方差及其性质

合集下载

随机变量方差的概念及性质

随机变量方差的概念及性质

= ( n 2 n) p 2 + np.
D( X ) = E ( X 2 ) [ E ( X )]2
= ( n 2 n) p 2 + np ( np )2
= np(1 p ) ).
3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k } =
λk
k!
e λ , k = 0,1,2,
π π 2 = 3π + 24 2 4 16
4 2
2
= 20 2π 2 .
2 0 例4 设 X ~ 1 1 3 2
1 3 , 求 D( 2 X 3 + 5). 1 1 12 12

D( 2 X 3 + 5) = D( 2 X 3 ) + D( 5)
= 4 D( X )
= E[ X E ( X )]2 + E[Y E (Y )]2 ± 2 E {[ X E ( X )][Y E (Y )]}
= D( X ) + D(Y ).
推广 若 X 1 , X 2 ,
D( X1 ± X 2 ±
, X n 相互独立 , 则有 + D( X n ).
± X n ) = D( X1 ) + D( X 2 ) +
= C E {[ X E ( X )] }
2 2
= C 2 D( X ).
(3) 设 X, Y 相互独立, D(X), D(Y) 存在, 则
D( X ± Y ) = D( X ) + D(Y ).
证明
D( X ± Y ) = E {[( X ± Y ) E ( X ± Y )]2 } = E {[ X E ( X )] ± [Y E (Y )]}2

方差的性质

方差的性质
9
一般地, 一般地,
若 i ~ N(µi ,σi2 ), i =1 2,L , 且 互 立 则 X , n 相 独 ,
C1X1 +C2 X2 +L+Cn Xn +C ~ N∑Ciµi +C, i=1
n
∑C σ . i=1
n 2 2 i i
这 , 1,C2,L Cn是 全 0 常 。 里 C , 不 为的 数
i=1 i =1 i =1 j≠i n n n n
2
性质4: 若随机变量 性质 若随机变量X1, X2, …, Xn相互独立, 相互独立, 则
Var( X1 + L+ X n ) = Var( X1 ) + L+ Var( X n )
n=2时由于 = 时由于 Var(X±Y)= Var(X) +Var(Y) ±2E(X-EX)(Y-EY) ± 独立, 若X, Y 独立,则 Var(X±Y)= Var(X) +Var(Y) ±
23
例9. 设 ( X ,Y ) ~ N ( µ1, σ12,µ2,σ22,ρ), 求 ρXY 解: cov( X,Y) = ∫−∞ ∫−∞(x − µ1)( y − µ2) f (x, y)dxdy
x−µ1 令 =s
+∞ +∞
σ1 y−µ2 =t σ2
+∞ +∞ σ1σ2 = ∫−∞ ∫−∞ ste 2π 1− ρ2
E | X | = ∫ | x | f (x)dx≥ ∫ | x | f (x)dx+ ∫ | x |α f (x)dx
−∞ −ε −∞
α
α
α
ε
≥ ∫ ε f (x)dx+ ∫ ε f (x)dx

随机变量方差的定义及性质

随机变量方差的定义及性质
方差与期望值的离散程度有关。如果一个随机变量的取值比较离散,即取值比较分散,那么其方差就比较大;如果一个随机 变量的取值比较集中,即取值比较接近期望值,那么其方差就比较小。
02
CATALOGUE
方差的性质
方差的非负性
总结词
方差具有非负性,即对于任何随机变量X,其方差Var(X)总是非负的。
详细描述
方差的独立性
要点一
总结词
如果两个随机变量X和Y是独立的,那么Var(X+Y) = Var(X) + Var(Y)。
要点二
详细描述
这是方差的一个重要性质,表明如果两个随机变量相互独 立,那么它们的和的方差等于它们各自方差的和。这个性 质在概率论和统计学中非常重要,因为它允许我们通过独 立随机变量的方差来计算复合随机变量的方差。
度。
方差主要关注数据点的离散程度 ,而峰态则关注数据点的集中趋
势。
如果数据分布更加尖锐,即数据 点更加集中在平均值附近,则方 差可能会减小,因为数据点之间
的差异较小。
THANKS
感谢观看
方差还可以表示为
Var(X)=E(X^2)-[E(X)]^2。这个公式可以用来计算方差,其中E(X^2)表示随机变量X的平方的期望值 ,E(X)表示随机变量X的期望值。
方差与期望值的关系
方差的大小与期望值有关。如果一个随机变量的期望值越大,其方差也越大;如果一个随机变量的期望值越小,其方差也越 小。
03
CATALOGUE
方差的应用
方差在统计学中的应用
描述数据分散程度
方差是衡量随机变量取值分散程度的量,用于描述数 据的离散程度。
检验假设
在统计学中,方差分析(ANOVA)等方法用于检验 多个总体均值是否相等,从而判断假设是否成立。

