用图形的相似解决一些简单 实际问题.

八年级下册第四章《相似图形》考点归纳

八年级下册第四章《相似图形》考点归纳

八年级下册第四章《相似图形》考点归纳八年级下册第四章《相似图形》考点归纳一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD 的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(gold),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形。

相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d 都不为0),那么ad=bc.2、合比性质:如果 ,那么。

3、等比性质:如果=…= (b+d+…+n≠0),那么。

4、更比性质:若那么。

5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。

相似三角形的位似定理与位似点

相似三角形的位似定理与位似点

相似三角形的位似定理与位似点相似三角形是几何学中重要的概念之一,它们具有相同的形状但可能不同的大小。

在研究相似三角形时,我们需要掌握位似定理和位似点的概念,这些概念有助于我们在解题时进行推理和判断。

一、位似定理位似定理是研究相似三角形时最主要的定理之一,它表明相似三角形的对应角度相等。

具体而言,如果两个三角形的对应角度相等,则它们是相似的。

我们可以将位似定理表示为以下形式:若三角形ABC与三角形DEF相似,记作△ABC∼△DEF,则有∠A=∠D,∠B=∠E,∠C=∠F。

通过位似定理,我们可以利用已知信息来推导未知信息。

例如,如果我们知道两个三角形的某些角度相等,我们可以得出它们是相似的结论。

这种关系对于解决实际问题具有很大的帮助。

二、位似点位似点是指在两个相似三角形中,对应边上的点成比例。

也就是说,如果两个三角形的对应边上的点成比例,则它们是相似的。

我们可以将位似点表示为以下形式:若三角形ABC与三角形DEF相似,记作△ABC∼△DEF,则有(AB/DE)=(AC/DF)=(BC/EF)。

位似点的概念能够帮助我们求解相似三角形中未知长度的边。

通过观察对应边上的点的比例关系,我们可以利用已知长度来推导出未知长度。

三、应用示例下面,我们通过一个具体的问题来应用位似定理和位似点的概念。

问题:在△ABC中,∠B = 50°,∠C = 70°。

如果BC边的长度为8 cm,求出AB和AC边的长度。

解答:根据已知条件,我们知道∠B = 50°,∠C = 70°。

现在我们可以利用位似定理来判断三角形△ABC与另一个三角形是否相似。

假设△ABC与△DEF相似,根据位似定理,我们得出∠B = ∠E = 50°,∠C = ∠F = 70°。

根据题目要求,我们已知BC边的长度为8 cm。

现在我们可以利用位似点的概念来求解AB和AC边的长度。

根据位似点,我们可以得到(BC/EF)=(AB/DE)=(AC/DF)。

相似三角形及锐角三角函数

相似三角形及锐角三角函数

九年级数学科辅导讲义(第讲)学生姓名:授课教师:授课时间:一、相关概念:1. 相似图形:形状相同的图形。

2. 相似多边形的性质:对应角相等,对应边成比例。

3. 相似比:相似多边形对应边的比。

二、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等三、相似三角形的判定✓通过定义(三边对应成比例,三角相等)✓平行于三角形一边的直线✓三边对应成比例(SSS)✓两边对应成比例且夹角相等(SAS)✓两角对应相等(AA)✓两直角三角形的斜边和一条直角边对应成比例(HL)四、相似三角形的性质✓对应角相等。

✓对应边成比例。

✓对应高的比等于相似比。

✓对应中线的比等于相似比。

✓对应角平分线的比等于相似比。

✓周长比等于相似比。

✓面积比等于相似比的平方。

五、位似:✓位似图形的概念:如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比.✓在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.考点一一、选择题(每小题3分,共24分)1.下列命题:①所有的等腰三角形都相似,②所有的等边三角形都相似,③所有的等腰直角三角形都相似,④所有的直角三角形都相似.其中,正确的是 ( )A.②③B.②③④C.③④D.②④2.有两个顶角相等的等腰三角形框架,其中一个三角形框架的腰长为6,底边长为4,另一个三角形框架的底边长为2,则这个三角形框架的腰长为 ( ) A.6 B.4 C.3 D.23.如图,点P 是△ABC 的边AB 上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似.满足这样条件的直线最多有 ( ) A.2条 B.3条 C.4条 D.5条4.如图,E 是□ABCD 的边BC 延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形 ( )A.1对B.2对C.3对D.4对5.两个相似菱形边长的比是1:4,那么它们的面积比是 ( ) A .1:2 B .1:4 C .1:8 D .1:166.下列条件中,不能判定以A /、B /、C /为顶点的三角形与△ABC 相似的是( ) A.∠C=∠C /=90°,∠B=∠A /=50° B.AB=AC ,A /B /=A /C /,∠B=∠B /C.∠B=∠B /,////C B BC B A AB =D. ∠A=∠A /,////C B BC B A AB =7.△ABC 的周长等于16,D 是AC 的中点,DE ∥AB ,交BC 于点E ,则△DEC 的周长等于( ) A.2 B.4 C.6 D.88.在□ABCD 中,E 是BC 的中点,F 是BE 的中点,AE 与DF 相交于H ,则△EFH 的面积与△ADH 的面积的比值为 ( ) A .21 B . 81 C .161 D .41二、填空题(每小题3分,共18分)9.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm ,则这个地区的实际周长________。

九年级数学下学期-相似三角形(图形的位似及应用)

九年级数学下学期-相似三角形(图形的位似及应用)

位似多边形+应用1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.【作位似变换】【方法点拨】画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。

②外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形)③内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)(5) 在平面直角坐标系中,如果位似变换是以原点O 为位似中心,相似比为k (k>0),原图形上点的坐标为(x,y ),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),【典型例题】【例1】下列每组的两个图形不是位似图形的是( ).A. B. C. D.【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知A B 的长度,无法判断【例2】如图,是规格为9×9的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中画出平面直角坐标系,使A 的坐标为(﹣2,4),B 的坐标为(﹣4,2);(2)在第二象限内的格点上画一点C ,使点C 与线段AB 组成一个以AB 为底的等腰三角形,且腰长是无理数,则点C 的坐标是 ,△ABC 的周长是 (结果保留根号);(3)把△ABC 以点C 为位似中心向右放大后得到△A 1B 1C ,使放大前后对应边长的比为1:2,画出△A 1B 1C 的图形并写出点A 1的坐标.【变式1】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.【变式2】在坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在第一象限中画出将△A1B1C1按照2:1放大后的位似图形△A2B2C2;(3)△A2B2C2面积为.(直接写出答案)【变式3】如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().用相似三角形解决问题要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样在平行光的照射下,物体所产生的影称为平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点二、中心投影若一束光线是从一点发出的,在点光源的照射下,物体所产生的影称为中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点四、相似三角形的应用1.测量高度要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似知识点一:相似三角形的应用:1.利用影长测量物体的高度:①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比和“在同一时刻物高与影长的比”的原理解决。

