Command and Control Network Modeling and Efficiency Measure Based on Capability Weighted-Node

合集下载

ITIL术语中英文对照表

ITIL术语中英文对照表

发表于: 2009-11—29 14:26发表主题:ITIL术语中英文对照表,论坛里有看到,但是没有过验证,在这里贴ITIL术语中英文对照表Absorbed overhead 可分摊间接费用Absorption costing 吸收成本法,完全成本法Acceptance 验收Acceptance environment 验收环境Acceptance test 验收测试Access control 访问控制Accounting 会计核算Accuracy 准确度Action lists 行动列表Activity Based Costing (ABC) 作业成本法(ABC)Adaptive maintenance 适应性维护Additive maintenance 补充性维护Adjustability 可调整性Agreed Service Time (AST)约定服务时段Alert 告警Alert phase 告警阶段Allocated cost 可直接分配成本Application 应用,应用系统Application maintenance 应用维护Application management 应用管理Application sizing 应用选型Application software 应用软件Apportioned cost 待分摊间接成本Architecture 架构Archive 存档Asset 资产Asset management 资产管理Assurance 保证Attributes 属性Audit 审计Auditability 可审计性Authentication 验证Authenticity 真实性Authorisation 授权Automatic Call Distribution (ACD) 自动呼叫转发(系统)(ACD)Availability 可用性Availability management 可用性管理Availability Management Database (AMDB) 可用性管理数据库(AMDB)Backup 备份Balanced Scorecard (BSC) 平衡计分卡Baseline 基线Baseline security 安全基线Batch processing rate 批处理速度Benchmark 标杆Biometrics 生物测定学BS7799 BS7799Budgeting 预算编制Bug BUG(也可形象地译为“臭虫")Build 构建Building environment 构建环境Business 业务,商业Business capacity management 业务能力管理Business Continuity Management (BCM)业务持续性管理(BCM) Business function 业务功能,业务职能部门Business Impact Analysis (BIA) 业务影响分析(BIA)Business process 业务流程Business recovery objective 业务恢复目标Business recovery plan framework 业务恢复计划框架Business recovery plans 业务恢复计划Business recovery team 业务恢复小组Business Relationship Management (BRM)业务关系管理(BRM)Business request 业务请求Business Unit (BU) 业务单元(BU)Bypass 临时措施Call 呼叫Call center 呼叫中心Capacity Database (CDB)能力数据库(CBD)Capacity management 能力管理Capacity plan 能力计划Capacity planning 能力规划Capital investment appraisal 资本投资评估Capitalization 资本化Category 类别,分类Central point of contact 联络中心Certificate 证书Certification Authority (CA)认证机构(CA)Certify 认证Change 变更Change Advisory Board (CAB)变更顾问委员会(CAB)Change Advisory Board /Emergency Committee(CAB/EC)变更顾问委员会/应急委员会(CAB/EC)Change authority 变更授权Change builder 变更构建者Change control 变更控制Change document 变更文档Change history 变更历史Change log 变更日志Change management 变更管理Change manager 变更经理Change model 变更模式Change processing 变更处理Change Record 变更记录Change request 变更请求Chargeable unit 计费单元Charging 计费CI level 配置项级别Clarity 易理解性Classification 分类,分级Clean desk 桌面清理,桌面整理Client 客户Cold stand-by 冷支持Command,control and communications 命令、控制和协调Communication facility 通信设备,通信设施Compatibility 兼容性Completeness 完整性Complexity 复杂性Component Failure Impact Analysis (CFIA) 组件故障影响分析(CFIA)Compromise 泄漏Computer 计算机Computer Aided Systems Engineering(CASE)计算机辅助系统工程(CASE)Computer center 计算机中心Computer operations 计算机操作Computer platform 计算机平台Computer system 计算机系统Computer Telephony Integration (CTI) 计算机电话集成(系统)(CTI) Confidentiality 保密性Confidentiality, Integrity and Availability (CIA) 保密性、完整性和可用性(CIA)Configuration 配置Configuration baseline 配置基线Configuration control 配置控制Configuration documentation 配置文档Configuration identification 配置标识Configuration Item (CI)配置项(CI)Configuration management 配置管理Configuration Management Database(CMDB)配置管理数据库(CMDB)Configuration management plan 配置管理计划Configuration manager 配置经理Configuration structure 配置结构Configure 配置Connectivity 连通性Contingency manager 应急经理Contingency plan 应急计划Contingency planning 应急规划Contingency planning and control 应急规划及控制Continuity 持续性Continuity manager 持续性经理Continuous availability 持续可用性Continuous operation 持续运作Contract 合同Control 控制Controllability 可控性Cookie Cookie(也可形象地译为“甜饼",译者注)Correctability 可纠正性Corrective controls 纠正性控制Corrective maintenance 纠正性维护Corrective measures 纠正措施Cost 成本,费用Cost effectiveness 成本效益Cost management 成本管理Cost unit 成本单元Costing 成本核算Countermeasure 防范措施Cracker 骇客CRAMM CRAMM(英国中央计算机与电信局行风险分析和管理的方法。

HP Color LaserJet Enterprise MFP M776用户指南说明书

HP Color LaserJet Enterprise MFP M776用户指南说明书

Legal informationCopyright and License© Copyright 2019 HP Development Company, L.P.Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowedunder the copyright laws.The information contained herein is subject to change without notice.The only warranties for HP products and services are set forth in the express warranty statementsaccompanying such products and services. Nothing herein should be construed as constituting anadditional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.Edition 1, 10/2019Trademark CreditsAdobe®, Adobe Photoshop®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.Apple and the Apple logo are trademarks of Apple Inc., registered in the U.S. and other countries.macOS is a trademark of Apple Inc., registered in the U.S. and other countries.AirPrint is a trademark of Apple Inc., registered in the U.S. and other countries.Google™ is a trademark of Google Inc.Microsoft®, Windows®, Windows® XP, and Windows Vista® are U.S. registered trademarks of MicrosoftCorporation.UNIX® is a registered trademark of The Open Group.iiiT able of contents1 Printer overview (1)Warning icons (1)Potential shock hazard (2)Printer views (2)Printer front view (2)Printer back view (4)Interface ports (4)Control-panel view (5)How to use the touchscreen control panel (7)Printer specifications (8)T echnical specifications (8)Supported operating systems (11)Mobile printing solutions (12)Printer dimensions (13)Power consumption, electrical specifications, and acoustic emissions (15)Operating-environment range (15)Printer hardware setup and software installation (16)2 Paper trays (17)Introduction (17)Load paper to Tray 1 (multipurpose tray) (17)Load Tray 1 (multipurpose tray) (18)Tray 1 paper orientation (19)Use alternative letterhead mode (24)Enable Alternative Letterhead Mode by using the printer control-panel menus (24)Load paper to Tray 2 (24)Load Tray 2 (24)Tray 2 paper orientation (26)Use alternative letterhead mode (29)Enable Alternative Letterhead Mode by using the printer control-panel menus (29)Load paper to the 550-sheet paper tray (30)Load paper to the 550-sheet paper tray (30)550-sheet paper tray paper orientation (32)Use alternative letterhead mode (35)Enable Alternative Letterhead Mode by using the printer control-panel menus (35)ivLoad paper to the 2 x 550-sheet paper trays (36)Load paper to the 2 x 550-sheet paper trays (36)2 x 550-sheet paper tray paper orientation (38)Use alternative letterhead mode (41)Enable Alternative Letterhead Mode by using the printer control-panel menus (41)Load paper to the 2,700-sheet high-capacity input paper trays (41)Load paper to the 2,700-sheet high-capacity input paper trays (41)2,700-sheet HCI paper tray paper orientation (43)Use alternative letterhead mode (45)Enable Alternative Letterhead Mode by using the printer control-panel menus (45)Load and print envelopes (46)Print envelopes (46)Envelope orientation (46)Load and print labels (47)Manually feed labels (47)Label orientation (48)3 Supplies, accessories, and parts (49)Order supplies, accessories, and parts (49)Ordering (49)Supplies and accessories (50)Maintenance/long-life consumables (51)Customer self-repair parts (51)Dynamic security (52)Configure the HP toner-cartridge-protection supply settings (53)Introduction (53)Enable or disable the Cartridge Policy feature (53)Use the printer control panel to enable the Cartridge Policy feature (54)Use the printer control panel to disable the Cartridge Policy feature (54)Use the HP Embedded Web Server (EWS) to enable the Cartridge Policy feature (54)Use the HP Embedded Web Server (EWS) to disable the Cartridge Policy feature (55)Troubleshoot Cartridge Policy control panel error messages (55)Enable or disable the Cartridge Protection feature (55)Use the printer control panel to enable the Cartridge Protection feature (56)Use the printer control panel to disable the Cartridge Protection feature (56)Use the HP Embedded Web Server (EWS) to enable the Cartridge Protection feature (56)Use the HP Embedded Web Server (EWS) to disable the Cartridge Protection feature (57)Troubleshoot Cartridge Protection control panel error messages (57)Replace the toner cartridges (58)T oner-cartridge information (58)Remove and replace the cartridges (59)Replace the imaging drums (62)Imaging drum information (62)Remove and replace the imaging drums (63)Replace the toner-collection unit (66)T oner-collection unit information (66)vRemove and replace the toner-collection unit (67)Replace the staple cartridge (M776zs model only) (70)Staple cartridge information (70)Remove and replace the staple cartridge (71)4 Print (73)Print tasks (Windows) (73)How to print (Windows) (73)Automatically print on both sides (Windows) (74)Manually print on both sides (Windows) (74)Print multiple pages per sheet (Windows) (75)Select the paper type (Windows) (75)Additional print tasks (76)Print tasks (macOS) (77)How to print (macOS) (77)Automatically print on both sides (macOS) (77)Manually print on both sides (macOS) (77)Print multiple pages per sheet (macOS) (78)Select the paper type (macOS) (78)Additional print tasks (79)Store print jobs on the printer to print later or print privately (79)Introduction (79)Create a stored job (Windows) (79)Create a stored job (macOS) (80)Print a stored job (81)Delete a stored job (81)Delete a job that is stored on the printer (81)Change the job storage limit (82)Information sent to printer for Job Accounting purposes (82)Mobile printing (82)Introduction (82)Wi-Fi, Wi-Fi Direct Print, NFC, and BLE printing (82)Enable wireless printing (83)Change the Wi-Fi Direct name (83)HP ePrint via email (83)AirPrint (84)Android embedded printing (85)Print from a USB flash drive (85)Enable the USB port for printing (85)Method one: Enable the USB port from the printer control panel (85)Method two: Enable the USB port from the HP Embedded Web Server (network-connectedprinters only) (85)Print USB documents (86)Print using high-speed USB 2.0 port (wired) (86)Method one: Enable the high-speed USB 2.0 port from the printer control panel menus (86)Method two: Enable the high-speed USB 2.0 port from the HP Embedded Web Server (network-connected printers only) (87)vi5 Copy (88)Make a copy (88)Copy on both sides (duplex) (90)Additional copy tasks (92)6 Scan (93)Set up Scan to Email (93)Introduction (93)Before you begin (93)Step one: Access the HP Embedded Web Server (EWS) (94)Step two: Configure the Network Identification settings (95)Step three: Configure the Send to Email feature (96)Method one: Basic configuration using the Email Setup Wizard (96)Method two: Advanced configuration using the Email Setup (100)Step four: Configure the Quick Sets (optional) (104)Step five: Set up Send to Email to use Office 365 Outlook (optional) (105)Introduction (105)Configure the outgoing email server (SMTP) to send an email from an Office 365 Outlookaccount (105)Set up Scan to Network Folder (108)Introduction (108)Before you begin (108)Step one: Access the HP Embedded Web Server (EWS) (108)Step two: Set up Scan to Network Folder (109)Method one: Use the Scan to Network Folder Wizard (109)Method two: Use Scan to Network Folder Setup (110)Step one: Begin the configuration (110)Step two: Configure the Scan to Network Folder settings (111)Step three: Complete the configuration (118)Set up Scan to SharePoint (118)Introduction (118)Before you begin (118)Step one: Access the HP Embedded Web Server (EWS) (118)Step two: Enable Scan to SharePoint and create a Scan to SharePoint Quick Set (119)Scan a file directly to a SharePoint site (121)Quick Set scan settings and options for Scan to SharePoint (122)Set up Scan to USB Drive (123)Introduction (124)Step one: Access the HP Embedded Web Server (EWS) (124)Step two: Enable Scan to USB Drive (124)Step three: Configure the Quick Sets (optional) (125)Default scan settings for Scan to USB Drive setup (126)Default file settings for Save to USB setup (126)Scan to email (127)Introduction (127)Scan to email (127)Scan to job storage (129)viiIntroduction (129)Scan to job storage on the printer (130)Print from job storage on the printer (132)Scan to network folder (132)Introduction (132)Scan to network folder (132)Scan to SharePoint (134)Introduction (134)Scan to SharePoint (134)Scan to USB drive (136)Introduction (136)Scan to USB drive (136)Use HP JetAdvantage business solutions (138)Additional scan tasks (138)7 Fax (140)Set up fax (140)Introduction (140)Set up fax by using the printer control panel (140)Change fax configurations (141)Fax dialing settings (141)General fax send settings (142)Fax receive settings (143)Send a fax (144)Additional fax tasks (146)8 Manage the printer (147)Advanced configuration with the HP Embedded Web Server (EWS) (147)Introduction (147)How to access the HP Embedded Web Server (EWS) (148)HP Embedded Web Server features (149)Information tab (149)General tab (149)Copy/Print tab (150)Scan/Digital Send tab (151)Fax tab (152)Supplies tab (153)Troubleshooting tab (153)Security tab (153)HP Web Services tab (154)Networking tab (154)Other Links list (156)Configure IP network settings (157)Printer sharing disclaimer (157)View or change network settings (157)Rename the printer on a network (157)viiiManually configure IPv4 TCP/IP parameters from the control panel (158)Manually configure IPv6 TCP/IP parameters from the control panel (158)Link speed and duplex settings (159)Printer security features (160)Introduction (160)Security statements (160)Assign an administrator password (160)Use the HP Embedded Web Server (EWS) to set the password (160)Provide user access credentials at the printer control panel (161)IP Security (161)Encryption support: HP High Performance Secure Hard Disks (161)Lock the formatter (161)Energy-conservation settings (161)Set the sleep timer and configure the printer to use 1 watt or less of power (161)Set the sleep schedule (162)Set the idle settings (162)HP Web Jetadmin (163)Software and firmware updates (163)9 Solve problems (164)Customer support (164)Control panel help system (165)Reset factory settings (165)Introduction (165)Method one: Reset factory settings from the printer control panel (165)Method two: Reset factory settings from the HP Embedded Web Server (network-connectedprinters only) (166)A “Cartridge is low” or “Cartridge is very low” message displays on the printer control panel (166)Change the “Very Low” settings (166)Change the “Very Low” settings at the control panel (166)For printers with fax capability (167)Order supplies (167)Printer does not pick up paper or misfeeds (167)Introduction (167)The printer does not pick up paper (167)The printer picks up multiple sheets of paper (171)The document feeder jams, skews, or picks up multiple sheets of paper (174)Clear paper jams (174)Introduction (174)Paper jam locations (174)Auto-navigation for clearing paper jams (175)Experiencing frequent or recurring paper jams? (175)Clear paper jams in the document feeder - 31.13.yz (176)Clear paper jams in Tray 1 (13.A1) (177)Clear paper jams in Tray 2 (13.A2) (182)Clear paper jams in the fuser (13.B9, 13.B2, 13.FF) (188)ixClear paper jams in the duplex area (13.D3) (194)Clear paper jams in the 550-sheet trays (13.A3, 13.A4) (199)Clear paper jams in the 2 x 550 paper trays (13.A4, 13.A5) (206)Clear paper jams in the 2,700-sheet high-capacity input paper trays (13.A3, 13.A4, 13.A5, 13.A7) (213)Resolving color print quality problems (220)Introduction (220)Troubleshoot print quality (221)Update the printer firmware (221)Print from a different software program (221)Check the paper-type setting for the print job (221)Check the paper type setting on the printer (221)Check the paper type setting (Windows) (221)Check the paper type setting (macOS) (222)Check toner-cartridge status (222)Step one: Print the Supplies Status Page (222)Step two: Check supplies status (222)Print a cleaning page (222)Visually inspect the toner cartridge or cartridges (223)Check paper and the printing environment (223)Step one: Use paper that meets HP specifications (223)Step two: Check the environment (223)Step three: Set the individual tray alignment (224)Try a different print driver (224)Troubleshoot color quality (225)Calibrate the printer to align the colors (225)Troubleshoot image defects (225)Improve copy image quality (233)Check the scanner glass for dirt and smudges (233)Calibrate the scanner (234)Check the paper settings (235)Check the paper selection options (235)Check the image-adjustment settings (235)Optimize copy quality for text or pictures (236)Edge-to-edge copying (236)Improve scan image quality (236)Check the scanner glass for dirt and smudges (237)Check the resolution settings (238)Check the color settings (238)Check the image-adjustment settings (239)Optimize scan quality for text or pictures (239)Check the output-quality settings (240)Improve fax image quality (240)Check the scanner glass for dirt and smudges (240)Check the send-fax resolution settings (242)Check the image-adjustment settings (242)Optimize fax quality for text or pictures (242)Check the error-correction setting (243)xSend to a different fax machine (243)Check the sender's fax machine (243)Solve wired network problems (244)Introduction (244)Poor physical connection (244)The computer is unable to communicate with the printer (244)The printer is using incorrect link and duplex settings for the network (245)New software programs might be causing compatibility problems (245)The computer or workstation might be set up incorrectly (245)The printer is disabled, or other network settings are incorrect (245)Solve wireless network problems (245)Introduction (245)Wireless connectivity checklist (245)The printer does not print after the wireless configuration completes (246)The printer does not print, and the computer has a third-party firewall installed (246)The wireless connection does not work after moving the wireless router or printer (247)Cannot connect more computers to the wireless printer (247)The wireless printer loses communication when connected to a VPN (247)The network does not appear in the wireless networks list (247)The wireless network is not functioning (247)Reduce interference on a wireless network (248)Solve fax problems (248)Checklist for solving fax problems (248)What type of phone line are you using? (249)Are you using a surge-protection device? (249)Are you using a phone company voice-messaging service or an answering machine? (249)Does your phone line have a call-waiting feature? (249)Check fax accessory status (249)General fax problems (250)The fax failed to send (250)No fax address book button displays (250)Not able to locate the Fax settings in HP Web Jetadmin (250)The header is appended to the top of the page when the overlay option is enabled (251)A mix of names and numbers is in the recipients box (251)A one-page fax prints as two pages (251)A document stops in the document feeder in the middle of faxing (251)The volume for sounds coming from the fax accessory is too high or too low (251)Index (252)xiPrinter overview1Review the location of features on the printer, the physical and technical specifications of the printer,and where to locate setup information.For video assistance, see /videos/LaserJet.The following information is correct at the time of publication. For current information, see /support/colorljM776MFP.For more information:HP's all-inclusive help for the printer includes the following information:●Install and configure●Learn and use●Solve problems●Download software and firmware updates●Join support forums●Find warranty and regulatory informationWarning iconsUse caution if you see a warning icon on your HP printer, as indicated in the icon definitions.●Caution: Electric shock●Caution: Hot surface●Caution: Keep body parts away from moving partsPrinter overview1●Caution: Sharp edge in close proximity●WarningPotential shock hazardReview this important safety information.●Read and understand these safety statements to avoid an electrical shock hazard.●Always follow basic safety precautions when using this product to reduce risk of injury from fire orelectric shock.●Read and understand all instructions in the user guide.●Observe all warnings and instructions marked on the product.●Use only a grounded electrical outlet when connecting the product to a power source. If you do notknow whether the outlet is grounded, check with a qualified electrician.●Do not touch the contacts on any of the sockets on the product. Replace damaged cordsimmediately.●Unplug this product from wall outlets before cleaning.●Do not install or use this product near water or when you are wet.●Install the product securely on a stable surface.●Install the product in a protected location where no one can step on or trip over the power cord.Printer viewsIdentify certain parts of the printer and the control panel.Printer front viewLocate features on the front of the printer.2Chapter 1 Printer overviewPrinter front view3Printer back viewLocate features on the back of the printer.Interface portsLocate the interface ports on the printer formatter. 4Chapter 1 Printer overviewControl-panel viewThe control panel provides access to the printer features and indicates the current status of the printer.NOTE:Tilt the control panel for easier viewing.The Home screen provides access to the printer features and indicates the current status of the printer.screens.NOTE:The features that appear on the Home screen can vary, depending on the printerconfiguration.Control-panel view5Figure 1-1Control-panel view?i 12:42 PM6Chapter 1 Printer overviewHow to use the touchscreen control panelPerform the following actions to use the printer touchscreen control panel.T ouchT ouch an item on the screen to select that item or open that menu. Also, when scrolling T ouch the Settings icon to open the Settings app.How to use the touchscreen control panel 7SwipeT ouch the screen and then move your finger horizontally to scroll the screen sideways.Swipe until the Settings app displays.Printer specificationsDetermine the specifications for your printer model.IMPORTANT:The following specifications are correct at the time of publication, but they are subject to change. For current information, see /support/colorljM776MFP .T echnical specificationsReview the printer technical specifications.Product numbers for each model ●M776dn - #T3U55A ●Flow M776z - #3WT91A ●Flow M776zs - #T3U56APaper handling specificationsPaper handling features Tray 1 (100-sheet capacity)Included Included Included Tray 2 (550-sheet capacity)IncludedIncludedIncluded8Chapter 1 Printer overview550-sheet paper trayOptional Included Not included NOTE:The M776dn models accept one optional550-sheet tray.Optional Included Included2 x 550-sheet paper tray and standNOTE:The M776dn models accept one optional550-sheet tray that may be installed on top of thestand.Optional Not included Not included2,700-sheet high-capacity input (HCI) paper trayand standNOTE:The M776dn models accept one optional550-sheet tray that may be installed on top of theoptional printer stand.Printer standOptional Not included Not included NOTE:The M776dn models accept one optional550-sheet tray that may be installed on top of theoptional printer stand.Inner finisher accessory Not included Not included Included Automatic duplex printing Included IncludedIncludedIncluded Included Included10/100/1000 Ethernet LAN connection with IPv4and IPv6Hi-Speed USB 2.0Included Included IncludedIncluded Included IncludedEasy-access USB port for printing from a USBflash drive or upgrading the firmwareIncluded Included Included Hardware Integration Pocket for connectingaccessory and third-party devicesHP Internal USB Ports Optional Optional OptionalOptional Optional OptionalHP Jetdirect 2900nw Print Server accessory forWi-Fi connectivity and an additional Ethernet portOptional IncludedIncludedHP Jetdirect 3100w accessory for Wi-Fi, BLE, NFC,and proximity badge readingPrints 45 pages per minute (ppm) on Letter-sizepaper and 46 ppm on A4-size paperEasy-access USB printing for printing from a USBIncluded Included Includedflash driveT echnical specifications9Included Included Included Store jobs in the printer memory to print later orprint privatelyScans 100 pages per minute (ppm) on A4 andIncluded Included Included letter-size paper one-sidedIncluded Included Included 200-page document feeder with dual-headscanning for single-pass duplex copying andscanningNot included Included Included HP EveryPage T echnologies including ultrasonicmulti-feed detectionNot included Included Included Embedded optical character recognition (OCR)provides the ability to convert printed pages intotext that can be edited or searched using acomputerIncluded Included Included SMART Label feature provides paper-edgedetection for automatic page croppingIncluded Included Included Automatic page orientation for pages that haveat least 100 characters of textIncluded Automatic tone adjustment sets contrast,Included Includedbrightness, and background removal for eachpageIncluded Included Includedfolders on a networkIncludedSend documents to SharePoint®Included IncludedIncluded Included Included NOTE:Memory reported on the configurationpage will change from 2.5 GB to 3 GB with theoptional 1 GB SODIMM installed.Mass storage: 500 GB hard disk drive Included Included IncludedSecurity: HP Trusted Platform Module (TPM)Included Included IncludedT ouchscreen control panel Included Included IncludedRetractable keyboard Not included Included Included 10Chapter 1 Printer overviewFax Optional Included IncludedSupported operating systemsUse the following information to ensure printer compatibility with your computer operating system.Linux: For information and print drivers for Linux, go to /go/linuxprinting.UNIX: For information and print drivers for UNIX®, go to /go/unixmodelscripts.The following information applies to the printer-specific Windows HP PCL 6 print drivers, HP print driversfor macOS, and to the software installer.Windows: Download HP Easy Start from /LaserJet to install the HP print driver. Or, go tothe printer-support website for this printer: /support/colorljM776MFP to download the printdriver or the software installer to install the HP print driver.macOS: Mac computers are supported with this printer. Download HP Easy Start either from /LaserJet or from the Printer Support page, and then use HP Easy Start to install the HP print driver.1.Go to /LaserJet.2.Follow the steps provided to download the printer software.Windows 7, 32-bit and 64-bit The “HP PCL 6” printer-specific print driver is installed for this operating system aspart of the software installation.Windows 8.1, 32-bit and 64-bit The “HP PCL-6” V4 printer-specific print driver is installed for this operating systemas part of the software installation.Windows 10, 32-bit and 64-bit The “HP PCL-6” V4 printer-specific print driver is installed for this operating systemas part of the software installation.Windows Server 2008 R2, SP 1, 64-bit The PCL 6 printer-specific print driver is available for download from the printer-support website. Download the driver, and then use the Microsoft Add Printer tool toinstall it.Windows Server 2012, 64-bit The PCL 6 printer-specific print driver is available for download from the printer-support website. Download the driver, and then use the Microsoft Add Printer tool toinstall it.Windows Server 2012 R2, 64-bit The PCL 6 printer-specific print driver is available for download from the printer-support website. Download the driver, and then use the Microsoft Add Printer tool toinstall it.Windows Server 2016, 64-bit The PCL 6 printer-specific print driver is available for download from the printer-support website. Download the driver, and then use the Microsoft Add Printer tool toinstall it.Windows Server 2019, 64-bit The PCL 6 printer-specific print driver is available for download from the printer-support website. Download the driver, and then use the Microsoft Add Printer tool toinstall it.Supported operating systems11macOS 10.13 High Sierra, macOS 10.14 MojaveDownload HP Easy Start from /LaserJet , and then use it to install the print driver.NOTE:Supported operating systems can change.NOTE:For a current list of supported operating systems and HP’s all-inclusive help for the printer, go to /support/colorljM776MFP .NOTE:For details on client and server operating systems and for HP UPD driver support for this printer, go to /go/upd . Under Additional information , click Specifications .●Internet connection●Dedicated USB 1.1 or 2.0 connection or a network connection● 2 GB of available hard-disk space ●1 GB RAM (32-bit) or2 GB RAM (64-bit)●Internet connection●Dedicated USB 1.1 or 2.0 connection or a network connection●1.5 GB of available hard-disk spaceNOTE:The Windows software installer installs the HP Smart Device Agent Base service. The file size is less than 100 kb. Its only function is to check for printers connected via USB hourly. No data is collected. If a USB printer is found, it then tries to locate a JetAdvantage Management Connector (JAMc) instance on the network. If a JAMc is found, the HP Smart Device Agent Base is securelyupgraded to a full Smart Device Agent from JAMc, which will then allow printed pages to be accounted for in a Managed Print Services (MPS) account. The driver-only web packs downloaded from for the printer and installed through the Add Printer wizard do not install this service.T o uninstall the service, open the Control Panel , select Programs or Programs and Features , and then select Add/Remove Programs or Uninstall a Programto remove the service. The file name isHPSmartDeviceAgentBase.Mobile printing solutionsHP offers multiple mobile printing solutions to enable easy printing to an HP printer from a laptop, tablet, smartphone, or other mobile device.T o see the full list and to determine the best choice, go to /go/MobilePrinting .NOTE:Update the printer firmware to ensure all mobile printing capabilities are supported.●Wi-Fi Direct (wireless models only, with HP Jetdirect 3100w BLE/NFC/Wireless accessory installed)●HP ePrint via email (Requires HP Web Services to be enabled and the printer to be registered with HP Connected)●HP Smart app ●Google Cloud Print12Chapter 1 Printer overview。

