人教版七年级数学上册第二章 整式的加减测试题含答案
人教版数学七年级上册第二章整式的加减单元测试卷(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。
人教版数学七年级上册第二章整式的加减单元检测题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)
人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,43.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 1254.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)26.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+48.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为( )A 6a2b+ab B. ﹣4a2b+7ab C. 4a2b﹣7ab D. 6a2b﹣ab10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)值与x的取值无关,则﹣a+b的值为( )A. 3B. 1C. ﹣2D. 2二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____. 12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.14.多项式﹣xy 2+2x -2x 3y 次数是_____. 15.若关于x 的多项式(a ﹣4)x 3﹣x 2+x ﹣2是二次三项式,则a =_____.16.化简﹣5ab +4ab 结果是_____.17.如果3x 2m ﹣2y n 与﹣5x m y 3是同类项,则m n 的值为_____.18.若关于a 、b 的多项式(a 2+2a 2b ﹣b )﹣(ma 2b ﹣2a 2﹣b )中不含a 2b 项,则m =_____三.解答题(共7小题)19.化简:(1)a 2﹣3a +8﹣3a 2+4a ﹣6;(2)a +(2a ﹣5b )﹣2(a ﹣2b ).20.先化简,再求值:3a 2+b 3﹣2(21﹣5b 3)﹣(3﹣a 2﹣2b 3),其中a =﹣3,b =﹣2.21.某同学在一次测验中计算A +B 时,不小心看成A ﹣B ,结果为2xy +6yz ﹣4xz .已知A =5xy ﹣3yz +2xz ,试求出原题目的正确答案.22.如果关于字母x 的二次多项式﹣3x 2+mx +nx 2﹣x +3的值与x 的取值无关,求2m ﹣3n 的值.23.若多项式(a +2)x 6+x b y +8是四次二项式,求a 2+b 2的值.24.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.25.(1)一个两位正整数,a 表示十位上的数字,b 表示个位上的数字(a ≠b ,ab ≠0),则这个两位数用多项式表示为 (含a 、b 的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.(2)一个三位正整数F ,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F 为“友好数”,例如:132是“友好数”.一个三位正整数P ,各个数位上数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P 为“和平数”;①直接判断123是不是“友好数”?②直接写出共有 个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.答案与解析一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个【答案】C【解析】分析】根据整式的定义,结合题意即可得出答案【详解】整式有﹣12mn,m,8,x2+2x+6,25x y-,24x yπ+故选C【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,4【答案】C【解析】【分析】根据单项式的概念即可求出答案【详解】系数为:-1 2π次数为:3故选C【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念3.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 125【答案】B【解析】【分析】根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可【详解】∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选B【点睛】本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.4.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y【答案】B【解析】【分析】根据同类项定义即可求出答案【详解】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选B【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)2【答案】A【解析】【分析】把x-y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【详解】解:2(x-y)2+3(x-y)+5(y-x)2+3(y-x),=[2(x-y)2+5(y-x)2]+[3(y-x)+3(x-y)],=7(x-y)2.故选A.【点睛】本题考查合并同类项的法则,是基础知识比较简单.6.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)【答案】A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+4【答案】A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y【答案】A【解析】【分析】根据整式加减法的运算方法,逐一判断即可.