②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度。

2.利用相似测量河的宽度(测量距离):①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上,必须保证在一条直线上,为了使问题简便,尽量构造直角三角形。

②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度。

3.借助标杆或直尺测量物体的高度:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度。

【类型一:利用相似求高度】1.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.2.为了测量成都熊猫基地观光瞭望塔“竹笋”建筑物AB的高度,小军同学采取了如下方法:在地面上点C处平放一面镜子,并在镜子上做一个标记,然后人向后退,直至站在点D处恰好看到建筑物AB的顶端A在镜子中的像与镜子上的标记重合(如图所示).其中B,C,D三点在同一条直线上.已知小军的眼睛距离地面的高度ED的长约为1.75m,BC和CD的长分别为40m和1m,求建筑物AB的高度.(说明:由物理知识,可知∠ECF=∠ACF)3.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【类型二:利用相似求高度】4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在点B竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.CB⊥AD,ED⊥AD,测得BC =1m,DE=1.5m,BD=9m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.如图,为了估算池塘的宽度AB,在池塘边不远处选定一个目标点C,在近河边分别选N,M.使得B,N,C三点共线,A,M,C三点共线且MN∥AB.经测量MN=38m,CM=21m,AM=63m,求池塘AB 的宽度.6.如图,为了估计河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B,使AB与河岸垂直,在近岸取点C,E,使BC⊥AB,CE⊥BC,AE与BC交于点D.已测得BD=30米,DC=10米,EC=11米,求河宽AB.【类型三:利用相似求其它】7.小明为了测量出一深坑的深度,采取如下方案:如图,在深坑左侧用观测仪AB从观测出发点A观测深坑底部P,且观测视线刚好经过深坑边缘点E,在深坑右侧用观测仪CD从测出发点C观测深坑底部P,且观测视线恰好经过深坑边缘点F,点B,E,F,D在同一水平线上.已知AB⊥EF,CD⊥EF,观测仪AB高2m,观测仪CD高1m,BE=1.6m,FD=0.8m,深坑宽度EF=8.8m,请根据以上数据计算深坑深度多少米?8.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;入射角i等于反射角r.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.9.如图①,有一块三角形余料△ABC,它的边BC=10,高AD=6.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,AD交PN于点E,则加工成的正方形零件的边长为多少?小颖解得此题的答案为415,小颖善于反思,她又提出了如下的问题: (1)如果原题中所要加工的零件是一个矩形,且此矩形由两个并排放置的正方形组成.如图②,此时,这个矩形零件的相邻两边长又分别是多少?(2)如果原题中所要加工的零件只是一个矩形,如图③,这样,此矩形零件的相邻两边长就不能确定,但这个矩形的面积有最大值,求这个矩形面积的最大值以及这个矩形面积达到最大值时矩形零件的相邻两边长又分别是多少?10.为了在校园内有效开展劳动教育,东方红学校利用学校东南边靠墙的一块面积为单位1的Rt △ABC 的空地,把这块空地划分成七八九年级三个部分,如图,在Rt △ABC 中,点P 是BC 边上任意一点(点P与点B,C不重合),矩形AFPE的顶点F,E分别在AB,AC上.七年级为矩形AFPE部分,八九年级为△PEC和△BPF两部分.(1)若BP:PC=2:3,求S△BPF;(2)已知BC=2,S△ABC=1.设BP=x,矩形AFPE的面积为y,求y与x的函数关系式.(3)在(2)的情形下,考虑实际情况,要求七年级所分面积最大.求出七年级所分矩形AFPE部分的面积在x为多少时取得最大值,并求出最大值是多少.知识点一:位似:1.位似的定义:如果两个图形不仅是相似图形,而且对应顶点的连线,对应边互相,那么这样的两个图形叫做位似图形,这个点叫做。

相似三角形的应用及位似(讲义及答案).

相似三角形的应用及位似(讲义及答案).