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

方差(概率论与数理统计)

方差(概率论与数理统计)
方差分析的基本思想
方差分析通过比较不同组数据的分散程度,判断不同因素对数据变 异的贡献程度,从而进行多因素比较。
方差分析的适用条件
进行方差分析前需要满足独立性、正态性和方差齐性等条件,以确 保分析结果的准确性和可靠性。
方差分析的步骤
包括建立假设、计算自由度、计算F值、进行显著性检验等步骤,最 终得出各因素对数据变异的贡献程度和显著性水平。
统计学推断
在统计学中,方差分析、回归分析和生存分析等方法都涉及到方差的 概念和应用。
质量控制
在生产过程中,方差分析可以用于检测产品质量的一致性和稳定性。
社会科学研究
在社会学、心理学和经济学等社会科学领域,方差分析常用于研究不 同组别之间的差异和变化。
02
方差的计算方法
离差平方和的分解
离差平方和是由数据点与平均值的偏差平方和组成的,即每个数据点与平 均值的差的平方的总和。
其中,n是数据点的数量,组内离差平方和是每个数据点 与其所属类别的平均值的偏差平方和的总和,组间离差平 方和是不同类别的平均值之间的偏差平方和。
方差的计算实例
首先计算每个数据点与平均值的偏差的平方: {0, 1, 2, 3, 4}。
最后,根据方差的计算公式,方差 = (5-1) / 5 * 30 + 1 / 5 * 0 = 24。
假设有一个数据集{1, 2, 3, 4, 5},其平均值为3。
然后求出偏差的平方的总和:0 + 1 + 4 + 9 + 16 = 30。
03
方差与其他统计量的关 系
方差与期望值的关系
方差是衡量数据离散程度的统计量,而期望值是数据的平均 水平。方差和期望值之间存在密切的关系,通常表示为方差 等于期望值的平方减去数据点的平方。

方差性质及应用

方差性质及应用

方差性质及应用方差是描述一组数据分布的离散程度的统计量,它可以帮助我们了解数据的波动程度和稳定性。

方差的计算方法是将每个数据点与数据的平均值相减,然后求平方,最后将这些差的平方求和并除以数据的个数。

方差的计算公式如下:\[s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n}\]其中,\(s^2\)表示方差,\(x_i\)表示第i个数据点,\(\bar{x}\)表示数据的均值,n表示数据的个数。

