初中数学分式方程专项练习
初二八年级数学分式方程中考专项练习题(含答案)完整版
分式方程精华练习题(含答案)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( )A.2B.1C.-2D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C 9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%xx-=+;三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32-经检验,x=32-是原方程的根. 22.6天,24.解;5=x(二)一、选择题(每小题3分,共30分) 1.下列式子是分式的是( )A .2x B .x 2 C .πx D .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .a m a n m n ++=3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( )A.3+m m B.3+-m mC.3-m mD.m m -3 5.若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c ba +的值是( ) A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
初中数学:分式方程习题精选(附参考答案)
初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。
求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。
甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。
已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。
(专题精选)初中数学方程与不等式之分式方程真题汇编
(专题精选)初中数学方程与不等式之分式方程真题汇编一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=- C .4241x x x +-=- D .221x x x +-=-【答案】C 【解析】 【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案. 【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1, 去括号得:4x+2x-4=x-1, 故选:C . 【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭ B .30155113x x -=⎛⎫- ⎪⎝⎭ C .15305113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫- ⎪⎝⎭【答案】A 【解析】 【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3得出方程即可. 【详解】解:设去年居民用水价格为x 元/3m ,根据题意得:30155113x x -=⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A 【解析】 【分析】根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=,∵关于x 的分式方程的解为非负数,∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误; 故选:A . 【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .【答案】B 【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得: ,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x -= D .800800401.25x x-= 【答案】C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800800401.25x x-=,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.7.如果关于x的不等式(a+1)x>2的解集为x<-1,则a的值是().A.a=3 B.a≤-3 C.a=-3 D.a>3【答案】C【解析】【分析】根据不等式的解集得出关于a的方程,解方程即可.【详解】解:因为关于x的不等式(a+1)x>2的解集为x<-1,所以a+1<0,即a<-1,且21a+=-1,解得:a=-3.经检验a=-3是原方程的根故选:C.【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.8.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可以列出方程为()A.480360140x x=-B.480480140x x=-C.480360140x x+=D.360480140x x-=【答案】A【解析】【分析】设甲每天做x个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x个零件,根据题意得:480360140x x=-,故选:A.此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.9.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩„有解,则所有符合条件的整数a 的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x --=--,得: 12a x +=,∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩„有解,∴a-1<y ≤8-2a , 即a-1<8-2a , 解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1, 则符合题意的整数a 的值有0、2,有2个, 故选:B . 【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.10.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( ) A .3个 B .4个C .5个D .6个【答案】B 【解析】 【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案. 【详解】解:根据题意,得:12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个; 故选:B . 【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( ) A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 【答案】A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x=- C .405012x x =+ D .405012x x=+ 【答案】B 【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .13.如果解关于x 的分式方程2122m xx x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-4【答案】D 【解析】 【详解】2122m xx x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2. 当x =2时,m +4=2﹣2,m =﹣4, 故选D .14.已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶 15 千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是A .354515x x =- B .3545+15x x= C .3545-15x x = D .3545+15x x = 【答案】D 【解析】 【分析】首先根据甲车的速度为x 千米/小时,表示出乙车的速度为(x+15)千米/小时,再根据关键是语句“甲车行驶35千米与乙车行驶45千米所用时间相同”列出方程即可. 【详解】解:设甲车的速度为x 千米/小时,则乙车的速度为(x+15)千米/小时,由题意得:3545+15x x =, 故选D . 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出甲乙两车的速度,再根据关键是语句列出方程即可.此题用到的公式是:路程÷速度=时间.15.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A .B .C .D .【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.16.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C .100005x -﹣9000x =100 D .9000x ﹣100005x -=100 【答案】B 【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x 元,则可列方程为:9000x 5-﹣10000x =100, 故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.解分式方程21211x x =--时,去分母化为一元一次方程,正确的是( ) A .x +1=2(x ﹣1) B .x ﹣1=2(x +1) C .x ﹣1=2 D .x +1=2 【答案】D 【解析】 【分析】先确定分式方程的最简公分母,然后左右两边同乘即可确定答案; 【详解】解:由题意可得最简公分母为(x+1)(x-1) 去分母得:x +1=2, 故答案为D . 【点睛】本题考查了分式方程的解法,解答的关键在于最简公分母的确定.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=.故选C.点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.。