军事分析仿真评估系统海军指挥控制模型设计

军事分析仿真评估系统海军指挥控制模型设计
总第 280 期
2017 年第 10 期
舰 船 电 子 工 程 Ship Electronic Engineering 舰 船 电 子 工 程
Vol. 37 No. 10 19
军事分析仿真评估系统海军指挥控制模型设计
2 赵鑫业 1,

孙光明 1

栋2
烟台 264001)
(1. f military simulation analysis and evaluation system combines the simulation system with the
How to establish a real and reliable Naval Command Control(C2)model has become an important task in the design of military sim⁃ the function of command and control model, focusing on the command and control behavior of command node and the organization of of the command and control model knowledge base,the decision support system and the fuzzy expert system,so that the system of decision-making can make full use of expert experience,but also the use of existing mathematical models,which embodies the command and control models in the military simulation analysis and evaluation system. knowledge base Key Words TP391 characteristics of qualitative and quantitative analysis. Finally,some suggestions are put forward for the modeling of other military command and control,military simulation analysis and evaluation system,navy command and control model,

陆战平台分布式综合模块化系统架构建模方法

陆战平台分布式综合模块化系统架构建模方法

收稿日期:2020-02-08修回日期:2020-03-18作者简介:王昊(1996-),男,山西平遥人,硕士研究生。

研究方向:系统工程。

摘要:分布式综合模块化系统架构,成为航空应用领域的主流架构和发展趋势。

我国空军已进行了分布式综合模块化系统架构研究设计和仿真评估,但缺乏系统级的架构优劣评估。

兵器领域已将综合模块化系统架构应用于型号项目中,但在分布式综合模块化架构方面,尚未在具体项目中应用。

针对分布式综合模块化系统架构缺乏系统级评估手段的问题,提出一种陆战平台分布式综合模块化系统架构建模方法。

根据系统架构评估需求,建立不同层级实体的模型及约束,分别对应陆战平台信息控制系统的业务层、操作系统分区层、模块层、子系统层、系统层;在层级划分的基础上,定义各层级模型的属性;通过对评估指标中的综合度、耦合度进行评估计算,对系统架构建模方法进行验证。

系统架构建模方法为系统架构评估提供了一种参考。

关键词:系统架构,建模方法,陆战平台,综合模块化中图分类号:TJ811;TP311文献标识码:ADOI :10.3969/j.issn.1002-0640.2021.03.016引用格式:王昊,张振华,赵刚,等.陆战平台分布式综合模块化系统架构建模方法[J ].火力与指挥控制,2021,46(3):92-99.陆战平台分布式综合模块化系统架构建模方法王昊,张振华,赵刚,梁栋,贾智(北方自动控制技术研究所,太原030012)Research on Modeling Method of Distributed Integrated ModularSystem Architecture of Land Combat PlatformWANG Hao ,ZHANG Zhen-hua ,ZHAO Gang ,LIANG Dong ,JIA Zhi (North Automatic Control Technology Institute ,Taiyuan 030012,China )Abstract :The distributed integrated modular system architecture has become the mainstreamarchitecture and development trend in the aviation application field.The Chinese Air Force has conducted research and design and simulation evaluation of the distributed integrated modular system architecture ,but it lacks a system -level evaluation of the advantages and disadvantages of the architecture.In the field of weapons ,the integrated modular system architecture has been applied to model projects ,but the distributed integrated modular architecture has not yet been applied to specific projects.Aiming at the problem of the lack of system -level evaluation methods for the distributed integrated modular system architecture ,this paper proposes a modeling method for the distributed integrated modular system architecture of the land warfare platform.According to the evaluation requirements of the system architecture ,this paper establishes the models and constraints of different levels of entities ,corresponding to the business layer ,operating system partition layer ,module layer ,subsystem layer ,and system layer of the land warfare platform information control system ;on the basis of layer division ,Define the attributes of each level model ;verify the system architecture modeling method by evaluating the degree of integration and coupling in the evaluation indicators.The system architecture modeling method in this article provides a reference for system architecture evaluation.Key words :system structure ,modeling method ,land combat platform ,integrated modular Citation format :WANG H ,ZHANG Z H ,ZHAO G ,et al.Research on modeling method of distribut-ed integrated modular system architecture of land combat platform [J ].Fire Control &Command Control ,2021,46(3):92-99.文章编号:1002-0640(2021)03-0092-08Vol.46,No.3Mar ,2021火力与指挥控制Fire Control &Command Control 第46卷第3期2021年3月92··(总第46-)0引言系统架构可以拆分成两部分:“系统”和“架构”。

控制系统简介英文

控制系统简介英文

Section 1.1
Desired output response
Introduction
Comparison Controller Process Output
3
FIGURE 1.3
Closed-loop feedback control system (with feedback).
Measurement
FIGURE 1.1
Process to be controlled. Input en-loop control system (without feedback). Desired output response Actuating device Process Output
P R E V I E W In this chapter, we describe a general process for designing a control system. A control system consisting of interconnected components is designed to achieve a desired purpose. To understand the purpose of a control system, it is useful to examine examples of control systems through the course of history. These early systems incorporated many of the same ideas of feedback that are in use today. Modern control engineering practice includes the use of control design strategies for improving manufacturing processes, the efficiency of energy use, and advanced automobile control (including rapid transit, among others). We will examine these very interesting applications of control engineering and introduce the subject area of mechatronics. We also discuss the notion of a design gap. The gap exists between the complex physical system under investigation and the model used in the control system synthesis. The iterative nature of design allows us to handle the design gap effectively while accomplishing necessary trade-offs in complexity, performance, and cost in order to meet the design specifications. Finally, we introduce the Sequential Design Example: Disk Drive Read System. This example will be considered sequentially in each chapter of this book. It represents a very important and practical control system design problem while simultaneously serving as a useful learning tool.

萨福铝焊机说明书

萨福铝焊机说明书

B - 安装调试 ............................................................................................................10 1. 拆除包装 .......................................................................................................10 2. 送丝机连接...................................................................................................10 3. 主电源的电路连接 .....................................................................................10 4. 焊枪的连接...................................................................................................10
中文
目录
安全说明 .....................................................................................................................2
A - 总体介绍 ...............................................................................................................7 1. 装置简介 .........................................................................................................7 2. 焊接设备组成 ................................................................................................7 3. 前面板描述.....................................................................................................8 4. 选配件..............................................................................................................8 5. OPTIPULS i / i W技术规格 .............................................................................8 6. 尺寸和重量.....................................................................................................9 7. 冷却装置的技术规格......................................................................................9