方差的性质:1. 方差是非负数,即方差的值始终大于或等于零,当方差等于零时,表示数据的波动程度为零,即所有的数据点都与均值相等。

2. 如果一个常数k被加到数据中的每个数上,方差不变,即对数据进行平移对方差没有影响。

3. 如果一个常数k被乘到数据中的每个数上,方差成为原方差的k的平方倍,即对数据进行缩放会影响方差的值。

4. 如果我们有两组数据,第一组数据是第二组数据每个数据点的k倍,那么第一组数据的方差是第二组数据方差的k的平方倍。

5. 如果数据是独立的,那么它们的方差加起来等于它们的和的方差。

方差的应用:1. 方差可以用来衡量一组数据的离散程度,当数据的方差较大时,表示数据的波动较大,反之,当数据的方差较小时,表示数据的波动较小。

2. 方差可以用来比较不同组数据的稳定性,当两组数据的方差相差较大时,表示它们的波动程度不同,可以用来选择稳定性更好的数据。

3. 方差可以用来评估一个模型的拟合程度,当模型的预测值与实际值的方差较大时,表示模型的拟合程度较差,需要进一步优化。

4. 方差还可以用来进行假设检验,通过比较两组数据的方差来检验它们是否来自同一个总体,从而进行统计推断。

总而言之,方差是一种非常重要的统计量,它能够帮助我们全面了解数据的分布,衡量数据的稳定性和波动程度,评估模型的拟合程度,以及进行假设检验。

在实际应用中,方差被广泛应用于统计学、经济学、金融学等领域,是一种非常有用的工具。

一随机变量方差的定义及性质

一随机变量方差的定义及性质

D( X ) 100 2
250 1 100 2
0.975
(2)设需要做n次独立试验,则X ~ B(n,0.5),求n使得
P0.35
X n
0.65
P0.35
n
0.5
n
X
0.5n
0.65n
0.5n
PX 0.5n 0.15n 0.95
成立,由切比谢夫不等式得
DX
0.25n
P X 0.5n 0.15n 1 (0.15n)2 1 (0.15n)2
10 D(C ) 0; 20 D(CX ) C 2D( X ); 30 当X,Y独立时,D( X Y ) D( X ) D(Y ).
4. 契比雪夫不等式
P{ X
μ
ε}
σ2 ε2
P{ X
μ
ε
}
1
σ2 ε2
.
5. 矩是随机变量的数字特征.
随机变量 X 的数学期望 E( X ) 是 X 的一阶原点矩;
12 p 02 (1 p) p2 pq
2. 二项分布
设随机变量 X 服从参数为 n, p 二项分布, 其分布律为
P{ X k} n pk (1 p)nk ,(k 0,1,2,,n),
k
则有
0 p 1.
EX
n
k0
k
n k
p
k
(1
p)nk
np
E( X 2 ) E[X ( X 1) X ]
(3) 在实际应用中,高于 4 阶的矩很少使用.
三阶中心矩E{[X E( X )]3 }主要用来衡量随
机变量的分布是否有偏. 四阶中心矩 E{[X E( X )]4 } 主要用来衡量随 机变量的分布在均值附近的陡峭程度如何.

随机变量的方差

随机变量的方差
概率与统计
随机变量的方差
1
4.2 方差
一. 定义与性质 方差是衡量随机变量取值波动 程度 的一个数字特征。
如何定义?
2
1.(p121)定义 若E(X2)存在,则称 E[X-E(X)]2 为随机变量 X的方差,记为D(X),或Var(X).
称 ( X ) D( X ) 为随机变量X的标准差
可见
2 [ x E ( X )] P{ X xk }, 离散型情形 k D( X ) k 1 2 [ x E ( X )] f ( x )dx, 连续型情形
3
2.推论
D(X)=E(X2)-[E(X)]2.
例1:设随机变量X的概率密度为 1 x 1 x 0 f ( x) 1 x 0 x 1 0 其它


5. 正态分布N(, 2):
D X 2
6
1.请给出一个离散型随机变量X和一个连续 型随机变量Y,使它们的期望都是2, 方差都是1。
2.已知随机变量X1,X2,…,Xn相互独立,
且每个Xi的期望都是0,方差都是1, 令Y= X1+X2+…+Xn ,求E(Y2)
7
三.切比雪夫不等式 若随机变量X的期望和方差存在,则对任意 D( X ) 0,有 P{| X E( X ) | } ; 2 这就是著名的切比雪夫(Chebyshev)不等式。 它有以下等价的形式:
i 1 i 1 n n5Βιβλιοθήκη 二.几个常用随机变量的方差
1. 二项分布B(n, p): 2. 泊松分布p():
D X np(1 p) D X
1 2 D X b a 12 1 D X 2

二次变差(quadratic variation)和方差(variance)的区别

二次变差(quadratic variation)和方差(variance)的区别

二次变差(quadratic variation)和方差(variance)的区别1. 引言1.1 概述在统计学和金融领域,我们经常会遇到二次变差(quadratic variation)和方差(variance)这两个概念。