(专题精选)初中数学方程与不等式之分式方程经典测试题及答案
(专题精选)初中数学方程与不等式之分式方程经典测试题及答案一、选择题1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数, ∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .【答案】B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:, 故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x =- D .90606x x=+ 【答案】A解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:90606x x=-.故选A.8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 【答案】B【解析】【分析】 设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.【详解】 根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( )A .3个B .4个C .5个D .6个【答案】B【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个;故选:B .【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.13.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .14.方程31144x x x --=--的解是( ) A .-3B .3C .4D .-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16B .﹣15C .﹣6D .﹣4 【答案】D【解析】【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可.【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10,当a =﹣2时,x =3,原分式方程无解,所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩, 由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4,∴a =1,0,﹣1,﹣4,之和为﹣4,故选:D .【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ).A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.。
解分式方程专项练习200题(精心整理有答案)
解分式方程专项练习200题(有答案)(1)=1﹣;(2)+=1.(3)+=1;(4)+2=.(5)+=(6)+=﹣3.(7)(8).(9)(10)﹣=0.(11)(12).(13)+3=(14)+=.(15)=;(16).(17)(18).(19)﹣=1 (20)=+1.(21);(22).(23)=1;(24).(25);(26).(27);(28).(29)=;(30)﹣=1.(31);(32).(33);(34).(35)=(36)=.(37)(38)(39)(40)(41);(42).(43)=(44).(45)(46)=1﹣.(47);(48).(49)(50).(51)=;(52)=1﹣.(53)(54).(55).(56);(57).(58)=;(59).(60)﹣1=(61)+=.(62)(63).(64)(65).(66).(67)﹣=.(68);(69).(70)(71).(72)(73).(74);(75).(76)(77).(78).(79)(80).(81)(82).(83)(84).(85)(86).(87);(88).(89)﹣1=;(90)﹣=.(91)﹣=1;(92)﹣1=.(93);(94).(95)﹣=1;(96)+=1.(97).(98).(99).(100)+=.(101).(102).(103)+2=.(104).(105)(106)﹣=.(107)+=1.(108)=+3.(109)(110)﹣=1(111)(112).(113)=1.(114)(115)=﹣.(116).(117).(118).(119).(120).(121);(122).(123)(124)(125).(126)(127)+=(128)(129);(130).(131)(132)(133)(134)(135)(136).(137)+2=(138)=﹣.(139).(140).(141).(142).(143).(144)(145).(146)(147)(148)﹣=1﹣.(149)(150).(151);(152).(153)(154)(155).(156)(157).(158);(159);(160);(161).(162);(163).(164);(165).(166);(167).(168)+=+.(169)﹣=﹣.(170)(171).(172);(173)=0.(174)(175).(176)(177).(178)(179).(180)(181).(182).(183)=;(184).(185)=;(186)=.(187);6yue28(188);(189);(190).(191)=; (192).(193)=1;(194). (195)+= (196)=1; (197)(198)﹣=;(199)﹣=0(m≠n).(200)+=0;(201)+=﹣2.参考答案:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:x2﹣4x+4+4=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解3.解方程:(3)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解;(4)去分母得:1﹣x+2x﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解(5)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,原分式方程无解;(6)去分母得:1﹣x+1=﹣3x+6,移项合并得:2x=4,解得:x=2,经检验x=2是增根,原分式方程无解(7)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(8)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3(9)方程两边同乘(x﹣2)(x+2),得x(x+2)+2=(x﹣2)(x+2),解得x=﹣3,检验:当x=﹣3时,(x﹣2)(x+2)≠0,所以x=﹣3是原分式方程的解;(10)方程两边同乘x(x﹣1),得3x﹣(x+2)=0,解得x=1,检验:当x=1时,x(x﹣1)=0,x=1是原分式方程的增根.所以,原方程无解(11)去分母额:x+1﹣2(x﹣1)=4,去括号得:x+1﹣2x+2=4,移项合并得:﹣x=1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(12)去分母得:3+x(x﹣2)=(x﹣1)(x ﹣2),整理得:﹣2x+3x=2﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解(13)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(14)去分母得:2x﹣2+3x+3=6,移项合并得:5x=5,解得:x=1,经检验x=1是增根,分式方程无解(15)去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解;(16)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(17)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,3(x﹣5)≠0,则原分式方程的解为x=15;(18)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解(19)去分母得:x(x+2)﹣1=x2﹣4,即x2+2x﹣1=x2﹣4,移项合并得:2x=﹣3,解得:x=﹣,经检验是分式方程的解;(20)去分母得:2x=4+x﹣2,移项合并得:x=2,经检验x=2是增根,分式方程无解(21)去分母得:6x﹣15﹣4x2﹣10x+4x2﹣25=0,移项合并得:﹣4x=40,解得:x=﹣10,经检验x=﹣10是分式方程的解;(22)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解(23)去分母得:x(x+2)+6(x﹣2)=x2﹣4,去括号得:x2+2x+6x﹣12=x2﹣4,移项合并得:8x=8,解得:x=1,经检验x=1是分式方程的解;(24)去分母得:4x﹣4+5x+5=10,移项合并得:9x=9,解得:x=1,经检验x=1是增根,分式方程无解(25)方程两边都乘以x﹣2得:x﹣1+2(x﹣2)=1,解方程得:x=2,∵经检验x=2是原方程的增根,∴原方程无解;(26)方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣16=(x+1)2,解得:x=﹣4,∵经检验x=﹣4是原方程的解,∴原方程的解是x=﹣4(27)解:两边同乘x﹣2,得:3+x=﹣2(x﹣2),去括号得:3+x=﹣2x+4,移项合并得:3x=1,解得:x=,经检验,x=是原方程的解;(28)两边同乘(x﹣1)(x+1),得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验,x=1是原方程的增根,则原方程无解(29)去分母得:2(x+1)=3x,去括号得:2x+2=3x,解得:x=2,经检验:x=2是原方程的解;(30)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验:x=1 是原方程的增根,原方程无解(31)去分母得:2(x﹣9)+6=x﹣5,去括号得:2x﹣18+6=x﹣5,解得:x=7;(32)去分母得:3x+15+4x﹣20=2,移项合并得:7x=7,解得:x=1(33)去分母得:2x﹣18+6=x﹣5,移项合并得:x=7;(34)去分母得:5(x+2)﹣4(x﹣2)=3x,去括号得:5x+10﹣4x+8=3x,移项合并得:2x=18,解得:x=9(35)去分母得:6x=3x+3﹣x,移项合并得:4x=3,解得:x=,经检验x=是原方程的根;(36)去分母得:6x+x(x+1)=(x+4)(x+1),去括号得:6x+x2+x=x2+5x+4,移项合并得:2x=4,解得:x=2,经检验x=2是原方程的根(37)方程两边同乘(x﹣1)(x+1),得:2(x﹣1)﹣x=0,整理解得x=2.