常态执勤指挥模型关键节点识别及抗毁性研究

常态执勤指挥模型关键节点识别及抗毁性研究

84㊀指挥控制与仿真CommandControl&Simulation2024-0446(2)引用格式:郭正轩,梁文俊,苏旸,等.常态执勤指挥模型关键节点识别及抗毁性研究[J].指挥控制与仿真,2024,46(2):84⁃89.GUOZX,LIANGWJ,SUY,etal.Identificationofkeynodesandresearchtheanti⁃destructionperformanceofnormaldutycommandmodel[J].CommandControl&Simulation,2024,46(2):84⁃89.常态执勤指挥模型关键节点识别及抗毁性研究郭正轩1,梁文俊2,苏㊀旸1,陈㊀芮3(1.武警工程大学,陕西西安㊀710000;2.武警指挥学院,天津㊀300000;3.北京市交通委员会,北京㊀100000)摘㊀要:在常态执勤指挥模型的基础上,重点对树状指挥网络和级联指挥网络的抗毁性进行研究㊂通过建模仿真的方法,对三种执勤指挥模型进行随机攻击和蓄意攻击,对比分析最大连通子图规模㊁网络效率和全局聚集系数等指标,找出抗毁性最强的常态执勤指挥网络模型㊂应用集体影响力算法识别抗毁性能最好的指挥网络的关键节点,与基于节点度大小的传统关键节点识别方法进行对比,证明基于集体影响力算法识别关键节点更加准确,目的是为未来常规执勤指挥网络的优化和防护提供理论指导㊂关键词:复杂网络;执勤指挥网络;建模仿真;抗毁性;集体影响力算法中图分类号:E917;TP393㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀DOI:10.3969/j.issn.1673⁃3819.2024.02.012Identificationofkeynodesandresearchtheanti⁃destructionperformanceofnormaldutycommandmodelGUOZhengxuan1,LIANGWenjun2,SUYang1,CHENRui3(1.EngineeringUniversityofPAP,Xi an710000,China;2.ThePeople sArmedPoliceCommandCollege,Tianjin300000,China;3.BeijingMunicipalCommissionoftransport,Beijing100000,China)Abstract:TheresearchemphasizedtheinvulnerabilityoftreecommandnetworkandCascadeCommandnetworkbasedonthenormaldutycommandmodel.Randomattackanddeliberateattackareemployedonthreekindsofdutycommandmodels.Thepaperfoundoutthebestanti⁃destructionperformancemodelbycomparingandanalyzingindicatorsliketheindexesofmaximumconnectivitysubgraphsize,networkefficiency,globalaggregationcoefficientetc.Thecollectiveinfluencealgorithmisusedtoidentifythekeynodesofthecommandnetworkwiththebestanti⁃destructionperformance,andcomparedwiththetraditionalkeynodeidentificationmethodbasedonnodedegree,itisprovedthatitismoreaccuratetoidentifykeynodesbasedonthecollectiveinfluencealgorithmwhichcouldprovidetheoreticalguidancefortheoptimizationandprotectionofthefutureregulardutycommandnetwork.Keywords:complexnetwork;dutycommandnetwork;modelingandsimulation;anti⁃destruction;collectiveinfluencealgorithm收稿日期:2023⁃02⁃26修回日期:2023⁃05⁃04作者简介:郭正轩(1995 ),男,硕士研究生,研究方向为电子信息技术㊂梁文俊(1984 ),男,硕士研究生㊂㊀㊀武警内卫部队常态担负日常执勤㊁武装巡逻㊁城市反恐等维护社会面稳定的任务,在信息化条件下,依托网络㊁无线电等技术手段实施指挥控制和协同配合,受到冲击破坏的风险较高,尤其是在遇有大规模群体性事件和暴恐袭击时,可能造成整个执勤指挥网络的瘫痪,进而引发社会动荡㊂构建抗毁性能强的常态执勤指挥网络,在对抗条件下保持好网络的抗毁性能,对于提升完成任务能力,维护社会稳定,保卫人民美好生活具有极其重要的意义㊂常态执勤指挥网络是以武警内卫部队的指挥和管理关系为基础,依据图论的相关概念抽象形成的网络图㊂本文在郭正轩等人[1]建模的基础上,应用复杂网络理论和集体影响力算法,识别常态执勤指挥网络中的关键节点,对树状指挥网络和两种级联指挥网络进行随机攻击和蓄意攻击,分别模拟无组织且情报缺失和有组织且掌握一定情报信息两种攻击形式,定量分析常态执勤指挥网络的抗毁性能㊂1㊀常态执勤指挥模型的构建构建常态执勤指挥模型是开展网络分析的基础,主要是运用抽象的方法,将现实中各种研究对象之间的相互关系转化为点与边的集合,形成网络图㊂1 1㊀常态执勤指挥情况想定为方便表述和研究,对常态执勤指挥网络的生成背景做如下想定:武警某内卫部队担负某地区常态执勤活动,该部按照三级指挥结构实施垂直指挥㊂其中节点O表示该地区该部最高指挥机构,O节点下辖二级指挥机构19个(包含Z节点和J节点,Z节点担负常规执勤任务的指挥机构,J节点担负抢险㊁处突㊁维稳㊁战备㊁反恐等机动任务的指挥机构),二级指挥机构分别下辖三级作战单元4-5个(包含Z_z节点㊁Z_j节点㊁第2期指挥控制与仿真85㊀J_j节点㊁J_t节点,Z_z节点是遂行常规执勤任务的作战单元,Z_j节点㊁J_j节点㊁J_t节点是遂行抢险㊁处突㊁维稳㊁战备等机动任务的作战单元,J_t节点是遂行反恐等恐怖袭击事件的作战单元),各级指挥机构㊁作战单元共计100个㊂1 2㊀常态执勤指挥网络模型建模方法运用图论的相关理论,将现实中的实体单位抽象为网络图中的节点,实体单位之间存在的指挥控制㊁协同配合等关系抽象为网络图中的边,节点和边的集合共同构成了常态执勤指挥网络㊂本文使用基于python的networkx工具进行建模仿真,生成无向无权图㊂使用pandas.read_excel和networks.from_pandas_adjacency函数,从EXCEL文件中读取邻接矩阵数据(见图1),第一行和第一列分别表示网络图中包含的节点,其余单元格若为1则表示对应两个节点存在连边,若为0则表示两个节点不存在连边㊂图1㊀EXCEL文件中存储的邻接矩阵Fig 1㊀TheadjacencymatrixstoredinthefileofEXCEL1 3㊀常态执勤指挥网络建模结果按照上述方法,构建三种常态执勤指挥网络进行对比分析,图2为树状三级常态执勤指挥网络,这种指挥网络是依据部队的指挥层级构建的传统模型,实施垂直指挥,同一指挥层级之间不存在指挥协同关系㊂整个网络结构简单,指挥方式单一㊂图2㊀树状3级常态执勤指挥网络Fig 2㊀Tree⁃likelevel3normaldutycommandnetwork在图2的基础上,结合复杂网络理论,对二级指挥节点Z进行随机连接,主要方法是通过将rand()函数生成的随机数r(0 1之间)与设置的概率矩阵p进行比较,对于节点i和j之间,若p(i,j)ȡr且两节点对应的邻接矩阵为0,则节点i与节点j相连,否则不相连㊂由此生成图3的随机级联常态执勤指挥网络㊂图3㊀随机级联常态执勤指挥网络Fig 3㊀Randomcascadenormaldutycommandnetwork图4依据任务实际和部队地理位置,在图2的基础上,建立比图3更加合理的连边,主要是:1)建立O与J_t节点之间的连边,其含义是指在遇有恐怖袭击事件时,O节点可对J_j作战单元实施直接指挥,J_j作战单元也可以将完成任务情况及时向O报告;2)建立Z与J节点之间的连边,其含义是在常规任务中加强情报共享和协同配合,共同担负某项任务时,实施联合指挥;3)建立Z与J_j节点之间的连边,其含义是指加强J_j作战单元态势感知能力,及时发现特殊情况,缩短反应时间;4)建立J与Z_j节点之间的连边,其含义是指J节点加强情报收集与信息反馈,能够准确判断发生的有碍社会面稳定的情况㊂图4㊀基于任务实际和地理位置的常态执勤指挥网络Fig 4㊀Normaldutycommandnetworkbasedonmissionrealityandgeographiclocation86㊀郭正轩,等:常态执勤指挥模型关键节点识别及抗毁性研究第46卷2㊀常态执勤指挥模型抗毁性分析2 1㊀抗毁性定义与研究现状常态执勤指挥模型抗毁性指的是常态执勤指挥网络中的指挥机构或作战单元在受到攻击被移除网络后,形成的最大连通子图维持指挥通联的能力㊂当前,对于网络抗毁性的研究,主要分为对网络拓扑结构的静态分析和动态分析㊂静态分析抗毁性的差异主要在于抗毁性度量指标的不同,王班等人[2]使用自然连通度作为抗毁性度量指标,JeffreyRCARES[3]和DELLERS等人[4]使用邻接矩阵的PFE来评估网络抗毁性,在PFE的基础上定义了网络化效能指标(CNE)来评估抗毁性,LORDANO等人[5]则是通过最大联通子图的规模来研究抗毁性,张超[6]和周漩[7]等人使用网络效率E度量鲁棒性㊂动态分析抗毁性比较主流的是运用贝叶斯网络,在时序空间上研究预测网络演化[8⁃10]㊂本文主要模拟了随机攻击与蓄意攻击两种攻击方式,通过最大连通子图规模㊁网络效率和全局聚集系数三个指标分析不同网络模型在不同攻击方式下的抗毁性㊂2 2㊀常态执勤指挥模型抗毁性分析的指标常态执勤指挥网络的抗毁性分析主要用到以下指标:边数(L):所有连边的数量㊂节点的度(D):与节点相连的边的数量,可以反映一个节点的重要程度[11]㊂节点度分布:以节点的度为标准,对所有节点进行统计㊂全局聚类系数(C):闭合三联体除以三联体总数,度量概括了整个网络的传递性,其计算公式为C=numberofclosedtripletsnumberofalltriplets(openandclosed)(1)文献中numberofclosedtriplets也被称为3ˑ(numberoftriangles),其计算公式也可表达为C=3ˑ(numberoftriangles)numberofalltriplets(2)平均聚类系数(AC):其计算公式为AC=1NðNi=1Ci(3)其中,Ci为节点i的局部聚集程度,一个节点vi的局部聚类系数由邻域内节点之间的连边除以它们之间可能存在的连边数量的比例给出㊂该度量将更多权重放在低度节点上,能够更好地反映网络的去中心化程度㊂最大连通子图规模(S)代表能够互相交流的最大比例,规模越大代表常态执勤指挥网络指挥控制的范围越广,能力越强㊂网络效率(E):计算网络中任意节点i到节点j的最短路径dij的倒数之和,而后求得平均值,即为网络效率,其计算公式为E=2N(N-1)ðiʂjɪV1dij(4)上述N均为网络节点数㊂2 3㊀鲁棒性与脆弱性分析常态执勤指挥网络的鲁棒性是指网络中的节点在随机攻击的过程中保持稳定与健壮的能力,即在受到干扰的情况下,继续维持正常情况的程度㊂常态执勤指挥模型的脆弱性是指网络中的关键节点受到蓄意攻击后失效而对指挥网络整体产生的影响㊂随机攻击通过随机移除节点模拟㊂蓄意攻击按照节点度的大小移除节点模拟㊂本文主要观察最大联通子图规模㊁网络效率和全局聚集系数三个指标在不同网络和不同攻击方式下的变化来分析评估抗毁性㊂3㊀常态执勤指挥网络抗毁性仿真分析首先使用networkx软件对三种网络的拓扑结构进行分析㊂为便于制表,将树状3级常态执勤指挥网络表述为网络一,随机级联常态执勤指挥网络和表述为网络二和网络三㊂从图5节点度分布和表1度量指标对比情况来看,基于任务实际和地理位置的常态执勤指挥网络去中心化的特征更为明显,网络复杂程度更高,紧密程度更强,网络效率数值最大,指挥更加高效,从表2的排序结果来看,在网络三中节点J㊁J_t㊁Z_j的节点度数明显增大,代表其在网络三中发挥作用更加重要㊂表1㊀三种网络各度量指标对比Tab 1㊀Comparisonofthemetricsofthethreenetworks网络一网络二网络三网络一网络二网络三1O:19O:19O:231611Z:413Z:79Z:621Z:66Z:11J1:121712Z:414Z:711Z:632Z:6J1:11J3:121813Z:47Z:612Z:643Z:6J2:10J2:111914Z:49Z:613Z:654Z:68Z:9J4:102015Z:411Z:614Z:665Z:6J4:91Z:8211Z_1_z:11Z_1_z:115Z:67J1:61Z:82Z:8221Z_2_z:11Z_2_z:11Z_j:68J2:62Z:83Z:8231Z_3_z:11Z_3_z:12Z_j:69J3:63Z:84Z:8241Z_4_z:11Z_4_z:14Z_j:610J4:65Z:85Z:8251Z_j:11Z_j:15Z_j:6116Z:515Z:86Z:7262Z_1_z:12Z_1_z:1J1_t:6127Z:5J3:87Z:7272Z_2_z:12Z_2_z:1J3_t:6138Z:54Z:78Z:7282Z_3_z:12Z_3_z:1J2_t:5149Z:510Z:710Z:7292Z_4_z:12Z_4_z:1J4_t:51510Z:512Z:73Z_j:7302Z_j:12Z_j:11Z_1_z:2第2期指挥控制与仿真87㊀表2㊀三种网络按照节点度对前30的节点进行排序Tab 2㊀Threenetworkssortthetop30nodesbynodedegree边数L全局聚集系数C网络效率E平均聚集系数AC网络一990 00000 30870 0000网络二1250 12150 32610 0218网络三1580 22420 33540 2790本文使用基于python的networkx软件作为仿真实验的工具,分别对构建的三种常态执勤指挥网络进行100次随机攻击和蓄意攻击,记录每次攻击结束后的最大连通子图规模S㊁全局聚集系数C和网络效率E㊂实验仿真结果如下,其中图6㊁图7㊁图8分别为对树状3级常态执勤指挥网络㊁随机级联常态执勤指挥网络㊁基于任务实际和地理位置的常态执勤指挥网络进行随机攻击和蓄意攻击的仿真结果㊂图5㊀三种网络节点度分布Fig 5㊀Threekindofnetworksnodesdegreedistributions图6㊀树状3级常态执勤指挥网络仿真结果Fig 6㊀Simulationresultsoftree⁃likelevel3normaldutycommandnetwork图7㊀随机级联常态执勤指挥网络仿真结果Fig 7㊀Simulationresultsofrandomcascadenormaldutycommandnetwork㊀㊀通过拓扑分析和上述仿真结果,可以得出如下结论:1)三种网络均对蓄意攻击表现出脆弱性,对随机攻击表现出鲁棒性;2)基于任务实际和地理位置的常态执勤指挥网络的抗毁性比其他两种网络更强;3)提升复杂性㊁网络聚集性和去中心化程度,能够增强执勤指挥网络的抗毁性㊂88㊀郭正轩,等:常态执勤指挥模型关键节点识别及抗毁性研究第46卷图8㊀基于任务实际和地理位置的常态执勤指挥网络仿真结果Fig 8㊀Simulationresultsofnormaldutycommandnetworkbasedonmissionrealityandgeographicallocation基于任务实际和地理位置的常态执勤指挥网络中遂行机动任务和反恐任务的作战单元的重要程度要高于其他两种网络中对应节点的重要程度㊂4㊀基于集体影响力算法的关键节点识别在由大量节点构成的复杂网络中,各个节点对于网络连通程度的影响各不相同[12],攻击网络中的重要节点会使得网络迅速崩溃,上文将节点度作为评判节点重要程度的指标,对常态执勤网络的抗毁性进行研究㊂但是,只考虑本级节点度的大小并不能科学客观地反映节点在整个网络中的重要程度,因此,借鉴 集体影响力 的算法[13]来确定常态执勤指挥网络中最具影响力的节点㊂4 1㊀网络节点的集体影响力(CI)度量方法美国纽约城市大学H.Makse团队分析大量真实数据发现,高影响力节点也可能是网络中的部分小度节点,这类节点在整个网络中往往起到了重要的连接作用,但是运用传统度节点大小的启发式算法极大低估了小度节点在网络中的影响力㊂集体影响力算法借鉴了网络渗流理论㊂渗流理论通过逐一从网络中删除边的过滤模型来模拟元素故障或扰动传播,这一删除过程存在临界渗流阈值,超过阈值就会使得网络被碎片化成多个小的集团㊂集体影响力算法的基本思想就是在网络的最小集合中找到一旦删除就会使网络分解成许多节点并断开的部件,这些节点被称为 弱节点 ,节点度数不大,但保证了网络的全局连接㊂如图9所示,定义一个半径为ℓ的球,也就是考虑的最小集合范围,对于范围内的每个节点j,获取距离中心节点i最短距离长度为ℓ的其他节点集,表示为∂Ball(i,ℓ),然后求解公式:CIℓ(i)=(ki-1)ðjɪ∂Βall(i,ℓ)(kj-1)(5)即可获得节点i在给定ℓ下的CI值,其中ki表示节点i的度值㊂CI值是对节点i的度值,在ℓ范围内,用集合∂Ball(i,ℓ)中的所有节点的度值对中心节点i进行加权,即因式kj-1㊂这样即使中心节点i的度值不高,但由于考虑了相邻或间接相连的节点的度值,进而增强了中心节点i的重要性,也就是集体影响力㊂遍历所有节点即可获得所有节点的CI值㊂图9㊀集体影响力算法示意图Fig 9㊀Schematicdiagramofthecollectiveinfluencealgorithm4 2㊀对比仿真分别采取基于集体影响力的CI值和基于节点度值两种策略,对抗毁性能最强的基于任务实际和地理位置的常态执勤指挥网络进行蓄意攻击,通过对比最大连通子图规模S来对比分析,绘制曲线如图10所示,x轴为删除节点的比例,y轴为最大连通子图规模㊂图中,HD表示在初始网络的基础上移除度最大的节点;HAD表示在当前网络的基础上移除度最大的节点;CI表示在初始网络基础上移除集体影响力最大的节点;CID表示在当前网络基础上移除集体影响力最大的节点㊂从实验结果分析,采取在当前网络基础上移除集体影响力最大的节点(CID)的策略,基于任务实际和地理位置的常态执勤指挥网络崩溃的速度最快㊂也就说明基于集体影响力的算法比基于节点度大小的策略识别关键节点更加准确㊂第2期指挥控制与仿真89㊀图10㊀不同蓄意攻击策略下最大子图规模变化情况Fig 10㊀Changesinthesizeofthemaximumsubgraphunderdifferentdeliberateattackstrategies5㊀结束语本文对树状3级㊁随机级联和基于任务实际和地理位置的3种常态执勤指挥网络进行建模,模拟了随机攻击和蓄意攻击两种攻击方式,通过对比分析最大连通子图规模S㊁网络效率E和全局聚集系数C等指标,研究三种常态执勤指挥网络的抗毁性㊂而后,对抗毁性能最好的基于任务实际和地理位置的常态执勤指挥网络进行4种不同策略的蓄意攻击,得出使用 集体影响力 算法能够更好地识别关键节点的结论㊂综合上述实验,对增强常态执勤指挥网络的抗毁性提出如下建议:1)在成本合理的情况下,增加不同单位之间的指挥协同关系;2)准确识别常态执勤指挥网络中的关键节点,在对抗条件下,网络遭到破坏,实时评估当前网络中的关键节点,并加强对关键节点的防护和隐蔽㊂但是,本文尚存在以下不足:1)模型的构建还不够细致,没有依据不同单位之间不同的指挥协同关系构建权重不同的模型;2)网络模型的动态研究不足,网络模型被攻击破坏后,节点重新取得与指挥网络的联系还没有通过模拟仿真实现;3)缺乏对网络模型演变的预测㊂下一步将针对不足以及执勤指挥网络的重构规则㊁重构后的抗毁性评估继续深入研究㊂参考文献:[1]㊀郭正轩,苏旸,刘云鹏.基于复杂网络的常态执勤指挥模型[J].指挥信息系统与技术,2022,13(3):97⁃102.GUOZX,SUY,LIUYP.Conventionaldutycommandmodelbasedoncomplexnetwork[J].CommandInformationSystemandTechnology,2022,13(3):97⁃102.[2]㊀王班,马润年,王刚.基于自然连通度的复杂网络抗毁性研究[J].计算机仿真,2015,32(8):315⁃318,322.WANGB,MARN,WANGG.Researchoninvulnerabil⁃ityofcomplexnetworksbasedonnaturalconnectivity[J].ComputerSimulation,2015,32(8):315⁃318,322.[3]㊀JeffreyRCARES.Distributednetworkedoperations:thefoundationsofnetworkcentricwarfare[M].Bloomington:luniverselnc,2005.[4]㊀DELLERS,RABADIG,TOLKA,etal.Organizingforimprovedeffectivenessinnetworkedoperations[M]//Op⁃erationsResearchforUnmannedSystems.Chichester,UK:JohnWiley&Sons,Ltd,2016:255⁃270.[5]㊀LORDANO,SALLANJM,SIMOP,etal.Robustnessofairlineallianceroutenetworks[J].CommunicationsinNonlinearScienceandNumericalSimulation,2015,22(1/2/3):587⁃595.[6]㊀张超,张凤鸣,王瑛,等.基于复杂网络视角的航空通信网络鲁棒性分析[J].系统工程与电子技术,2015,37(1):180⁃184.ZHANGC,ZHANGFM,WANGY,etal.Methodtoan⁃alyzetherobustnessofaviationcommunicationnetworkbasedoncomplexnetworks[J].SystemsEngineeringandElectronics,2015,37(1):180⁃184.[7]㊀周漩,张凤鸣,周卫平,等.利用节点效率评估复杂网络功能鲁棒性[J].物理学报,2012,61(19):190201.ZHOUX,ZHANGFM,ZHOUWP,etal.Evaluatingcomplexnetworkfunctionalrobustnessbynodeefficiency[J].ActaPhysicaSinica,2012,61(19):190201.[8]㊀王润生,贾希胜,王卫国,等.基于贝叶斯网络的损伤定位研究[J].兵工学报,2006,27(4):726⁃730.WANGRS,JIAXS,WANGWG,etal.ThedamagereasonlocationbasedonBayesiannetworks[J].ActaAr⁃mamentarii,2006,27(4):726⁃730.[9]㊀李宗育,王劲松,徐晏琦,等.基于动态贝叶斯网络的复杂网络攻击效果研究[J].南京邮电大学学报(自然科学版),2015,35(5):67⁃73,79.LIZY,WANGJS,XUYQ,etal.Complexnetworkat⁃tackeffectbasedondynamicBayesiannetwork[J].JournalofNanjingUniversityofPostsandTelecommunica⁃tions(NaturalScienceEdition),2015,35(5):67⁃73,79.[10]胡鑫,王刚,马润年.基于动态贝叶斯网络的复杂网络抗毁性分析[J].火力与指挥控制,2017,42(11):5⁃9.HUX,WANGG,MARN.Complexnetworkinvulnera⁃bilitybasedondynamicBayesiannetwork[J].FireControl&CommandControl,2017,42(11):5⁃9.[11]夏昱,毛旭东,尹延涛,等.基于复杂网络的舰艇编队协同反导作战模型研究[J].系统仿真技术,2013,9(1):79⁃84.XIAY,MAOXD,YINYT,etal.Researchonshipfor⁃mationcooperationanti⁃missileoperationmodelbasedoncomplicatednetwork[J].SystemSimulationTechnology,2013,9(1):79⁃84.[12]BARABÁSIAL,BONABEAUE.Scale⁃freenetworks[J].ScientificAmerican,2003,288(5):60⁃69.[13]MORONEF,MAKSEHA.Influencemaximizationincomplexnetworksthroughoptimalpercolation[J].Nature,2015,524(7563):65⁃68.(责任编辑:许韦韦)。

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

作战超网络多Agent模型

作战超网络多Agent模型

作战超网络多Agent模型朱江;刘大伟;李翼鹏【期刊名称】《计算机科学》【年(卷),期】2012(039)007【摘要】运用网络化作战的思想,分析了军事网络的性质,将复杂适应系统理论多Agent建模和超网络建模相结合,提出一种超网络多Agent模型.该模型使用超网络表示军事网络;在微观层面,扩展实体的网络属性;宏观层面考虑了网络的演化行为.模型结合实体关系对网络的涌现和整体网络对实体行为的驱动实现网络状态机,规定和反映网络的交互关系和发展变化,以更好地反映信息化作战条件下的体系对抗特征.使用该模型建立的仿真平台比较适合进行指挥、控制方面的实验.%After analyzing the properties of military network under network-centric war idea, combat super network modeling method was naturally and necessarily used to expressing the military network. By combing this method with CAS(complex adaptive system) theory and MAS(multi-agent system) modeling method, a super network agent model was proposed. In this model,at the micro level, the network properties are extended into entity properties, and at the macro level, the evolution behavior of overall network is taken into account by super network. The model regulates and reflects the interaction and dynamics of network with combination of emerge behavior from entity relationship to network, and driving efficiency from overall network characteristic to entity. Simulation platform by this model is very fit for command and control testing experiment【总页数】4页(P44-47)【作者】朱江;刘大伟;李翼鹏【作者单位】南京陆军指挥学院南京210045;重庆通信学院军事信息工程系重庆400035;国防科学技术大学训练部长沙410072【正文语种】中文【中图分类】E0;TP391.9【相关文献】1.基于Agent的信息化作战油料保障调运模型 [J], 周庆忠;2.基于多 Agent 的作战体系仿真模型构建 [J], 杜伟;朱江;闻传花;王迎春3.作战体系超网络模型及应用 [J], 朱江;刘大伟;陈俊4.基于超网络的作战体系演化模型构建方法 [J], 黄树江;王超;郭基联;钟季龙5.面向任务驱动的海上编队云作战体系动态超网络模型 [J], 聂俊峰;陈行军;史红权因版权原因,仅展示原文概要,查看原文内容请购买。

美军建模与仿真网上信息概览

美军建模与仿真网上信息概览

美军建模与仿真网上信息概览(1)摘要:本文通过美军披露在互联网上公开网页中的大量信息来追踪美军的仿真模拟的组织机构,技术体系,应用系统,学术活动等,并选择“美国国防部建模与仿真办公室”(DMSO-Defense Modeling and Simulation office)下属的“建模与仿真信息分析中心”(MSIAC-Modeling and Simulation InformationAnalysis Center)列出的建模与仿真网页目录,概要地介绍美军仿真与模拟的概貌以及有关情况。

关键词:美军仿真建模今天,越来越多的国家重视“超前的智能较量”。

西方发达国家,特别是美国,在这方面做了大量的工作,并取得了一些成功的范例。

“海湾战争”、“科索沃冲突”等近期的几场高技术局部战争,都包含有大量“超前智能较量”的内涵。

前不久,美国又进行了太空战模拟演习,充分表明了他们对于仿真模拟的重视。

在这种形势下,我们有必要对美军仿真模拟的组织机构、技术体系、应用系统、学术活动等进行分析研究。

本文选择“美国国防部建模与仿真办公室”和国防部信息技术中心(DTIC—— Defense Technical Information Center)协同主办的“建模与仿真信息分析中心”(MSIAC)列出的建模与仿真网页目录,并循此目录探讨美军仿真与模拟情况。

1 美军建模与仿真(M&S)的主要网页l.1 关键的建模与仿真网页(Key M&S Sites)DMSO,国防部建模与仿真办公室(Defense Modeling and Simulation opce)。

HLA,国防部高级体系结构(DoD High Level Architecture)。

MSRR,建模与仿真资源知识库(Modeling & Simulation Resource RePosi-tory)。

1.2 联合建模与仿真网页(Joint M&S Sites)ALSP,聚合级仿真协议(Aggregate Level Simulation Protocol)。

Fiery XF 7 说明书

Fiery XF 7 说明书

Fiery XF 7© 2018 Electronics For Imaging, Inc. 此产品的《法律声明》适用于本出版物中的所有信息。

2018 年 12 月 19 日目录Fiery Command WorkStation 概述 (11)Job Center (11)用于管理队列中作业的命令 (12)工具栏图标 (12)作业搜索 (13)Job Editor (14)Server Manager (14)系统维护 (14)配置 Command WorkStation (16)登录到多个 Fiery 服务器 (16)移除 Fiery server (16)添加更多打印机 (16)配置网络打印机 (17)配置通过 USB 连接的打印机 (17)配置打印到文件输出 (18)承印材料和工作流程 (18)配置承印材料 (19)配置工作流程 (19)配置用户帐户 (23)登录到 Command WorkStation (24)注销 Command WorkStation (24)导入作业 (25)直接导入作业到 Job Center (25)在导入时自动处理作业 (26)热文件夹和虚拟打印机 (26)配置热文件夹 (27)配置虚拟打印机 (27)Fiery XF Universal Driver (28)安装 Universal Driver (28)登录到 Universal Driver 并打印 (28)Universal Driver 设定 (29)配置打印机设定 (30)开始打印 (30)取消作业处理 (31)PostScript 和 PDF 作业 (32)切换到不同的 PDF 打印引擎 (32)EPS 作业检测 (33)为 EPS 作业检测设置时间推移或更改输入分辨率 (33)采用 RIP 自动分色 (33)设置 Command WorkStation 如何处理 in-RIP 信息 (34)页面框定义 (34)指定页面框 (35)工作色彩空间 (35)应用工作色彩空间 (35)在合成作业中套印 (36)在合成作业中模拟套印 (36)管理 PDF 作业中的非嵌入字体 (36)将多页 PDF 作业作为单页加载 (36)编辑作业 (38)旋转作业 (38)翻转作业 (38)缩放作业 (38)对齐印张上的作业 (39)裁切作业 (39)撤销作业编辑 (40)将作业设定另存为工作流程 (40)可视辅助工具 (40)更改测量单位 (41)放大 (41)打开对齐 (42)设置标尺坐标 (42)使用参考线 (42)显示可视辅助工具 (42)作业标签 (43)创建或编辑作业标签 (43)打印作业标签 (43)调整作业标签的大小 (44)控制栏 (45)选择控制栏 (45)创建动态楔入 (45)跨两行打印作业标签 (46)嵌入 (47)嵌入所有作业 (47)强制嵌入以打印 (48)嵌入所选作业 (48)添加、移除或删除套叠式作业 (48)克隆套叠式作业 (49)重命名嵌入 (49)排列套叠式作业 (49)在印张上将所有套叠式作业对齐 (49)编辑套叠式作业 (50)缩放套叠式作业 (50)在印张的固定位置锁定套叠式作业 (50)添加套叠式作业周围的边距 (51)打印多页 PDF 的所选页面 (51)平铺 (52)创建平铺 (52)创建具有重叠效果的图素 (53)打印具有粘合区域的图素 (53)调整图素大小 (54)将图素边缘锁定到固定位置 (54)合并或拆分图素 (54)显示和保存平铺预览 (55)拆分图素以进行打印 (55)对平铺作业进行后期编辑 (56)步骤和重复 (57)创建步骤和重复 (57)修改步骤和重复 (58)作业合并 (59)设置自动作业合并的工作流程 (59)手动合并作业 (60)校准和生成特性档工具 (61)启动 Color Tools (61)校准打印机 (61)非 EFI 宽幅打印机的校准过程 (62)EFI 宽幅打印机的校准过程 (68)打印机优化 (75)为承印材料特性档优化进行设定 (76)选择一个 L*a*b* 优化文件。

基于QualNet的移动自组网建模与仿真[1]

基于QualNet的移动自组网建模与仿真[1]
第16卷第4期 2009年4月
电光与控制
Electronics Opti∞&Control
V01.16
No.4
Apr.2009
基于QualNet的移动自组网建模与仿真
马 涛, 单洪
(电子工程学院网络工程系,合肥230037)
摘要:为了区别移动自组织网络拓扑变化和外界的攻击或干扰对网络性能的影响,利用无线网络仿真工具QualN眦 对多种战场应用场景进行建模仿真,比较分析不同场景下的网络性能,给下一步的攻击效果评估提供指标参考。 关键词:军用无线通信;战场通信;移动Ad-Hoe网络;网络建模;网络仿真;指挥控制 中图分类号:V271.4;TN915.08 文献标志码:A 文章编号:1671—637X{2009}04一0060一05
1移动Ad—Hoc网络的体系结构
移动Ad—Hoc网络主要包含4种基本结构:中心式 控制结构、分层中心式控制结构、完全分布式控制结构和 分层分布式控制结构¨。1。前两种属于集中式控制结构, 普通节点设备比较简单,而中心控制节点设备较复杂,有 较强的处理能力,负责选择路由和实施流量控制。完全分 布式网络结构可以看成平面结构。源站和目的站之间一 般存在多条路径,可以较好地实现负载均衡。 分层分布式控制结构又称分级结构,借鉴了完全分 布式和分层中心式结构的优点。它将网络划分成多个 簇,每个簇由一个簇头和多个普通节点组成。分级结构 又可以分为单频分级和多频分级两种。单频分级网络 中,所有节点使用同—个频率通信。在多频率分级网络 中,簇头一般预先设定,不同级采用不同的通信频率。 在分级结构中数据的传输方式主要有两种:垂直数
Pause Time/s
仿真区域:l
200 m×1 200 m。
图2分组传递率与暂停时间的关系