尽管它们都与随机变量的波动性有关,但它们在定义、计算方法以及在统计学中的应用上存在着明显的区别。

本文将深入探讨二次变差和方差之间的区别,并解释它们分别在数学模型和实践中的重要意义。

1.2 文章结构本文将分为以下几个部分进行探讨。

首先,我们将阐述二次变差和方差的定义与解释,并比较它们之间的异同。

接着,我们将介绍计算二次变差和方差的方法以及它们所具有的性质。

然后,我们将重点关注二次变差和方差在统计学中的应用,并探讨它们对于数据分析与模型构建的意义。

最后,我们将总结二次变差和方差之间的区别和联系,并提出一些对进一步研究有启示性作用的建议。

1.3 目的本文旨在帮助读者更好地理解二次变差和方差这两个重要概念之间的区别,并认识到它们在统计学和金融领域中的实际应用。

通过对这两个概念的深入探讨,我们可以更准确地理解和分析随机变量的波动性,并在实践中更好地运用它们来进行风险管理、投资决策等方面的工作。

接下来,我们将开始介绍二次变差和方差的定义与解释。

2. 二次变差和方差的定义与解释:2.1 二次变差的定义与解释:二次变差(quadratic variation)是指一个随机过程在给定时间段内波动的累积量。

对于一个连续随机过程X(t),其二次变差可以通过将其离散化为多个间隔,然后计算每个间隔内X(t)的变化量的平方和来获得。

具体地说,如果我们将时间段[a, b]分成n个子区间,并选择子区间上任意一点{t0, t1,...,tn-1},则这些点构成了一个分割(partition)。

然后,我们可以计算每个子区间上X(t)的变化量ΔX(ti) = X(ti) - X(ti-1)并将其平方求和。

当分割逐渐细化且子区间长度趋近于零时,得到的二次变差就会趋向于稳定或极限值。

随机变量的方差和标准差

随机变量的方差和标准差

P|
x
EX
|
f
|xEX |
( x)dx
1
2
(x
EX
)2
f
(x)dx
DX
2
例4.11 设随机变量X的数学期望为μ,方差为 ,2 则由切
贝绍夫不等式,有
P 3 X 3 P X 3 1 1 0.89 9 然而,假如 X ~ N(, 2 ) 则利用附表1,可得
P
3
X
3
P|
X
|
3
一、随机变量的方差和标准差的 概念和性质
1、方差和标准差的定义 X-EX表示随机变量 X 对数学期 望 EX 的离差;为避免离差符号的影响,人们常使用X 对数 学期望 EX 的平方离差 (X EX )2 它显然也是随机变量;称 (X EX )2 的数学期望
DX E(X EX )2 EX 2 (EX )2
二、切贝绍夫不等式
设随机变量X的数学期望和方差都存在,则对于任意ε>0, 事件{|X-EX|≥ε}的概率有如下估计式——切贝绍夫不等式:
P
X
EX
DX
2

P X EX
1
DX
2
证明 (1) 设X是非负离散型随机变量,其一切可能值为{Xi},
则对于任意ε>0,有
P X EX PX xi
xi EX
1
2 xi EX
( X EX )2 P
X xi
1
2
xi
(X
EX )2 PX
xi
DX
2
,
其中前两个和式∑表示对于满足| xi -EX|≥ε的X 的一切可能 值xi求和,后一个和式∑表示对于X 的一切可能值xi求和.

初中方差的性质教案

初中方差的性质教案

教案:初中方差的性质教学目标:1. 理解方差的定义和性质;2. 学会计算简单数据的方差;3. 能够应用方差的性质解决实际问题。

教学重点:1. 方差的定义和性质;2. 计算简单数据的方差;3. 应用方差的性质解决实际问题。

教学准备:1. 教学课件或黑板;2. 计算器;3. 实际数据集。

教学过程:一、导入(5分钟)1. 引入方差的概念,让学生回顾平均数的定义和作用;2. 提问:为什么我们需要方差?方差有哪些实际应用?二、讲解方差的定义和性质(15分钟)1. 讲解方差的定义:方差是衡量一组数据波动大小的量;2. 讲解方差的性质:方差越小,数据越稳定;方差越大,数据波动越大;3. 通过实例演示方差的计算过程,让学生理解方差的计算方法;4. 引导学生思考:方差与平均数的关系是什么?三、练习计算简单数据的方差(10分钟)1. 给学生发放实际数据集,让学生计算方差;2. 引导学生注意数据的准确性和计算过程的规范性;3. 解答学生的问题,给予个别指导。

四、应用方差的性质解决实际问题(10分钟)1. 给学生发放实际问题案例,让学生应用方差的性质解决问题;2. 引导学生分析问题,明确需要用方差解决的问题;3. 引导学生思考:如何比较两组数据的稳定性?如何选择稳定的数据集?五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结方差的定义、性质和应用;2. 提问:你认为方差在实际生活中有哪些应用?如何选择稳定的数据集?教学延伸:1. 引导学生进一步学习多组数据的方差比较方法;2. 引导学生思考:如何利用方差进行数据分析和决策?教学反思:本节课通过讲解方差的定义和性质,让学生理解方差的作用和实际应用。