【详解】解:∵2a2-3a2=-a2,∴选项A 正确;∵4m-m=3m,∴选项B 不正确;∵a 2b-ab 2≠0,∴选项C 不正确;∵x-(y-x)=2x-y,∴选项D 不正确.故选A .【点睛】此题主要考查了整式的加减法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.9.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( )A. 6a 2b +abB. ﹣4a 2b +7abC. 4a 2b ﹣7abD. 6a 2b ﹣ab【答案】D【解析】【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得:原式=a 2b +3ab +5a 2b ﹣4ab =6a 2b ﹣ab ,故选D .【点睛】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键10.x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则﹣a +b 的值为( )A. 3B. 1C. ﹣2D. 2 【答案】A【解析】【详解】试题分析:先把代数式化简合并同类项,值与x 的取值无关所以含x 项的系数为0.x 2 +ax -2y+7- (bx 2 -2x+9y -1)=22227291(1)(2)118+-+-+-+-++-+x ax y bx x y b x a x y 所以20a +=,10b -=解得2,1a b =-=,所以3-+=a b ,所以选A.考点:整式化简求值. 二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____.【答案】12π 【解析】【分析】 根据单项式系数的概念即可求出答案 【详解】该单项式为12π 故答案为12π 【点睛】本题考查单项式的系数,解题的关键是正确理解单项式的系数12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.【答案】15a 16【解析】【分析】根据单项式的系数与次数的规律即可求出答案【详解】系数的规律为:1、3、5、7……、2n ﹣1,次数的规律为:2、4、6、8……、2n ,∴第8个代数式为:15a 16,故答案为15a 16【点睛】考查数字规律,解题的关键是找出题意给出的规律13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.【答案】﹣3或7【解析】【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可【详解】∵(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式∴|k ﹣2|=5,k ﹣5≠0解得k =﹣3,k =7∴k =﹣3或7故答案为﹣3或7【点睛】本题主要考查了单项式,解题的关键是熟记单项式的次数定义14.多项式﹣xy 2+2x -2x 3y 的次数是_____.【解析】【分析】多项式中,次数最高的单项式的次数即为多项式的次数.【详解】解:该多项式中,次数最高的单项式的次数为3+1=4,故该多项式的次数为:4.【点睛】本题考查了多项式的定义.15.若关于x多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=_____.【答案】4【解析】【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【详解】因为关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式可得:a﹣4=0解得:a=4故答案为4【点睛】本题考查了多项式.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.16.化简﹣5ab+4ab的结果是_____.【答案】﹣ab【解析】【分析】根据合并同类项的法则把系数相加即可【详解】原式=(﹣5+4)ab=﹣ab故答案是:﹣ab【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为_____.【答案】8【解析】根据同类项的定义即可求出答案【详解】由题意可知:2m﹣2=m,n=3∴m=2,n=3∴原式=23=8故答案为8【点睛】本题考查同类项的定义,解题的关键是熟练运用同类项的定义18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=_____【答案】2【解析】【分析】原式去括号合并得到最简结果,根据结果不含a2b项,求出m的值即可【详解】原式=a2+2a2b﹣b﹣ma2b+2a2+b=3a2+(2﹣m)a2b,由结果不含a2b项,得到2﹣m=0解得:m=2故答案为2【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).【答案】(1)﹣2a2+a+2;(2) a﹣b.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果【详解】(1)原式=﹣2a2+a+2;(2)原式=a+2a﹣5b﹣2a+4b=a﹣b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.【答案】﹣113.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=3a2+b3﹣42+10b3﹣3+a2+2b3=4a2+13b3﹣45,当a=﹣3,b=﹣2时,原式=36﹣104﹣45=﹣113.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.【答案】8xy﹣12yz+8xz.【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】解:根据题意得:A+B=2(5xy﹣3yz+2xz)﹣(2xy+6yz﹣4xz)=10xy﹣6yz+4xz﹣2xy﹣6yz+4xz=8xy﹣12yz+8xz.