DES-1250G_A1_Manual_v1-00

DES-1250G_A1_Manual_v1-00

D-Link™ DES-1250GWeb Smart 48-Port 10/100Mbps+2-Port Combo 10/100/1000Mbps Copper/SFP(Mini GBIC) Gigabit SwitchManualFirst EditionBuilding Networks for PeopleRECYCLABLEInformation in this document is subject to change without notice.© 2004 D-Link Computer Corporation. All rights reserved.Reproduction in any manner whatsoever without the written permission of D-Link Computer Corporation is strictly forbidden.Trademarks used in this text: D-Link and the D-LINK logo are trademarks of D-Link Computer Corporation; Microsoft and Windows are registered trademarks of Microsoft Corporation.Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. D-Link Computer Corporation disclaims any proprietary interest in trademarks and trade names other than its own.FCC WarningThis equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with this user’s guide, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.CE Mark WarningThis is a Class A product. In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.Warnung!Dies ist ein Produkt der Klasse A. Im Wohnbereich kann dieses Produkt Funkstoerungen verursachen. In diesem Fall kann vom Benutzer verlangt werden, angemessene Massnahmen zu ergreifen.Precaución!Este es un producto de Clase A. En un entorno doméstico, puede causar interferencias de radio, en cuyo case, puede requerirse al usuario para que adopte las medidas adecuadas.Attention!Ceci est un produit de classe A. Dans un environnement domestique, ce produit pourrait causer des interférences radio, auquel cas l`utilisateur devrait prendre les mesures adéquates.Attenzione!Il presente prodotto appartiene alla classe A. Se utilizzato in ambiente domestico il prodotto può causare interferenze radio, nel cui caso è possibile che l`utente debba assumere provvedimenti adeguati.VCCI WarningTABLE OF CONTENTAbout This Guide (4)Purpose (4)Terms/Usage (4)Introduction (5)Gigabit Ethernet Technology (5)Fast Ethernet Technology (5)Switching Technology (5)VLAN (Virtual Local Area Network) (6)Features (7)Unpacking and Installation (8)Unpacking (8)Installation (8)Rack Mounting (8)Connecting Network Cable (8)AC Power (9)Identifying External Components (10)Front Panel (10)Rear Panel (10)Understanding LED Indicators (11)Power and System LEDs (11)Ports 1~48 10/100M Status LEDs (11)Ports 49~50 Gigabit Status LEDs (11)Ports 49~ 50 mini-GBIC Status LEDs (12)Configuration (13)Installing the Web Management Utility (13)Discovery List (13)Monitor List (14)Device Setting (14)Toolbar (15)Configuring the Switch (16)Login (16)Setup Menu (17)Configuring Setup Setting (17)Port Settings (17)VLAN Settings (Virtual Local Area Network) (18)Trunk Setting (19)Device Status (19)Statistic (19)System Setting (20)Trap Setting (21)Set Password (21)Backup Setting (21)Reset Setting (22)Logout (22)ABOUT THIS GUIDECongratulations on your purchase of the Web Smart 48+2G-Port 10/100/1000Mbps/SFP Switch. This device integrates 1000Mbps Gigabit Ethernet, 100Mbps Fast Ethernet, and 10Mbps Ethernet network capabilities in a highly flexible package.PurposeThis guide discusses how to install your Web Smart 48+2G-Port 10/100/1000Mbps/SFP Switch.Terms/UsageIn this guide, the term “Switch” (first letter upper case) refers to your Web Smart 48+2G-Port 10/100/1000Mbps Switch, and “switch” (first letter lower case) refers to other Ethernet switches.INTRODUCTIONThis chapter describes the features of the Web-Smart 48+2G-Port 10/100/1000Mbps/SFP Switch and some background information about Ethernet/Fast Ethernet/Gigabit Ethernet switching technology.Gigabit Ethernet TechnologyGigabit Ethernet is an extension of IEEE 802.3 Ethernet utilizing the same packet structure, format, and support for CSMA/CD protocol, full-duplex, flow control, and management objects, but with a tenfold increase in theoretical throughput over 100-Mbps Fast Ethernet and a hundredfold increase over 10-Mbps Ethernet. Since it is compatible with all 10-Mbps and 100-Mbps Ethernet environments, Gigabit Ethernet provides a straightforward upgrade without wasting a company’s existing investment in hardware, software, and trained personnel.The increased speed and extra bandwidth offered by Gigabit Ethernet are essential to coping with the network bottlenecks that frequently develop as computers and their busses get faster and more users use applications that generate more traffic. Upgrading key components, such as your backbone and servers to Gigabit Ethernet can greatly improve network response times as well as significantly speed up the traffic between your subnets.Gigabit Ethernet enables fast optical fiber connections to support video conferencing, complex imaging, and similar data-intensive applications. Likewise, since data transfers occur 10 times faster than Fast Ethernet, servers outfitted with Gigabit Ethernet NIC’s are able to perform 10 times the number of operations in the same amount of time.In addition, the phenomenal bandwidth delivered by Gigabit Ethernet is the most cost-effective method to take advantage of today and tomorrow’s rapidly improving switching and routing internetworking technologies. With expected advances in the coming years in silicon technology and digital signal processing that will enable Gigabit Ethernet to eventually operate over unshielded twisted-pair (UTP) cabling, outfitting your network with a powerful 1000-Mbps-capable backbone/server connection creates a flexible foundation for the next generation of network technology products.Fast Ethernet TechnologyThe growing importance of LANs and the increasing complexity of desktop computing applications are fueling the need for high performance networks. A number of high-speed LAN technologies have been proposed to provide greater bandwidth and improve client/server response times. Among them, 100BASE-T (Fast Ethernet) provides a non-disruptive, smooth evolution from the current 10BASE-T technology. The non-disruptive and smooth evolution nature, and the dominating potential market base, virtually guarantees cost-effective and high performance Fast Ethernet solutions.100Mbps Fast Ethernet is a standard specified by the IEEE 802.3 LAN committee. It is an extension of the 10Mbps Ethernet standard with the ability to transmit and receive data at 100Mbps, while maintaining the CSMA/CD Ethernet protocol. Since the 100Mbps Fast Ethernet is compatible with all other 10Mbps Ethernet environments, it provides a straightforward upgrade and takes advantage of the existing investment in hardware, software, and personnel training.Switching TechnologyAnother approach to pushing beyond the limits of Ethernet technology is the development of switching technology. A switch bridges Ethernet packets at the MAC address level of the Ethernet protocol transmitting among connected Ethernet or Fast Ethernet LAN segments.Switching is a cost-effective way of increasing the total network capacity available to users on a local area network. A switch increases capacity and decreases network loading by dividing a local area network into different segments, which do not compete with each other for network transmission capacity.The switch acts as a high-speed selective bridge between the individual segments. The switch, without interfering with any other segments, automatically forwards traffic that needs to go from one segment to another. By doing this the total network capacity is multiplied, while still maintaining the same network cabling and adapter cards.Switching LAN technology is a marked improvement over the previous generation of network bridges, which were characterized by higher latencies. Routers have also been used to segment local area networks, but the cost of a router, the setup and maintenance required make routers relatively impractical. Today switches are an ideal solution to most kinds of local area network congestion problems.VLAN (Virtual Local Area Network)A VLAN is a group of end-stations that are not constrained by their physical location and can communicate as if a common broadcast domain, a LAN. The primary utility of using VLAN is to reduce latency and the need for routers, by using faster switching instead. Other VLAN utility includes:Security, Security is increased with the reduction of opportunity in eavesdropping on a broadcast network because data will be switched to only those confidential users within the VLAN.Cost Reduction, VLANs can be used to create multiple broadcast domains, thus eliminating the need of expensive routers.Port-based (or port-group) VLAN is the common method of implementing a VLAN, and is the one supplied in the Switch.Features48×10/100Mbps Auto-negotiation Fast Ethernet RJ-45 ports2×10/100/1000Mbps Auto-negotiation Gigabit RJ-45 ports2×mini-GBIC/SFP ports, share with the 2 gigabit copper portsAll RJ-45 ports support auto MDI/MDIX, so there is no need to use cross-over cables or an up-link port Half-duplex transfer mode for 10/100Mbps RJ45 portsFull-duplex transfer mode for 10/100/1000Mbps RJ45 portsStore-and-Forward switching scheme capability to support rate adaptation and ensure data integrityUp to 4K unicast addresses entities per device, self-learning, and table aging1536KBytes packet bufferSupports IEEE 802.3x flow control for full-duplex mode portsSupports Back-pressure flow control for half-duplex mode portsSupports 802.1Q VLANSupports Port-base QoSSupports seven Port-base Trunking groupSupports Port MirroringSupports Port-setting for Speed/Disable, Flow controlEasy configuration via Web BrowserEasy setting via Web Management UtilityStandard 19” Rack-mount sizeUNPACKING AND INSTALLATIONThis chapter provides unpacking and installation information for the Switch.UnpackingOpen the shipping cartons of the Switch and carefully unpacks its contents. The carton should contain the following items:One Web Smart 48+2G-Port 10/100/1000Mbps/SFP SwitchOne AC power cord, suitable for your area’s electrical power connectionsFour rubber feet to be used for shock cushioningScrews and two mounting bracketsCD-Rom with Web Management Utility and User’s GuideIf any item is found missing or damaged, please contact your local reseller for replacement.InstallationThe site where you install the hub stack may greatly affect its performance. When installing, consider the following pointers:Install the Switch in a fairly cool and dry place. See Technical Specifications for the acceptable temperature and humidity operating ranges.Install the Switch in a site free from strong electromagnetic field generators (such as motors), vibration, dust, and direct exposure to sunlight.Leave at least 10cm (about 4 inches) of space at the front and rear of the hub for ventilation.Install the Switch on a sturdy, level surface that can support its weight, or in an EIA standard-size equipment rack. For information on rack installation, see the next section, titled Rack Mounting.When installing the Switch on a level surface, attach the rubber feet to the bottom of each device. The rubber feet cushion the hub and protect the hub case from scratching.Rack MountingThe Switch can be mounted in an EIA standard-size, 19-inch rack, which can be placed in a wiring closet with other equipment. Attach the mounting brackets at the Switch’s front panel (one on each side), and secure them with the provided screws.Figure 1. Combine the Switch with the provided screwsThen, use screws provided with the equipment rack to mount each Switch in the rack.Figure 2. Mount the Switch in the rackConnecting Network CableThe Switch supports 10Mbps Ethernet or 100Mbps Fast Ethernet and it runs both in half- and full- duplex mode using two pairs of Category 5 cables.The Switch also supports 2-Ports Gigabit Ethernet that runs in Auto-negotiation mode and 10Mbps Ethernet or 100Mbps Fast Ethernet that runs both in half- and full- duplex mode and 1000Mbps Gigabit Ethernet runs in full-duplex mode using four pairs of Category 5 Cables.These RJ-45 ports are Auto-MDI type port. The Switch can auto transform to MDI-II or MDI-X type, so you can just make an easy connection that without worrying if you are using a standard or crossover RJ45 cable.There are additional two mini-GBIC ports for optional mini-GBIC/SFP modules.AC PowerThe Switch uses a 100-240V AC, 50-60 Hz AC power supply. The power switch is located at the rear of the unit adjacent to the AC power connector and the system fan. The Switch’s power supply will adjust to the local power source automatically and may be turned on without having any or all LAN segment cables connected.IDENTIFYING EXTERNAL COMPONENTSThis chapter describes the front panel, rear panel, and LED indicators of the Switch.Front PanelThe figure below shows the front panels of the Switch.Figure 3. Front panel of 48+2G-port Gigabit Ethernet SwitchLED Indicator:Comprehensive LED indicators display the status of the Switch and the network (see the LED Indicators chapter below).Fast Ethernet Ports (Port 1~48):These ports support network speeds of either 10Mbps or 100Mbps, and can operate in half- and full- duplex transfer modes. These ports also supports automatic MDI/MDIX crossover detection function gives true “plug and play” capability, just need to plug-in the network cable to the hub directly and don’t care if the end node is NIC (Network Interface Card) or switch and hub.Gigabit Ethernet Ports (Port 49~50):The Switch is equipped with two Gigabit twisted pair ports, supported auto negotiable 10/100/1000Mbps and auto MDI/MDIX crossover detection function. These two ports can operate in half-duplex mode for 10/100Mbps and full-duplex mode for 10/100/1000Mbps.Note: When the port was set to “Forced Mode”, the Auto MDI/MDIX will be disabled.mini-GBIC (SFP) Ports (Port 49~50):The Switch is equipped with two mini-GBIC ports, supported optional 1000BASE-SX/LX mini-GBIC transceivers.Port 49 and 50 are the same ports with the mini-GBIC no.49 and 50 ports, when the mini-GBIC transceiver is plugged in, the device will activate mini-GBIC, and the RJ-45 port will be disabled.Reset:The Reset button is to reset all settings back to factory defaults.Note: Be sure that you record the setting of your device, or else all settings will be erased when pressing the “Reset” button.Rear PanelFigure 4. Rear panel of the SwitchAC Power Connector:This is a three-pronged connector that supports the power cord. Plug in the female connector of the provided power cord into this connector, and the male into a power outlet. Supported input voltages range from 100-240V AC at 50-60Hz.UNDERSTANDING LED INDICATORSThe front panel LEDs provide instant status feedback, and help monitor and troubleshoot when needed.Figure 5. LED indicators of the SwitchPower and System LEDsPOWER: Power IndicatorOn : When the Power LED lights on, the Switch is receiving power.Off : When the Power turns off or the power cord has improper connection.CPU: Management IndicatorBlinking : When the CPU is working, the System LED is blinking.On/Off : The CPU is not working.Ports 1~48 10/100M Status LEDsLink/ACT: Link/ActivityOn : When the Link/ACT LED lights on, the respective port is successfullyconnected to an Ethernet network.Blinking : When the Link/ACT LED is blinking, the port is transmitting orreceiving data on the Ethernet network.Off :Nolink.Ports 49~50 Gigabit Status LEDsLink/ACT: Link/ActivityOn : When the Link/ACT LED lights on, the respective port is successfullyconnected to an Ethernet network.Blinking : When the Link/ACT LED is blinking, the port is transmitting orreceiving data on the Ethernet network.Off :Nolink.SPEED:On (Green) : When the green light is on, the respective port is connected to a 1000Mbps Gigabit Ethernet network.On (Amber) When the Amber light is on, the respective port is connected to a 100Mbps Fast Ethernet network.Off : When the respective port is connected to a 10Mbps Ethernet or No link. Ports 49~ 50 mini-GBIC Status LEDsLink/ACT: Link/ActivityOn : When the mini-GBIC transceiver is installed and connected to a network, the Link/ACT LED lights on.Blinking : When the LED is blinking, the mini-GBIC module is receiving data on a network.Off :Nolink.CONFIGURATIONThrough the Web Browser you can configure Switch settings such as VLAN, Trunking, QoS… etc.With the attached Web Management Utility, you can easily discover all Web Management Switches, assign the IP Address, change the password, and upgrade new firmware.Installing the Web Management Utility"If your utility is old version, please remove it and install v.1.01 or higher"The following provides instructions guiding you through the installation of the Web Management utility.1. Insert the Utility CD in the CD-ROM Drive.2. FromStart menu on the Windows desktop, choose Run.theRun dialog box, type D:\Web Management Utility\setup.exe (D:\ depends where your CD-Rom drive is located) and click OK.3. Inthe4. Follow the on-screen instructions to install the utility.5. Upon completion, go to Program Files -> D-Link_web_management_utility and execute the Web Management utility. (Figure6.)Figure 6. Web Management UtilityThe Web Management Utility is divided into four parts: Discovery List, Monitor List, Device Setting, and Toolbar function. For detailed instruction, follow the section below.Discovery ListThis is the list where you can discover all the Web management devices in the entire network.By pressing the “Discovery” button, you can list all the Web Management devices in the discovery list.Double click or press the “Add to monitor list” button to select a device from the Discovery List to the Monitor List.System word definitions in the Discovery List:MAC Address: Shows the device MAC Address.IP Address: Shows the current IP address of the device.Protocol version: Shows the version of the Utility protocol.Product Name: Shows the device product name.System Name: Shows the appointed device system name.Location: Shows where the device is located.Trap IP: Shows the IP where the Trap is to be sent.Subnet Mask: Shows the Subnet Mask set of the device.Gateway: Shows the Gateway set of the device.Monitor ListAll the Web Smart Devices in the Monitor List can be monitored; you can also receive traps and show the status of the device.System word definitions in the Monitor List:S: Shows the system symbol of the Web-Smart device, represents a device system that is not alive.IP Address: Shows the current IP address of the device.MAC Address: Shows the device MAC Address.Protocol version: Shows the version of the Utility protocol.Product Name: Shows the device product name.System Name: Shows the appointed device system name.Location: Shows where the device is located.Trap IP: Shows the IP where the Trap is to be sent.Subnet Mask: Shows the Subnet Mask set of the device.Gateway: Shows the Gateway set of the device.View Trap: The Trap function can receive the events that occur from the Web Management Switch in the Monitor List.There is a light indicator behind the “View Trap” button, when the light is green, it means that no trap has been transmitted, and when it is red, it means that a new trap has been transmitted; this is to remind us to view the trap. (Figure 7)Figure 7.When the “View Trap” button is clicked, a Trap Information window will pop up; it will display the trap information including the Symbol, Time, Device IP, and the Event occured. (Figure 8)The symbol “” represents the trap signal, this symbol will disappear after you review and click on the event record.Figure 8.Note: In order to receive Trap information, the Switch has to be configured with the Trap IP and Trap Events settings in the Web browser, which are available in the Trap Setting Menu (see Page 40 for detail).Add Item: To add a device to the Monitor List manually, enter the IP Address of the device that you want to monitor.Delete Item: To delete the device in the Monitor List.Device SettingYou can set the device by using the function key in the Device Setting Dialog box.Configuration Setting: In this Configuration Setting, you can set the IP Address, Subnet Mask, Gateway, Set Trap to (Trap IP Address), System name, and Location.Select the device in the Discovery list or Monitor List and press this button. The Configuration Setting window will pop up as seen in Figure 9. After filling in the data that you want to change, you must fill in the password and press the “Set” button to process the data change immediately.The factory default password is "admin."Figure 9. Configuration SettingPassword Change: You can use this Password Change when you need to change the password, fill in the required passwords in the dialog box and press the “Set” button to process the password change immediately.Figure 10. Password ChangeFirmware Upgrade: When the device has a new function, there will be a new firmware to update the device; use this function to upgrade the firmware.Figure 11.Web Access: Double click the device in the Monitor List or select a device in the Monitor List and press the “Web Access” button to access the device in Web browser.ToolbarThe toolbar in the Web Management Utility has four main tabs: File, View, Options, and Help.In the “File TAB”, there is Monitor Save, Monitor Save As, Monitor Load, and Exit.Monitor Save: To record the setting of the Monitor List to the default settings. The next time you open the Web Management Utility, it will automatically load the default recorded setting.Monitor Save As: To record the setting of the Monitor List to anappointed filename and file path.Monitor Load: To manually load the setting file of the Monitor List.Exit: To exit the Web Management Utility.In the “View TAB”, there is the view log and clear log function. These functions will help you display trap settings.View Log: To show the event of the Web Management Utility and the device.In the “Option TAB”, there is the Refresh Time function; this function helps you to refresh the time for monitoring the device. Choose 15 secs, 30 secs, 1 min, 2 min, and 5 min to select the time for monitoring.In the “Help TAB”, there is About function, it will show out the version of the Web Management Utility.Configuring the SwitchThe 48+2G-Port 10/100/1000Mbps Gigabit Ethernet Web Smart Switch has a Web GUI interface for smart switch configuration. The Switch can be configured through the Web Browser. A network administrator can manage, control and monitor the Switch from the local LAN. This section indicates how to configure the Switch to enable its smart functions including:Port Setting (Speed/Disable, Duplex mode, Flow Control, and Port base QoS)Virtual LAN Group setting (VLAN)Port trunkingPort mirroringSystem SettingDevice status and StatisticLoginBefore you configure this device, note that when the Web Smart Switch is configured through an Ethernet connection, the manager PC must be set on same the IP network. For example, when the default network address of the default IP address of the Web Smart Switch is 192.168.0.1, then the manager PC should be set at 192.168.0.x (where x is a number between 2 and 254), and the default subnet mask is 255.255.255.0.Open Internet Explorer 5.0 or above Web browser.Enter IP address http://192.168.0.1(the factory-default IP address setting) into the address location.Figure 12.Or through the Web Management Utility, you do not need to remember the IP Address. Select the device shown in the Monitor List of the Web Management Utility to settle the device on the Web Browser.When the following dialog page appears, enter the default password "admin" and press Login to enter the main configuration window.Figure 13.After entering the password, the main page comes up; the screen will display the device status.Figure 14. Device StatusSetup MenuWhen the main page appears, find the Setup menu on the left side of the screen (Figure 15). Click on the setup item that you want to configure. There are eleven options: Port Settings, VLAN Settings, Trunk Setting, Device Status, Statistic, System Settings, Trap Setting, Password Setting, Backup Setting, and Reset Setting as shown in the Main Menu screen.Figure 15. Setup menuConfiguring Setup SettingThere are four items, including Port Settings, VLAN Settings, and Trunk Settings in the Setup menu.Port SettingsThe Port Settings menu (Figure 16) will display each port’s status, press the ID parameter to set each port’s Speed, Flow Control, and QoS priority. When you need to renew the posted information, press the “Refresh” button.The Link Status in the screen will display the connection speed and duplex mode; this dialog box will display down when the port is disconnected.Figure 16. Port ConfigurationTo change the port setting, click on the ID parameter to enter the selected port to configure its Speed/Disable, Flow control, and QoS setting.Figure 17.Speed:This setting has six modes—1000M Full, 100M Full, 100M Half, 10M Full, 10M Half, Auto, and Disable—for speed or port disable selections. Note: If the speed set to 100M full mode or 10M full mode, flow control should have the fixed setting set to disable.Flow Control:This setting determines whether or not the Switch will be handling flow control. Set FlowCtrl to Enable for avoiding data transfer overflow. Or if it is set to Disable, there is either no flow control or other hardware/software management.When the port is set to forced mode, then the flow control will automatically set to Disable.Note: Sending packets between two groups may cause packet loss.QoS:In some ports that need to have a high priority to manage the data transfer, QoS should be changed. Set the port’s QoS to high to determine that the port will always transfer its data first.VLAN Settings (Virtual Local Area Network)A VLAN is a collection of switch ports that make up a single broadcast domain. You can configure a VLAN for a single switch, or for multiple switches. When you create a VLAN, you can control traffic flow and ease the administration of moves, adds, and changes on the network, by eliminating the need to change physical cabling.On VLAN settings, there are two main settings, VID Table Setting and Port VLAN Setting.VID: Select the VID group that you set.When you select VID Table Setting, press “Add new VID” to create new VID group, from port 01 ~ port 16. Select Untag Port, Tag Port, or Not Member for each port. To save the VID group, press the “Apply” button. To remove the selected VID group, select the。