相似三角形的应用及位似(讲义)➢课前预习一、读一读,想一想太阳光线可以看成平行光线.早在约公元前600 年前,就有人利用平行光线去解决实际生活当中的问题了.他就是泰勒斯——古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者.泰勒斯已经观察金字塔很久了:底部是正方形,四个侧面都是相同的等腰三角形.要测量出底部正方形的边长并不困难,但仅仅知道这一点还无法解决问题.他苦苦思索着.当他看到金字塔在阳光下的影子时,他突然想到办法了.这一天,阳光的角度很合适,把所有东西都拖出一条长长的影子.泰勒斯仔细地观察着影子的变化,找出金字塔底面正方形的一边的中点(这个点到边的两端的距离相等),并作了标记.然后他笔直地站立在沙地上,并请人不断测量他的影子的长度.当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离.他稍做计算,就得出了这座金字塔的高度.当他算出金字塔高度时,围观的人十分惊讶,纷纷问他是怎样算出金字塔的高度的.泰勒斯一边在沙地上画图示意,一边解释说:“当我笔直地站立在沙地上时,我和我的影子构成了一个直角三角形.当我的影子和我的身高相等时,就构成了一个等腰直角三角形.而这时金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形.所以这个巨大的直角三角形的两条直角边也相等.”他停顿了一下,又说:“刚才金字塔的影子的顶点与我做标记的中心的连线,恰好与这个中点所在的边垂直,这时就很容易计算出金字塔影子的顶点与底面正方形中心的距离了.它等于底面正方形边长的一半加上我刚才测量的距离,算出来的数值也就是金字塔的高度了.想一想:为什么金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形呢?➢知识点睛1.测量旗杆高度的方法:①利用阳光下的影子②利用标杆③利用镜子的反射(太阳光是平行光)(同位角相等)(借助反射角、入射角相等)2.影子上墙:、、是影子上墙时的三种常见处理方式,它们的实质是构造三角形相似.△DEH∽△ABC △DHG∽△ABC △HEF∽△ABC3.位似:①如果两个相似多边形任意一组对应顶点所在直线都经过,且有,那么这样的两个多边形叫做,叫做.k 就是这两个相似多边形的相似比.②位似图形不仅相似,而且具有特殊的位置关系;利用位似,可以将一个图形.③在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是,它们的相似比为.➢精讲精练1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前.其中有首歌谣:今有竿不知其长,量得影长一丈五尺.立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1 丈=10 尺,1 尺=10 寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺2.如图,若标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD 的水平距离DF=2 m,则旗杆的高度AB= .3.如图,把一面很小的镜子放在离树底(B)8.4 m 的点E 处,然后沿着直线BE 后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4 m,观察者目高CD=1.6 m,则树的高度AB= .4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q 和S,使点P,Q,S 在一条直线上,且直线PS 与河垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T,PT 与过点Q 且与PS 垂直的直线b 的交点为R.若QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ 为.5.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200 步(“步”是古代的长度单位)的正方形小城,东门H位于GD 的中点,南门K 位于ED的中点,出东门15 步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为步.6.周末小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB 与河岸垂直,并在B 点竖起标杆BC,再在AB 的延长线上选择点D,竖起标杆DE,使得点E 与点C,A 共线.已知:CB⊥AD,ED⊥ AD,测得BC=1 m,DE=1.5 m,BD=8.5 m,测量示意图如图所示.请根据相关测量信息,求河宽AB.7.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5 米,CD=2 米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16 米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH=2.5 米,FG=1.65 米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.8.数学兴趣小组想测量一棵树的高度.在阳光下,一名同学测得一根长为1 米的竹竿的影长为0.8 米,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),这部分影长为1.2 米,落在地面上的影长为2.4 米,则树高为.9.小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8 米,BC=20 米,CD 与地面成30°角,且此时测得1 米杆的影长为2 米,则电线杆的高度为()A.9 米B.28 米C.(7 +3) 米D.(14 + 2 3) 米10.如图,在斜坡的顶部有一铁塔AB,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6 m,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为()A.24 m B.22 m C.20 m D.18 m1.如图,若以O 为原点构造平面直角坐标系,其中A 点坐标为(6,-1),B 点坐标为(5,3),C 点坐标为(3,-2),以O 为位似中心,将△ABC 缩小为原来的12,则缩小后的△ABC 的三个顶点坐标是多少?12.如图,已知△ABC 在平面直角坐标系中,点A 的坐标为(0,3),若以点C 为位似中心,在平面直角坐标系内画出△A′B′C,使得△A′B′C与△ABC 位似,且相似比为2:1,则点B′的坐标为.13. 在平面直角坐标系中,点 P (m ,n )是线段 AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点 P 的对应点的坐标为( ) A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .( 1 m , 1 n )D .( 1 m , 1 n )或( - 1 m ,- 1 n )2 22 2 2 214. 如图,线段 CD 两个端点的坐标分别为 C (-1,-2),D (-2,-1), 以原点 O 为位似中心,在第一象限内将线段 CD 扩大为原来的 2 倍,得到线段 AB ,则线段 AB 的中点 E 的坐标为.【参考答案】➢课前预习一、由于太阳光是平行线,因此同一时刻,太阳光与地面所成夹角相等,结合直角,构成了两个等腰直角三角形.➢知识点睛一、相似三角形的实际应用2.推墙法;抬高地面法;砍树法3.①P,P′;同一点O;OP′=k·OP(k≠0);位似多边形;点O;位似中心②放大或缩小③原点;|k|➢精讲精练1. B2. 13.5 m3. 5.6 m4. 120 m5. 2 000 36.河宽AB 为17 m.7.“望月阁”的高AB 的长度为99 米.8. 4.2 米9. D10.A11. A1(3,-1),B1(5,3),C1(3,-1)或A2(-3,1),B2( -5,2 2 2 2 2 2-3),C2( -3,1) 2 212. (4,6)或(0,-2)13. B14. (3,3)。

相似三角形性质

相似三角形性质

相似三角形性质(总19页) -本页仅作为预览文档封面,使用时请删除本页-相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.知识点3三角形相似的等价关系与三角形相似的判定定理的预备定理(1)相似三角形的等价关系:①反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.②对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.③传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆(2) 三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // , ∴ ADE ∆∽ABC ∆.B (3)DB (2)知识点4 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形-基本知识点+经典例题

相似三角形-基本知识点+经典例题

相似三角形-基本知识点+经典例题(完美打印版)知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)假如两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念(1)假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,假如说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,假如b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 现在有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 差不多性质:注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =⇔=. (4)合、分比性质:a c a b c d b d b d ±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. (5)等比性质:假如)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )如此能够减少未知数的个数,这种方法是有关比例运算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE AB AD EA EC AD BD EC AE DB AD ===或或 注: ①重要结论:平行于三角形的一边,同时和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.B此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. ③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF, 可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 注:平行线分线段成比例定理的推论: 平行线等分线段定理:两条直线被三条平行线所截,假如在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

(北师大版数学九上)第四章 图形的相似讲义

(北师大版数学九上)第四章  图形的相似讲义

第四章图形的相似第1讲相似三角形常见模型一.知识梳理(一)【知识回顾】相似三角的判定方法1.如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.2.如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.3.如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(二)相似三角形基本类型1.平行线型2.相交线型3.子母型4.旋转型二.实战演练训练角度1 平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC; (2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.典例分析训练角度2 相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE 与△ABC相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,E为AC的中点,ED的延长线交AB的延长线于点F.求证:ABAC=DFAF.训练角度4 旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.1.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2.如图,给出下列条件,其中不能单独判定△ABC∽△ACD的条件为()A.∠B=∠ACD B.∠ADC=∠ACB C.=D.=3.如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有()A.4对B.5对C.6对D.7对课堂训练4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()5.如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.正确的有()个.A.4B.3C.2D.16.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是__________.7.如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽∽。

中考数学复习相似三角形(含位似) 课件

中考数学复习相似三角形(含位似) 课件

性质3 (等比性质)
如果 那么
a1 b1 a1 b1
a2 b2 a2 b2
bananbnn=,_且__abb_111_+__b_2+…+bn≠0,
3. 黄金分割
点C把线段AB分成两条线段AC和BC,且 AC BC ,那么就说线段AB被 AB AC
概念 点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金比,
思维导图
比例线段
比例的性质 黄角形 的性质与判定
图示 基本事实
推论
平行线分线 段成比例
相似三角形
相似多边形 及其性质
图形的位似
性质
判定 概念
性质 概念
性质
教材知识逐点过
考点1 比例线段及其性质
1. 比例线段
比例线段
在四条线段中,如果其中两条线段的比_等__于__另外两条线段的比 ,即a c ,那么这四条线段a,b,c,d叫做成比例线段,简称
第4题图
【模型变式1】如图,在△ABC中,点D,E分别是边AB,AC的中点,
连接DC,EB交于点O,则DO∶CO=__1_∶__2___,
SDEO SABC
1
=___1_2____.
变式1题图
【模型变式2】如图,在▱ABCD中,AE∶DE=2∶1,连接BE,交AC
24
于点F,AC=12,则AF的长为___5_____.
3. 相似三角形的周长比等于_相__似__比___,面积比等于__相__似__比__的__平__方______ 1. 平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 2. __两__组__角__对应相等的两个三角形相似 判 3. 两边对应成比例且__夹__角____相等的两个三角形相似 定 4. 三边_对__应__成__比__例__的两个三角形相似 5. 两个直角三角形满足一组锐角相等或两直角边对应成比例或斜边和一直角边 对应成比例,那么这两个直角三角形相似