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n的值.【答案】-7.【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n计算它们的和即可.【详解】合并同类项得(n−3)x2+(m−1)x+3,根据题意得n−3=0,m−1=0,解得m=1,n=3,所以2m−3n=2−9=−7.【点睛】本题考查了多项式,解题的关键是先合并同类项化简再代值进行计算.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.【答案】13.【解析】【分析】由(a+2)x6+x b y+8是四次二项式,得出a+2=0,b=3进一步代入求得答案即可【详解】依题意得:a+2=0,b=3解得a=﹣2,b=3,所以a2+b2=(﹣2)2+32=13.【点睛】此题考查多项式,代数式求值,掌握多项式的意义是解决问题的关键24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.【答案】6x2-7【解析】【分析】根据整体思想,利用合并同类项法则进行整式的化简即可.【详解】因为A=2x2-1,B=3-2x2所以A-2B=2x2-1-2(3-2x2)=2x2-1-6+4x2=6x2-7【点睛】此题主要考查了整式的加减,关键是利用去括号法则和合并同类项法则进行化简.25.(1)一个两位正整数,a表示十位上数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1) 10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可得到结论;(2)①根据“友好数”的定义判断即可;②根据“和平数”的定义列举出所有的“和平数”即可;③设三位数xyz既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.【详解】(1)这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为11,9;(2)①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数xyz既是“和平数”又是“友好数”,∵三位数xyz是“和平数”,∴y=x+z.∵xyz是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【点睛】本题考查了整式的加减的实际运用,阅读理解能力以及知识的迁移能力,解题的关键是理解“友好数”与“和平数”的定义.。
人教版数学七年级上册第二章整式的加减《单元综合测试题》含答案
人教版数学七年级上学期第二章整式的加减测试一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是22.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 96.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x27.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣98.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.答案与解析一.选择题1.下列说法正确的是( )A. 是单项式B. πr2的系数是1C. 5a2b+ab﹣a是三次三项式D. xy2的次数是2【答案】C【解析】【分析】根据单项式的概念、多项式的概念分别判断即可.【详解】A.分母含有字母x,不是单项式,此选项错误;B.πr2的系数是π,不是1,此选项错误;C.5a2b+ab﹣a是三次三项式,此选项正确;D.xy2的次数是3,不是2,此选项错误.故选C.【点睛】本题主要考查了单项式、多项式的概念,需要注意的是π不是字母,是常数.2.下列计算正确的是( )A. 6b﹣5b=1B. 2m+3m2=5m3C. ﹣2(c﹣d)=﹣2c+2dD. ﹣(a﹣b)=﹣a﹣b【答案】C【解析】【分析】根据去括号法则以及合并同类项法则一一判断即可.【详解】A.6b-5b=b,故此选项错误;B.2m与3m2不是同类项,不能合并,故此选项错误;C.-2(c-d)=-2c+2d,故此选项正确;D.-(a-b)=-a+b,故此选项错误,故选:C.【点睛】考查去括号法则以及合并同类项法则,掌握法则是解题的关键.3.若﹣x2a y2b+5与﹣x b+5y a+1是同类项,则a、b的值分别为( )A. B. C. D.【答案】A【解析】【分析】由同类项的定义列出关于a、b的二元一次方程组,解方程组即可求得a、b的值. 【详解】由同类项的定义可得:,解得:.故选A.【点睛】本题主要考查同类项的概念以及二元一次方程组的解法.4.化简m+n﹣(n﹣m)的结果为( )A. 2m﹣2nB. ﹣2mC. 2mD. ﹣2n【答案】C【解析】【分析】原式去括号合并即可得到结果.【详解】解:原式=m+n-n+m=2m,故选:C.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5.已知单项式3x m y3与4x2y n的和是单项式,则m n的值是( )A. 3B. 6C. 8D. 9【答案】C【解析】【分析】由同类项的定义可以求出m、n的值,再进行幂的运算即可.【详解】由题意可得3x m y3与4x2y n为同类项,∴,∴m n=23=8.故选C.【点睛】两项之和为单项式,那么这两项必为同类项,本题关键在于利用这个知识点解题.6.下列运算正确的是( )A. ﹣(a﹣1)=﹣a﹣1B. ﹣2(a﹣1)=﹣2a+1C. a3﹣a2=aD. ﹣5x2+3x2=﹣2x2【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣(a﹣1)=﹣a+1,此选项错误;B.﹣2(a﹣1)=﹣(2a﹣2)=﹣2a+2,此选项错误;C.a3﹣a2≠a,此选项错误;D.﹣5x2+3x2=﹣2x2,此选项正确.