航空专业术语缩写英汉

航空专业术语缩写英汉

航空专业术语缩写英汉AVIATION GLOSSARY A-E--ATIS Airport Terminal Information Service机场终端信息服务ATIS Automated(automatic)Terminal Information Service自动终端情报服务ATM Air Traffic Management空中交通管理ATN Aeronautical Telecommunications Network航空电信网ATNP(ICAO)Aeronautical Telecommunication Network Panel (国际民航组织)航空电信网专家组ATO Actual Time Over实际经过时间ATRK Along-Track Error沿航线误差ATS Air Traffic Services空中交通服务ATSC Air Traffic Services Communication空中交通服务通信ATT Attitude姿态AUSSAT Australian Satellite澳大利亚卫星AUTODIN Automated Digital Network自动化数字网络AUTOVON Automatic Voice Network自动化话音网络AUX Auxiliary辅助AVOL Aerodrome Visibility Operational Level机场能见度运行等级AVPAC Aviation VHF Packet Communications航空甚高频分组通信AVS Aviation Standards航空标准AWANS Aviation Weather And NOTAM System航空气象和航行通告系统AWOP(ICAO)All Weather Operations Panel(国际民航组织)全天候运行专家组AWOS Automated Weather Observing System自动化气象观测系统AWP Aviation Weather Processor航空气象处理器AWS Aviation Weather Service航空气象服务AZ Azimuth transmitter方位台BBARO Barometric气压BAZ Back Azimuth后方位,背航道BER Basic Encoding Rules基本编码规则BER Bit Error Rate误码率BIT Built-In-Test机内测试BITE Built-In-Test Equipment机内测试设备BOP Bit Oriented Protocol面向位的协议BPS bits per second每秒传送位数;每秒比特数BPSK Biphase Shift Keying两相相移键控BRITE Bright Radar Indicator Tower Equipment塔台高亮度雷达显示设备BRL Bearing Range Line方位距离线BSU Beam Steering Unit天线方位控制组件BUEC Backup Emergency Communications备用紧急通信C通信C-Band Approx.5,000MHz C波段C/A(CA)Code Course Acquisition Code粗获码(民用的)C/I Carrier-to-Interference Ratio信号干扰比C/N Carrier-to-Noise Ratio信噪比CA Conflict Alert冲突告警CA GPS Course-Acquisition Code粗捕获码(民用码)CA/MSAW Conflict Alert/Minimum Safe Altitude Warning冲突告警/最低安全高度警告CAA Civil Aviation Administration,Civil Aeronautical Authority,Civil Aviation Authority民航局CAAC General Administration of Civil Aviation of China中国民用航空总局CAASD Center for Advanced Aviation System Development(The MITRE Corporation)(MITRE公司)高级航行系统开发中心CAB Civil Aeronautical Bureau民航局CARF Central Altitude Reservation Function中央飞行高度保留功能CARs Civil Air Regulations民用航空规则CASITAF CNS/ATM implementation task force新航行系统实施特别工作组CAT Category仪表着陆等级CATⅠCategoryⅠ一类仪表着陆CATⅡCategoryⅡ二类仪表着陆CATⅢa CategoryⅢa三类a级仪表着陆CATⅢb CategoryⅢb三类b级仪表着陆CATⅢc CategoryⅢc三类c级仪表着陆CATC Civil Aviation Training Center民航培训中心CATMAC Co-operative Air Traffic Management Concept空中交通管理合作方案CBA Cost/Benefit Analysis成本效益分析C-BAND The frequency range between4000and8000MHz4000到8000MHz频段CBI Computer Based Instruction计算机基本指令CBT Computer-Based Training计算机辅助训练CC Connection Confirm联接确认CCA Continental Control Area大陆管制区CCC蜂窝式CNS概念CCD Consolidated Cab Display综合机舱显示器CCIR International Radio Consultative Committee国际无线电咨询委员会CCITT International Telegraph and Telephone ConsultativeCommittee国际电报电话咨询委员会CCP Contingency Command Post应急指挥站CCWS Common controller workstation通用管制员工作站CD Common Digitizer通用数字化仪设备CDC Computer Display Channel计算机显示通道CDI Course Deviation Indicator偏航指示器CDM Code division multiplex码分复用CDM Continuous Delta Modulation连续增量调制CDMA Code Division Multiple Access码分多址CDT Controlled Departure Times管制离场时间CDTI Cockpit Display of Traffic Information驾驶舱交通信息显示CDU Control Display Unit控制显示组件CEP Circular error probability圆概率误差CERAC Combined Center Radar Approach Control雷达进近管制联合中心CFCC Central Flow Control Computer中央流量管制计算机CFCF Central Flow Control Facility中央流量管制设施(功能) CFDPS Compact Flight Data Processing System小型飞行数据处理系统CFWP Central Flow Weather Processor中央流量气象处理机CFWSU Central Flow Weather Service Unit中央流量气象服务单元(组件)CHI Computer Human Interface机人接口CIDIN Common ICAO Data Interchange Network国际民航组织公用数据交换网CIS Cooperative independent surveillance合作式独立监视CLAM Cleared Level Adherence Monitoring放行高度保持监视CLB Climb爬升CLK Clock时钟CLNP Connectionless Network Protocol无连接网络规程(协议)CLR Clear清除CMC Central Maintenance Computer中央维护计算机CMD Command命令CMS Cabin Management System机舱管理系统CMU Communications Management Unit通信管理单元CNDB Customized Navigation Database用户导航数据库CNS Consolidated NOTAM System综合航行通告系统CNS/ATM Communication Navigation,Surveillance/AirTraffic Management通信导航监视/空中交通管理CODEC Coder/Decoder编码器/解码器COM/MET/OPS Communication/Meteorology/Operations通信/气象/运行COMLO Compass Locator罗盘定位器;罗盘示位信标COMM Communication通信COMP Compressor压缩器COMSEC Communications Security通信保安CON Continuous连续CONUS Continental,Contiguous,or Conterminous United States美国大陆本部(四十八州)COP Change Over Point转换点COP Character Oriented Protocol面向字符协议COTS Commercial Off-the-Shelf商业货架产品供应CPDLC Controller Pilot Data Link Communications管制员驾驶员数据链通信CPFSK Continuous Phase Frequency Shift Keying连续相位频移键控CR Connection Request联接申请CRA Conflict Resolution Advisory冲突解脱咨询CRC Cyclic Redundant Check循环冗余校验CRCO Central Route Charges Office中央航路收征费办公室CRM C Reference Model C参考模式CRM Collision Risk Modeling碰撞危险模型CRM Crew Resource Management机组人员安排CRT Cathode Ray Tube阴极射线管CRZ Cruise巡航CSA Standard Accurate Channel标准精度通道CSE Course Setting Error航线设定误差CSMA Carrier Sense Multiple Access(datalink protocol)载波侦听多址访问C/SOIT Communication/Surveillance Operational Implementation Team通信监视运行实施小组(美国)CTA Calculated Time of Arrival计算到达时间CTA Control Area管制区CTAS Central Tracon Automation System中央终端雷达进近管制自动系统CTL Control控制CTMO Central traffic Management Organization中央交通流量管理组织CTMO Centralized Traffic Management Organization中央交通管理组织CTOL Conventional Take Off and Landing常规起飞着陆CTR Control zone管制地带CTS Control Tracking Station控制跟踪站CU Control Unit控制单元C§W Control and Warning控制和告警CW Carrier Wave载波CWI Continuous Wave Interference连续波干扰CWP Central Weather Processor中央气象处理器CWSU Center Weather Service Unit中央气象服务单元DD/A Digital-to-Analog数/模转换DABS Discrete Addressable Beacon System离散寻址信标系统DADC Digital Air Data Computer数字大气数据计算机D-ATIS Digital Automatic Terminal Information Service数字自动终端信息服务DA Decision Addressing beacon system决断寻址信标系统DA Demand Assignment按需分配DA/H Decision Altitude(Height)决断高度DARC Direct Access Radar Channel直接存取雷达信道DARP Dynamic Air Route Planning动态航线计划DARPS Dynamic Aircraft(Air)Route Planning Study动态飞机航线计划研究DC Departure Clearance离场放行许可DC Direct Current直流(电)DCC Display Channel Complex显示通道组合DCIU Data Control Interface Unit数据控制接口单元DCL Departure Clearance Delivery起飞许可传送DCPC Direct Controller Pilot Communication管制员驾驶员直接通信DES Data Encryption Standard数据加密标准DF Direction Finder测向器DFCS Digital Flight Control System数字飞行控制系统DFDAU Digital Flight Data Acquisition Unit数字飞行数据采集单元DGCA Director-General Civil Aviation民航局长DGNSS Differential Global Navigation Satellite System差分全球导航卫星系统DGPS Differential Global Positioning System差分全球定位系统DH Decision Height决断高度DIP Diplexer双工器DL Data Link数据链DLAC Data Link Applications Coding数据链应用编码DLAS Differential GNSS Instrument Approach System差分GNSS仪表进近系统DLK data link数据链DLORT FAA Data Link Operational Requirements Team FAA 数据链运行要求工作组DMAP ICAO Data Link Mobile Applications Panel(proposed) 国际民航组织数据链移动应用专家组(建议)DME Distance Measuring Equipment测距设备DME/N Distance Measuring Equipment/Normal标准测距设备DME/P Distance Measuring Equipment/Precision精密测距设备DMU Data Management Unit数据管理单元DO(DOC)Document记录(文件)DOD Department of Defense(美国)国防部DOP Dilution of Precision精度扩散因子DOT Department of Transportation(美国)运输部DOTS Dynamic Ocean Tracking System动态海洋跟踪系统DP Disconnect Request分离拆线请求DPF Data Processing Function数据处理功能D8PSK Differential Eight-Phase Shift Keying差分8相移键控DPSK Differential Phase Shift Keying差分相移键控DRMS Distance Root Mean Square距离均方根值DRN Document Release Notice文件发放通告DSB-AM Double Sideband Amplitude双边带调幅DSDU Data Signal Display Unit数据信号显示单元DSP Departure Sequencing Program起飞排序计划;离港排序计划DT Data数据DTE Data Terminal Equipment数据终端设备DT&E Development Test and Evaluation开发测试和评估DTF Data Test Facility数据检测设备DTG待飞距离DTN Data Transport Network数据传输网络DUAT Direct User Access Terminal用户直接存取终端DVOR Doppler Very high frequency Omni-directional Range 多普勒甚高频全向信标EEANPG European Air Navigation Planning Group欧洲航行规划小组E-DARC Enhanced Direct Access Radar Channel增强的直接存取雷达信道EARTS En route Automated Radar Tracking System航路自动化雷达跟踪系统EASIE Enhanced ATM and Mode S Implementation in Europe 欧洲S模式和增强的空中交通管理实施项目EATCHIP European ATC Harmonization Implementation Program 欧洲空中交通管制协调实施计划EATMS European Air Traffic Management System欧洲空中交通管理系统ECAC European Civil Aviation Conference欧洲民航会议ECEF 地心地固坐标EDCT Estimated Departure Clearance Time预计离港起飞放行时间EET Estimated Elapsed Time预计经过时间EFAS En route Flight Advisory Service航路飞行咨询服务EFAS Extended Final Approach Segment扩展最后进近段EFIS Electronic Flight Instrument System电子飞行仪表系统EFC Expect Further Clearance预期进一步放行许可EFIS Electronic Flight Information System电子飞行情报系统EGNOS European global navigation overlay system欧洲全球导航重迭系统EHSI Electronic Horizontal Situation Indicator电子平面状态显示器EIRP Equivalent Isotropic Radiate Power等效各向同性辐射功率EISA Extended Industry Standard Architecture扩展的工业标准结构EL Elevation Transmitter仰角台ELOD En route sector Load航路扇区负载管制飞机数量ELT Emergency Locator Transmitter紧急示位发射机EMC Electromagnetic Compatibility电磁兼容EMI Electromagnetic Interference电磁干扰ENRI Electronic Navigation Research Institute(日本)电子导航研究所EOF Emergency Operations Facility应急运行设施EPA Environmental Protection Agency环境保护署ER Error误差ERL Environmental Research Laboratories环境研究实验室ERM En Route Metering航路计量管制ERN Earth Referenced Navigation大地参考导航ERP Effective Radiated Power有效幅射功率ES End System终端系统ESA European Space Agency欧洲航天局ESCAN Electronic Scanning(radar antenna)ESMMC Enhanced SMMC增强的系统维护监视台ESP En route Spacing Program航路间隔计划EST Estimated message预计信息ETA Estimated Time of Arrival预计到达时间ETB Estimated Time of Boundary预计边界时间ETD Estimated Time of Departure预计离港时间ETG Enhanced Target Generator增强的显示目标产生器ETN Estimated Time of Entry预计进入时间ETO Estimated Time Over预计飞越时间ETSI European Telecommunications Standards Institute欧洲电信标准学会EU European Union欧洲联盟EURATN European ATN欧洲航空电信网EUROCAE European Organization for Civil Aviation Electronics欧洲民用航空电子学组织EUROCONTROL European Organization for the Safety of Air Navigation欧洲航行安全组织(欧安局)EVS Enhanced Vision System增强视景系统EWAS En-route Weather Advisory Service航路气象咨询服务FF&E Facilities and Equipment设施和设备F,E&D Facilities,Engineering,and Development设施、工程和开发FAA Federal Aviation Administration(美国)联邦航空局FAATC FAA Technical Center(美国)联邦航空局技术中心FAF Final Approach Fix最终进近坐标FANS ICAO Future Air Navigation Systems(国际民航组织)未来航行系统FANS Special Committee on Future Air Navigation Systems 未来航行系统特别委员会FANS(Phase II)Special Committee for the Monitor-ing and Co-ordination of Develop-ment and Transition Planningfor the Future Air Navigation System未来航行系统监督、协调发展与过渡规划专门委员会FAR Federal Aviation Regulation联邦航空条例FAS Final Approach Segment最后进近段FASID Facilities And Services Implementation Document设施和服务实施文件FCC Flight Communication Center飞行通信中心FCC Federal Communication Commission联邦通信委员会FCC Flight Control Computer飞行控制计算机FDAU Flight Data Acquisition Unit飞行数据收集单元FDDI Fiber Distributed Data Interface光纤分布数据接口FDEP Flight Data Entry and Printout飞行数据输入和输出FDI Fault Detection and Isolation故障检测和隔离FDIO Flight Data Input/Output飞行数据输入/输出FDM Frequency Division Multiplex频分复用FDMA Frequency Division Multiple Access频分多址FDP Flight Data Processor飞行数据处理器FDPS Flight Data Processing System飞行数据处理系统FDR Flight Data Recorder飞行数据记录仪FEATS Future European ATS System Concept未来欧洲空中交通服务系统方案FEATS ICAO Future European Air Traffic Management System 国际民航组织未来欧洲空中交通管理系统FEC Forward Error Correction前向纠错FGC Flight Guidance Computer飞行引导计算机FGCC Federal Geodetic Control Committee联邦大地测量管理委员会FI Flight Inspection飞机校验FIC Flight Information Center飞行信息中心FIFO First In-First Out先入先出FIFO Flight Inspection Field Office飞行检查现场办事处FIR Flight Information Region飞行情报区FIS Flight Information Services飞行情报服务FISA Automatic Flight Information Service自动飞行信息服务FL Flight Level飞行高度层FLIR Forward Looking Infra-red Detection前视红外线探测FM Frequency Modulation调频FMC Flight Management Computer飞行管理计算机FMEA Failure Mode Effects Analysis故障模式效果分析FMS Flight Management System飞行管理系统FMS Frequency Management System频率管理系统FMSG Frequency Management Study Group频率管理研究组FMU Flight Management Unit飞行管理组件FMU Flow Management Unit流量管理单元FOC Full Operation Capability全运行能力FOM Figure of Merit性能指数FPA Flight Path Angle航迹倾角FPD Flight Plan Data飞行计划数据FPS Military Primary Radar军用一次雷达FREQ Frequency频率FRP Federal Radio navigation Plan联邦无线电导航计划(美国)FS Functional Statement功能描述FSAS Flight Service Automation System飞行服务自动化系统FSDPS Flight Service Data Processing System飞行服务数据处理系统FSK Frequency Shift Keying频移键控FSP Flight Strip Printer飞行进程单打印机FSS Flight Service Station飞行服务站FSTN Federal Security Telephone Network联邦政府保安电话网络FT Functional Test功能测试FTE Flight Technical Error飞行技术误差FY Fiscal Year财政年度;会计年度GGA General Aviation通用航空GA Ground annta地面天线Gatelink Datalink for packed aircraft网关数据链路GADS Generic Aircraft Display System通用航空器显示系统GAIT Ground-based Augmentation and Integrity Technique陆基增强和完好性技术GAO Government Accounting Office(联邦)政府会计署GBA Geostationary broadcast area静止卫星广播区域GCAS Ground Collision Avoidance System地面防撞系统GCS Ground Controlled Approach地面控制系统GDLP Ground Data Link Processor地面数据链处理器GDOP Geometic Dilution of Position位置几何扩散因子GDOP Geometry Dilution of Precision精度几何扩散因子GEO Geostationary静地的GEO Geostationary Earth Orbit相对地球静止轨道静止卫星GES Ground Earth Station地面地球站GFE Government-Furnished Equipment政府提供的设备GHz Giga hertz千兆赫兹GIB GNSS integrity broadcast全球导航卫星系统完好性数据广播GIC GNSS Integrity Channel全球卫星导航系统完好性通道GICB Ground-initiated Comm-B地面启动的B类通信GIRU Ground Interrogator Receiver Unit地面应答机接收单元GIS Geographical Information System地理信息系统GLONASS Global Orbit Navigation Satellite System全球轨道导航卫星系统(俄罗斯)GLS GPS Landing System GPS着陆系统GM Guidance Material指导材料GMC Ground Movement Control地面活动管制GMSK Gaussian Minimum Shift KeyingGMT Greenwich Mean Time格林威治时间GNAS General NAS综合国家空域系统GND Ground地GNE Gross Navigational Error总导航误差GNR Global Navigation Receiver全球导航接收机GNSS Global Navigation Satellite System全球导航卫星系统GNSSP ICAO Global Navigation Satellite Systems Panel国际民航组织全球卫星导航系统专家组GPSSU Global Positioning System Sensor Unit全球定位系统(GPS)传感器组件GOES Geostationary Operational Environmental Satellite静地运行环境卫星GOS Grade of Service服务等级GOSEP Government Open Systems Interconnection Profile政府开放系统互联结构GOSIP Government Open systems Implementation Profile政府开放系统实施结构GP Glide-Path下滑道GPIP Glide-Path Intercept Point下滑道截获点GPIWP Glide Path Intercept Waypoint滑行道切入点GPO/GPI General Purpose Output/General Purpose Input通用输出/通用输入GPS Global Positioning System全球定位系统GPWS Ground Proximity Warming System近地告警系统GREPECAS Caribean/South American Planning and Implementation Regional Group加勒比/南美洲计划和实施区域小组GRS Ground-Reference Station地面基准站GRS80Geodetic-Reference System-80大地基准系统-80GS(G/S)Glide Slope下滑坡度GS Ground Speed地速GSA General Services Administration综合服务管理局(联邦政府下属)GSL General Support Laboratory综合保障实验室GSM Global System(or Mobile)Communication全球通信系统GWS Graphic Weather Service图形气象服务HH Homing radio beacon归航无线电信标HARN High Accuracy Reference Network高精度参考网HAT Height Above Touchdown高于接地点的高度HCI Human Computer Interface人机接口HDD Head Down Display下视显示器HDG Heading航向HDOP Horizontal Dilution Of Precision精度水平扩散因子HEMP High Altitude Electromagnetic Pulse高空电磁脉冲HEO High Elliptical Orbit高椭圆率轨道HF High Frequency(3-30MHz)高频HFDL High Frequency Data Link高频数据链HGA High Gain Antenna高增益天线HIRF High Intensity Radiated Fields高强度辐射场HIWAS Hazardous In-flight Weather Advisory Service飞行时遇危险天气的咨询服务HMI Human Machine Interface人机接口HPA high power amplifier高功率放大器HPF Horizontal Position Fix Error水平位置坐标误差HSI Horizontal Situation Indicator水平位置指示器HUD Head-up Display平视显示仪HUI Head up DisplayHVAC Heating,Ventilating,And air Conditioning加热,通风和空调Hybird GNSS/ILS Precision Approach/Landing based on combination of GNSS localizer and ILS glide path基于GNSS 航向和ILS下滑道组合的精密进近/着陆系统Hz Hertz赫兹IIA5International Alopabet5国际字母表第5号码IACA International Air Carrier Association国际航空公司协会IACSP International Aeronautical Communication Service Provider国际航空通信业务提供者IAF Initial Approach Fix初始进近点(坐标)IAG International Association of Geodetical国际测地协会IAIN International Association of Institutes of Navigation国际导航学会联合会IAOPA International Council of Aircraft Owner and Pilot Associations航空器企业主和驾驶员协会国际委员会IAP Instrument Approach Procedure仪表进近程序IAR Intersection of Air Routes航路交叉点IAS Indicated Air Speed指示空速IASC Inter Area Speech Circuit区域间话音线路IATA International Air Transport Association国际航空运输协会IBAC International Business Aviation Council国际商业航空委员会ICAO International Civil Aviation Organization国际民航组织ICCAI(A)International Co-ordination Council of Aerospace Industries Associations国际宇航工业联合会合作委员会ICD Interface Control Document接口控制文件ICO Interim Circle Orbit中高度圆轨道ICSS Integrated Communications Switching System综合通信转换系统ID Identifier(Identification)标识码(编码、识别标志)ID Instrument Departure仪表离场IDSG ICAO Internet Working Standards Drafting Group国际民航组织网间标准起草小组IEEE Institute of Electrical and Electronic Engineers电气和电子工程师学会IF Intermediate approach Fix中间进近定位点IFALPA International Federation of Airline Pilots Associations 航空公司驾驶员协会国际联合会IFATCA International Federation of Air TrafficControllers'Associations空中交通管制员协会国际联合会IFCN Interfacility Flow Control Network设施(单位)间流量管制网络IFF敌我识别器IFM Integrated Flow Management综合流量管理IFR Instrument Flight Rules仪表飞行规则IFRB International Frequency Registration Board国际频率注册委员会IFSS International Flight Service Station国际飞行服务站IBM International Business Machines(美国)国际商用机器公司ILA International Law Association国际法律协会ILS Instrument Landing System仪表着陆系统IMA Integrated Modular Avionics集成化模块式航空电子设备IMAWP Initial Missed Approach Waypoint起始复飞航路点IMC Instrument Meteorological Conditions仪表气象条件IMCS Interim MCS过渡性监控/管制软件IMO International Maritime Organization国际海事组织IMS Integrity Monitoring System完好性监视系统IN Information Need信息需求INMARSAT International Marine Satellite Organization国际移动卫星组织(原名国际海事卫星组织)INS Inertial Navigation System惯性导航系统INS Insert插入INTNET Integrated Data Communications Network集成化数据通信网络I/O input/output输入/输出IOACG Informal Indian Ocean Air Traffic Services Coordinating Group非正式印度洋空中交通服务协调小组IOC Initial Operational Capability初始运行能力IOD GPS Issue of Data全球定位系统数据发布ION Institute of Navigation导航学会IOR Indian Ocean Region印度洋区域IOT§E Initial Operational Test and Evaluation初始运行测试和评估IP Internetwork Protocol网络间协议IPACG Informal Pacific Air Traffic Control Coordination Group 非正式太平洋空中交通管制协调小组IRS Inertial Reference System惯性参考系统ISA International Standard Atmosphere国际标准大气ISDN Integrated Service Digital Network综合业务数字网络ISNS国际卫星导航服务ISO International Organization for Standardization国际标准化组织ISPACG Informal South Pacific ATS Co-Ordination Group非正式南太平洋空中交通服务协调小组ISSS Initial Sector Suite Subsystem起始扇区管制席位分系统ITU International Telecommunication Union国际电信联盟ITWS Integrated T erminal Weather Service综合终端气象服务IVAD Integrate Voice and Data综合话音和数据(通信数据链)IVRS Interim Voice Response System过渡性话音响应系统IWP Interim Working Party临时工作组JAWS Joint Airport Weather Studies联合机场气象研究JCAB Japan Civil Aviation Bureau日本民航局JAWS Joint Airport Weather Studies联合机场气象研究JPO Joint GPS Planning Office联合GPS规划办公室JSS Joint Surveillance System联合监视系统Kbps Kilo bits per second千位每秒KDP Key Decision Point关键性决定点kHz Kilohertz千赫KLAAS Kinematics Local Area Augmentation System动态地面局域增强系统KLADGNSS Kinematics Local Area Differential GNSS 动态地局域差分GNSSkW Kilowatt千瓦kWh Kilowatt hour千瓦小时LL11575.42MHz L-Band carrier L1频率L21227.6MHz L-Band carrier L2频率LAAS Local Area Augmentation System局域增强系统LACAC Latin American Civil Aviation Commission拉丁美洲民航委员会LADGNSS Local Area Differential GNSS局域差分全球卫星导航系统LADS局域差分系统LAN Local Area Network局域网LAT/LONG Latitude/LongitudeLat/Long Reference Waypoint经/纬度经/纬度参考点L-Band Approx1,500MHz L波段(1500兆赫附近频段)LCD Liquid Crystal Display液晶显示LCN Local Communications Network局域通信网络LDGPS Local Differential GPS本地差分GPSLEO Low Earth Orbit近地轨道、低高度轨道LGA Low Gain Antenna低增益天线LCN Local Communications NetworkLLWSA(S)Low Level Wind Shear Alert System低空风切变报警系统LMM Locator Middle Marker航向中指点标LNA Low Noise Amplifier低噪音放大器LNAV Lateral Navigation侧向导航LOC Localize Transmitter(Localizer)航向台发信机LOM Locator Outer Marker航向外指点标LON Longitude经度LORAN-C Long Range Navigation System罗兰-C导航系统LPC Linear Predicative Coding线性预测编码LRR Long Range Radar远程雷达LRU Line Replaceable Unit在线替换部件LSB Least Significant Bit最低有效位LVA Large Vertical Aperture大垂直孔径MMALSR Medium-intensity Approach Lighting System with Runway alignment indicator lights中级亮度进近照明系统,并有跑道对准线显示灯MAP Missed Approach Point复飞点MAR Minimally Attended Radar需低度护理的雷达MASPS Minimum Aeronautical System Standards最低航空系统标准MASPS Minimum Aircraft(Aviation)System Performance Specification(Standards)最小飞机(航空)系统性能标准扩展频谱MAWP Missed Approached WaypointMB Market Beacon指点标MBI Message Block Identifier信息块指示器mbps、Mbit/s mega bits per second兆位每秒MCA Minimum Crossing Altitude最低穿越高度MCC Maintenance Control Center维护控制中心MCDU Multifunction Control Display Unit多功能控制显示单元MCI Mode C intruder装有C模式应答器的入侵飞机MCS Master Control Station主控站MCS Monitoring/Control Software监控/管制软件MDA Minimum Descent Altitude最低下降高度MDT Maintenance Data Terminal维护数据终端MEA Minimum En-route Altitude最低航路高度MED Manual Entry Device人工输入器MET Meteorology气象METAR Meteorological Report of Aerodrome Conditions机场条件气象报告MFCP Multifunction Control Display Panel多功能控制显示面板MFDU Multifunction Display Unit多功能显示单元MHz Megahertz兆赫MIDANPIRG Middle East Air Navigation Planning and Implementation Regional Group中东地区航行规划<请合法使用í?t>实施小组MIFR Master International Frequency Registration国际频率注册管理站(员)MIL Military军方MKR Marker指点标MLS Microwave Landing System微波着陆系统MMALS Multi-Mode Approach and Landing System多模式进近和着陆系统MMI Man-Machine Interface人机接口MMR Multi-Mode Receiver多模式接收机MMS Maintenance Management System维护管理系统MMW Millimeter Wave毫米波MNPS Minimum Navigation Performance Specification最低导航性能规范MNPSA MNPS airspace最低导航性能规范空域MNT Mach Number Technique马赫数技术MOCA Minimum Obstruction Clearance Altitudes最低超障净空高度Mode S specific services S模式特定业务MODEM Modulator-Demodulator调制解调器MOPR Minimum Operational Performance Requirements最低运行性能要求MOPS Minimum Operational Performance Standards最低运行性能规范MORA Minimum Off-Route Altitude<请合法使用软件>低偏离航路高度MOS Metal-Oxide Semiconductor金属-氧化物半导体MOU Memorandum Of Understanding备忘录MPS Maintenance Processor Subsystem维护处理机分系统MRA Minimum Reception Altitude最低接受高度MRT Multi-Radar Tracking多雷达跟踪MRT-VU Multi-Radar Tracking using Variable Update采用变化更新的多雷达跟踪MSA Minimum Sector Altitude最低扇区高度MSAT移动业务卫星系统(美国的)MSAW Minimum Safe Altitude Warning最低安全高度警告MSCP Mobile Satellite Service Provider移动卫星业务提供者MSE Mean Square Error均方误差MSK Minimum Shift Keying最小移频键控MSL Mean Sea Level平均海平面MSP Mode S specific protocol S模式特别协议(规程)MSU Mode Select Unit模式选择单元MTBA Mean Time Between Alarm(Warning)平均告警间隔时间MTBF Mean Time Between Failure平均故障间隔时间MTBO Mean Time Between Outage平均故障停工间隔时间MTBR Mean Time Between Repairs平均故障修复间隔时间MTBUR Mean Time Between Unit Replacements平均更换故障单元间隔时间MTBW Mean Time Between Warning平均告警间隔时间MTD Maintenance Terminal Display维护终端显示器MTI Moving Target Indicator活动目标指示器MTM Module Test and Maintenance模块测试和维护MTMIU Module Test and Maintenance Bus Interface Unit模块测试和维护总线接口单元MTN MEGA Transport Network MEGA运输网络MTSAT Multi-Functional Transport Satellite多功能传送卫星(日本)MTTDA Mean Time To Dispatch Alert平均签派告警时间MTTF Mean Time To Failure平均故障时间MTTM Mean Time To Maintenance平均维护时间MTTR Mean Time to Repair维平均修时间MTTR Mean Time to Restore平均恢复时间MU Management Unit管理单元MUS Minimum Use Specification最低应用规格MUX Multiplexer复用器MN Multisensor Navigation多传感器导航MUX Multiplexer多工器,复用器MWARA Major World Air Route Area世界主要航路区MWO Meteorological Watch Office气象观测台NN Navigation导航NA Not Applicable不可用NACK Negative Acknowledgment出错通知NAD North American Datum北美数据(基准)NADIN National Airspace Data Interchange Network国家空域数据交换网NAGU咨询报告NAILS National Airspace Integrated Logistics Support国家空域综合后勤保障NAPA国家公共管理科学院(美国)Nanosecond One billionth of a second十亿分之一秒NAR National Airspace Review国家空域审议NARACS National Radio Communications System国家无线电通信系统NAS National Airspace System国家空域系统NASA National Aeronautics and Space Administration国家航空和宇航局(美国)NASNET National Airspace System Network国家空域系统网络NASP National Airport System Plan国家航空港系统计划NASPALS NAS Precision Approach and Landing System国家空域系统进近和着陆系统NAT North Atlantic北大西洋地区NAT ADSG North Atlantic Automatic Dependent Surveillance Development Group北大西洋自动相关监视开发小组NAT ATS North Atlantic Air Traffic Services北大西洋空中交通服务NAT SPG North Atlantic Systems Planning Group北大西洋系统规划组NATCOM National Communications Center,Kansas City, Missouri国家通信中心(位于密苏里州堪萨斯城)NATS National Air Traffic Service国家空中交通服务NAV NavigationNAVAID Navigational Aid导航设施NAVAID Radio Aid to Navigation无线电助(导)收设备NAVD North American Vertical Datum北美垂直向数据NCA National Control Authority国家指挥当局NAWP National Aviation Weather Processor国家航空气象处理机NCC Network Control Center网络控制中心NCD No-Computed Data无算出数据NCIU NEXRAD communications interface unit改进型气象雷达通信接口单元NCP Network Control processor网络控制处理器NCS Network Coordinating Station网络协调台NDB Nondirectional Radio Beacon无方向信标NEAN North European ADS-B Network北欧ADS-B网络NEOF National Emergency Operations Facilities国家应急指挥设施NEXRAD Next Generation Weather Radar改进型气象雷达;下一代气象雷达NGRS National Geodetic Reference System国家测地参考系统NGS National Geodetic Survey国家测地勘察NICS NAS Interfacility Communications System国家空域系统设施间的通信系统NIST National Institute of Standards and Technology国家标准和技术研究所NLES导航岸站NM(NMI)Nautical Mile海里,节NMC National Meteorological Center国家气象中心(美国) NMCE Network Monitoring and Control Equipment网络监控设备NMDPS Network Management Data Process System网络管理数据处理系统NMS Navigation Management System导航管理系统NOAA National Oceanic and Atmospheric Administration国家海洋和大气局(美国)NOPAC North Pacific北太平洋NOTAM Notice to Airmen航行通告NPA Non-Precision Approach非精密进近NPDU Network Protocol Data Unit网络协议数据单元NPLAS National Plan of Integrated Airport Systems国家综合航空港系统的计划NRC National Research Committee国家科学研究委员会(美国的)NSAP Network Service Access Point网络服务访问点NSB National Secure Bureau国家保安局(美国的)NSC Network Service Centre网络服务中心NSDU Network Service Data Unit网络服务数据单元NSE Navigation System Error导航系统误差NSSF NAS Simulation Support Facility国家空域系统的仿真保障设施NTLA National Telecommunications Information Agency国家电信资料署(美国)NTSB National Transportation Safety Board国家运输安全委员会(美国)NWS National Weather Service国家气象服务(美国)OO&M Operation and Maintenance运行和维修O.R.Operational Requirement运营要求OACC Oceanic Area Control Center海洋区域管制中心OAS Obstacle Assessment Surface障碍物评价面OAS Oceanic Automation System海洋自动化系统OCA Obstacle Clearance Altitude超障净高度OCA Oceanic Control Area海洋管制区OCH Obstacle Clearance Height超障高OCM Oceanic Clearance Message海洋放行许可信息OCP ICAO Obstacle Clearance Panel国际民航组织超障净空专家组OCS运行控制系统OCS Obstacle Clearance Surface超障面ODALS Omnidirectional Approach Lighting System全向进近灯光系统ODAPS Oceanic Display and Planning System远洋飞行显示和规划系统ODF Oceanic Development Facility海洋开发设施ODIAC Operational Development of Initial Air-ground data Communications早期空-地数据通信运行开发ODL Oceanic Data Link海洋数据链OEM Original Equipment Manufacturer原始设备制造商OFDPS Offshore Flight Data Processing System近海飞行数据处理系统OLAN Onboard Local Area Network机载局域网OLDI On-line Data Interchange联机数据交换OMB Office of Management and Budget国家管理和预算局(美国) OMEGA A navigation system that uses two high-powered transmitter grounds stations to broadcast a continuous wave signal.奥米加导航系统ODALS Omnidirectional Approach Lighting System全向进近灯光系统OOOI Out-Off-On-In滑出-起飞-接地-停靠门位OP Operational 运行。