经检验x=2是原方程的解.(38)方程两边同乘(x﹣3)(x+3),得:3(x+3)=12,整理解得x=1.经检验x=1是原方程的解(39)方程两边同乘(x+1)(x﹣1),得:(x+1)2﹣4=(x+1)(x﹣1),整理解得x=1.检验x=1是原方程的增根.故原方程无解.(40)方程两边同乘x﹣5,得:3+x+2=3(x﹣5),解得x=10.经检验:x=10是原方程的解(41)方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得x=2,经检验x=2是原方程的解;(42)方程两边同乘2(x﹣1),得:3﹣2=6x ﹣6,解得x=,经检验x=是方程的根(43)原方程变形得2x=x﹣1,解得x=﹣1,经检验x=﹣1是原方程的根.∴原方程的解为x=﹣1.(44)两边同时乘以(x2﹣4),得,x(x﹣2)﹣(x+2)2=8,解得x=﹣2.经检验x=﹣2是原方程的增根.∴原分式方程无解(45)方程两边同乘(x﹣2),得:x﹣1﹣3(x﹣2)=1,整理解得x=2.经检验x=2是原方程的增根.∴原方程无解;(46)方程两边同乘(3x﹣8),得:6=3x﹣8+4x﹣7,解得x=3.经检验x=3是方程的根(47)方程两边同乘以(x﹣2),得1﹣x+2(x﹣2)=1,解得x=4,将x=4代入x﹣2=2≠0,所以原方程的解为:x=4;(48)方程两边同乘以(2x+3)(2x﹣3),得﹣2x﹣3+2x﹣3=4x,解得x=﹣,将x=﹣代入(2x+3)(2x﹣3)=0,是增根.所以原方程的解为无解(49)方程两边同乘以(x﹣1)(x+1)得,2(x﹣1)﹣(x+1)=0,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3;(50)方程两边同乘以(x﹣2)(x+2)得,(x﹣2)2﹣(x﹣2)(x+2)=16,解得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解(51)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1.检验:将x=﹣1代入x(x+1)=0,所以x=﹣1是原方程的增根,故原方程无解;(52)方程两边同乘(2x﹣5),得x=2x﹣5+5,解得:x=0.检验:将x=0代入(2x﹣5)≠0,故x=0是原方程的解(53)方程两边同乘以(x﹣3)(x+3),得x﹣3+2(x+3)=12,解得x=3.检验:当x=3时,(x﹣3)(x+3)=0.∴原方程无解;(54)方程的两边同乘(x﹣2),得1﹣2x=2(x﹣2),解得x=.检验:当x=时,(x﹣2)=﹣≠0.∴原方程的解为:x=(55).(55)方程的两边同乘(x+1)(x﹣1),得1﹣3x+3(x2﹣1)=﹣(x+1),3x2﹣2x﹣1=0,(4分)解得:.经检验,x1=1是原方程的增根,是原方程的解.∴原方程的解为x2=﹣.(56);(57).(56)方程两边同乘2(x﹣2),得:3﹣2x=x﹣2,解得x=.检验:当x=时,2(x﹣2)=﹣≠0,故原方程的解为x=;(57)方程两边同乘3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2.检验:当x=2时,3(x﹣2)=0,所以x=2是原方程的增根(58)=;(59).(58)方程两边同乘以(2x+3)(x﹣1),得5(x﹣1)=3(2x+3)解得:x=﹣14,检验:当x=﹣14时,(2x+3)(x﹣1)≠0 所以,x=﹣14是原方程的解;(59)方程两边同乘以2(x﹣1),得2x=3﹣4(x﹣1)解得:,检验:当时,2(x﹣1)≠0∴是原方程的解(60)方程两边都乘以2(3x﹣1)得:4﹣2(3x﹣1)=3,解这个方程得:x=,检验:∵把x=代入2(3x﹣1)≠0,∴x=是原方程的解;(61)原方程化为﹣=,方程两边都乘以(x+3)(x﹣3)得:12﹣2(x+3)=x﹣3解这个方程得:x=3,检验:∵把x=3代入(x+3)(x﹣3))=0,∴x=3是原方程的增根,即原方程无解(62)方程的两边同乘(x﹣3),得2﹣x﹣1=x﹣3,解得x=2.检验:把x=2代入(x﹣3)=﹣1≠0.∴原方程的解为:x=2.(63)方程的两边同乘6(x﹣2),得3(x﹣4)=2(2x+5)﹣3(x﹣2),解得x=14.检验:把x=14代入6(x﹣2)=72≠0.∴原方程的解为:x=14(64)方程的两边同乘2(3x﹣1),得﹣2﹣3(3x﹣1)=4,解得x=﹣.检验:把x=﹣代入2(3x﹣1)=﹣4≠0.∴原方程的解为:x=﹣;(65)方程两边同乘以(x+2)(x﹣2),得x(x﹣2)﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,解得x=﹣2,将x=﹣2代入(x+2)(x﹣2)=0,所以原方程无解(66)方程两边同乘以(x﹣2)得:1+(1﹣x)=﹣3(x﹣2),解得:x=2,检验:把x=2代入(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程的解为:x=2;(67)解:方程两边同乘以(x+1)(x﹣1)得:(x+1)﹣2(x﹣1)=1解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,即x=2是原分式方程的解,则原分式方程的解为:x=2(68)方程的两边同乘2(x﹣2),得:1+(x﹣2)=﹣6,解得:x=﹣5.检验:把x=﹣5代入2(x﹣2)=﹣14≠0,即x=﹣5是原分式方程的解,则原方程的解为:x=﹣5.(69)方程的两边同乘x(x﹣1),得:x﹣1+2x=2,解得:x=1.检验:把x=1代入x(x﹣1)=0,即x=1不是原分式方程的解;则原方程无解(70)方程的两边同乘(2x+1)(2x﹣1),得:2(2x+1)=4,解得x=.检验:把x=代入(2x+1)(2x﹣1)=0,即x=不是原分式方程的解.则原分式方程无解.(71)方程的两边同乘(2x+5)(2x﹣5),得:2x(2x+5)﹣2(2x﹣5)=(2x+5)(2x ﹣5),解得x=﹣.检验:把x=﹣代入(2x+5)(2x﹣5)≠0.则原方程的解为:x=﹣(72)原式两边同时乘(x+2)(x﹣2),得2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),2x2﹣4x﹣3x﹣6=2x2﹣8,﹣7x=﹣2,x=.经检验x=是原方程的根.(73)原式两边同时乘(x2﹣x),得3(x﹣1)+6x=7,3x﹣3+6x=7,9x=10,x=.经检验x=是原方程的根(74)方程两边都乘以(x+1)(x﹣1)得,3(x+1)﹣(x+3)=0,解得x=0,检验:当x=0时,(x+1)(x﹣1)=(0+1)(0﹣1)=﹣1≠0,所以,原分式方程的解是x=0;(75)方程两边都乘以2(x﹣2)得,3﹣2x=x﹣2,解得x=,检验:当x=时,2(x﹣2)=2(﹣2)≠0,所以,原分式方程的解是x=(76)最简公分母为x(x﹣1),去分母得:3x﹣(x+2)=0,去括号合并得:2x=2,解得:x=1,将x=1代入得:x(x﹣1)=0,则x=1为增根,原分式方程无解;(77)方程变形为﹣=1,最简公分母为x﹣3,去分母得:2﹣x﹣1=x﹣3,解得:x=2,将x=2代入得:x﹣3=2﹣3=﹣1≠0,则分式方程的解为x=2(78)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,经检验x=2是增根,原分式方程无解(79)去分母得:x2﹣6=x2﹣2x,解得:x=3,经检验x=3是分式方程的解;(80)去分母得:x﹣6=2x﹣5,解得:x=﹣1,经检验x=﹣1是分式方程的解(81)去分母得:x=3x﹣6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(82)去分母得:(x﹣2)2﹣x2+4=16,整理得:﹣4x+4+4=16,移项合并得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解(83)方程两边同时乘以y(y﹣1)得,2y2+y(y﹣1)=(3y﹣1)(y﹣1),解得y=.检验:将y=代入y(y﹣1)得,(﹣1)=﹣符合要求,故y=是原方程的根;(84)方程两边同时乘以x2﹣4得,(x﹣2)2﹣(x+2)2=16,解得x=﹣2,检验:将x=2代入x2﹣4得,4﹣4=0.故x=2是原方程的增根,原方程无解(85)去分母得:x﹣3+x﹣2=﹣3,整理得:2x=2,解得:x=1,经检验x=1是分式方程的解;(86)去分母得:x(x﹣1)=(x+3)(x﹣1)+2(x+3),去括号得:x2﹣x=x2﹣x+3x﹣3+2x+6,移项合并得:﹣5x=3,解得:x=﹣,经检验x=﹣是分式方程的解(87)原方程可化为:,方程的两边同乘(2x﹣4),得1+x﹣2=﹣6,解得x=﹣5.检验:把x=﹣5代入(2x﹣4)=﹣14≠0.∴原方程的解为:x=﹣5.(88)原方程可化为:,方程的两边同乘(x2﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x2﹣1)=0.∴x=1不是原方程的解,∴原方程无解.