故选D.【点睛】本题主要考查整式的加减运算法则:(1)有括号,先去括号;(2)有同类项,再合并同类项. 还需注意的是如果括号前面是减号,那么括号里面的加减号要变号.7.下列计算正确的是( )A. ﹣2﹣2=0B. 8a4﹣6a2=2a2C. 3(b﹣2a)=3b﹣2aD. ﹣32=﹣9【答案】D【解析】【分析】本题主要利用整式的加减运算法则依次进行判断.【详解】A.﹣2﹣2=﹣4,此选项错误;B.8a4﹣6a2≠2a2,8a4与6a2不是同类项,不能进行合并同类项运算;C.由乘法分配律可得3(b﹣2a)=3b﹣6a,此选项错误;D.﹣32=﹣9,此选项正确.故选D.【点睛】本题主要考查整式的加减运算,乘法分配律的运用以及幂的运算.8.多项式a﹣(b﹣c)去括号的结果是( )A. a﹣b﹣cB. a+b﹣cC. a+b+cD. a﹣b+c【答案】D【解析】【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】a-(b﹣c)=a﹣b+c.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.9.下列说法正确的是( )A. 若|a|=﹣a,则a<0B. 若a<0,ab<0,则b>0C. 式子3xy2﹣4x3y+12是七次三项式D. 若a=b,m是有理数,则=【答案】B【解析】【分析】根据绝对值的性质,有理数的乘法法则,多项式中次数最高的项的次数叫做多项式的次数,等式性质进行分析即可.【详解】A、若|a|=-a,则a≤0,故原题说法错误;B、若a<0,ab<0,则b>0,故原题说法正确;C、式子3xy2-4x3y+12是四次三项式,故原题说法错误;D、若a=b,m是不为0有理数,则,故原题说法错误.故选B.【点睛】此题主要考查了多项式、绝对值、有理数的乘法和等式的性质,关键是掌握各知识点.10.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是( )A. 8x2+13x﹣1B. ﹣2x2+5x+1C. 8x2﹣5x+1D. 2x2﹣5x﹣1【答案】D【解析】【分析】列出式子,再运用整式的加减运算法则计算出结果即可.【详解】5x2+4x﹣1﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选D.【点睛】本题主要考查整式的加减运算法则,需注意的是去括号的时候要考虑符号的变更.二.填空题11.若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=_____.【答案】1【解析】【分析】合并同类项可得:4x2y3+2ax2y3=(4+2a)x2y3,进而得出4+2a=4b,整理得a-2b=﹣2,将a﹣2b整体代入要求的式子计算出结果即可.【详解】∵4x2y3+2ax2y3=(4+2a)x2y3=4bx2y3,∴4+2a=4b,∴2a﹣4b=﹣4,∴a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1.故答案为1.【点睛】本题主要考查整式的加减运算法则以及整体代入的思想.12.已知a﹣3b=3,则6b+2(4﹣a)的值是_____.【答案】2【解析】【分析】把所求的式子去括号后,进行整理,然后将a-3b作为一个整体代入进行求值即可.【详解】∵a-3b=3,∴-2(a-3b)=-6,∴6b+2(4-a)=6b+8-2a=-2(a-3b)+8=-6+8=2,故答案为:2.【点睛】本题考查了代数式的求值,利用了“整体代入法”求代数式的值.13.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为_____.【答案】-5【解析】试题解析:原式当2x+y=−1时,原式=−2−3=−5.故答案为:−5.点睛:原式去括号合并得到最简结果,把已知等式代入计算即可求出值.14.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|的结果是_____.【答案】-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b-c>0,a-c>0,则原式=-b-a-b+c+a-c=-2b,故答案为:-2b【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.15.若﹣7x m y4与2x9y n是同类项,则|m﹣n|=_____.【答案】5【解析】【分析】由同类项的定义分别求出m、n的值,再计算出|m﹣n|即可.【详解】由同类项的定义可得,∴|m﹣n|=|9﹣4|=5.故答案为5.【点睛】本题主要考查同类项的定义以及绝对值的计算.16.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|=_____.【答案】2c-a-b【解析】试题分析:根据数轴可得:a<c<0<b,所以a-c<0,b-c>0,所以│a-c│-│b-c│=c-a-(b-c)= c-a-b+c=2c-a -b.考点:数轴、绝对值、有理数的大小比较.三.解答题17.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)5;【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.18.先化简下式,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【答案】x2﹣2y2;﹣1【解析】试题分析:根据整式的加减法则,先去括号,然后合并同类项,化简后再代入求值即可. 试题解析:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2)=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.19.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0【解析】【分析】(1)根据整式的运算法则即可求出答案.(2)根据题意将A-2B化简,然后令含x的项的系数为0即可求出y的值.