信息系统中作战资源虚拟化应用技术研究

信息系统中作战资源虚拟化应用技术研究

第5卷第2期指挥与控制学报V ol.5,No.2 2019年6月JOURNAL OF COMMAND AND CONTROL June,2019信息系统中作战资源虚拟化应用技术研究杜思良1倪明1张鹏1摘要基于传统虚拟化技术实现原理和方法,对传感、武器等典型兵力兵器资源虚拟化实现及应用技术进行研究.明确了作战资源的基本特性和虚拟化概念,提出了作战资源虚拟化的应用架构和实现流程,重点介绍作战资源逻辑属性建模、物理资源接口适配、虚拟资源服务封装管理3个关键步骤的技术实现方法,并结合典型应用案例分析该技术应用对未来信息化作战带来的明显效果.该研究可为新一代信息系统建设提供技术支撑.关键词作战资源,虚拟化,资源解耦,接口适配,服务封装引用格式杜思良,倪明,张鹏.信息系统中作战资源虚拟化应用技术研究[J].指挥与控制学报,2019,5(2):141−146DOI10.3969/j.issn.2096-0204.2019.02.0141Operation Resource Virtualization Application in Information SystemsDU Si-Liang1NI Ming1ZHANG Peng1Abstract Based on the principle and method of traditional virtualization technology,the virtualization and application technology of typical weapon resources such as sensors and weapons are studied.This paper clarifies the basic characteristics and virtualization concept of combat resources,puts forward the application architecture and implementation procedure of combat resources virtualization,and focuses on the technical implementation of three key steps:logical attribute modeling of combat resources,physical resource interface adaptation and virtual resource service encapsulation management.The possible obvious effect of applying this technology to future information warfare with typical application cases is also analyzed.This research can provide technical support for the construction of a new generation of information systems.Key words operation resource,virtualization,resource decoupling,interface adaptation,service encapsulationCitation DU Si-Liang,NI Ming,ZHANG Peng.Operation resource virtualization application in information systems[J].Journal of Command and Control,2019,5(2):141−146虚拟化作为云计算的关键技术已逐渐渗透到各商业领域的云服务应用中[1],随着军事云的快速发展,新一代作战信息系统中虚拟化技术也越来越得到重视,但相关应用更多停留在构建云基础设施[2],通常包括计算虚拟化(虚拟机和容器),存储虚拟化和网络虚拟化等方面[3−5].随着现代战争中广域联合、高效协同、快速共享等需求越来越强烈,如何有效整合战场上的作战资源,更好发挥其效能是作战指挥信息系统研制与建设有待提升的关键问题,在此背景下,作战资源虚拟化概念应运而生,成为近期大家关注的热点之一.目前,对作战资源虚拟化应用的实现方法研究较少,虽然相关学者对云制造中制造资源虚拟化应用的研究起步较早,提出了一些设备资源分类、描述、封装、管理的方法[6−9],但由于作战资源与制造资源在物理特征、使用方式、环境条件、协作要求等方面差别较大,其研究成果不能直接应用于军事信息系统中.本文基于传统虚拟化技术实现原理和方收稿日期2019-04-02Manuscript received April2,20191.中国电子科技集团公司第二十八研究所江苏南京2100071.The28th Research Institute of China Electronics Technology Group Cor-poration,Nanjing Jiangsu210007,China 法[3−5],结合军事作战信息系统应用需求,以传感、武器等典型兵力兵器资源为例,提出其典型作战资源虚拟化应用架构和实现流程,着重介绍其应用过程中的实现方法,并结合应用案例分析作战资源虚拟化给信息系统带来的应用效果,为新一代网络化作战信息系统能力提升提供技术支持.1基本概念虚拟化技术是指计算元件在虚拟的基础上而不是真实的基础上运行,通过软件的方法重新定义划分信息技术资源,实现资源的动态分配、灵活调度和跨域共享,从而提高资源的利用率,使资源真正成为计算基础设施,可以满足各种应用灵活多变的需求[3].资源虚拟化是有选择地抽取资源描述模型的关键要素,抽象化资源特性使其成为逻辑资源.作战资源虚拟化作为虚拟化技术的一种延伸,将战场上物理资源转化为可统一管理的逻辑化作战资源,实现战场资源解耦、灵活扩展与网络化组织,形成一个有机体–作战资源池,使得所有作战资源不仅可以“分散资源集中使用”,还能做到“集中资源分散服务”[10].142指挥与控制学报5卷传统作战资源是指战场上实际存在且能够对作战产生影响的物理实体,通常包括各类人员兵力、传感器、武器平台、后勤物资、设施设备等.随着信息化作战的发展,数据、模型、技能、服务等新兴作战资源越来越受到指挥员的关注.无论是传统还是新兴资源均有明显的基本特性:1)离散性:作战资源通常是离散地分布在战场环境中;2)异构性:同类或不同类作战资源的技术参数、工作原理、功能性能等属性不尽相同;3)动态性:作战资源的自身状态、隶属关系、作战能力等属性会随着战场上时间、环境等因素的变化而实时动态更新;4)结构性:每一个作战资源通常不是孤立存在的,与其他作战资源之间可能保持着约束、层次、协同、网络连接等结构关系[7].2技术架构与实现流程2.1技术架构作战资源虚拟化应用的核心理念是打破物理资源实体与编配部署、功能应用之间的紧密耦合关系,形成统一认知的规范化服务能力,借助网络化军事云平台,完成面向任务的资源统一组织运用,实现“全网作战资源灵活感知,全网作战资源按需使用”,提升作战资源利用率和时效性.技术实现架构如图1所示,主要包括物理资源接口适配、虚拟资源池、资源管理和虚拟资源应用4个功能层.2.2应用流程作战资源虚拟化应用是指通过接口适配获取战场上各类物理资源实体的属性信息,进行逻辑分类、属性建模、映射抽取,封装成各种虚拟资源服务注册发布,形成虚拟资源池,并在网络化系统中为服务使用者调用的过程[10],技术实现流程如图2所示.应用流程可划分两个主要子过程,一是将物理资源通过虚拟化过程形成离散分布、逻辑一体的作战资源池,并按照策略生成资源目录展现给各级用户;二是各级用户在作战任务驱动下,选择访问目录中的本地或远程部署的资源服务,并获得资源服务执行的结果.3实现方法结合作战资源虚拟化实现的过程,本文选择其中几个关键步骤的技术实现方法进行介绍.3.1作战资源逻辑属性建模作战过程中战场上广域分布着数量众多、种类繁杂、形态各异的物理资源,为完成作战任务发挥着各自的作用,为了对作战资源统一组织运用,需要对其属性进行逻辑分类建模.建模过程是指使用计算机可读的语言对作战资源进行抽象和描述,并屏蔽作战资源的异构性,是资源服务封装与应用的基础[11].逻辑模型与物理实体不是一一对应的,单个物理实体可以抽取出多种逻辑模型,如:某型飞机具备侦察能力、火力打击能力、机动运输能力等,而多种图1作战资源虚拟化技术架构2期杜思良等:信息系统中作战资源虚拟化应用技术研究143图2作战资源虚拟化实现与应用流程示意图图3作战资源逻辑属性描述模型示意图物理实体也可以共用相同的逻辑模型.从指挥员使用的角度了解资源的当前状态和能力尤其重要,图3对资源状态和能力给出属性描述模型.逻辑属性描述模型中属性的层次、分类、要素划分方式不尽相同,目前还没有通用的标准对信息系统研制进行规范,但对于比较复杂的资源属性(如能力资源)应该遵循一定的原则,若资源层次分类划分过粗,描述的要素项就会较多,则资源优化重组和精准配置困难;而资源划分过细,则又增加调度和管理的成本.笔者认为:资源分类层次以两到三层为宜,如空中侦察能力,地面打击能力等;要素项划分则依据要素集描述内容的数据量为准则,考虑资源组合使用和战术级窄带传输环境因素[12],每类作战资源描述内容长度应介于几十到几百字节之间.具体标准的制定需要军事人员和科研人员基于作战指挥过程中资源使用需求和习惯,并考虑技术实现因素共同完成.3.2物理资源接口适配物理资源接口适配重点实现从软件系统、硬件设备、数据库等物理实体中按照作战资源逻辑属性模型监控、采集、解析数据,形成物理属性集,为资源服务抽取、封装提供信息源,此外还包括把资源访问过程中用户发出控制指令传递给物理实体,执行远程控制操作等.接口适配功能关系如图4所示.信息装备的物理资源适配接口形态主要包括3144指挥与控制学报5卷类:软件接口是最主要的使用方式,通过与部署在装备上的信息系统软件进行数据交换,实现信息采集和装备控制;数据库接口作为软件接口的补充,主要是查询静态信息,如基本属性、指标参数、历史资料等;硬件接口主要针对现役装备或系统软件无法支撑信息获取或控制的情况,直接从硬件设备中感知数据,实现起来相对比较复杂,通常需要对装备进行改装,增加通信模块和监控代理功能,连接设备的端口,接入并解析设备的原始数据,如采集装备的实时位置、速度、运行状态、燃油余量数据,以及控制设备开关机等.图4物理资源接口适配功能关系图3.3虚拟资源服务封装管理虚拟资源服务封装是对获取到的物理资源属性采用特定的映射抽取协议和访问方式为资源服务组件或组合提供访问接口和绑定,以软件服务的形态在云环境中供其他组件或应用模块访问,如图5所示.结合军事信息系统中服务化应用的方式,服务封装可分为接口远程调用和事务处理驱动两种类型.接口远程调用类型适用于访问方式固定、关系明确、结果可预期,不过多需要人为干预的情形,如:兵力状态服务,毁伤能力计算服务等.资源服务封装就是将物理属性按照抽取策略映射到逻辑属性描述模型中的实现过程,每个资源服务按照功能可封装为若干个接口,每个接口可由多个操作方法组成,每个操作方法均包含输入和输出参数.使用方需显式地调用某一具体操作,并对必要的参数赋值.接口调用可以是单向,也可是双向的.接口是一对一的调用,若对多个资源服务的相同接口进行调用须分别调用[13].事务处理驱动类型适用于作战资源间耦合性较低,没有直接调用关系,通常服务的执行比较复杂,需要与其他实体进行交互、协同,如:空中目标侦察服务,地面火力打击服务等.资源服务封装除了按照逻辑属性描述模型抽取外,还可以基于资源实体原系统功能增加消息传递方式封装.资源服务的访问者可以不知道服务执行者对该事务具体的处理方法[13]和结果形态.通常由资源服务访问者通过消息向服务执行者传递事务的条件、要求等信息[12],服务执行者接收到消息后分别采取行动或实施处理操作,复杂情况下,两者之间还需进行多轮的信息交换或人工干预.事务处理驱动可以是一对多的访问,多个执行者之间可以分别或协同执行同一个事务.图5虚拟资源服务封装访问示意图虚拟资源服务的统一管理除了常规的注册、发布、监控、订阅等,还可以对服务进行编排,根据作战任务、系统级别、使用权限等不同,可对有关联的资源服务进行组合,形成大粒度的虚拟资源[14−15].以服务目录的形式展现给用户,每个用户根据权限和策略生成不同的目录,并利用数据同步机制实现资源目录的实时更新维护,从而实现全网资源的按需感知.由于现实中编配给各作战力量的现役装备存在技术架构、体制不同,以及作战过程通信连接不能栅格化覆盖,这些都对虚拟资源服务的灵活访问造成限制.若针对这些作战资源重新改造必然成本巨大,可以考虑增加服务访问代理,尽可能保证原系统的自治性,通过在装备本地部署或网络可达的装备上级节点部署,实现资源服务的中转访问.2期杜思良等:信息系统中作战资源虚拟化应用技术研究1454应用案例与效果传统方式作战装备和云环境下虚拟作战资源组织运用的对比如图6所示.以作战过程中发现目标后请求火力支援,并评估打击毁伤效果的作战行动为例,简要分析其作战资源的组织运用方法,并总结作战资源虚拟化技术带来的优势.传统方式下作战力量和资源隶属关系以树状形式呈现,并按此形成指挥关系.主要行动过程包括:作战分队3获取到所属侦察装备探测的敌重要目标后,需要请求上级单位协调打击力量进行火力支援,部队X则需要搜集下属打击力量的当前状态和任务,经过计划决策后向分队1下达打击目标和打击任务,分队1根据任务组织武器1实施火力打击,打击结束后再向上级申请打击效果侦察,由部队X组织联合侦察,并根据侦察结果进行打击毁伤效果评估,最后将评估结果通知所属力量和武器.云环境下作战力量和虚拟作战资源按照作战任务连接到任务网中,以环状或星状呈现,并形成扁平化作战资源使用关系.任一作战力量可以使用隶属于不同作战单元下的装备,访问虚拟资源池中的任一资源服务.主要行动过程包括:作战分队3订阅得到侦察装备探测的敌重要目标后,检索任务网内打击、侦察力量的位置、状态、能力等,对比决策后访问对应火力打击资源和侦察、评估资源服务,实施火力打击和毁伤侦察与效果评估任务,结果通过云环境全网共享.结合上述作战行动中资源使用方式的对比分析,作战资源虚拟化技术的应用可以在未来信息化作战中取得明显的提升效果:1)通过实物装备与作战力量、指挥关系解耦,可以减少指挥层级,增强资源调整、重组及相互协同的灵活性[16];2)通过全面监视广域分布的作战装备状态和任务饱和度,提高战场资源整体使用效率,降低建设成本;3)通过规范、开放物理资源适配接口,灵活接入图6两种作战资源运用方式对比示意图146指挥与控制学报5卷多个任务网,可更好地提升装备性能、优化装备型谱、充分挖掘和发挥单体装备潜能与作用,支持承担更多任务;4)通过资源服务的分布式部署、处理和动态组合、随时随需统一管控,多手段获取信息和执行任务,提升体系多手段容灾抗毁能力;5)通过作战装备的属性数字化封装、能力直接访问,可以更快更全面地获取、发布、共享信息,敏捷精准地进行智能化决策、高效行动,提升系统自动化水平和体系的快速反应能力.5结论作战资源虚拟化技术研究尚处在起步阶段,其广泛实际应用尚有不少距离和困难.当前,在对技术本身深入研究的同时,还需各方面共同努力,有重点地采取切实有效的措施来创造应用的条件:一是加快军队作战指挥方式方法变革与创新,减少指挥层次,使指挥趋于扁平,弱化条令条例限制,从法规上实现作战资源解耦;二是加强作战资源虚拟化应用标准研究与制定,用以规范、优化装备的对外接口设计和功能研制,为作战资源的统一组织运用奠定技术基础;三是加快提升战术环境下通信性能和栅格化网络设施建设,真正实现全域覆盖、高速通信、随遇接入、快速共享,建成支撑作战资源虚拟化运行的军事云环境.References1金欣.指挥控制智能化现状与发展[J].指挥信息系统与技术,2017, 8(4):10−18.2戴剑伟,王刚.指挥信息系统云架构[J].火力与指挥控制,2013,38(2): 76−78.3武志学.云计算虚拟化技术的发展与趋势[J].计算机应用,2017, 37(4):915−923.4江国忠,江君.虚拟化与虚拟技术应用[J].物联网技术,2014(7): 83−85.5汪恺,张功萱,周秀敏.基于容器虚拟化技术研究[J].计算机技术与发展,2015,25(8):138−141.6易安斌,周宏甫.云制造环境下设备资源服务化封装方法研究[J].组合机床与自动化加工技术,2016(5):151−154.7汤华茂,郭钢.云制造资源虚拟化描述模型及集成化智能服务模式研究[J].中国机械工程,2016,27(16):2172−2177.8吴娇,李少波.云制造中硬资源虚拟化封装研究[J].机械设计与制造, 2014(7):112−116.9高新勤,朱斌斌,杜景霏.云模式下制造资源的服务化描述与虚拟化封装方法[J].制造业自动化,2017,39(10):140−144.10齐玲辉.面向服务的军事组织云协同关键技术研究[D].西安:西北工业大学,2015.11何丽,孙文磊,王晓斌.云模式下仿真设计资源的虚拟化与服务化[J].机械设计与制造,2016(9):266−272.12李云茹.联合战术信息系统及其技术发展[J].指挥信息系统与技术, 2017,8(1):9−14.13孙海洋,张安,高飞.云协同中作战资源两阶段虚拟化方法[J].系统工程与电子技术,2018,40(5):1036−1042.14赵晓东,李雄.信息化战争装备的战伤评估指挥决策[J].指挥与控制学报,2016,2(1):33−39.15汪卫星,徐玲.云制造资源虚拟化框架的研究[J].广西大学学报(自然科学版),2016,41(6):1918−1922.16蒋晓原,邓克波.面向未来信息化作战的指挥信息系统需求[J].指挥信息系统与技术,2016,7(4):1−5.杜思良(1977−),男,本科,研究员级高级工程师,主要研究方向为指挥信息系统总体设计、信息服务.本文通信作者.E-mail:dsllsd@倪明(1977−),男,硕士,高级工程师,主要研究方向为指挥信息系统总体设计、信息服务.张鹏(1985−),男,博士,工程师,主要研究方向为通信网络和信息服务.。