相似三角形知识点总结(初中数学)

相似三角形知识点总结(初中数学)

图形的相似知识点一、比例的基本性质1.有关概念:如果d c b a ::=或dc b a =,那么a,b,c,d 成比例,其中b,c 称为比例内项,a,d 称为比例外项。

2.(1)若dc b a =,那么bc ad =。

(2)反比性质: a c b d b d a c=⇔=。

(3)合比性质:若d c b a =,那么dd c b b a ±=±。

(4)等比性质:若)0(≠+++===n d b n m d c b a ,那么b a n d b m c a =++++++ 。

知识点二、成比例线段在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段。

知识点四、黄金分割把线段AB 分成两条线段AC,BC (AC>BC ),且使AC 是AB 和BC 的比例中项,即AB AC AC BC =或2AC AB BC =⋅,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点. ==AB AC AC BC 618.0215≈-,称为黄金分割比。

知识点五、平行线分线段成比例的基本事实1.两条直线被一组平行线所截,如果在其中一条直线上截得的线段相等,那么在另一条直线截得的线段也相等。

如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3截得的线段分别为AB ,BC 和DE ,EF ,若AB=BC ,则DE=EF 。

2.两条直线被一组平行线所截,所得的对应线段成比例。

如图所示,直线l 1∥l 2∥l 3,直线AC,DF 被直线l 1,l 2,l 3所截,那么DFEF AC BC DF DE AC AB EF DE BC AB ===,,。

知识点六、相似图形1.相似图形定义:直观上,把一个图形放大(或缩小)得到的图形与原图形是相似的。

相似的图形特点:形状相同,但大小不一定相等。

2.相似三角形的有关概念(1)定义:我们把三个角对应相等,且三条边对应成比例的两个三角形叫作相似三角形(如图所示);(2)表示方法:ABC ∆和C B A '''∆相似,记作C B A ABC '''∆∆∽,读作ABC ∆相似于C B A '''∆,符号“∽”读作“相似于”。

4.5相似三角形(含位似)-简单数学之2022年中考一轮复习一点三练系列(解析版)(全国适用)

4.5相似三角形(含位似)-简单数学之2022年中考一轮复习一点三练系列(解析版)(全国适用)

第四章三角形4.5相似三角形(含位似)一、课标解读1.了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。