【详解】(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0【点睛】考查整式的运算法则,解题的关键是熟练运用整式的运算法则.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【答案】8bc﹣7ac﹣6ab;【解析】【分析】根据题意可知A=2bc+ac–2ab–(2ab–3bc+4ac),求出A后再计算A–(2ab–3bc+4ac)即可得正确答案.【详解】由题意可知:A+(2ab–3bc+4ac)=2bc+ac–2ab,A=2bc+ac–2ab–(2ab–3bc+4ac)=2bc+ac–2ab–2ab+3bc–4ac=5bc–3ac–4ab,∴A–(2ab–3bc+4ac)=5bc–3ac–4ab–2ab+3bc–4ac=8bc–7ac–6ab.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.21.先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2+3b2),其中a为最大的负整数,b为2的倒数.【答案】【解析】【分析】首先利用乘法分配律将2(a2﹣b2)化为2 a2-2b2,再利用整式的加减运算法则进行化简,由a为最大的负整数可得a=﹣1,由b为2的倒数可得b=,将a、b的值分别代入化简后的式子计算出结果即可.【详解】原式=5a2+3b2+2a2﹣2b2﹣5a2﹣3b2=2a2-2b2,∵a为最大的负整数,b为2的倒数,∴a=﹣1,b=,∴原式=2×(﹣1)2﹣2×()2=2﹣=.【点睛】本题主要考查整式的加减运算法则、负整数、倒数的概念,熟练掌握整式的运算法则是关键.22.化简:2(3a2+4a﹣2)﹣(4a2﹣3a)【答案】2a2+11a﹣4.【解析】【分析】先由乘法分配律以及去括号法则去括号,然后再合并同类项即可.【详解】原式=6a2+8a-4-4a2+3a=2a2+11a﹣4.【点睛】本题主要考查整式的加减运算法则,需注意的是如果括号前面是减号,那么括号里面的加减号要变号.23.先化简,后求值:,其中x在数轴上的对应点到原点的距离为个单位长度.【答案】【解析】先去括号,再合并,根据题意可知x有两个值,然后分别把x的值代入化简后的式子计算即可.解:原式=﹣x3+x﹣2﹣x+1=﹣x3﹣1,又∵x到原点的距离为个单位长度,∴x=±,当x=时,原式=﹣﹣1=﹣;当x=﹣时,原式=﹣1=.。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)
1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。
12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。
13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。
人教版数学七年级上册第二章整式的加减《单元测试》附答案
人教版数学七年级上学期第二章整式的加减测试一、选择题(20分)1.下列说法中正确的是()A. 单项式的系数是-2,次数是2B. 单项式a的系数是0,次数也是0C. 的系数是1,次数是10D. 单项式的系数是,次数是32.若单项式与是同类项,则m的值为()A. 4B. 2或-2C. 2D. -23.计算(3a2-2a+1)-(2a2+3a-5)的结果是()A. a2-5a+6B. 7a2-5a-4C. a2+a-4D. a2+a+64.当时,代数式的值为()A. B. C. D. 135.如果长方形周长为4a,一边长为a+b,,则另一边长为()A. 3a-bB. 2a-2bC. a-bD. a-3b6.一个两位数,十位数字是a,个位数字是b,则这个两位数为()A. abB. 10a +bC. 10b +aD. a +b7.观察图中给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为( ).A. 3n-2B. 3n-1C. 4n+1D. 4n-38.长方形的一边长为2a+b,另一边比它大a-b,则周长为( )A. 10a+2bB. 5a+bC. 7a+bD. 10a-b9.两个同类项的和是()A. 单项式B. 多项式C. 可能是单项式也可能是多项式D. 以上都不对10.如果A是3次多项式,B也是3次多项式,那么A+B一定是()A. 6次多项式B. 次数不低于3次的多项式C. 3次多项式D. 次数不高于3次的整式二、填空题(32分)11.单项式的系数是___________,次数是___________.12.2a4+a3b2-5a2b3+a-1是____次____项式.它的第三项是__________.把它按a的升幂排列是____________________.13.计算的结果为______________.14.一个三角形的第一条边长为(a+b)cm,第二条边比第一条边的2倍长b cm.则第三条边x的取值范围是__________.15.如图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴____________根.(用含n 的式子表示)……16.观察下列等式9-1=8,16-4=12,25-9=16,36-16=20……这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为______________.17.如图,阴影部分的面积用整式表示为_________.18.若:与的和仍是单项式,则_______19.若与所得的差是单项式,则m= ______n= ______.20.当k=______时,多项式-7kxy++7xy+5y中不含xy项.三、解答题(48分)21.(1)(2)(3)22.先化简再求值(1)9y-{159-[4y-(11x-2y)-10x]+2y},其中x=-3,y=2.(2) ,其中,.23.一个四边形的周长是48厘米,已知第一条边长a厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.24.大客车上原有(3a-b)人,中途下去一半人,又上车若干人,使车上共有乘客(8a-5b)人,问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?25.若多项式-6xy+2x-3y与+bxy+3ax-2by的和不含二次项,求a、b的值。