(89)去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(90)去分母得:(x﹣2)2﹣16=(x+2)2,去括号得:x2﹣4x+4﹣16=x2+4x+4,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解(91)去分母得:x(x+1)﹣2(x﹣1)=x2﹣1,去括号得:x2+x﹣2x+2=x2﹣1,解得:x=3,经检验x=是分式方程的解;(92)去分母得:x(x+2)﹣(x+2)(x﹣1)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,原方程无解(93)去分母得:3﹣2=6x﹣6,解得:x=,经检验是分式方程的解;(94)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(95)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解;(96)去分母得:x﹣5=2x﹣5,解得:x=0,经检验x=0是分式方程的解(97)解:方程的两边同乘(x+2)(x﹣2),得x+2+x﹣2=3,解得x=.检验:把x=代入(x+2)(x﹣2)=﹣≠0.∴原方程的解为:x=(98)去分母两边同时乘以x(x﹣2),得:4+(x﹣2)=3x,去括号得:4+x﹣2=3x,移项得:x﹣3x=2﹣4,合并同类项得:﹣2x=﹣2,系数化为1得:x=1.把x=1代入x(x﹣2)=﹣1≠0,∴原方程的解是:x=1(99)去分母得:x2﹣9=x2+3x﹣3,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解(100)方程的两边同乘(x+1)(x﹣1),得6x+x(x+1)=(x+4)(x﹣1),解得x=﹣1.检验:把x=﹣1代入(x+1)(x﹣1)=0.∴原方程无解(101)方程两边都乘以(x﹣1)(x+2)得,3﹣x(x+2)+(x+2)(x﹣1)=0,解得x=1,检验:当x=1时,(x﹣1)(x+2)=0,所以,x=1是原方程的增根,故原方程无解(102方程两边同时乘以(x+2)(x﹣2),得x(x﹣2)﹣3(x+2)(x﹣2)=8,整理,得x2+x﹣2=0,∴x1=﹣2,x2=1.经检验x1=﹣2是增根,x2=1是原方程的解,∴原方程的解为x2=1(103)方程两边都乘以x(x+1)去分母得:1+2x2+2x=2x2+x,解得x=﹣1,检验:当x=﹣1时,x(x+1)=﹣1×(﹣1+1)=0,所以,x=﹣1不是原方程的解,所以,原分式方程无解(104)原方程可化为:﹣=1,方程的两边同乘(2x﹣5),得x﹣6=2x﹣5,解得x=﹣1.检验:把x=﹣1代入(2x﹣5)=﹣7≠0.∴原方程的解为:x=﹣1(105)方程两边同乘(x﹣1)(x+2),得:x(x+2)=(x﹣1)(x+2)+3化简得2x=x﹣2+3,解得x=1.经检验x=1时,(x﹣1)(x+2)=0,1不是原方程的解,∴原分式方程无解(106)去分母得:x﹣1+2(x+1)=1,去括号得:x﹣1+2x+2=1,移项合并得:3x=0,解得:x=0,经检验x=0是分式方程的解(107)解:去分母得:x2+5x+2=x2﹣x,移项合并得:6x=﹣2,解得:x=﹣,经检验是分式方程的解(108)解:去分母得:x﹣1=3﹣x+3x+6,解得:x=﹣10,经检验x=﹣10是分式方程的解(109)解:去分母得:2(x+1)﹣4=5(x﹣1),2x+2﹣4﹣5x+5=0,﹣3x=﹣3,∴x=1,经检验x=1是增根舍去,所以原方程无解 (110)解:﹣=1﹣=1(4分)=1,∴a=2.经检验a=2是原方程的解,故此方程的根为:a=2(111)解:原方程可化为:=1+, 方程的两边同乘(2x ﹣1),得 x ﹣1=2x ﹣1+2, 解得x=﹣2.检验:把x=﹣2代入(2x ﹣1)=﹣5≠0. ∴原方程的解为x=﹣2 (112)解:.=,=,(x ﹣1)2+9=3(x+2)x 2﹣5x+4=0, x 1=4,x 2=1 检验:把x 1=4分别代入(x+2)(x ﹣1)=18≠0, ∴x 1=4是原方程的解; 把x 2=1分别代入(x+2)(x ﹣1)=0, ∴x 2=1不是原方程的解, ∴x=4是原方程的解 (113)解:原方程可化为:﹣=1,方程的两边同乘(a ﹣1)2,得(a ﹣1)(a+1)﹣a 2=(a ﹣1)2,﹣1=(a ﹣1)2,因为(a ﹣1)2是非负数, 故原方程的无解 (114)解:原方程化为:+=﹣,去分母,得5(x+3)+5(x ﹣3)=﹣4(x+3)(x ﹣3),去括号,整理,得2x 2+5x ﹣18=0,即(2x+9)(x ﹣2)=0, 解得x 1=﹣,x 2=2,经检验,当x=﹣或2时,5(x+3)(x ﹣3)≠0,所以,原方程的解为x 1=﹣,x 2=2 (115)解:方程的两边同乘15(m 2﹣3+7m ),得15(m ﹣9)=﹣7(m 2﹣3+7m ),整理,得7m 2+64m ﹣156=0, 解得m 1=2,m 2=﹣.检验:把m 1=2代入15(m 2﹣3+7m )≠0,则m 1=2是原方程的根; 把m 2=﹣代入15(m 2﹣3+7m )≠0,则m 2=﹣是原方程的根.故原方程的解为:m 1=2,m 2=﹣(116)解:方程两边同乘以(x+1)(x ﹣1),得(x+1)2﹣12=(x+1)(x ﹣1), x 2+2x+1﹣12=x 2﹣1x 2+2x ﹣11﹣x 2+1=0, 2x ﹣10=0 2x=10 x=5,经检验:x=5是原分式方程的解, 所以原方程的解为x=5(117)解:原方程可化为:﹣+=0,方程的两边同乘x 2﹣4得:﹣6+2(x+2)=0,解得x=1.检验:把x=1代入x 2﹣4=﹣3≠0,方程成立, ∴原方程的解为:x=1 (118)方程两边同乘最简公分母x (x ﹣1),得x+4=3x , 解得x=2, 检验:当x=2时,x (x ﹣1)=2×(2﹣1)=2≠0, ∴x=2是原方程的根, 故原分式方程的解为x=2(119)方程两边都乘以(x ﹣1)(x+1)得, (x ﹣2)(x+1)+3(x ﹣1)=(x ﹣1)(x+1), x 2﹣x ﹣2+3x ﹣3=x 2﹣1,2x=4, x=2,检验:当x=2时,(x ﹣1)(x+1)≠0, 所以,原分式方程的解x=2(120)方程的两边同乘2(x ﹣2)(x+2),得3(x+2)﹣2x (x ﹣2)=(x ﹣2)(x+2),3x+6﹣2x 2+4x=x 2﹣4, 3x 2﹣7x ﹣10=0, 解得x 1=﹣1,x 2=.经检验:x 1=﹣1,x 2=是原方程的解(121)去分母得:x ﹣3+2(x+3)=12, 去括号得:x ﹣3+2x+6=12, 移项合并得:3x=9, 解得:x=3,经检验x=3是增根,分式方程无解;(122)去分母得:x (x+2)﹣x ﹣14=2x (x﹣2)﹣x 2+4,去括号得:x 2+2x ﹣x ﹣14=2x 2﹣4x ﹣x 2+4, 移项合并得:5x=18, 解得:x=3.6,经检验x=3.6是分式方程的解(123)解:方程两边同乘3(x ﹣3) 得2x+9=3(4x ﹣7)+6(x ﹣3) 解得x=3经检验x=3是原方程增根, ∴原方程无解(124)方程两边同乘6(x ﹣2), 得3(5x ﹣4)+3(x ﹣2)=2(2x+5), 整理得:15x ﹣12+3x ﹣6=4x+10, 解得:x=2.检验:将x=2代入6(x ﹣2)=6(2﹣2)=0. ∴可得x=2是增根,原方程无解. (125)方程化为:=+1,方程两边都乘以(x+3)(x ﹣1)得:x+3=4+(x+3)(x ﹣1),整理得:x 2+x ﹣2=0, (x+2)(x ﹣1)=0, 解得:x 1=﹣2,x 2=1, 检验:当x=1时,(x+3)(x ﹣1)=0,即x=1是增根;当x=﹣2时(x+3)(x ﹣1)≠0,即x=﹣2是方程的根,即原方程的解是x=﹣2.(126)方程两边同乘以x (x ﹣1)得 3(x ﹣1)+2x=x+5, 3x ﹣3+2x=x+5, 4x=8,x=2,经检验知:x=2是原方程的解 (127).+=x 2+2x+5(x+1)=(x+4)(x ﹣1) 4x=﹣9 x=﹣检验:x=﹣时,(x+1)(x ﹣1)≠0, 所以x=﹣是原分式方程的解 (128)解:原方程变形为,,,,∴x 2﹣13x+42=x 2﹣9x+20, ∴x=,检验知x=是方程的根(129)方程的两边同乘x (x+1),得 x 2+x (x+1)=(2x+2)(x+1), 解得x=﹣.检验:把x=﹣代入x (x+1)=﹣≠0. ∴原方程的解为:x=﹣;(130)方程的两边同乘(x+1)(x ﹣1),得 2(x ﹣1)+3(x+1)=﹣5, 解得x=﹣.检验:把x=﹣代入(x+1)(x ﹣1)=≠0.∴原方程的解为:x=﹣(131)方程的两边同乘2(x ﹣3),得 2(x ﹣2)=x ﹣3+2,解得x=3.检验:把x=3代入2(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(132)方程的两边同乘(x﹣4),得5﹣x﹣1=x﹣4,解得x=4.检验:把x=4代入(x﹣4)=0.x=4是原方程的增根,∴原方程无解.(133)方程的两边同乘(x+1)(x﹣1),得2(x﹣1)+3(x+1)=6,解得x=1.检验:把x=1代入(x+1)(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(134)方程的两边同乘(x+2)(x﹣2),得(x﹣2)2﹣16=(x+2)2,解得x=﹣2.检验:把x=﹣2代入(x+2)(x﹣2)=0.x=﹣2是原方程的增根,∴原方程无解.(135)方程的两边同乘x(x﹣1),得6x+3(x﹣1)=x+5,解得x=1.检验:把x=1代入x(x﹣1)=0.x=1是原方程的增根,∴原方程无解.(136)方程的两边同乘x(x﹣1),得x2﹣2(x﹣1)=x(x﹣1),解得x=2.检验:把x=2代入x(x﹣1)=2≠0.∴原方程的解为:x=2(137)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(138)去分母得:15x﹣12=4x+10﹣3(x ﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解(139)解:去分母得:6x﹣3+5x=x+27,移项合并得:10x=30,解得:x=3.经检验x=3是分式方程的解(140)去分母得:3(x﹣2)﹣2(x﹣2)=2,即x﹣2=2,解得:x=4,经检验x=4是分式方程的解(141)解:去分母得:2﹣2x﹣3x﹣3=6,移项合并得:﹣5x=7,解得:x=﹣,经检验是分式方程的解(142)方程两边都乘以x(x+1)得,2(x+1)+6x=15,2x+2+6x=15,8x=13,x=,检验:当x=时,x(x+1)=×(+1)≠0,所以x=是分式方程的解,因此,原分式方程的解释x=(143)﹣=﹣,==方程两边都乘以(x+1)(x+2)(x+3)(x+4)得:(x+3)(x+4)=(x+1)(x+2)解方程得:x=﹣,经检验x=﹣是原方程的解,即原方程的解为x=﹣(144)原方程可化为:+2=,方程的两边同乘x﹣3,得1+2(x﹣3)=x﹣4,解得x=1.