2.通过具体实例认识图形的相似。

了解相似多边形和相似比。

3.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。

4.了解相似三角形的判定定理及其证明。

5.了解相似三角形的性质定理。

6.了解图形的位似,知道利用位似可以将一个图形放大或缩小。

7.会利用图形的相似解决一些简单的实际问题。

二、知识点回顾知识点1. 比例线段1.定义:对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a b=cd(即ad=bc),我们就说这四条线段成比例.2.基本性质:性质1:若ab=cd,则ad=bc (b≠0,d≠0).性质2:若ab=cd,则a±bb=c±dd(b≠0,d≠0).性质3:若ab=cd=…=mn(b+d+…+n≠0),则a+c+…+mb+d+…+n=ab.3.比例中项:如果ab=bc,即b2=ac,就把b叫做a,c的比例中项.知识点2. 平行线分线段成比例1.基本事实:两条直线被一组平行线所截,所得的对应线段.如图1,若l1∥l2∥l3,则ABBC=DEEF或ABAC=DEDF.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图2,3,若DE∥BC,则ADDB=AEEC,ADAB=AEAC等.知识点3 相似三角形的性质及判定1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比,面积的比等于相似比的平方.知识点4 相似三角形的判定方法1.(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(2)三边对应成比例的两个三角形相似.(3)两边对应成比例且对应边的夹角相等的两个三角形相似.(4)两角分别相等的两个三角形相似.(5)斜边和一直角边对应成比例.2. 常见的相似三角形模型(1)A字型及其变形已知BC∥DE 已知∠1=∠B 已知∠1=∠B(2)X字型及其变形已知AB∥DE 已知∠A=∠D(3)旋转型(4)垂直型双垂直型 三垂直型一线三等角型知识点5 相似多边形1.概念:两个边数相等的多边形,如果它们的角对应相等,边对应成比例,那么这两个多边形叫做相似多边形,对应边的比叫做相似比.2.性质: (1)相似多边形的对应角相等,对应边成比例;(2)相似多边形周长的比等于相似比,面积的比等于相似比的平方.知识点5 位似1.位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫做位似中心,这时我们说这两个图形关于这点位似,它们的相似比又称为位似比.2.位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.位似变换的坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即若原图形的某一点坐标为(x,y),则其位似图形对应点的坐标为(kx,ky)或(-kx,-ky).三、热点训练热点1:相似图形的概念和性质一练基础1.(2022·福建三明·一模)如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,B,C,D,E,F,若DE=7,EF=10,则A BB C的值为()A.710B.107C.717D.1017【答案】A【解析】【分析】根据平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例,求解即可.解:∵DE =7,EF =10,a ∥b ∥c ,∴710AB DE BC EF ==,故选A .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.(2021·广东·二模)如图,在△ABC 中,点D 是AB 边上的一点.以B 为圆心,以一定长度为半径画弧,分别交AB 、BC 于点F 、G ,以D 为圆心,以相同的半径画弧,交AD 于点M ,以M 为圆心,以FG 的长度为半径画弧,交 MN于点N ,连接DN 并延长交AC 于点E .则下列式子中错误的是( )A .AD AEBD EC=B .AB ACBD EC=C .AD DEBD BC=D .AD AEAB AC=【答案】C 【解析】【分析】由平行线分线段成比例可得=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC由相似三角形的性质可得=AD DE AB BC ,即可求解.【详解】解:由题意可得:∠ABC =∠ADE ,∴DE ∥BC ,∴=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC,故选项A ,B ,D 不合题意,∵DE ∥BC ,∴△ADE ∽△ABC ,∴=AD DEAB BC,故选项C 符合题意,【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.3.(2022·上海虹口·九年级期末)已知点P是线段AB上的黄金分割点,AP>PB,线段AB=2厘米,那么线段AP=____________.【答案】)1cm【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段;则AP=AB=1,1.【点睛】本题考查黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.4.(2021·上海市徐汇中学九年级阶段练习)已知点P是线段AB的黄金分割点(AP>BP),AB=4,那么AP=____.【答案】25-2##-2+25【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段,AB=4,则AP AB×4=2.故答案为2.【点睛】.5.(2018·安徽相山·中考模拟)若23a c eb d f===,则2323a c eb d f-+-+=______.【答案】2 3【解析】【分析】根据23a c eb d f===可得222,,333a b c d e f===,把a,c,e代入所求代数式中,约分后即可求得结果.【详解】∵23a c eb d f===∴222,,333 a b c d e f ===∴2222323223233323233233b d fa c eb d fb d f b d f b d f-´+´-+-+==´= -+-+-+故答案为:2 3【点睛】本题考查了比例的性质,求代数式的值,根据比例的性质变形是关键.6.(2021·四川德阳·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD是黄金矩形,边AB1,则该矩形的周长为__________________.【答案】2或4【解析】【分析】分两种情况:①边AB为矩形的长时,则矩形的宽为3②边AB为矩形的宽时,则矩形的长为2=,求出矩形的周长即可.【详解】解:分两种情况:①边AB1)3=,\矩形的周长为:134-+=;②边AB为矩形的宽时,则矩形的长为:1)2=,\矩形的周长为12)2+=+;综上所述,该矩形的周长为2或4,故答案为:2或4.【点睛】本题考查了黄金分割,熟记黄金分割的比值是解题的关键.二练巩固7.(2022·上海杨浦·九年级期末)已知点P是线段AB上的一点,线段AP是PB和AB的比例中项,下列结论中,正确的是()A.PBAP=B.PBAB=C.APAB=D.APPB=【答案】C【解析】【分析】设AB=1,AP=x,则PB=1-x,由比例中项得出AP2=PB·AB,代入解一元二次方程即可解答.【详解】解:设AB=1,AP=x,则PB=1-x,∵线段AP是PB和AB的比例中项,∴AP2=PB·AB,即x2=1-x,∴x2+x-1=0,解得:1x2x=,∴PB=1∴PBAP=,APAB=APPB故选:C.【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.8.(2021·四川巴中·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BP APAP AB=,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对【答案】A【解析】【分析】点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,则BP APAP AB=,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,∴BP AP AP AB=,∴(20−x)2=20x,故选:A.【点睛】本题考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.9.(2021·全国·九年级专题练习)如果四条线段a、b、c、d构成a cb d=,0m>,则下列式子中,成立的是()A.b ca d=B.a c mb d m+=+C.a b d cb d--=D.a c cb d d+=+【答案】D【解析】【分析】根据比例的性质变形,再进行判断.【详解】解:A、∵a cb d=,0m>,∴b da c=;故本选项错误;B 、∵a cb d =,0m >,∴ac m bd m +¹+;故本选项错误;C 、∵a cb d =,0m >,∴a b dc bd --=-;故本选项错误;D 、∵a cb d =,0m >,∴ac c bd d+=+;故本选项正确.故选D .【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键.10.(2011·上海·中考模拟)若线段c 是线段a ,b 的比例中项,且4a =,9b =,则c =_____________.【答案】6【解析】【分析】根据比例中项的定义可得c 2=ab ,从而易求c .【详解】解:∵线段c 是线段a ,b 的比例中项,∴c 2=ab ,∵a =4,b =9,∴c 2=36,∴c =6(负数舍去),故答案是:6.【点睛】本题考查了比例线段,解题的关键是理解比例中项的含义.11.(2021·四川内江·中考真题)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为 __.【答案】1116+##0.6875【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得414S k =-+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得m ,n 的值,结论可求.【详解】解:设123234a b ck---===,则21a k=+,32b k=+,34c k=-,23212(32)3(34)414S a b c k k k k\=++=++++-=-+.aQ,b,c为非负实数,\210 320 340kkk+ìï+íï-î………,解得:13 24k -…….\当12k=-时,S取最大值,当34k=时,S取最小值.1414162mæö\=-´-+=ç÷èø,3414114n=-´+=.\1116nm=.故答案为:11 16【点睛】本题主要考查了比例的性质,解不等式组,非负数的应用等,设123234a b ck---===是解题的关键.12.(2021·浙江·诸暨市暨阳初级中学一模)AD为面积为30 的锐角三角形ABC的高,∠ACB=2∠BAD,线段AB上的点E将AB分成两条线段的比为3∶2,过点E作BC的平行线交AC于点F,若AD=6,则CF =_______.【答案】4或6【解析】【分析】根据三角形面积公式求得BC=10,根据角的和差倍数可得∠B=∠BAC,继而由等角对等边的性质可得BC =AC=10,根据线段比例即可求解.