人教版七年级数学上册《2.2整式的加减》练习题-带参考答案
人教版七年级数学上册《2.2整式的加减》练习题-带参考答案一、单选题1.下列各式中,与为同类项的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.如果与是同类项,则()A.5 B.C.2 D.4.已知,则代数式的值是()A.100 B.98 C.-100 D.-985.如果多项式减去后得,则为()A.B.C.D.6.若x–y=–6,xy=–8,则代数式(4x+3y–2xy)–(2x+5y+xy)的值是()A.–12 B.12 C.–36 D.不能确定7.若代数式的值与x的取值无关,则的值为()A.6 B.-6 C.2 D.-28.M=x m y3,N=﹣x2y3+2xy3,Q=﹣x n y3都是关于x,y的整式,若M+N的结果为单项式,N+Q的结果为五次多项式,则常数m,n之间的关系是()A.m=n+1 B.m=nC.m=n+1或m=n D.m=n或m=n﹣1二、填空题9.计算的结果等于.10.把多项式按的降幂排列后第二项是.11.苹果每千克a元,香蕉每千克b元,则买3千克苹果和5千克香蕉共需元.12.如果单项式与的和仍是单项式,那么mn=.13.如图,把六张形状大小完全相同的小长方形卡片(如图D不重叠的放在一个底面为长方形(长为7cm宽为6cm的盒子底部(如图②,盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是cm.三、计算题14.计算(1)(2)15.先化简,再求值:已知,求的值.16.已知和 .(1)化简 .(2)当,时,求的值.17.某冰箱销售商今年四月份销售冰箱(a-1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?参考答案:1.A2.D3.D4.C5.A6.B7.D8.C9.10.11.(3a+5b)12.1213.2414.(1)解:原式==(2)解:原式===15.解:原式=2ab−6a−6b+3ab=5ab−6(a+b)当a+b=−180,ab=187时,原式=5×187−6×(−180)=935+1080=2015 16.(1)解:.(2)解:当,时.17.(1)解:由题意得:五月份:2(a-1)-1=(2a-3)台;六月份:(a-1)+(2a-3)+5=(3a+1)台;(2)解:由题意得:(3a+1)-(2a-3)=a+4(台);答:五月份销售冰箱为(2a-3)台,六月份销售冰箱为(3a+1)台,六月份比五月份多销售冰箱(a+4)台。
人教版数学七年级上册第二章整式的加减单元测试题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 2.若232n x y 与2m -5xy 是同类项,则m n -值是( )A. 0B. 1C. 7D. -13.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A. ﹣5x ﹣1B. 5x+1C. ﹣13x ﹣1D. 13x+1 8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m +n) cmD. 4(m -n) cm9.当a=﹣1,b=1时,(a 3﹣b 3)﹣(a 3﹣3a 2b+3ab 2﹣b 3)的值是( )A. 0B. 6C. ﹣6D. 910.已知密文和明文的对应规则为:明文a 、b 对应的密文为ma-nb 、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l11.如图,为做一个试管架,在acm 长的木条上钻4个圆孔,每个孔的直径为2cm ,则x 等于( )A. 85a +cmB. 165a cm -C. 45a cm -D. 85a cm - 12.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A 2n+1 B. n 2﹣1 C. n 2+2n D. 5n ﹣2二、填空题:13.单项式358ab -系数是__,次数是__. 14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元. 16.已知24m m n x y +与623x y 是同类项,则m -n=___________.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ . 18 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 220.化简:(3x 2﹣xy ﹣2y 2)﹣2(x 2+xy ﹣2y 2)21.化简:(8x ﹣7y)﹣2(4x ﹣5y)22.化简:﹣(3a 2﹣4ab)+[a 2﹣2(2a 2+2ab)].四、解答题:23.已知多项式x 4﹣y +3xy ﹣2xy 2﹣5x 3y 3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y 的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.24.已知:A =3a 2﹣4ab ,B =a 2+2ab .(1)求A ﹣2B ;(2)若|2a +1|+(2﹣b )2=0,求A ﹣2B 的值.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.答案与解析一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 【答案】D【解析】 【详解】单项式22r π的系数是:2π.故选D .2.若232n x y 与2m -5xy 是同类项,则m n -的值是( )A. 0B. 1C. 7D. -1 【答案】B【解析】【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案.