检验:把x=1代入x﹣3=﹣2≠0.∴原方程的解为:x=1;(145)方程的两边同乘(x+2)(x﹣2),得4+(x+2)(x+3)=(x ﹣1)(x ﹣2), 解得x=﹣1. 检验:把x=﹣1代入(x+2)(x ﹣2)=﹣3≠0. ∴原方程的解为:x=﹣1(146)方程两边同乘以(x+1)(2﹣x ),得:(2﹣x )+3(x+1)=0; 整理,得:2x+5=0, 解得:x=﹣2.5;经检验,x=﹣2.5是原方程的解. (147)原方程可化为:(1+)﹣(1+)=(1+)﹣(1+),整理得:=,去分母得:(x+5)(x+7)=(x+1)(x+3),即:x 2+12x+35=x 2+4x+3,解得x=﹣4; 经检验,x=﹣4是原方程的解(148)去分母得:7(x ﹣1)+3(x+1)=x (x 2﹣1)﹣x (x 2﹣7),去括号得:7x ﹣7+3x+3=x 3﹣x ﹣x 3+7x , 移项合并得:4x=4, 解得:x=1,经检验x=1是增根,原分式方程无解 (149)方程的两边同乘(2x ﹣3),得:x ﹣5=4(2x ﹣3), 解得:x=1.检验:把x=1代入(2x ﹣3)=﹣1≠0,即x=1是原分式方程的解. 则原方程的解为:x=1.(150)方程的两边同乘(x+2)(x ﹣2),得:x (x ﹣2)﹣(x+2)2=8, 解得:x=﹣2.检验:把x=﹣2代入(x+2)(x ﹣2)=0,即x=﹣2不是原分式方程的解. 则原方程无解(151)方程的两边同乘(2x ﹣1)(x ﹣2),得2x (x ﹣2)+(x ﹣1)(2x ﹣1)=2(2x ﹣1)(x ﹣2), 解得x=3. 检验:把x=﹣1代入(2x ﹣1)(x ﹣2)=5≠0. ∴原方程的解为:x=3.(152)方程的两边同乘2(x+3)(x ﹣3),得2(x ﹣3)﹣(x+3)=3x ﹣5, 解得x=﹣2.检验:把x=﹣2代入2(x+3)(x ﹣3)=﹣10≠0.∴原方程的解为:x=﹣2(153)方程的两边同乘(4x 2﹣8)(1﹣2x ),得:8(1﹣2x )+(2x+3)(4x 2﹣8)=﹣(4x 2﹣8)(1﹣2x ), 即2x 2﹣2x ﹣3=0, 解得:x=.检验:把x=代入(4x 2﹣8)(1﹣2x )≠0,故原方程的解为:x=.(154)方程的两边同乘x (x ﹣1),得:3(x ﹣1)+6x=7, 解得:x=.检验:把x=代入x (x ﹣1)=≠0,即x=是原分式方程的解,则原方程的解为:x=.(155)方程的两边同乘(3x ﹣8),得:6=3x ﹣8+(4x ﹣7), 解得:x=3.检验:把x=3代入(3x ﹣8)=1≠0,即x=3是原分式方程的解, 则原方程的解为:x=3(156)去分母得:x (x ﹣2)﹣(x+2)2=8,去括号得:x 2﹣2x ﹣x 2﹣4x ﹣4=8,即﹣6x=12,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解;(157)去分母得:3x=2x+3x+3, 移项合并得:2x=﹣3, 解得:x=﹣,经检验x=﹣是原分式方程的解(158)方程的两边同乘(x+2)(x ﹣2)得 3(x+2)=2(x ﹣2), 解得x=﹣10. 检验:把x=﹣10代入(x+2)(x ﹣2)=96≠0. ∴原方程的解为:x=﹣10.(159)方程的两边同乘(y ﹣2),得 1=y ﹣1﹣3(y ﹣2), 解得y=2.检验:把y=2代入(y ﹣2)=0. y=2是原方程的增根, ∴原方程无解.(160)方程的两边同乘(x+2)(x ﹣2)得(x ﹣2)2﹣(x+2)2=16, 解得x=﹣2.检验:把x=﹣2代入(x+2)(x ﹣2)=0. ∴x=﹣2是原方程的增根, ∴原方程无解. (161)原方程可化为:﹣20=,方程的两边同乘x ,得 3000﹣20x=2500, 解得x=25.经检验:x 不为0,x=25是原方程的解 (162)方程两边都乘以(4x ﹣8)(3x ﹣6)得:9x ﹣18=4x ﹣8, 9x ﹣4x=﹣8+18, 5x=10, x=2,检验:把x=2代入(4x ﹣8)(3x ﹣6)=0,即x=2是增根, 即原方程无解.(163)原方程化为:+=1﹣,方程的两边都乘以(x ﹣1)(x ﹣3)得: ﹣2(x ﹣3)+x (x ﹣1)=x 2﹣4x+3﹣(2x ﹣1),去括号得:﹣2x+6+x 2﹣x=x 2﹣4x+3﹣2x+1, 整理得:3x=﹣2, x=﹣,检验:把x=﹣代入(x ﹣1)(x ﹣3)≠0, 即x=﹣是原方程的解(164)方程两边都乘以2(x ﹣2)得,1+x ﹣2=6, 解得x=7, 检验:当x=7时,2(x ﹣2)=2×(7﹣2)=10≠0, 所以x=7是分式方程的解, 故原分式方程的解是x=7;(165)方程两边都乘以(x+2)(x ﹣2)得, x ﹣2+4x=2(x+2), 解得x=2,检验:当x=2时,(x+2)(x ﹣2)=(2+2)(2﹣2)=0,所以x=2不是分式方程的解,是增根, 故原分式方程无解 (166)方程变形得:﹣3=,去分母得:1﹣3(x ﹣2)=1﹣x ,去括号得:1﹣3x+6=1﹣x , 移项合并得:﹣2x=﹣6, 解得:x=3,将x=3代入检验是分式方程的解;(167)最简公分母为x (x+3)(x ﹣3), 去分母得:x ﹣3=2x+x+3, 移项合并得:2x=﹣6, 解得:x=﹣3,将x=﹣3代入得:x (x+3)(x ﹣3)=0, 则x=﹣3是增根,原分式方程无解 (168)方程变形得:+=+,即1﹣+1﹣=1﹣+1﹣, 整理得:+=+,即﹣=﹣,化简得:=,可得x 2﹣3x+2=x 2﹣13x+42,解得:x=4,经检验x=4是分式方程的解(169)方程变形得:﹣=﹣,即1﹣﹣1+=1﹣﹣1+,整理得:﹣=﹣,即=,整理得:=,去分母得:x2+5x+6=x2+13x+42,解得:x=﹣4.5,经检验是分式方程的解(170)方程的两边同乘(x﹣3),得2x+1=4x﹣5+2(x﹣3),解得x=3.检验:把x=3代入(x﹣3)=0.x=3是原方程的增根,∴原方程无解.(171)方程的两边同乘(x﹣1)2,得x2﹣3x﹣(x+1)(x﹣1)=2(x﹣1),解得x=.检验:把x=代入(x﹣1)2=≠0.∴原方程的解为:x=(172)方程的两边同乘(x+3)(x﹣3),得x﹣3﹣2(x+3)=12,解得x=﹣21.检验:把x=﹣21代入(x+3)(x﹣3)≠0.∴原方程的解为:x=﹣21.(173)方程的两边同乘(x2﹣1),得x2﹣3x+2(x2﹣1)﹣3x(x+1)=0,解得x=﹣.检验:把x=﹣代入(x2﹣1)=﹣≠0.∴原方程的解为:x=﹣(174)方程两边同乘3(x+1),得:3x=2x+3x+3,解得:x=﹣1.5.检验:把x=﹣1.5代入3(x+1)=﹣1.5≠0.所以原方程的解为:x=﹣1.5;(175)方程两边同乘x(x+2)(x﹣2),得:3(x﹣2)﹣(x+2)=0,解得x=4.检验:把x=4代入x(x+2)(x﹣2)=48≠0,故原方程的解为:x=4(176)方程的两边同乘(x﹣2),得1=x﹣1﹣3(x﹣2),解得x=2.检验:把x=2代入(x﹣2)=0.∴x=2是原方程的解为增根解,∴原方程无解;(177)方程的两边同乘(x+4)(x﹣4),得5(x+4)(x﹣4)+96=(2x﹣1)(x﹣4)+(3x﹣1)(x+4),解得x=8.检验:把x=8代入(x+4)(x﹣4)=48≠0.∴原方程的解为:x=8(178)(179).(178)方程两边同时乘以x﹣4得:x﹣4+(x﹣5)=1,则x﹣4+x﹣5=1解得:x=5,检验:当x=5时,x﹣4=1≠0,则方程的解是x=5.(179)原方程即:+=,方程两边同时乘以6(x﹣2)得:3(5x﹣4)+3=2(2x+5)解得:x=,检验:当x=时,6(x﹣2)≠0,则方程的解是:x=(180)(181).(180)去分母得:10x﹣5=4x﹣2,移项合并得:6x=3,解得:x=0.5,经检验x=0.5是分式方程的解;(181)去分母得:5x2﹣80+96=(2x﹣1)(x ﹣4)+(3x﹣1)(x+4),去括号得:5x2﹣80+96=5x2+2x,移项合并得:2x=16,解得:x=8,经检验x=8是分式方程的解(182)原方程可化为:+=1+方程两边乘x(x+1)(x﹣1)得,7(x﹣1)+3(x+1)=x(x+1)(x﹣1)+x (7﹣x2)化简得,4x=4∴x=1检验:把x=1代入x(x+1)(x﹣1)=0∴x=1是原方程的增根.∴原方程无解(183)去分母得:5x+2=3x,移项合并得:2x=﹣2,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解;(184)去分母得:2x2﹣4x﹣x2﹣2x=x2﹣4﹣x﹣11,移项合并得:﹣5x=﹣15,解得:x=3,经检验x=3是分式方程的解(185)去分母得:3﹣2x=x+1,移项合并得:3x=2,解得:x=;(186)去分母得:(x﹣1)2﹣x(x+2)=9,整理得:﹣4x=8,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解(187)方程两边都乘(x+4)(x﹣4),得x+4=4解得x=0.检验:当x=0时,(x+4)(x﹣4)≠0.∴x=0是原方程的解.(188)方程两边都乘x(x﹣1),得3x﹣(x+2)=0,解得x=1.检验:当x=1时,x(x﹣1)=0.∴原方程无解.(189)方程两边都乘(x﹣3),得2﹣x﹣1=3(x﹣3),解得x=.检验:当x=时,x﹣3≠0.∴x=是原方程的解.(190)方程两边都乘6(x﹣2),得3(5x﹣4)=2(2x+5)﹣3×6(x﹣2),解得x=2.检验:当x=2时,6(x﹣2)≠0.∴x=2是原方程的解(191)原方程可化为:,方程两边都乘(x﹣2)(x﹣3),得:x(x﹣3)﹣(1﹣x2)=2x(x﹣2),解得x=1检验:当x=1时,(x﹣2)(x﹣3)≠0,∴x=1是原方程的解.(192)原方程可化为:,方程两边都乘(x+3)(x﹣2)(x﹣4),得5x(x﹣4)+(2x﹣5)(x﹣2)=(7x﹣10)(x+3),解得x=1.检验:当x=1时,(x+3)(x﹣2)(x﹣4)≠0.∴x=1是原方程的解(193)=1,方程两边同乘以(1﹣x)(3﹣x),得2(3﹣x)﹣x(1﹣x)+(2x﹣1)=(1﹣x)(3﹣x),去括号,得6﹣2x﹣x+x2+2x﹣1=3﹣3x﹣x+x2,整理,得3x=﹣2,解得:x=﹣.