【详解】∵S△ABC=12AD BC×=30,AD=6,∴BC=10,在Rt △ABD 中,∠BAD =90°﹣∠B ,∠B =90°﹣∠BAD ,在Rt △ACD 中,∠CAD =90°﹣∠ACB ,∵∠ACB =2∠BAD ,∴∠CAD =90°﹣2∠BAD ,∴∠BAC =∠CAD +∠BAD =90°﹣∠BAD ,∴∠B =∠BAC ,∴BC =AC =10,∵点E 将AB 分成两条线段的比为3∶2,EF ∥BC ,∴2210455CF AC ==´=,或3310655CF AC ==´=,故答案为:4或6.【点睛】本题考查角的和差倍数关系,等角对等边的性质,线段的比例,解题的关键是求得BC =AC =10.三练拔高13.(2021·全国·九年级专题练习)如图,四边形ABCD 中,P 为对角线BD 上一点,过点P 作//PE AB ,交AD 于点E ,过点P 作//PF CD ,交BC 于点F ,则下列所给的结论中,不一定正确的是( ).A .PE PF AB CD =B .AE BF DE CF =C .1CF AE BC AD +=D .1PE PF AB CD+=【答案】A【解析】【分析】根据//PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,即可判断A ;由//PE AB ,//PF CD 可得AE BP ED PD =,BF BP FC PD =可判断B ;由//PE AB ,//PF CD ,可得AE BP AD BD =,FC PD BC BD=,可判断C ,由 //PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,可判定D .【详解】解:A .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∵DP BP DB DB ¹,∴PE PF AB CD¹,故选项A 不正确;B .∵//PE AB ,//PF CD ,∴AE BP ED PD =,BF BP FC PD =,∴AE BF DE CF=,故选项B 正确;C .∵//PE AB ,//PF CD ,∴AE BP AD BD =,FC PD BC BD =,∴1AE FC BP PD AD BC BD BD+=+=,故选项C 正确,1CF AE BC AD+= ,D .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∴ 1EP PF DP PB DP PB AB CD DB BD BD++=+==,故选项D 正确.故选择A .【点睛】本题考查平行线截线段比例,和三角形相似判定与性质,掌握平行线截线段长比例,和三角形相似判定与性质是解题关键.14.(2021·全国·0.618)»的矩形称为黄金矩形,这被称为黄金分割比例.如图,名画《蒙娜丽莎的微笑》的整个画面的主体部分很好地体现了黄金分割比例,其中矩形ABCD 是黄金矩形,若我们把一个正方形AEFD 嵌入黄金矩形ABCD 中(正方形的边长等于黄金矩形的宽),这样就创造了一个新的黄金矩形BEFC .如果把这个过程重复数次,接着我们要在每个正方形内画一条圆弧,让每个圆弧的半径等于它所在正方形的边长就会得到下面这张图,若AB a =,则图中弧HF 的长为( )A B .2pC .22a p·D .32a p·【答案】C 【解析】【分析】根据黄金矩形的定义,求出BE 长,再用弧长公式求解即可.【详解】解:∵矩形ABCD 是黄金矩形,AB a =,∴BC AB =,BC =,∵矩形BEFC 是黄金矩形,∴BE CB =2BE GH a ==,弧HF 的长为2901802a GH p p ·=×,故选:C .【点睛】本题考查了黄金分割和弧计算,解题关键是利用黄金分割求出半径,再熟练运用弧长公式进行计算.15.(2022·福建福州·一模)如图,在四边形ABCD 中,AB = 5,∠A = ∠B = 90°,O 为AB 中点,过点O 作OM ⊥CD 于点M .E 是AB 上的一个动点(不与点A ,B 重合),连接CE ,DE ,若∠CED = 90°且CE DE = 43.现给出以下结论:(1)△ADE 与△BEC 一定相似;(2)以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 可能相离;(3)OM 的最大值是52;(4)当OM 最大时,CD =12524.其中正确的是 _________ .(写出所有正确结论的序号)【答案】(1)(3)(4)【解析】【分析】利用“一线三垂直”可以判定△ADE 与△BEC 相似;再利用四边形ADMO 与四边形MOBC 相似,可知225OM AE AE =-+,即可得出OM 最大值为52,即可判定(2)、(3)、(4).【详解】解:∵∠A = ∠B = 90°,∠CED = 90°,∴∠AED = ∠BCE ,∴V ADE ∼V BEC .故(1)正确;∵∠OMC = 90°,∴∠ADM +∠AOM =180°,∠ADM +∠MCB =180°,∴∠AOM =∠MCB ,∴四边形ADMO 与四边形MOBC 相似,∴AD OM OM BC=,∴2OM AD BC=g ∵△ADE ∼△BEC ∴34AD AE DE BE BC CE ===,∴AD BC AE BE =g g ,∴2OM AE BE =g ,即()25-OM AE AE =g ,∴225OM AE AE=-+∴当AE =BE =52时,OM 值最大,最大值为52.∴以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 不可能相离,故(2)错误,(3)正确,∵当OM 最大时,点O 与点E 重合(如图所示),AE =BE =OM =52,∴AED MED @V V ,BCE MCE @V V ,∴AD =MD ,BC =MC ,∴CD =AD +BC ,∵34AD DE BE CE ==,34AE DE BC CE ==,解得:158AD =,103BC =,∴CD =AD +BC =12524.故答案为:(1)(3)(4)【点睛】本题主要考查的是四边形中相似的应用,熟练的进行边的比值的转化时本题的解题关键.16.(2021·湖南湘潭·中考真题)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.如图①,点C 把线段AB 分成两部分,如果0.618CB AC =»,那么称点C 为线段AB 的黄金分割点.(1)特例感知:在图①中,若100AB =,求AC 的长;(2)知识探究:如图②,作⊙O 的内接正五边形:①作两条相互垂直的直径MN 、A I ;②作ON 的中点P ,以P 为圆心,PA 为半径画弧交OM 于点Q ;③以点A 为圆心,AQ 为半径,在⊙O 上连续截取等弧,使弦AB BC CD DE AQ ====,连接AE ;则五边形ABCDE 为正五边形.在该正五边形作法中,点Q 是否为线段OM 的黄金分割点?请说明理由.(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE 的每条边,相交可得到五角星,摆正后如图③,点E 是线段PD 的黄金分割点,请利用题中的条件,求cos72°的值.【答案】(1)61.8;(2)是,理由见解析;(3【解析】【分析】(1)根据黄金分割的定义求解即可;(2)设⊙O 的半径为a ,则OA =ON =OM =a ,利用勾股定理求出PA ,继而求出OQ ,MQ ,即可作出判断;(3)先求出正五边形的每个内角,即可得到∠PEA =∠PAE =18010872°-°=°,根据已知条件可知cos 72°=12AE PE,再根据点E 是线段PD 的黄金分割点,即可求解.【详解】0.618»,,即0.618100AC AC -=»,解得:AC ≈61.8;(2)Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为a ,则OA =ON =OM =a ,∴OP ∴PA PQ =,∴OQ ∴MQ MQ OQ =∴Q 是线段OM 的黄金分割点;(3)正五边形的每个内角为:()521801085-´°=°,∴∠PEA =∠PAE =18010872°-°=°,∴cos 72°=12AE PE,∵点E 是线段PD 的黄金分割点,∴DE PE =,又∵AE =ED ,∴AE PE =,∴cos72°=12AEPE=【点睛】本题考查黄金分割、勾股定理、锐角三角函数,解题的关键是读懂题意正确解题.热点2:相似三角形的性质与判定一练基础1.(2022·福建三明·一模)下列各组图形中,不一定相似的是()A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个矩形D.任意两个正方形【答案】C【解析】【分析】根据相似图形的判定定理,对选项进行一一分析,找出符合题意的答案.【详解】解:A、任意两个等腰直角三角形,根据等腰直角三角形的性质,两腰分别相等,它们两边的比值成比例,夹角为直角相等,根据相似三角形的判定定理可得任意两个等腰直角三角形相似,故不符合题意;B、任意两个等边三角形,三边分别相等,两个三角形三边对应成比例,根据三角形相似的判定定理可得任意两个等边三角形相似,故不符合题意;C、任意两个矩形,虽然对应角都等于90°相等,但对应边不一定成比例,任意两个矩形,不一定相似,故符合题意;D、任意两个正方形,四边各自相等,可得它们对应边成比例,对应角都是90°相等,根据多边形相似的判定定理可得任意两个正方形相似,故不符合题意.故选C.【点睛】本题考查相似图形的识别,掌握图形相似的定义即图形的形状相同,但大小不一定相同的是相似形与判定定理是解题关键.2.(2021·贵州毕节·九年级阶段练习)在图(1)、(2)所示的△ABC中,AB=4,AC=6.将△ABC分别按照图中所标注的数据进行裁剪,对于各图中剪下的两个阴影三角形而言,下列说法正确的是()A.只有(1)中的与△ABC相似B.只有(2)中的与△ABC相似C.都与△ABC相似D.都与△ABC不相似【答案】B【解析】【分析】根据相似三角形判定定理,两边对应成比例夹角相等,两个三角形相似,先求出两个三角形中夹角相等的两边的比值,看是否相等可判断A不正确,B正确,进而可判断C与D即可.【详解】解:图形(1)中标字母如图,∵BE=2,BA=4,23BEBA=,BF=3,BC不定,3BF BEBC BC BA=¹,∴(1)中的△BEF不与△ABC相似,故选项A不正确;图2中标字母如图,∵GC=4,BH=1,AB=4,AC=6.∴AH=AB-BH=4-1=3,AG=AC-GC=6-4=2,∴2142AGAB==,3162AHAC==,∴AG AH AB AC=,∵∠HAG=∠CAB,∴△AHG ∽△ACB ,故选项B 正确,,故选项C 不正确,选项D 不正确.故选择B .【点睛】本题考查相似三角形的判定,掌握三角形相似的判定方法是解题关键.3.(2022·江苏兴化·九年级期末)如图,如果BAD CAE Ð=Ð,那么添加下列一个条件后,仍不能确定ABC ADE V :V 的是( )A .B DÐ=ÐB .AB DE AD BC =C .C AED Ð=ÐD .AB AC AD AE=【答案】B【解析】【分析】根据题意可得EAD CAB Ð=Ð,然后根据相似三角形的判定定理逐项判断,即可求解.【详解】解:∵BAD CAE Ð=Ð,∴EAD CAB Ð=Ð,A 、若添加B D Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;B 、若添加AB DE AD BC=,不能证明ABC ADE V :V ,故本选项符合题意;C 、若添加C AED Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;D 、若添加AB AC AD AE=,可用两边对应成比例,且夹角相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4.