通过练习计算简单数据的方差,让学生掌握方差的计算方法。

最后,通过应用方差的性质解决实际问题,让学生学会将方差应用于实际生活中。

在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,引导学生思考和讨论。

初二数学知识点归纳:方差

初二数学知识点归纳:方差

初二数学知识点归纳:方差方差的计算、知识点归纳方差在考试中考察不是很难,记住基本公式往里带就能解答正确,但是方差的概念让不少同学为此很是头痛。

那方差到底是什么,怎样计算呢,下面小编就为大家整理一些题型和解题方法技巧。

一、概念和公式方差的概念与计算公式,例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。

平均成绩相同,但X不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。

推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型计算公式。

称为标准差或均方差,方差描述波动程度。

基本定义:设X是一个随机变量,若E{[X-E]2}存在,则称E{[X-E]2}为X的方差,记为D,Var或DX。

即D=E{[X-E]2}称为方差,而σ=D0.5称为标准差。

即用来衡量一组数据的离散程度的统计量。

方差刻画了随机变量的取值对于其数学期望的离散程度。

若X的取值比较集中,则方差D较小,若X 的取值比较分散,则方差D较大。

因此,D是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。

当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。

因此方差越大,数据的波动越大;方差越小,数据的波动就越小二、计算方法和原理若x1,x2,x3......xn的平均数为m则方差方差公式方差公式例1两人的5次测验成绩如下:X:50,100,100,60,50E=72;y:73,70,75,72,70E=72。

平均成绩相同,但X不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D:直接计算公式分离散型和连续型,具体为:这里是一个数。

总结归纳方差的性质

总结归纳方差的性质

总结归纳⽅差的性质总结归纳⽅差的性质 ⽅差是在概率论和统计⽅差衡量随机变量或⼀组数据时离散程度的度量。

概率论中⽅差⽤来度量随机变量和其数学期望(即均值)之间的偏离程度。

统计中的⽅差(样本⽅差)是每个样本值与全体样本值的平均数之差的平⽅值的平均数。

在许多实际问题中,研究⽅差即偏离程度有着重要意义。

以下是⼩编整理的总结归纳⽅差的性质,⼀起来看看吧。

总结归纳⽅差的性质篇1 ⼀.⽅差的概念与计算公式 例1 两⼈的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离⼤。

⽅差描述随机变量对于数学期望的偏离程度。

单个偏离是 消除符号影响 ⽅差即偏离平⽅的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这⾥是⼀个数。

推导另⼀种计算公式 得到:“⽅差等于平⽅的均值减去均值的平⽅”。

其中,分别为离散型和连续型计算公式。

称为标准差或均⽅差,⽅差描述波动 ⼆.⽅差的性质 1.设C为常数,则D(C) = 0(常数⽆波动); 2. D(CX )=C2 D(X ) (常数平⽅提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(⽅差⽆负值) 特别地 独⽴前提的逐项求和,可推⼴到有限项。

⽅差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表⽰这组数据个数,x1、x2、x3……xn表⽰这组数据具体数值) ⽅差公式:S=〈(M-x1)+(M-x2)+(M-x3)+…+(M-xn)〉╱n 三.常⽤分布的⽅差 1.两点分布 2.⼆项分布 X ~ B ( n, p ) 引⼊随机变量 Xi (第i次试验中A 出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另⼀计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后⼀参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的 总结归纳⽅差的性质篇2 第⼀章实数 ⼀、重要概念 1.数的分类及概念数系表: 说明:"分类"的原则:1)相称(不重、不漏) 2)有标准 2.⾮负数:正实数与零的统称。

方差概念及计算公式

方差概念及计算公式

方差概念及计算公式-CAL-FENGHAI.-(YICAI)-Company One1方差概念及计算公式一.方差的概念与计算公式例1两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。

推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”,即,其中分别为离散型和连续型计算公式。

称为标准差或均方差,方差描述波动程度。

二.方差的性质1.设C为常数,则D(C) = 0(常数无波动);2.D(CX )=C2D(X ) (常数平方提取);证:特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3.若X、Y相互独立,则证:记则前面两项恰为D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。

特别地独立前提的逐项求和,可推广到有限项。

三.常用分布的方差1.两点分布2.二项分布X ~ B( n, p )引入随机变量X i(第i次试验中A出现的次数,服从两点分布),3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)~正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