【详解】∵232n x y 与2m -5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12,∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.3.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1【答案】B【解析】【分析】根据多项式的概念即可求出答案.【详解】多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,有四项分别为:0.3x 2y ,﹣2x 3y 2,﹣7xy 3,+1,最高次为5次,是五次四项式,故A 正确;四次项的系数是-7,故B 错误;常数项是1,故C 正确;按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1,故D 正确,故符合题意的是B 选项,故选B.4.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 【答案】C【解析】∵m,n 都是正数,∴m+n>m,m+n>n,∴m+n 最大,∴多项式x m +x n +3x m+n 次数是m+n,故选:C.5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为() A. a 2+(﹣2a+b+c) B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 【答案】D【解析】【分析】根据合并同类项:系数相加字母部分不变,可得答案.【详解】A、3a+2a=5a≠5a2 ,故A错误;B、3a-a=2a≠3,故B错误;C、2a3与3a2不能合并,故C错误;D、-a2b+2a2b=a2b,故D正确;故选D.【点睛】本题考查了同类项,关键是利用合并同类项法则:系数相加字母及字母的指数不变.7.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A. ﹣5x﹣1B. 5x+1C. ﹣13x﹣1D. 13x+1【答案】A【解析】选A分析:本题涉及多项式的加减运算,解答时根据各个量之间的关系作出回答.解答:解:设这个多项式为M,则M=3x2+4x-1-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.故选A.8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m+n) cmD. 4(m-n) cm【答案】B【解析】【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),∵a+2b=m(由图可得),∴阴影部分总周长为4m+4n﹣4(a+2b)=4m+4n﹣4m=4n(厘米).故选:.【点睛】此题考查了整式的加减运算,熟练掌握运算法则以及根据题意结合图形得出答案是解题的关键.9.当a=﹣1,b=1时,(a3﹣b3)﹣(a3﹣3a2b+3ab2﹣b3)的值是( )A. 0B. 6C. ﹣6D. 9【答案】B【解析】【分析】本题考查了整式的加法运算,要先去括号,然后合并同类项,最后代入求值.【详解】原式=a3﹣b3﹣a3+3a2b﹣3ab2+b3=3a2b﹣3b2a当a=﹣1,b=1时,原式=3×(﹣1)2×1﹣3×12×(﹣1)=6.故选B.【点睛】解决此类题目的关键是熟练地去括号、合并同类项,这是各地中考的常考点.最后要化简求值.10.已知密文和明文的对应规则为:明文a、b对应的密文为ma-nb、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l【答案】C【解析】由题意得:23{24m nn m-=-+=,解得12mn=⎧⎨=⎩,∴若密文是1,7时,有21 {27 a ba b-=+=,解得:31 ab=⎧⎨=⎩,故选C11.如图,为做一个试管架,在acm长的木条上钻4个圆孔,每个孔的直径为2cm,则x等于()A.85a+cm B.165acm-C.45acm-D.85acm-【答案】D【解析】【分析】读图可得:5x+四个圆的直径=acm.由此列出方程,用含a的代数式表示x即可.【详解】由题意可得:5x=a﹣2×4,则x=85a-cm.故选D.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A. 2n+1B. n2﹣1C. n2+2nD. 5n﹣2【答案】C【解析】试题分析:∵第1个图形中,小正方形的个数是:221-=3;第2个图形中,小正方形的个数是:231-=8;第3个图形中,小正方形的个数是:241-=15;…∴第n个图形中,小正方形的个数是:2(1)1n+-=22n n+;故选C.考点:规律型:图形的变化类.二、填空题:13.单项式358ab -的系数是__,次数是__. 【答案】 (1). 58- (2). 4 【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解. 【详解】单项式358ab -的系数是:58-,次数是:1+3=4. 故答案为58-;4.【点睛】本题主要考查了单项式系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.【答案】3222727x y x y xy -+++【解析】因为按x 降幂排列即从左向右x 的次数从高到低依次递减, 故答案为:3222727x y x y xy -+++. 15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元.【答案】ax+by【解析】【分析】根据买一个足球花a 元,得出买x 个足球共花ax 元,再根据买一个乒乓球花b 元,得出买y 个乒乓球共花by 元,两者相加即可得出答案.详解】根据题意得:买x 个足球和y 个乒乓球共花了:(ax +by )元.故答案为ax +by .【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,列出代数式. 16.已知24m m n x y +与623xy 是同类项,则m -n=___________.