(2021·湖北当阳·一模)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和10cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm 【答案】D【解析】【分析】根据相似三角形的对应边成比例求解可得.【详解】解:设另一个三角形的最长边长为x cm ,根据题意,得:2.5510x =,解得:5x =,即另一个三角形的最长边长为5cm ,故选D .【点睛】本题主要考查相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.5.(2021·河南伊川·九年级期中)如图,在ABC V 中,6,4AC AB ==,点D 与点A 在直线BC 的同侧,且ACD ABC Ð=Ð,2CD =,点E 是线段BC 延长线上的动点,当DCE V 和ABC V 相似时线段CE 的长为( )A .3B .43C .3或43D .4或34【答案】C 【解析】根据ACD ABC Ð=Ð,可得A DCE Ð=Ð ,然后分两种情况讨论,即可求解.【详解】解:∵ACD ABC Ð=Ð,ACD DCE A ABC Ð+Ð=Ð+Ð ,∴A DCE Ð=Ð ,当 B CDE A C V :V 时,∴CD CE AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:3CE = ;当B CED A C V :V 时,∴CE CD AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:43CE =∴线段CE 的长为3或43.故选:C【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.6.(2021·广东·东莞市石龙第二中学模拟预测)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,若△ABC 的面积为4,则四边形BCED 的面积为___.【答案】3【解析】【分析】由题意知DE 是ABC V 的中位线,有12DE BC DE BC =∥,,从而得ADE ABC △△∽,有212ADE ABC S S æö=ç÷èøV V ,求出ADE S V 的值,对ABC ADE BCED S S S =-V V 四边形计算求解即可.【详解】解:由题意知DE 是ABC V 的中位线∴12DE BC DE BC =∥,∴ADE ABC△△∽∴212ADE ABC S S æö=ç÷èøV V ∵=4ABC S △∴=1ADE S V ∴=3ABC ADE BCED S S S =-V V 四边形故答案为:3.【点睛】本题考查了中位线,相似三角形的性质.解题的关键在于明确相似三角形的面积比等于相似比的平方.7.(2021·广东惠阳·二模)如图,AB ,CD 相交于O 点,△AOC ∽△BOD ,OC :CD =1:3,AC =2,则BD 的长为 __.【答案】4【解析】【分析】根据OC :CD =1:3,求得OC :OD =1:2,根据相似三角形的对应边的比相等列出方程,计算即可.【详解】∵OC :CD =1:3,∴OC :OD =1:2,∵△AOC ∽△BOD,∴AC OC BD OD=,即212 BD=,解得:BD=4,故答案为:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.8.(2022·江苏溧阳·九年级期末)如果两个相似三角形的周长比是1︰4,那么它们的面积比是_________.【答案】1:16【解析】【分析】根据相似三角形的相似比等于周长比,可得两个相似三角形的相似比是1︰4,再由相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵两个相似三角形的周长比是1︰4,∴两个相似三角形的相似比是1︰4,∴它们的面积比是1:16.故答案为:1:16【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的相似比等于周长比,相似三角形的面积比等于相似比的平方是解题的关键.二练巩固9.(2022·福建福州·一模)如图,点D,E分别在△ABC的边AB,AC上,且AD = 1,BD = 5,AE = 2,∠AED = ∠B,则AC的长是()A.2.4B.2.5C.3D.4.5【答案】C【解析】【分析】由AED B Ð=Ð,DAE CAB Ð=Ð可证DAE CAB ∽△△,有DA AE CA AB =,计算求解即可.【详解】解:∵AED B Ð=Ð,DAE CAB Ð=Ð,∴DAE CAB ∽△△,∴DA AE CA AB =,∴1251AC =+,解得3AC =,故选:C .【点睛】本题考查了相似三角形的判定与性质,解题的关键在于证明三角形相似.10.(2021·湖南·师大附中梅溪湖中学二模)如图,在菱形ABCD 中,点F 在线段CD 上,连接EF ,且∠CBE +∠EFC =180°,DF =2,FC =3.则DB =( )A .6B .C .5D .【答案】D【解析】【分析】根据菱形的性质可得BD =2DE ,BC =CD =5,从而得到∠CBE =∠CDB ,再由∠CBE +∠EFC =180°,可得∠CBE =∠CDB =∠DFE ,从而得到△DEF ∽△DCB ,可得到2DE DF BC DE=,解得DE ,即可求解.【详解】解:在菱形ABCD 中,BD =2DE ,BC =CD =DF +FC =2+3=5,∴∠CBE =∠CDB ,∵∠CBE +∠EFC =180°,∠DFE +∠EFC =180°,∴∠CBE =∠DFE ,∴∠CBE =∠CDB =∠DFE ,∵∠CDB =∠EDF ,∴△DEF ∽△DCB ,∴DE DF DC BD = ,∴2DE DF BC DE =,∴252DE DE= ,解得:DE ,∴2DB DE =.故选:D【点睛】本题主要考查了相似三角形的判定和性质,菱形的性质,熟练掌握相似三角形的判定和性质定理,菱形的性质定理是解题的关键.11.(2021·广东花都·三模)如图,在平行四边形ABCD 中,E 是AB 边上一点,若AE :AB =1:3,则S △AEF :S △ADC =( )A .1:12B .1:9C .1:6D .1:3【答案】A【解析】【分析】先判断出△AEF 与△DCF 是相似,利用性质可求面积比,再由△AEF 与△ADF 是等高的三角形,也可得出面积比,最后根据S △ADC =S △CDF +S △ADF 计算比值即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵AE :AB =1:3,∴AE :CD =1:3,∵AE ∥CD ,∴△AEF ∽△CDF ,∴21(9AEF CDF S AE S CD ==V V ,13EF AE DF CD ==,∴S △CDF =9S △AEF ,S △ADF =3S △AEF ,∵S △ADC =S △CDF +S △ADF ,∴19312AEF AEF ADC AEF AEF S S S S S ==+V V V V V ,故选:A .【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握相似和平行四边形的基本知识,属于中考常考题型.12.(2021·山东济南·中考真题)如图,在ABC V 中,90ABC Ð=°,30C Ð=°,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A .BE DE=B .DE 垂直平分线段AC C.EDC ABC S S △△D .2BD BC BE=×【答案】C【解析】【分析】由题中作图方法易证AP 为线段BD 的垂直平分线,点E 在AP 上,所以BE=DE ,再根据,90ABC Ð=°,30C Ð=°得到ABD D 是等边三角形,由“三线合一”得AP 平分BAC Ð,则30PAC C Ð=Ð=°,AE CE =,且30°角所对的直角边等于斜边的一半,故12AB AD AC ==,所以DE 垂直平分线段AC ,证明~EDC ABC D D 可得ED CD AB BC =即可得到结论.【详解】由题意可得:AD AB =,点P 在线段BD 的垂直平分线上AD AB =Q ,\点A 在线段BD 的垂直平分线上\AP 为线段BD 的垂直平分线Q 点E 在AP 上,\BE=DE ,故A 正确;Q 90ABC Ð=°,30C Ð=°,60BAC \Ð=°且12AB AD AC ==ABD \D 为等边三角形且AD CD=AB AD BD \==,AP \平分BAC Ð1302EAC BAC \Ð=Ð=°,AE EC \=,ED \垂直平分AC ,故B 正确;30ECD ACB Ð=Ð=°Q ,90EDC ABC Ð=Ð=°,EDC ABC \D D ∽,ED CD AB AB BC BC \===,213EDC ABC s s D D \==,故C 错误;ED BE =Q ,AB CD BD==BE BD BD BC\=,2BD BC BE \=×,故D 正确故选C .【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.13.(2021·山西·太原五中九年级阶段练习)如图,D 、E 分别是ABC V 的边AB 、BC 上的点,且//DE AC ,若:1:3BDE CDE S S =V V ,则DOE AOC S S V V :的值( )A .13B .14C .19D .116【答案】D【解析】【分析】证明:1:3=BE EC ,得出:1:4BE BC =;证明BDE BAC D D ∽,DOE AOC D D ∽,得到14DE BE AC BC ==,由相似三角形的性质即可解决问题.【详解】解::1:3BDE CDE S S D D =Q ,:1:3BE EC \=;:1:4BE BC \=;//DE AC Q ,BDE BAC \D D ∽,DOE AOC D D ∽,\14DE BE AC BC ==,21:()16DOE AOC DE S S AC D D \==.故选:D .【点睛】本题主要考查了相似三角形的判定及其性质的应用问题,解题的关键是灵活运用相似三角形的判定及其性质来分析、判断、推理或解答.14.(2021·四川绵阳·中考真题)如图,在ACD △中,6AD =,5BC =,()2AC AB AB BC =+,且DAB DCA V :V ,若3AD AP =,点Q 是线段AB 上的动点,则PQ 的最小值是( )A B C D .85【答案】A【解析】【分析】根据相似三角形的性质得到A D C DB D A D =,得到4BD =,4AB BD ==,过B 作BH AD ^于H ,根据等腰三角形的性质得到132AH AD ==,根据勾股定理得到BH ==,当PQ AB ^时,PQ 的值最小,根据相似三角形的性质即可得到结论.【详解】解:DAB DCA D D Q :,AD CD BD AD\=,656BD BD +\=,解得:4BD =(负值舍去),DAB DCA D D Q :,9362AC CD AB AD \===,32AC AB \=,()2AC AB AB BC =+Q ,()232AB AB AB BC æö\=+ç÷èø,4AB \=,4AB BD \==,过B 作BH AD ^于H ,132AH AD \==,BH \=,3,6AD AP AD ==Q ,2AP \=,当PQ AB ^时,PQ 的值最小,90,AQP AHB PAQ BAHÐ=Ð=°Ð=ÐQ APQ ABH \D D :,AP PQ AB BH\=,24\PQ \故选:A .【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.15.(2021·福建·莆田八中九年级阶段练习)如图,点D 在等边三角形ABC 的边BC 上,连接AD ,线段AD 的垂直平分线EF 分别交边AB 、AC 于点E 、F .当CD =2BD 时,AE AF 的值为___.【答案】45##0.8【解析】。