例2求上节例2的方差。

解根据上节例2给出的分布律,计算得到求均方差。

均方差的公式如下:(xi为第i个元素)。

S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。

方差概念及计算公式

方差概念及计算公式
超定求最小二乘解 用A\B %基于奇异值分解;用pinv(A)*B %基于householder变换
欠定由qr分解求得
非负最小二乘解 X=nnls(A,b,TOL) TOL指定误差,可缺省
零点法求解方程
fzero一元 fsolve多元
x=fzero(fun,x0)
[x,fval,exitflag]=fzero(fun,x0,options,P1,P2,...)
直接计算公式分离散型和连续型,具体为:
这里 是一个数。推导另一种计算公式
得到:“方差等于平方的均值减去均值的平方”,即

其中
分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。
二.方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2.D(CX)=C2D(X)(常数平方提取);
泰勒定理
设函数f(x)在x=a的邻区内n+1阶可导,则对于位于此邻区内的任一x,至少存在一点c,c在a与x之间,使得:
此公式也被称为泰勒公式。(在此不加以证明)
在泰勒公式中,取a=0,此时泰勒公式变成:
其中c在0与x之间
此式子被称为麦克劳林公式。
函数f(x)在x=0的泰勒级数称为麦克劳林级数.当麦克劳林公式中的余项趋于零时,我们称相应的泰勒展开式为麦克劳林展开式.
quad88样条newton-cotes公式 最常用
trapz梯形法定积分
cumtrapz梯形法区间积分
sum等宽矩阵法定积分
cumsum等宽矩阵法区间积分
fnint样条的不定积分
多重数值积分
dblquad('fun',inmin,inmax,outmin,outmax,tol,method) 定积分

随机向量的方差

随机向量的方差

随机向量的方差随机向量的方差是衡量向量元素之间变化程度的统计量。

在统计学和概率论中,方差是衡量一组数据或概率分布的离散程度的度量。

对于一个随机向量X=(X1,X2,...,Xn),其中X1,X2,...,Xn是X 的元素,其方差定义为:Var(X) = E[(X - E(X))(X - E(X))^T]其中,E(X)表示X的期望向量,^T表示向量的转置运算。

方差的计算步骤如下:1. 计算X的期望向量E(X),即计算X1,X2,...,Xn的平均值;2. 将X的元素减去期望向量的对应元素,得到(X1-E(X1)),(X2-E(X2)),...,(Xn-E(Xn));3. 将得到的向量按列构成矩阵,记作(X - E(X));4. 将(X - E(X))与它的转置矩阵相乘,得到一个n×n的矩阵;5. 对矩阵的对角线上的元素求和,得到方差Var(X)。

方差的性质:1. 方差是非负的,即Var(X) ≥ 0;2. 当且仅当X的所有元素都相等时,方差为0;3. 方差与线性变换具有以下性质:对于任意的常数a和b,Var(aX + b) = a^2Var(X);4. 方差是一个二次齐次函数,即Var(aX) = a^2Var(X),其中a 是常数;5. 对于两个随机向量X和Y,Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y),其中Cov(X,Y)表示X和Y之间的协方差。

方差的应用:1. 方差可以用来衡量随机向量的不确定性和变化程度,比如在金融领域中,方差可以用来衡量股票价格的波动性;2. 方差可以用来评估数据的分布,比如在统计学中,方差可以用来比较不同组样本的离散程度;3. 方差可以用来构建模型和进行预测,比如在机器学习中,方差可以用来评估模型对数据的拟合程度。

总结起来,随机向量的方差是衡量向量元素之间变化程度的统计量,能够描述随机向量的分布情况和不确定性,具有重要的应用价值。

方差公式-

方差公式-

方差公式一.方差的概念与计算公式例1 两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。

方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。

推导另一种计算公式得到:”方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型计算公式。

称为标准差或均方差,方差描述波动二.方差的性质1.设C为常数,则D(C) = 0(常数无波动);2. D(CX )=C2 D(X ) (常数平方提取);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3.若X 、Y 相互独立,则证:记则前面两项恰为 D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。

特别地独立前提的逐项求和,可推广到有限项。

方差公式:平均数:M=(x1+x2+x3+...+xn)/n (n表示这组数据个数,x1、x2、x3......xn表示这组数据具体数值)方差公式:S²=〈(M-x1)²+(M-x2)²+(M-x3)²+...+(M-xn)²〉╱n三.常用分布的方差1.两点分布2.二项分布X ~ B ( n, p )引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布),3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);8.F分布:其中X~F(m,n),E(X)=n/(n-2);~正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档