一种用于战术通信网络仿真的通信业务量模型

一种用于战术通信网络仿真的通信业务量模型

0引言战术通信网络是战时实施战术级作战通信保障的重要支撑,实施快速有效的仿真已成为检验战术通信网络通信保障效能的重要手段。

验证通信保障效能通常需要采集分析信息通断、传输时延、准确率[1]等数据,均需依托用户生成的端到端通信业务量,其应是随着仿真过程不断变化并带有一定规收稿日期:2019-01-21修回日期:2019-04-19基金项目:国家社会科学基金军事学资助项目(14GJ003-28)作者简介:罗颖光(1984-),男,河南驻马店人,博士研究生,讲师。

研究方向:军事通信网组织运用,系统建模仿真。

邹自力(1967-),男,教授,博士生导师。

研究方向:军事通信网组织运用,系统仿真。

*摘要:针对战术通信网络仿真的实际需求,在分析现有通信业务量建模方法基础上,基于吸引系数法和泊松流模型,提出了一种用于战术通信网络仿真的通信业务量建模方法。

该方法依据泊松流模型构建了指挥机构生成通信业务总量模型,根据指挥机构两两之间通信业务量大小关系建立了吸引系数矩阵,依据吸引系数占比将指挥机构生成通信业务总量分配至接收用户,最后引入了不同作战阶段通信业务量强度繁忙系数。

仿真结果表明,该方法能够快速有效生成指挥机构通信业务量,较好满足战术通信网络仿真需求。

关键词:仿真,吸引系数,泊松流,通信业务量,模型中图分类号:TJ01;TP391.9文献标识码:ADOI :10.3969/j.issn.1002-0640.2020.05.023引用格式:罗颖光,邹自力,余亮.一种用于战术通信网络仿真的通信业务量模型[J ].火力与指挥控制,2020,45(5):125-129.一种用于战术通信网络仿真的通信业务量模型*罗颖光,邹自力,余亮(国防科技大学信息通信学院,武汉430010)A Communication Traffic Model for TacticalCommunication Network SimulationLUO Ying-guang ,ZOU Zi-li ,YU Liang(Academy of Information and Communication ,National University of Defense Technology ,Wuhan 430010,China )Abstract :Aiming at the actual demand of tactical communication network simulation ,a trafficmodeling method is proposed based on the attraction coefficient method and Poisson flow model by analysing the current communication traffic modeling methods.Firstly ,based on Poisson flow ,the total amount of communication traffic generated by the command post is constructed.Secondly ,according to the communication traffic volume between the two command posts ,the attractiveness coefficient matrix is constructed ,and according to the proportion of attraction coefficient ,the total amount ofcommunication services is allocated to the receiving user.Finally ,the traffic capacity intensity busy factor is introduced in different combat phases.The simulation results show that the method can quickly and effectively generate the communication traffic of the command post ,and better meet the needs of tactical communication network simulation.Key words :simulation ,attracting coefficient ,poisson flow ,communication traffic ,model Citation format :LUO Y G ,ZOU Z L ,YU L.A communication traffic model for tactical communication network Simulation [J ].Fire Control &Command Control ,2020,45(5):125-129.文章编号:1002-0640(2020)05-0125-05Vol.45,No.5May ,2020火力与指挥控制Fire Control &Command Control 第45卷第5期2020年5月125··(总第45-)火力与指挥控制2020年第5期律的随机量。

artillery_operation_experiment_platform_manual.pd

 artillery_operation_experiment_platform_manual.pd

4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016)Design of Artillery Operational Experiment Platform Based on theInformation SystemJianli Zhang1,a,Zhongwei Guo1,b,Lijian Ji1,c,Qinghua Ni1,d1Army Officer Academy of PLA,Hefei,230031,Anhui,Chinaa****************b**************d******************** Keywords: Based on the information system, Artillery operation experiment platform, Design Abstract. Artillery operational experiment platform was designed from function and structure based on the information system. The functions of the platform is composed of five parts ,which are role set, Guide and control, Command and control, Evaluation and decision, Multi-level integrated experiment. The structure of the platform is composed of data and model library, battlefield environment subsystem, Artillery operational evaluation subsystem and the result subsystem. The working process of the platform was analyzed, which included Experimental environment construction phase, Scenario editing phase, Implementation phase and Experimental evaluation phase. The models of platform were built to support system running, which including system architecture model, multi-resolution simulation model, complex battlefield environment model, scenario generate model, operational data model, etc.IntroductionWith a long period of construction, Artillery had built batch laboratories of equipment technology, equipment argumentation and equipment operational evaluation, with high degree of information. But it also lacks of experimental platform. It is difficult to support large-scale experiment to meet the needs of the future operation; it also can’t meet the needs of Artillery operational experiment. Therefore, it is urgent to study of Artillery operational problems in laboratory environment, innovation and development Artillery operation theories, promote the formation of the Artillery operational capability based on information system.The overall design of Artillery operation experiment platform based on information system Function designThe platform provides operational scenario editor, experiment resource management, experiment environment, experimental guide control, the simulation operation support, the basic function such as operational effect evaluation of the experimental platform, to provide Artillery operational application experiment good usability, strong expansibility, build flexible system support. Its function mainly includes:(1) The role set function. According to the experiment content, scale, person, it can set different seats and role assignment on different objects.(2)Guide and control function. It includes the management and guidance control, monitoring, system control, system monitoring and display the basic function of battlefield situation.(3)Command and control function. Through the computer network communication and combining with the battlefield situation, we can joint planning scheme, research, set decision of the battle. So, it complete the command and control action of the battlefield.(4)Evaluation and decision function. It provides timely, accurate, comprehensive evaluation and award of the stage results of practice.(5)Multi-level integrated experiment function. We regard the Artillery group, camp, even the multi-level commanders as experimental object, according to the command system, we build the multi-layer experimental environment.Structure designThe general structure of Artillery operation experiment platform can be divided into four parts, data and model library, battlefield environment subsystem, Artillery operational evaluation subsystem and the result subsystem of the experiment. The logical relationship between various systems is shown in Fig. 1. All subsystems are supported by environment RTI, we can achieve connectivity, communication, interoperability, in order to meet operation experiment under the environment of the operation software platform. Operational experiment platform software logic structure is shown in Fig.2.Fig. 1 The logical relationship of Artillery operation experiment platform(1) Data and model libraryThis part is mainly collecting and processing data, making operation decision for the Artillery operation experimental, it provides data and the model service. It mainly provides Artillery operation experiment data processing and storage, model construction, model storage, data and model services,Fig. 2 software logical structure of Artillery operation experiment platform(2) Battlefield environment Simulation subsystemThe battlefield environment simulation is mainly used to simulate Artillery battlefield environment, including geographical information, electromagnetic environment, weather information, it provides experiment data for the platform. It mainly realizes simulation geographical environment, geographical data information; it Simulates electromagnetic environment, provides electromagnetic environment's influence on the communication data, and the simulation of the communication quality; it simulates meteorological environment, provides meteorological environment impact on the Artillery operation action data. It supports a variety of editing and management of data field.(3) Artillery operation subsystemThe Artillery operation subsystem was built, mainly to organize the implementation and process management for the Artillery operation experiment. The subsystem is closely combined with operational experiment characteristics and law rules, through using advanced technology to build experimental environment, to ensure the centralized management and orderly operation of the Artillery operational experiments based on the basis of the laboratory network system construction achievements. The main implementation are guide, operational scenarios generated, making operation command decision, operation simulation, the battlefield situation display; operational control.(4) Evaluation subsystemThis party is mainly used for the scheduled operations under the conditions of Artillery operations experiment data analysis and research, provides support to improve the operational capability. The main implementations are command and control effectiveness analysis, weapons and equipment efficiency analysis, fire damage effect analysis; battle command ability analysis.The workflow design of Artillery operational experiment platform based on the information systemThe working process of the Artillery operational experiment platform can be divided into four stages: the experiment environment to build, scenarios editing, experiment operation and the application effect evaluation.Experimental environment construction phaseIn accordance with the requirements for the experimental task decomposition, we can form experiment scheme. According to the experiment scheme requirements, we choose the appropriate software and hardware equipment, build the dynamic construction of experimental environment, when the existing resources cannot meet the requirement of the experiment, it needs to be developed or obtained from third parties, such as the lack of a weapon and equipment simulation model, we can develop the available resources from software platform.Scenario editing phaseThis phase mainly completes the scenario editor, preview and confirmation, update the weapon system of operation into basic data, to ensure the consistent with the simulation test environment. Implementation phaseIn the implementation phase, t according to the scenario editing, the battlefield situation produce module dynamically generates battlefield environment and military activities information, drives the operation of all kinds of simulation model, organizes blue confrontation simulation system which is composed of weapons and equipment simulation model and component against, and record test data. In the process of advance, red and blue operation system against independently, through the guide and control function, we can adjust situation of battlefield in real-time, complete closed loop experiment. Experimental evaluation phaseThis phase is mainly performed by evaluation module. In the process of experiment, it collects and records the real-time data and results. After finished the experiment, we must carry on the experiment data archiving. According to the specific assessment tasks (including weapons and equipment effectiveness evaluation, operational application scheme evaluation and etc.), we can extraction and analysis experimental data, playback and analysis the experimental process.The model design of Artillery operation experiment platform based on information system Architecture modelArtillery operation experiment platform can adopt HLA (high level architecture) runtime support system KD - RTI and MAK - RTI, uses the object-oriented thought to realize each function of RTI, itscomposition is shown in Fig.3, it is mainly composed of guide, object model development toolFig. 3 The support environment of Artillery operational experiment operationMulti-resolution simulation modelThe resolution of the operation simulation, which is to describe the detail between the real world and simulation object: the granularity. Usually it adopts fixed resolution model, such as the size of campaign usually is pre-determined army, division and regiment levels resolution, but that is not easy to obtain the local process simulation of further refinement, in some important season,commander hopes enlarge the Artillery group operation, which requires the action refinement to the Artillery battalion and battery unit level, here, we have to adopt variable resolution simulation.The key technology of multi-resolution modeling is how to keep the consistency between different resolution model, guarantees their mutual transformation seamless. When commander enlarge the Artillery group, it converts to the multi-resolution model, which the data and action resolution enlarge to the unit level, and other parts of the battlefield is still keep the original resolution, which requires the high-resolution and other parts of the original resolution under the condition, here also need a seamless restore to the original resolution under state of operation simulation, and the strategy is consistent. Complex electromagnetic environment modelThe battlefield electromagnetic environment is characterized by a certain battle space state of all kinds of electromagnetic signals. Electromagnetic environment radiation source can be divided artificial electromagnetic radiation source and natural electromagnetic radiation source. For artificial electromagnetic radiation includes deliberately radiation and no intention radiation. The research of battlefield electromagnetic environment is aimed at man-made electromagnetic information useful and targeted electromagnetic interference. In order to build and set out distinct, reliable battlefield electromagnetic environment, to adapt the complex electromagnetic environment of operation and training, it needs to build the correct battlefield electromagnetic model. The overall framework of the electromagnetic environment simulation model is shown in Fig.4. The main models are: signal model, the antenna model, simulation model of signal propagation and the corresponding algorithms library.Fig. 4 The overall framework of electromagnetic environment simulation model(1) Signal model. In order to build real battlefield electromagnetic environment, source network system must be considered. It mainly includes the communication network and radar net.(2) Antenna model. According to the scanning pattern build antenna model.(3)Signal propagation model. With the aid of this kind of model, we can quantify and analysis the electromagnetic wave in the air.(4) Simulation algorithms library. It mainly includes coordinate transform, signal generation, signal processing, data processing and other basic math functions.Scenario generation modelAt the beginning of the operational experiments, we need a basic operational experiment condition, the initial conditions generally given by operational scenario data, it determines the basic conditions and the corresponding constraints of the operational experiments, including the simulation of the operational entity and the environment, the basic attributes of each entity, the entity dynamic properties determine the system state, and the use of plans, rules, agreed to limit the simulation process and constraints. To simplify the experiment content, determines the scope and process of the operational experiment, gives the basic background and premise condition, making operational experiment aim and object, setting simulation boundary conditions and constraints, are done through operational scenarios.Operational scenario design generally includes background generation and battle plans fiction, and action plan, etc. Operational scenario background generation is a problem of the initial state background data loading, including unit organization, natural environment, social environment, the physical system and other aspects data. Battle plan fiction is the description of operational activities, which is in the initial condition under the operational condition of constraint. Action planning is to convert military scenarios to a simulation experiment script.Operational data modelOperational data is the key factor of operational reliability experiment system, it mainly includes the data about the operational deployment of both sides, the target data, weapon system, operation action data , operational security data and evaluation criteria data, etc. The purpose of operational data is to provide data for the Artillery operation command experiment, as well as the situ experimental data storage place, it is not only the experiment system of data source , but also the destination of experimental system. Therefore, operational data construction including experimental data construction and the experimental conclusion construction. The application process is shown in Fig.5.Fig. 5 Data application processConclusionCarrying out the Artillery operation experimental research based on Artillery operational experiment platform, is to build experimental environment under the background, and then puts into experiment platform for experiment, uses data analysis method, build reasonable appraisal indicators, gets certain reference value for Artillery operation experimental data and results.References:[1] Zhongwei Guo etc. Artillery operation experimental model [J]. Ordnance industry automation, 2013, 32 (9)[2] Yuhua Cao etc. Operational experiment theory and technology [M]. Beijing: National defence industry press, 2013[3] Daolei Zhou Jiang Zhu. Methods of innovation and experiment [M]. Beijing: Military science press, 2014[4] Richard Kass.The Logic of Warfighting Experimentation[C].Understanding Joint Warfighting Experiments.10thICCRTS,2005[5] Andndrew G Loerch,Larry B Rainey.Methods for conducting Military Operational Analysis[M].Military Operations Research Society,2007[6] Shadish,Cook,Campbell.Experimental and Quasi-experimental Designs for Generalized Causal Inference[M].Boston:Houghton Mifflin,2002[7] Sherman Kenneth B.US Navy Global Hawk Completes Wargame[J].Journal of Electronic Defense,2006,2(29)[8] Wolff Jason.Wargame,Modeling and Simulation[J].Air Force Journal of Logistics,2009,2(33)。

韩军“网络空间战”建设现状及发展趋势

韩军“网络空间战”建设现状及发展趋势

韩军“网络空间战”建设现状及发展趋势最好军事(best81)“网络空间战”是机械化战争形态向信息化战争形态演变过程中的一个重要标志,是信息时代联合作战的高级形态,是相对“平台中心战”的信息化战场上的一种新型作战模式。

近年来.韩军不断深化对网络空间战的认识.加快了军队信息化建设的步伐。

韩军的网络空间战概念是通过韩军指挥控制系统、军事信息系统和韩美联合作战信息系统来体现的。

本文以网络空间战为主线,从韩军国防信息化组成、韩军C4I系统建设情况、韩美联合信息系统建设情况等方面分析了韩军“网络空间战”建设现状和未来发展趋势。

一、国防信息化组成韩国国防信息化领域由基础体系、建模与仿真(M&S: Modeling & Simulation)、互操作性与标准化、信息安全、应用系统等五大领域组成。

基础系统领域由通信网、服务器、计算机、基础软件等组成。

建模与仿真领域指应对网络空间战(NCW: Network Centric Warfare)的训练演习模拟系统和模拟分析系统,用于采办管理工作的基于仿真的采办(SBA:Simulation Based Acquisition)等。

互操作性及标准化是网络空间战理论得以实践的前提条件。

通过互操作性及标准化,可实现信息互联、互通、互操作及作战要素对战场信息的实时感知与共享。

互操作性及标准化的内容涵盖技术标准化、系统建设标准化、用户界面标准化等诸多方面。

信息网络技术在给军队建设、作战指挥带来高效益的同时,也给军队信息安全带来高风险。

目前,信息网络技术在韩军各个领域得到广泛应用,同时信息安全也面临各种严峻挑战。

信息安全的主要内容包括:为了确保信息的完整性、可用性和保密性,制定无线局域网(LAN)、ALL-IP环境下的安全制度、建立健全信息安全保障体系,确立韩美信息系统互联互通安全方案等方面。