相似三角形的位似定理与三角形位似点

相似三角形的位似定理与三角形位似点

相似三角形的位似定理与三角形位似点在几何学中,相似三角形是指具有相同形状但可能不同的大小的三角形。

相似三角形之间存在着一些重要的定理和性质,其中最为重要的是位似定理和位似点。

本文将探讨相似三角形的位似定理以及位似点的性质和应用。

一、相似三角形的位似定理相似三角形的位似定理是指,如果两个三角形对应的角度相等,则这两个三角形是相似的。

更具体地说,如果两个三角形的对应角度分别相等,则这两个三角形是相似的。

例1:如图1所示,∠A = ∠D,∠B = ∠E,∠C = ∠F,则△ABC 与△DEF是相似的。

图1:相似三角形的位似定理示意图相似三角形的位似定理的证明比较简单,只需要利用角度的性质即可。

假设△ABC与△DEF是相似的,我们需要证明∠A = ∠D,∠B = ∠E,∠C = ∠F。

首先,由于△ABC与△DEF是相似的,所以根据相似三角形的定义,有AB/DE = BC/EF = AC/DF。

假设AB/DE = BC/EF,即AB * EF = BC * DE。

另外,假设AC/DF = BC/EF,即AC * EF = BC * DF。

两个等式联立,可以得到AB * EF = AC * EF,即AB = AC。

结合三角形的性质,可以得知∠A = ∠D。

同样的方法可以证明∠B = ∠E,∠C =∠F。

由此可见,如果两个三角形的对应角度相等,则这两个三角形是相似的。

二、三角形位似点的性质和应用三角形位似点是指两个相似三角形中对应顶点的连线交于一点。

这个位似点在相似三角形中担任着重要的角色,具有一些独特的性质和应用。

位似点的性质之一是,如果两个相似三角形的对应顶点分别连接起来,那么这两条连线将会平行。

这是因为对于相似三角形△ABC和△DEF来说,点A和点D连接后得到的线段AD平行于线段BC,点B 和点E连接后得到的线段BE平行于线段AC,点C和点F连接后得到的线段CF平行于线段AB。

位似点的性质之二是,对于一个三角形位似点,它与三角形的顶点的连线的比例等于两个相似三角形的对应边的比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档