检验:当x=﹣时,(1﹣x)(3﹣x)≠0,∴x=﹣是原方程的解.(194),原方程可化为,约分,得,方程两边同乘以(x+3)(x ﹣4),得:3(x ﹣4)=4(x+3), 3x ﹣12=4x+12, ﹣x=24, ∴x=﹣24,检验:当x=﹣24时,(x+3)(x ﹣4)≠0, ∴x=﹣24是原方程的解(195)方程两边都乘(1+3x )(1﹣3x ),得:(1﹣3x )2﹣(1+3x )2=12,解得x=﹣1. 检验:当x=﹣1时,(1+3x )(1﹣3x )≠0∴x=﹣1是原方程的解(196)方程两边都乘(x+1)(x ﹣1),得(x+1)2﹣4=(x+1)(x ﹣1), 解得x=1.检验:当x=1时,(x+1)(x ﹣1)=0. ∴原方程无解.(197)方程两边都乘(3x ﹣5)(2x ﹣3), 得(3x+4)(2x ﹣3)+(3x ﹣5)(2x ﹣3)=(4x+1)(3x ﹣5), 解得x=.检验:当x=时,(3x ﹣5)(2x ﹣3)≠0. ∴x=是原方程的解(198)解:两边同乘以2(3x ﹣1),得 3(3x ﹣1)﹣2=5, 解得.经检验,是原方程的解.(199)解:两边同乘以x (x+1),得 m (x+1)﹣nx=0, 解得:. 经检验是方程的解(200)方程两边同乘(x+1)(1﹣2x ),得 (x ﹣1)(1﹣2x )+2x (x+1)=0, 整理解得:x=.经检验:x=是原方程的解.(201)方程两边同乘(x ﹣2),得 3﹣x=﹣2(x ﹣2), 解得:x=1.经检验:x=1是原方程的解。
初中数学:数学分式方程习题汇总(含参考答案)
分式方程习题汇总一.分式的定义(共1小题)1.在式子:−32x ,4x−y ,x +y ,x 2+2π,x 7+y 8,10x中,是分式的有()A .1个B .2个C .3个D .4个二.分式的值为零的条件(共1小题)2.若分式x 2−9x−3的值为零,则x 的值为()A .﹣3B .﹣1C .3D .±3三.分式的值(共1小题)3.已知1a −1b=2,则2a−2b−aba+5ab−b 的值为四.分式的基本性质(共1小题)4.若把分式x+3y2x的x 、y 同时变为原来的10倍,则分式的值(填变大,变小,不变)五.分式的乘除法(共1小题)5.化简x 2−1x 2−2x+1÷x+1x−1⋅1−x1+x 后的结果为()A .x+1x−1B .x−1x+1C .1−x1+xD .1+x 1−x六.分式的混合运算(共2小题)6.化简:(1−1x−2)÷x−3x 2−4x+4=.7.化简(1+1a−1)÷a 2a 2−1的结果是.七.分式的化简求值(共3小题)8.如果3x ﹣2y =0,那么代数式(x y +1)•3xx+y的值为()A .1B .2C .3D .49.如果a 2+a ﹣1=0,那么代数式(1−a−1a 2+2a+1)÷a a+1的值是()A .3B .1C .﹣1D .﹣310.先化简,再求值:(a +1a−2)÷a 2−1a−2,其中a 从﹣1,0,1中取一个合适的数代入求值.八.列代数式(分式)(共1小题)11.甲乙两个码头相距s 千米,某船在静水中的速度为a 千米/时,水流速度为b 千米/时,则船一次往返两个码头所需的时间为()小时.A .2s a+bB .2s a−bC .s a +s bD .s a+b +s a−b九.分式方程的定义(共1小题)12.下列关于x 的方程是分式方程的是()A .2+x 5=3+x6B .x2−3=x 3C .x−17+x=3D .35x =1一十.分式方程的解(共3小题)13.若关于x 的分式方程m x−2=1−2x2−x −1解为正数,则实数m 的取值范围是.14.若关于x 的分式方程3xx−2=m+3x−2+1无解,则m =.15.关于y 的方程:32−y =4+m y−2+1无解,求m 的值.一十一.分式方程的增根(共2小题)16.关于x 的方程2x−1x−2=mx−2+1有增根,则m 的值是()A .0B .2或3C .2D .317.若关于x 的分式方程3x+2mx+2=2有增根,则m 的值为.一十二.由实际问题抽象出分式方程(共4小题)18.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x 人,根据题意,可列方程为()A .600x=500x−15×(1﹣10%)B .600x×(1﹣10%)=500x−15C .600x−15=500x×(1﹣10%)D .600x−15×(1﹣10%)=500x 19.郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x 人,则依题意,可列方程为()A .3000x +2=3000x+50B .3000x −2=3000x+50C .3000x+2+50=3000xD .3000x+2−50=3000x20.某公司承担了制作500个上海世博会道路交通指引标志的任务,原计划x 天完成,实际平均每天多制作了12个,因此提前5天完成任务.那么根据题意,可以列出的方程是:.21.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前20天完成了任务,则原计划每天绿化的面积为多少万平方米.设原计划每天绿化的面积为x 万平方米,依题意可列方程.一十三.分式方程的应用(共2小题)22.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km ,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少10km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小王乘公交车上班平均每小时行驶()A .30kmB .36kmC .40kmD .46km23.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km /h ,则轮船在静水中航行的速度是()A .25km /hB .24km /hC .23km /hD .22km /h分式方程周末总结参考答案与试题解析一.分式的定义(共1小题)1.在式子:−32x ,4x−y ,x +y ,x 2+2π,x 7+y 8,10x中,是分式的有()A .1个B .2个C .3个D .4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【解答】解:−32x ,x +y ,x 2+2π,x 7+y 8的分母中不含有字母,是整式.4x−y ,10x的分母中含有字母,属于分式.故选:B .二.分式的值为零的条件(共1小题)2.若分式x 2−9x−3的值为零,则x 的值为()A .﹣3B .﹣1C .3D .±3【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:∵分式x 2−9x−3的值为零,∴x 2−9=0x −3≠0,解得x =﹣3.故选:A .三.分式的值(共1小题)3.已知1a −1b=2,则2a−2b−aba+5ab−b 的值为−53【分析】根据1a −1b =2得到a ﹣b =﹣2ab ,将2a−2b−ab a+5ab−b 变形为2(a−b)−aba−b+5ab 代入计算即可.【解答】解:∵1a −1b=2,∴b ﹣a =2ab ,即a ﹣b =﹣2ab ,∴2a−2b−ab a+5ab−b =2(a−b)−ab a−b+5ab =−4ab−ab −2ab+5ab =−5ab 3ab =−53.故答案为:−53.四.分式的基本性质(共1小题)4.若把分式x+3y2x的x 、y 同时变为原来的10倍,则分式的值不变(填变大,变小,不变)【分析】根据分式的基本性质即可求出答案.【解答】解:分式x+3y2x的x 、y 同时变为原来的10倍,可得10x+10×3y 2×10x =x+3y2x,与原分式相同,故答案为:不变.五.分式的乘除法(共1小题)5.化简x 2−1x 2−2x+1÷x+1x−1⋅1−x1+x 后的结果为()A .x+1x−1B .x−1x+1C .1−x 1+xD .1+x 1−x【分析】直接利用分式的乘除运算法则计算得出答案.【解答】解:原式=(x−1)(x+1)(x−1)2•x−1x+1•1−x1+x=1−x 1+x .故选:C .六.分式的混合运算(共2小题)6.化简:(1−1x−2)÷x−3x 2−4x+4=x ﹣2.【分析】先算括号内的减法,然后将算括号外的除法即可.【解答】解:(1−1x−2)÷x−3x 2−4x+4=x−2−1x−2⋅(x−2)2x−3=x−3x−2⋅(x−2)2x−3=x ﹣2,故答案为:x ﹣2.7.化简(1+1a−1)÷a 2a 2−1的结果是a+1a.【分析】根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式=a−1+1a−1•(a+1)(a−1)a 2=a a−1•(a+1)(a−1)a 2=a+1a ,故答案为:a+1a.七.分式的化简求值(共3小题)8.如果3x ﹣2y =0,那么代数式(x y +1)•3xx+y的值为()A .1B .2C .3D .4【分析】先将所求式子化简,再由已知得x y =23,整体代入即可.【解答】解:(x y +1)•3xx+y =x+y y •3xx+y =3x y ,∵3x ﹣2y =0,∴x y =23,∴原式=3×xy =3×23=2.故选:B .9.如果a 2+a ﹣1=0,那么代数式(1−a−1a 2+2a+1)÷aa+1的值是()A .3B .1C .﹣1D .﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a 2+a =1,整体代入计算可得.【解答】解:原式=(a 2+2a+1a 2+2a+1−a−1a 2+2a+1)÷aa+1=a 2+a+2(a+1)2•a+1a =a 2+a+2a(a+1)=a 2+a+2a 2+a,∵a 2+a ﹣1=0,∴a 2+a =1,则原式=1+21=3,故选:A .10.先化简,再求值:(a +1a−2)÷a 2−1a−2,其中a 从﹣1,0,1中取一个合适的数代入求值.【分析】先通分算括号内的,把除化为乘,再分解因式约分,化简后将有意义的a 的值代入即可.【解答】解:原式=a 2−2a+1a−2•a−2a 2−1=(a−1)2a−2•a−2(a+1)(a−1)=a−1a+1,∵a 取1和﹣1,原式无意义,∴当a =0时,原式=0−10+1=﹣1.八.列代数式(分式)(共1小题)11.