应用系统由战场管理系统和资源管理系统组成。

战场管理系统由被称为C4I系统的指挥控制系统,收集、处理及传递信息的军事信息系统,韩美联合作战信息系统构成。

超短波电台网模型研究

超短波电台网模型研究

收稿日期:2015-06-05修回日期:2015-07-17作者简介:周明(1975-),男,江苏海门人,讲师。

研究方向:军事运筹学。

摘要:超短波通信是军事通信中广泛应用的通信方式,如何根据应用需要建立适合的网络与通信模型是作战建模与仿真中经常遇到和需要解决的问题。

分析了当前超短波通信建模研究的现状,在详细探讨建模需求的基础上,提出了超短波电台网网络模型,给出了有效通信距离简化模型,以及考虑战场电磁环境和地理环境的通信链路质量模型,最后进行了仿真实验验证。

该模型能够有效解决作战模拟中超短波通信效果对于作战效能影响分析的问题,简化了模型设计,提高了模型应用性,也为短波、微波、卫星等其他类型网络模型设计提供了参考建模方法。

关键词:超短波通信,网络模型,作战模拟中图分类号:TP391文献标识码:A超短波电台网模型研究周明,曾广军,鲁云军,王龙(国防信息学院,武汉430010)Research on Ultrashort Wave Radio Network ModelZHOU Ming ,ZENG Guang-jun ,LU Yun-jun ,WANG Long(Defense Information Academy ,Wuhan 430010,China )Abstract :Ultrashort wave communication is widely used in military communication ,how toestablish a suitable network and communication model according to the requirements of the practical application is often encountered and need to be solved in the modeling and simulation of operation.The current research situation of ultrashort wave communication modeling is analyzed ,on the basis of discussing modeling requirements in detail ,ultrashort wave radio network model is put forward ,effective communication distance simplified model is present ,and considering the battlefield electromagnetic environment and geographical environment of communication link quality model is given ,the simulation experiment is carried on finally.This model can effectively solve the ultrashort wave communication effect analysis for operational effectiveness in the warfare simulation ,and the model design is simplified to be applied ,a reference modeling method is supplied for other types of communication model design ,such as wave ,microwave ,satellite ,etc.Key words :ultrashort wave communication ,network model ,warfare simulation 0引言超短波通信由于具有频带宽、稳定性好、建立迅速、机动灵活等优点,在战术指挥控制系统中得到了广泛的应用,是信息化条件下联合作战的基础通信手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Command and Control Network Modeling and Efficiency Measure Based onCapability Weighted-NodeDu WeiScience and Technology on Information SystemsEngineering LaboratoryNational University of Defense TechnologyChangsha , Chinae-mail: duweithinker@ Liu ZhongScience and Technology on Information SystemsEngineering LaboratoryNational University of Defense TechnologyChangsha , Chinae-mail: phillipliu@ Xiu Bao-Xin *Science and Technology on Information SystemsEngineering Laboratory National University of Defense TechnologyChangsha , Chinae-mail: bxxiufuzzy@Zhang Wei-MingScience and Technology on Information SystemsEngineering LaboratoryNational University of Defense TechnologyChangsha , Chinae-mail: bxxiufuzzy@Cheng QingScience and Technology on Information SystemsEngineering LaboratoryNational University of Defense TechnologyChangsha , China e-mail: sgggps@Abstract —Command and contr ol (C2) or ganization and its existing r esea r ch a r e int r oduced, and C2 o r ganization efficiency measure is discussed. The C2 network model is built, and the capability of C2 network is analyzed by the method of weighted-node. The average cooperating efficiency is proposed to measur e C2 networ k’s cooper ating efficiency, and validate measurement’s validity by comparing with network efficiency . The optimal C2 networ k’s topology pr oper ty is analyzed by modulating some parameters. The property has a direction for designing the actual C2 network.Keywords-capability; weighted-node; C2 network; Average Cooperating EfficiencyI. I NTRODUCTIONWith development of information and network technology, command and control (C2) organization is facedwith a great challenge in modern battlefield. Changeful posture proposes a higher request on running C2 organization. Various missions need an effective organization to complete better different tasks. For an existent C2 organization in battlefield, what structure can adapt different tasks to complete. This is the principal problem to commanders as well as researchers of C2 organization.From the organization contingency theory, only in idiographic mission environment can organization structure match with the mission environment and organization exert*Corresponding author: Xiu Bao-Xinthe best action. So how to match the mission, environment and structure is the key of organization optimal design [1,2]. Based on this conclusion, America Naval Postgraduate School has a series of A2C2 experiments [3]. The results of experiments provide theory foundation for organizing resources effectively and designing C2 relation. [4] The paper depicts C2 organization on its layers and proposes the concept of C2 organization measurement, and proposes processes and methodology of organizational design.Foregone researches focus on how to designorganizational structure matching with mission environment.This means the organizational structure is related to the mission task. In the design methodology proposed by [6,7,8], the task is one of the three organizational designing factors.Consequently, most researches on C2 organization are todesign relevant structure according to idiographic task. Nowmany researchers pay gradual attention to adjusting organization to match with dynamic tasks[9,10]. But it isn’t effective to adjust organizational structure based on academic results in factual battlefield. So we require studying C2 organization design under condition of over-multitasks. The condition of over-multitasks denotes one organization can better execute many different tasks. Although every task can’t be executed to achieve a besteffect, the organization needn’t modulate its structure for every task. Now there are a mass of different tasks in battlefield. It has a great advantage that organization structure needn’t change. We abstract decision-maker (DM),platform (P) and their relations as a network. The operation unit is the node of network and various relations are the 2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computingedges of network. This network is said as command and control network (C2 network). Then we propose a new measurement model to measure C2 network efficiency. The C2 network efficiency denotes the efficiency which the task is executed by the C2 organization. The task is the precondition of C2 organization. C2 organization executes the task by collaborating all operational units. The task may be denoted a request of capabilities and resources. Different tasks denote different capabilities or resources. This request can be satisfied by collaboration of all units’ capabilities and resources. If there are some units collaborating to satisfy the request of one task, we may think that the organization can execute this task successfully. The efficiency to execute tasks is equal to the efficiency of collaboration of all units. There are a few researches for the network efficiency. Most of them have a qualitative analysis or qualitative measurement by multi-metrics. Latora etc. proposed network efficiency to measure the efficiency of network by the shortest path in network. But this measurement doesn’t have pertinence to some particular networks. So many researchers have some improvements in network efficiency in order to solve respective domain’s problems [13,14]. Network efficiency only thinks about topology structure without weighted nodes’ and edges’ effects to the network. The network measured by network efficiency has the same type of nodes. There are some shortages to measure C2 network with network efficiency , so we propose specifically measurement to measure the C2 network. II.C2 NETWORK MODEL ABSTRACTING AND BUILDINGIn a practical C2 network, there are a lot of different entity units. We divide these units into two kinds: decision-unit (D) and action-unit (A). The decision-unit is the sponsor to execute task. Its responsibility is commanding and controlling the action-unit, as well as cooperating with other decision-units. The action-unit is the executants of task. It provides various resources and capabilities for meeting the request to execute the task. The follows are C2 network modeling.A. D D −cooperating networkThe decision-unit is the node, which is called the decision-node (also denoted as D). The cooperating relation is the edge. Nodes and edges compose the network, which is as the D D −cooperating network. It is denoted as follows:(,,)D D D D DD G Ds E α−−=(1)111222{(,,),(,,),(,,)}m m m Ds D m D m D m βββ="denotes the decision-node set. i D is decision-node i. i m is the weight of decision-node i. D βis denotes decision efficiency which per decision capability commands per action capability. It denotes the intrinsic decision capability of decision-unit. {(,)|(,)1}D D i j i j E D D D D θ−== denotes the set of edges, (,)1i j D D θ=denotes i D and j D have acollaboration. DD α is the cooperating efficiency parameter and denotes to quantificationally depict action capability’slosing when different decision-nodes have a collaboration.These losses are arisen by information attenuation, wrong operating, information wrong transferring, imperfect foundation establishment and disturbing from enemy as cooperating.B. D D −commanding and controlling networkThe action-unit is the node, which is called the action-node (also denoted as A). Decision-nodes and action-nodes are as nodes, and relations between decision-nodes and action-nodes as edges. They compose the network which is said D D −commanding and controlling network and denoted as follows:(,,,)D A D A DA G Ds As E α−−= (2)Thereinto 1122{(,),(,),(,)}n n As A w A w A w =" is the set of action-nodes. j A is the action-node j. j w is the weight of action-node j, denotes intrinsic executing capability of action-unit. {(,)|(,)1}D A i j i j E D A D A σ−== denotes i D commands and controls j A .DA αis the C2 efficiency parameter and denotes to quantificationally depict action capability’s loss when decision-node commands and controls action-node. As the same as DD α, These losses are arisen by information attenuation and so on when commanding, controlling. So ,(0,1)DA DD αα∈is satisfied. C. C2 network with capability weighted-nodeFrom above sections, C2 network with capability weighted-node may be expressed as follows:2(,)D D D A C N G G −−=(3)From Formula (3), C2 network comprises two types of edge: C2 relation D A E − and cooperating relation D D E −. From above model, we give a visual network to depict the C2 network:Figure 1. C2 network model example 1III. C2 NETWORK EFFICIENCY MEASURE MODEL C2 organization is built to organize every operational unit, in order to more effectively complete the mission task. In the process of mission executed, the mission is divided into many detailed tasks. For each task, C2 organization would choose different units to cooperate to execute. If we want to measure the efficiency which C2 organizationexecutes one task, we may measure the efficiency which different nodes cooperate with each other in the C2 network. As the sponsor of task executed, decision-node is the center of organization. Every task can be denoted that different decision-nodes command different action-nodes to cooperate. The follows are some variables to measure the cooperation:A. Mutual cooperating path(,)c i j Pdenotes the shortest path that i A passes to cooperatewith j A . This path starts from an action-node, passes through some decision-nodes, and ends in the other action-node. (,)c i j d denotes the length of the path (,)c i j P . B. Mutual cooperating efficiency (,)i j Ci A and j A need have a collaboration when they areexecuting a task. This process has to get the command and control from the decision-node. So the effect of collaboration is affected by not only capability weight of action-node but also various factors in (,)c i j P . These factors include (,)c i j d , D β, α. So (,)i j C may denote the format weighted by these factors.(,)(,)()c i j di j i j C w w βα=+ (4)Thereinto, (,)()i c i j iDD P i m W D ββ∈=∏denotes the effectthat decision-nodes affect the cooperating efficiency in the (,)c i j P . (,)1()i j i j D A W D w σ==¦denotes the sum of action-nodes’ capability controlled by the decision-node i D , so (,)i c i j D P ∈ denotes i D is in the (,)c i j P . D i m β denotes the maximal capability controlled by i D without action-capability losing. ()i D i W D m β≤ denotes the capability controlled by the decision-node is less than the maximal capability controlled by i D without action-capability loss, here set 1()iDi m W D β=. This means i D may control allcapability without action-capability loss. If ()i D i W D m β>,1()i D i m W D β<. So we know [0,1]()iD i m W D β∈.(,)(,)(,)D D c i j D A m n d d d DDDAααα=denotes the effect that the (,)c i j Paffects the cooperating efficiency. (,)m n D D d is the length of the shortest path from m D to n D . Here the path is contained in the D D G −. (,)D A d is the length of controlling path that D commands and controls A . Obviously (,)1D A d =. So Formula (4) is also denoted:(,)(,)(,)(,)1()D D m n g c i j D A g k d gi j DDDDA i j D P kE D A m C w w w βαα−∈==+∏¦(5)C. Average Cooperating Efficiency ave Cave C denotes the average value of (,)i j C in the whole C2 network. It is written as follows:(,)2(1)ave i j i j C C n n ≠=−¦ (6)ave C denotes the average efficiency of different action-nodes to cooperate within the C2 network. The executed task can be denoted the process of different operational units. So the efficiency that different nodes cooperate may reflect the efficiency to execute task. Consequently we use the ave C to measure the efficiency that decision-units command and control action-nodes to execute tasks in the C2 network. The value of ave C is affected by the constructing network cost, various parameters (,,DD DA i ααβ), the network topology structure. When designing the C2 network topology structure, ave C is the optimized goal. The constructing network cost and various parameters (,,DD DA D ααβ) are fixed, and the optimal network structure is designed to ensure the optimal ave C . The follows are several experiments to validate that the measurement ave C is effective and logical, and to analyze the property of different optimal network topology for different parameters by modulating the parameter value.IV. C2 NETWORK MODEL EXPERIMENT ANALYSIS There are 5 decision-units and 12 action-units in a C2 organization. The weights of every node and every parameter value are seen in TABLE1:TABLE I.PARAMETER TABLE1w 2w 3w 4w 5w 6w 7w 5 3 7 16 8 17 2 8w 9w 10w 11w 12w 1m 2m 6 20 11 12 7 6 43m 4m 5m DD α DA αDβ8 3 10 0.7 0.8 2.5Figure 2. C2 network model example2Figure 2(a) is a model of a practical simple C2 organization. From above parameters, we can gain () 3.2581ave C a =; Figure 2(b) is a optimal network structure that we have achieved by genetic algorithms whose fitness function is ave C . H ere () 5.7060ave C b =.Through analyzing the structures of (a) and (b), thedifference between (a) and (b) is D D E − and D A E −. This case is uniform to the property that ,DM DM DM p R R −− affectthe efficiency of C2 organization. ave C is valid to reflect this distinction, so we can use it to measure C2 network efficiency.A. Contrast experiment with different constructing cost In this experiment, D A E − is fixed, and the number of cooperating edges in various decision-node is changed to analyze the difference of ave C with different constructing network costs. Contrast networks with different D D E − numbers from 0 to 5.These network topology structuresare as follows:Figure 3. C2 network topology with D D E −of different numbersFigure 4 is ave C with different D D E − numbers. The horizontal axis is the serial number of network in Fig.3. The vertical axis is ave C ..network number in Fig.3C a v eAverage Cooperating Efficiency in different network constructing costsFigure 4.ave C with different D D E − numberProperty analysis: C2 network ave C is growing with the growth of the D D E − number. This means that the C2 network more effectively execute tasks when the network’s D D E −number is larger. Because the edge number is greater, the cooperating information can be transmitted effectively. So the C2 network can execute the task effectively. Apparently it is most effective to execute tasks when the network is fully connected. But it is unpractical. The constructing cost of fully connected network is great. In a limit fixed cost, there are some contrasts between two different network structuresby ave C . The contrast can determine which network has an advantage in executing tasks. B. Different measurement contrast exeriment with same parametersLatora etc. proposed network efficiency (NE ) to characterize the global property of the network, and to measure how efficiently information is exchanged over the network. The concept is as follows [11,12]:111/(1)(1)ij iji j i jNE e d N N N N ≠≠==−−¦¦(7)Thereinto, ij d denotes the shortest distance betweennode i and node j , satisfying 1/ij ij e d =. N is the numberof network’s nodes. Latora had some analysis to several types of networks.The following experiment analyzes the changes and relation of two measurements with same parameters:• Generate 100 different C2 networks randomly.The number of edges and nodes in these networks is same, and ,D D D A E E −− are different.• Compute corresponding NE and ave C of differentC2 networks.• Array the sequence of 100 C2 networks accordingto the trend of ave C from small to large. Then have a compareemnt. The result is as follows:Different networkA v e r a g e C o o p e r a t i n g E f f i c i e n c y a n d N e t w o r k E f f i c i e n c yMeasurement contrast in different networksFigure 5. Two measurement contrast of different networksProperty analysis: From the contrast of two measurements, we can calculate that standard deviation of ()0.0380NE σ=. The value is very small. This means thatit isn’t impressible for different topology structures. It can’t reflect the different network models. But ()0.6658ave C σ= means the change of ave C is bigger than NE. It can reflect the changing efficiency of C2 network. This means that ave C has a sensitive reflection and validity to measure the C2 network efficiency to execute tasks when the network topology structure has changed.C. O p timal C2 network analysis ex eriment with different parameter D β In the network theory, the node’s p oint centrality denotes the number of other nodes connecting with the node. Different networks have different central trend. For example, in a star network, the central node has the largest point centrality , and other nodes’ point centrality is 1. Likewise, this network has a larger central trend. In a complete network, all nodes’ point centrality are n-1, so this network has little central trend. The centralization of this network is 0. The centralization is able to reflect the property of the network that various nodes have different oint centrality . The network centralization is formulated as follows [19]:max1max 1()max[]ni i ni i CC C C C ==−=−¦¦ (8)This experiment designs the optimal network where the optimal goal is ave C , analyzes the structure of networks by the centralization of the optimal C2 network and validate the validity of ave C with different parameter by contrast between network efficiency and Average Coo erating Efficiency . The steps are as follows:• Fix ,,,DD DA ws ms αα, and change D β. Set D β from 0.5 to 10 with the step of 0.5. • Choose ave C as the fitness function, then optimize the network structure by genetic algorithms under different conditions with different D β.C e n t r a l i z a t i o n a n d N e t w o r k E f f i c i e n c yDifferent measurements contrast in different A v e r a g e C o o p e r a t i n g E f f i c i e n c y DβFigure 6. Three measurement contrast with different D β Property analysis: 1) From Figure 5, with the increase of D β, optimal C2 network ave Cis growing. But ave C retains fixedness when D βgrows to a bound. Because whenD βgrows to a bound, some decision-nodes’ decision-capability can satisfy the request of commanding andcontrolling all action-nodes. H ere 1()iD i m W D β=, andthe network topology is changeless with the increasing D β. So ave C is changeless.2) With the growth of D β, the transformation trend of centralization is from large to small, then from small to large. From Formula (8), the centralization is independent of D β. The change is arisen by the C2 network structure. The optimal C2 network central trend is from large to small(various nodes’ degrees deviation changes from large to small), then from small to large(various nodes’ degrees deviation changes from small to large). This means that C2 network is designed as a star-network when decision-capability validity (determined by D β) is very small or very large. 3) NE has a few changes when D βchanges. This means network efficiency isn’t able to reflect the change of parameters in C2 network whereas ave C may reflect the change distinctly. This tells us that ave Chas avalidity and sensitivity to measure the C2 network efficiency when parameters change.From the horizontal experiment (4.2) and vertical experiment (4.3), we have a contrast between NE and ave C . NE can’t effectively reflect the change of C2 network, including the network structure and network parameters. But ave C may have a great reflection on the practical property of C2 network. There is a good practical value in studying the efficiency of C2 network. Through the research to change D β, we find that the optimal network is different when the parameter changes. This has a better direction to how we design and construct a C2 network in a practical battlefield.V.C ONCLUSIONThis paper analyzes the property and essence of C2 and executed tasks, constructs the C2 network model and abstract the capabilities of various operational units as weights of nodes in the C2 network, builds the measure model of C2 network cooperating efficiency based on the weighted-nodes and has some experimental analyses to the measure model to have a contrast with NE to validate the validity of ave C . By adjusting the parameter, we investigate the structure property of optimal C2 network with different parameters. There is a significance to direct to construct the practical C2 network.In future work, we will analyze other parameters and the structure property of optimal C2 network with different parameters. We will enlarge the dimensionality of the node weight to denote different capabilities andpropose the new efficiency measurement of C2 network executing tasks.A CKNOWLEDGEMENTSThis research work is supported by the National Natural Science Foundation of China under Grant No. 70701038, No. 91024006 and No.71001105.R EFERENCES[1] H ollenbeck J R . Structural contingency theory andindividual differences: Examination of external and internal personteamfit. Journal of Applied Psychology. 2002,87(3): 599[2] Carley K M. Organizational design suited to highperformance under stress. IEEE Transactions on Systems, Man, and Cybernetics.1995,25(2): 221[3] Kemple W G,et a1㧚A2C2 Initial experiment 㧦Adaptationof the joint scenario and formalization 㧚In 㧦Proceedings of the 1996 Command & Control Research & Technology Symposium, Monterey, CA.June 1996: 837[4] YANG Dong-sheng, ZH ANG Wei-Ming, LIU Zhong,ZHU Cheng.Description and Designing of C2 Organization in Battlefields[J]. Systems Engineering —Theory & Practice. 2005.5(5).[5] YANG Dong-sheng, ZH ANG Wei-Ming, LIU Zhong,Z U Cheng. Measurement and Designing of C2 Organization [J]. PROGRESS IN NATURAL SCIENCE. 2005.5, 15(3): 349-355[6] Levchuk, G.M., Y. N. Levchuk, Jie Luo, K.R. Pattipati, andD.L. Kleinman, Normative Design of Organizations - Part I: Mission Planning. IEEE Transactions on Systems, Man, and Cybernetics, May 2002, 32(3)[7] XIU Bao-xin, ZH ANG Wei-ming, LIU Zhong, YANGDong-sheng. Robust Organizational Design Based on Granular Computing [J]. JOURNAL OF SYSTEM SIMULATION. 2007, 9, 19(18): 4221-4224.[8] XIU Bao-xin, ZH ANG Wei-ming, LIU Zhong, YANGDong-sheng. Adaptive design of C2 organizaitonal structure [J]. Systems Engineering and Electronic: 2007(7), 29(7): 1102-1108[9] Mou Liang, Zhang Wei-ming, Chen Tao, Xiu Bao-xin.Task platform relation design model and algorithm for C2 Organization structure under uncertainly[J]. Systems Engineering and Electronic,2010,32(12):2576-2583.[10] Mou Liang, Zhang Wei-ming, Xiu Bao-xin, H uang Jin-cai.C2 Organization Decision-layer Structure Dynamic Adaptive Optimization Based on Rolling Horizon Procedure. Journal of National University of Defense Technology, , 2011, 33(1): 125-131.[11] Vito Latora, Massimo Marchiori. Efficient Behavior ofSmall-World Networks[J]. PH YSI CAL REV IEW LETTERS: 5 NOVEMBER 2001,VOLUME 87, NUMBER 19[12] Paolo Crucittia, Vito Latorab, Massimo Marchioric, AndreaRapisarda. Effciency of scale-free networks:error and attack tolerance[J]. Physica A: 320 (2003) 622- 642[13] Tian Liu, Di Zeng-Ru, Yao Hong. Effect of distribution ofweight on the efficiency of weighted networks [J]. Acta Phys. Sin. 2011, 60(2):028901[14] QIN Jin. A NewMeasure for Transportation Network Efficiency and Its Appilication[J]. Systems Engineering. 2008,4,26(4):94-98.[15] Liu Jun.Lectures on Whole Network Approach[M].Shanghai: Gezhi Book Concern, 2009,7(1): 108-116.。

相关文档
最新文档