甲乙两个码头相距s 千米,某船在静水中的速度为a 千米/时,水流速度为b 千米/时,则船一次往返两个码头所需的时间为()小时.A .2s a+bB .2s a−bC .s a +s bD .s a+b +s a−b【分析】根据顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,分别表示出船往返的速度,由时间=路程÷时间表示出往返所需的时间即可.【解答】解:根据题意得:s a+b +sa−b.故选:D .九.分式方程的定义(共1小题)12.下列关于x 的方程是分式方程的是()A .2+x 5=3+x6B .x 2−3=x3C .x−17+x=3D .35x =1【分析】由分式方程的定义:分母中含有未知数的方程叫分式方程.根据定义结合选项即可求解.【解答】解:选项A、B、D是整式方程,不符合题意;选项C,是分式方程,符合题意;故选:C.一十.分式方程的解(共3小题)13.若关于x的分式方程mx−2=1−2x2−x−1解为正数,则实数m的取值范围是m>1且m≠3.【分析】先去分母把分式方程化成整式方程,再结合题意得出关于m的不等式组,解不等式组即可得出m的取值范围.【解答】解:去分母得:m=2x﹣1﹣(x﹣2),解得:x=m﹣1,∵x>0且x≠2,∴m﹣1>0且m﹣1≠2,解得:m>1且m≠3,故答案为:m>1且m≠3.14.若关于x的分式方程3xx−2=m+3x−2+1无解,则m=3.【分析】求出分式方程的解为x=m+12,由题意可得2=m+12,求出m即可.【解答】解:3xx−2=m+3x−2+1,3x=m+3+x﹣2,2x=m+1,x=m+12,∵方程无解,∴x=2,∴2=m+1 2,∴m=3,故答案为:3.15.关于y的方程:32−y=4+my−2+1无解,求m的值.【分析】根据题意可得y =2,再把y =2代入整式方程中进行计算即可.【解答】解:分式方程变形得:−3y−2=4+my−2+1,两边同时乘以(y ﹣2)得:﹣3=4+m +y ﹣2,整理得:m +y =﹣5,∵方程无解,∴y =2,把y =2代入m +y =﹣5中得:m +2=﹣5,解得m =﹣7.一十一.分式方程的增根(共2小题)16.关于x 的方程2x−1x−2=mx−2+1有增根,则m 的值是()A .0B .2或3C .2D .3【分析】根据题意可得x =2,然后把x =2代入整式方程中进行计算即可解答.【解答】解:2x−1x−2=mx−2+1,2x ﹣1=m +x ﹣2,解得:x =m ﹣1,∵方程有增根,∴x ﹣2=0,∴x =2,把x =2代入x =m ﹣1中可得:m ﹣1=2,∴m =3,故选:D .17.若关于x 的分式方程3x+2mx+2=2有增根,则m 的值为3.【分析】分式方程去分母转化为整式方程,解出x ,由分式方程有增根,得到x +2=0,求出x 的值,代入求出m 的值即可.【解答】解:3x+2mx+2=2,去分母得:3x +2m =2x +4,解得:x =﹣2m +4,由分式方程有增根,得到x +2=0,即x =﹣2,把x =﹣2代入x =﹣2m +4中得:m =3,故答案为:3.一十二.由实际问题抽象出分式方程(共4小题)18.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x 人,根据题意,可列方程为()A .600x=500x−15×(1﹣10%)B .600x×(1﹣10%)=500x−15C .600x−15=500x×(1﹣10%)D .600x−15×(1﹣10%)=500x 【分析】根据题意,可以列出相应的分式方程,从而可以解答本题.【解答】解:由题意可得,600x=500x−15×(1﹣10%),故选:A .19.郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x 人,则依题意,可列方程为()A .3000x +2=3000x+50B .3000x −2=3000x+50C .3000x+2+50=3000xD .3000x+2−50=3000x【分析】由实际上每小时检测人数比原计划增加50人及原计划每小时检测x 人,可得出实际上每小时检测(x +50)人,利用检测实际=需检测的总人数÷每小时检测的人数,结合结果提前2小时完成检测任务,即可得出关于x 的分式方程,此题得解.【解答】解:∵实际上每小时检测人数比原计划增加50人,且原计划每小时检测x 人,∴实际上每小时检测(x +50)人.依题意得:3000x−2=3000x+50.故选:B .20.某公司承担了制作500个上海世博会道路交通指引标志的任务,原计划x 天完成,实际平均每天多制作了12个,因此提前5天完成任务.那么根据题意,可以列出的方程是:500x −500x−5=12.【分析】根据题意可知:实际每天生产的﹣原计划每天生产的=12,即可列出相应的分式方程.【解答】解:由题意可得,500x−500x−5=12,故答案为:500x−500x−5=12.21.某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前20天完成了任务,则原计划每天绿化的面积为多少万平方米.设原计划每天绿化的面积为x 万平方米,依题意可列方程80x −80(1+25%)x =20.【分析】由实际工作时每天的工作效率比原计划提高了25%及原计划每天绿化的面积为x 万平方米,可得出实际工作时每天绿化的面积为(1+25%)x 万平方米,利用工作时间=工作总量÷工作效率,结合实际比原计划提前20天完成了任务,即可得出关于x 的分式方程,此题得解.【解答】解:∵实际工作时每天的工作效率比原计划提高了25%,且原计划每天绿化的面积为x 万平方米,∴实际工作时每天绿化的面积为(1+25%)x 万平方米.依题意得:80x −80(1+25%)x=20.故答案为:80x −80(1+25%)x=20.一十三.分式方程的应用(共2小题)22.为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km ,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少10km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小王乘公交车上班平均每小时行驶()A .30kmB .36kmC .40kmD .46km【分析】设小王乘公交车上班平均每小时行驶xkm ,则小王用自驾车上班平均每小时行驶(x +10)km ,由题意:小王家距上班地点18km ,他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,列出分式方程,解方程即可.【解答】解:设小王乘公交车上班平均每小时行驶xkm ,则小王用自驾车上班平均每小时行驶(x +10)km ,由题意得:18x=18x+10×43,解得:x =30,经检验,x =30是原方程的解,则x +10=40,即小王乘公交车上班平均每小时行驶30km ,故选:A .23.一艘轮船在两个码头之间航行,顺水航行81km 所需的时间与逆水航行69km 所需的时间相同.已知水流速度是速度2km /h ,则轮船在静水中航行的速度是()A .25km /h B .24km /h C .23km /h D .22km /h【分析】设轮船在静水中航行的速度是xkm /h ,则轮船顺水航行速度为(x +2)km /h ,轮船逆水航行速度为(x ﹣2)km /h ,利用时间=路程÷速度,结合顺水航行速度81km /h 所需的时间与逆水航行速度69km /h 所需的时间相同,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设轮船在静水中航行的速度是xkm /h ,则轮船顺水航行速度为(x +2)km /h ,轮船逆水航行速度为(x ﹣2)km /h ,依题意得:81x+2=69x−2,解得:x =25,经检验,x =25是原方程的解,且符合题意.故选:A .。
分式方程20道例题
分式方程20道例题一、基础题型例1:解方程(2)/(x + 1)=(1)/(x - 1)解析:1. 首先去分母,给方程两边同时乘以(x + 1)(x-1)(最简公分母),得到: - 2(x - 1)=x + 1。
2. 然后展开括号:- 2x-2=x + 1。
3. 接着移项:- 2x-x=1 + 2。
- 解得x = 3。
4. 最后检验:- 当x = 3时,(x + 1)(x - 1)=(3+1)×(3 - 1)=4×2 = 8≠0。
- 所以x = 3是原分式方程的解。
例2:解方程(x)/(x - 2)-1=(4)/(x^2)-4解析:1. 先将方程右边的分母因式分解,x^2-4=(x + 2)(x - 2)。
2. 去分母,方程两边同时乘以(x + 2)(x - 2),得到:- x(x + 2)-(x + 2)(x - 2)=4。
3. 展开括号:- x^2+2x-(x^2-4)=4。
- x^2+2x - x^2+4 = 4。
4. 化简得:- 2x=0,解得x = 0。
5. 检验:- 当x = 0时,(x + 2)(x - 2)=(0 + 2)×(0 - 2)=-4≠0。
- 所以x = 0是原分式方程的解。
例3:解方程(3)/(x)+(6)/(x - 1)=(x + 5)/(x(x - 1))解析:1. 去分母,方程两边同时乘以x(x - 1),得到:- 3(x - 1)+6x=x + 5。
2. 展开括号:- 3x-3+6x=x + 5。
3. 移项合并同类项:- 3x+6x - x=5 + 3。
- 8x=8,解得x = 1。
4. 检验:- 当x = 1时,x(x - 1)=1×(1 - 1)=0。
- 所以x = 1是增根,原分式方程无解。
二、有增根问题的分式方程例4:若关于x的分式方程(2)/(x - 2)+(mx)/(x^2)-4=(3)/(x + 2)会产生增根,求m的值。
初中数学分式方程精选试题(含答案和解析)
初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。
初中数学-解分式方程100题
(2)去分母得:1+3y﹣6=y﹣1, 解得:y=2, 经检验 y=2 是增根,分式无解.
20.解方程: (1) ﹣ =0
(2)
.
【解答】解:(1)去分母得:2x﹣x+2=0, 解得:x=﹣2, 经检验 x=﹣2 是原方程的根; (2)去分母得:x2﹣4x+4﹣16=x2﹣4, 解得:x=﹣2, 经检验 x=﹣2 是增根,分式方程无解.
3.解分式方程: (1) = ;
(2) + = .
4.解方程: (1) +3=
(2) ﹣ =1.
5.解方程 (1) + =2
(2) =1﹣ .
6.解分式方程:
(1)
=8.
第 1 页(共 30 页)
(2)
.
7.解方程
(1)
=1
(2) =2﹣ .
8.解方程: (1) + =1
(2) + = .
9.解方程: (1)
50.解方程: (1) ﹣1= .
(2) + =2.
第 7 页(共 30 页)
解分式方程 100 题
参考答案与试题解析
一.解答题(共 40 小题)
1.解方程:
(1) ﹣1=
;
(2) =1﹣ .
【解答】解:(1)去分母得:x(x+2)﹣(x﹣1)(x+2)=3, 去括号得:2x﹣2x+x+2=3, 解得:x=1, 经检验 x=1 时,分母为 0,方程无解; (2)去分母得:2x=x﹣2+1, 解得:x=﹣1, 经检验 x=﹣1 是分式方程的解.
(2)
.
38.解方程求 x: (1) ﹣ =1
初中数学分式方程简答题专题训练含答案
初中数学分式方程简答题专题训练含答案姓名:__________ 班级:__________考号:__________一、解答题(共10题)1、一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y 天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?2、为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(5分)(2)若单独租用一台车,租用哪台车合算?(5分)3、如图是某公司经理和甲、乙工程队长针对一项工程的谈话.问题如下:(1)甲、乙两公司单独完成此项工程各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?4、阅读下面的对话。
小红:“售货员,我要买些梨。
”售货员说:“小红,你上次买的那种梨卖完了,我们还没来得及进货,我建议你这次买些新进的苹果,价格比梨贵一点,不过这批苹果的味道挺好哟!”小红:“好,这次和上次一样,也花30元。
”对照前后两次的电脑小票,小红发现,每千克苹果的单价是梨的1.5倍,买的苹果的重量比梨轻2.5Kg。
试根据上面的对话和小红的发现,分别求出苹果和梨的单价。
5、某商店第一次用800元购进2B铅笔若干枝,第二次又用800元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了40支.(1)求第一次每支铅笔的进价;(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于560元,则每支铅笔的利润率至少为多少?(利润率=×100%)6、兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)7、某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?8、吉首城区某中学组织学生到距学校20km的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.9、某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?10、学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的倍;用元单独购买甲种图书比单独购买乙种图书要少本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共本,且投入的经费不超过元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?============参考答案============一、解答题1、 .(1)设乙队单独做需要x天才能完成任务,由题意得:×20=1.解得x=100.经检验,x=100是原方程的解,且符合题意.答:乙队单独做需要100天才能完成任务(2)由题意得:+=1,且x<15,y<70,且x,y为正整数,∴x=13或14.当x=13时,y=100-x不是整数,应舍去;当x=14时,y=100-x=65,符合条件.∴甲队做了14天,乙队做了65天2、【考点】一次方程及其解法分式方程的解法分式方程的应用【试题解析】(1)设甲车单独运的趟数为x趟,则由题意得乙车单独运的趟数为2x趟,设垃圾总量为1,由题意可得以下方程:解得:x=18,2x=36所以,甲车单独运完需18车,乙车单独运完需36车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学分式方程专项练习注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)1.清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为A2x)=1后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.53)A.1x=-x=B.1C.2x=-x=.24】A.x=2 B.x=1 C..x=-25.分式方程】A.x=-2 B.x=1 C.x=2 D.x=36.则a的值为() A. 4 B. 2 C. 1 D. 07.解关于x则常数m的值等于()(A)-1 (B)-2 (C)1 (D)28.炎炎夏天,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调。
两队同时开工且恰好同时完工。
甲队比乙队每天多安装2台,设乙队每天安装x 台,根据题意下面方程正确的是( )A 9.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg .已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg ,根据题意,可得方程( )A 10A D .2-11 )A C .解为15x =D .无解12有增根,则m 的值是A .3B .2C .1D .-113 ) A .5m >-时,方程的解是正数 C .无法确定14)B. x x 331=+- D. x x 336=--15m 的值为【 】A .一l.5B .1C .一l.5或2D .一0.5或一l.5 16的两边同时乘以()2-x ,约去分母,得( ) A.()111=--x B. ()111=-+xC.()211-=--x xD.()211-=-+x x17 】 A .1B .1-C .2-D .无解18.方程 】 A .x=±1 B.x=1 C .x=-1 D .x=019x 是( ) . A .—2 B .1 C .2 D .—120.若关于x 的方程0111=----x xx a 有增根,则a 的值是( ). A 、3 B 、-1 C 、1 D 、2 21.若关于x 的分式方程233x m m x x -=--无解,则m 的值为( ) A.=3m B. 3=2m C. =1m D. 3=12m 或 22.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是【 】 A . B .C .D .23.某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个苹果?设有x 个苹果,则可列方程为( ) A 、3x +1=4x -2 B 、4231+=-x x C 、4231-=+x x D 、4132-=+x x 24.分式方程12x +2x 1x+1=-的解是【 】 A .1 B .-1 C .3 D .无解25.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵 树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是【 】 A .6070x 2x =+ B .6070x x 2=+ C.6070x 2x =- D.6070x x 2=- 26.以下是解分式方程21321-=---x x x ,去分母后的结果,其中正确的是( ) A .131=--x B .1631=+--x x C .1631=+--x x D .1631-=+--x x第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题(题型注释)27.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b ad bc c d=-,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么=x 。
28.29.30.计算:23423279b b aba ab ÷=- .31.分式方程23=x x+1的解为x= .32.分式方程25=x x+3的解是 .33.解分式方程:2316111x x x +=+-- 34.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于 . 35.若关于x 的分式方程131=---x x a x 有增根,则a = . 36. 用换元法解方程4112=-+-x x x x ,若设y x x=-1_______________________.37.分式方程456x x x x -=-+的解是_________. 38.若关于x 的分式方程311x a x x--=-无解,则a = .39.星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为____cm.40.已知关于x a= 。
41的解是 42.请你给x 选择一个合适的值,使等式成立。
你选择的_____=x ; 43.某公司承担了制作10000件文化衫的任务,原计划x 天完成,实际平均每天多做了100个,因此提前5天完成任务.原计划天数是______________.44a 的取值范围 . 45.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,那么由题意可列方程是 .46.那么原方程可以化为关于y 的方程是 .47.一项工程甲单独做要20小时,乙单独做要12小时。
现在先由甲单独做5小时,然后乙加入进来合做,完成整个工程一共需要多少小时?若设一共需要x 小时,则所列的方程为_____________48m 的取值范围是_______。
49m 的值是 ▲ 50 5152.53.若关于x m<0),则m 的值为__________;三、计算题(题型注释)55.解方程或解不等式组:(1(2)⎩⎨⎧-≥+≤-1)1(212x x x56四、解答题(题型注释)57.2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷? 58.解方程:xx x -=---21223. 59.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为 1.15元,则该商品在甲商场的原价为 ▲ 元;(2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少? (3)在(1)、(2)小题的条件下,甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a ,第二次提价的百分率是b ; 乙商场:两次提价的百分率都是2ba +(),0,0b a b a ≠>>. 请问甲、乙两商场,哪个商场的提价较多?请说明理由. 60.(本题10分)西南地区遭受干旱已经近三个季度,造成数千万群众生活饮水困难;为了解决对口学校的学生饮水问题,实验中学学生会号召同学们自愿捐款活动。
已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等。
试求七、八年级捐款的人数。
61.(本小题满分8分)解方程:02311=-++xx 62.(2011山东济南,22,7分)(1)计算:(a+b )(a ﹣b )+2b 2.(2)解方程:213x x=+. 63.(2011广西崇左,20,9分)(本小题满分9分)今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米? 64.(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需 要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工. ⑴问乙单独整理多少分钟完工?⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工? 65.(2011•北京)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米? 66.解方程:213xx x +=+67.(本小题满分5分)列方程或方程组解应用题:九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他1.5倍,求慢车的速度.686970.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?71726分) 73747576.为了保证2010年广州亚运会期间亚运会场馆和亚运村环境卫生的干净,亚运会管理委员会决定开展一次“清理垃圾”演练.演练垃圾重达150吨,由于演练方案准备充分,各方面协调有力,亚运会垃圾清运小组清理垃圾的速度比原来提高了一倍,结果提前3小时完成了任务,问垃圾清运小组原计划每小时清运多少吨的垃圾?77.(1)已知x = -2(2)(678.解方程(组):(1; (2)⎩⎨⎧=+=+825y x y x798081.(14516-282.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服. 83. 1.乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?85,你能找到一个合适的x值,使它们的值相等吗?写出你的解题过程.86.解方程:87.在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度是原计划速度的2倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?888990.若关于x k的值.9192.939495.(1(296.97.98.一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.99100参考答案1.C【解析】解:20min=1/3h ,步行的速度为x km/h ,则骑自行车速度为2xkm/h ,由题意得:4/x -4/2x =1/3 ,故选C . 2.D【解析】略 3.A【解析】略 4.A 。