【答案】4【解析】试题解析:∵4x 2m y m+n 与3x 6y 2是同类项,∴2m=6,m+n=2.第一个式子减去第二个式子得:m ﹣n=4.考点:1.同类项;2.解一元一次方程.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ .【答案】19.【解析】试题分析:∵当x=1时,代数式ax 3+bx+5的值为-9,∴a×13+b×1+5=-9,即a+b=-14,把x=-1代入代数式ax 3+bx+5,得ax 3+bx+5=a×(-1)3+b×(-1)+5=-(a+b)+5=14+5=19.考点:代数式求值.18. 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:【答案】()221121n n n n n +-=++=+【解析】【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案.【详解】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1;故答案为(n+1)2-n 2=2n+1. 三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 2【答案】﹣a 2﹣2ab【解析】【分析】把各同类项进行合并即可.【详解】原式=(﹣3+2)a2+(2﹣4)ab=﹣a2﹣2ab【点睛】本题考查的是合并同类项.解题的关键是掌握合并同类项法则.20.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)【答案】x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.21.化简:(8x﹣7y)﹣2(4x﹣5y)【答案】3y【解析】【分析】先去括号,然后合并同类项即可.【详解】原式=8x﹣7y﹣8x+10y=3y.【点睛】本题考查了去括号与添括号,根据法则去括号是解题的关键.22.化简:﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].【答案】﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.四、解答题:23.已知多项式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.【答案】(1)该多项式的项为:x4,-y,3xy,-2xy2,-5x3y3,-1; (2)该多项式的次数是6,三次项的系数是-2; (3)按y的降幂排列为:-5x3y3-2xy2-y+3xy+x4-1;(4)40【解析】【分析】(1)根据多项式的项的定义求解,(2)根据多项式的项的次数、单项式的系数的定义求解;(3)先分清多项式的各项,然后按y的降幂排列;(4)根据非负数的性质得到x,y的值,代入代数式即刻得到结果.【详解】(1)该多项式的项为:x4,-y,3xy,﹣2xy2,﹣5x3y3,﹣1;(2)该多项式的次数是6,三次项的系数是﹣2.故答案为6,﹣2;(3)按y的降幂排列为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1.故答案为﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;(4)∵|x+1|+|y﹣2|=0,∴x=﹣1,y=2,∴x4﹣y+3xy﹣2xy2﹣5x3y3﹣1=(﹣1)4﹣2+3×(﹣1)×2﹣2(﹣1)×22﹣5(﹣1 )3×23﹣1=1﹣2﹣6+8+40﹣1=40.【点睛】本题考查的是与多项式有关的定义,比较简单.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.24.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【答案】(1)a2﹣8ab;(2)814.【解析】【分析】(1)直接利用去括号法则去括号,进而合并同类项得出答案.;(2)利用绝对值以及偶次方的非负性得出a,b的值,进而得出答案.【详解】(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣12,b=2,则原式=14+8=814. 【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 【答案】原式=21068a b ab -+=-.【解析】试题分析:本题先将第一个整式按照先去小括号,再去中括号的依次顺序去掉括号,然后合并同类项化简,然后根据第二个整式中不含2x 项和项,可令式子中的2x 项和项的系数为0,从而计算出a ,b 的值,然后将a ,b 的值代入到第一个化简的式子中进行计算求值.试题解析:原式=22222322464a b ab ab a b ab ab a b ⎡⎤--+++-⎣⎦,=222223481224a b ab ab a b ab ab a b -+--+-,=2106a b ab -+,由题意知:10a +=,102b -=, ∴1a =-,12b =, 当1a =-,12b =时, 原式=()()2111016122-⨯-⨯+⨯-⨯, =()53-+-,=8-.26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强是否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.【答案】⑴ 这条环形跑道的周长为9at 米;(2)①54t ;②小强已经经过A 点,经过A 点后又走了94at 米【解析】【分析】(1)小明、小强两人行走的距离和为环形跑道的周长;(2)①小明行的距离÷行驶速度=小明所用的时间;②小强行距离÷小强所用的时间=行驶速度.【详解】(1)依题意得:(5a+4a)t=9at,即这条环形跑道的周长为9at米;(2)①设经过x秒后,小明再次到达A点,依题意得:4ax+4at=9at.解得:x=54t.答:小明又经过54t秒再次到达A点;②当小明再一次到达A点时,5a×54t=254at,所以小强已经过A点.25 4at﹣4at=94at.则小强经过A点后又走了94at米.【点睛】考查了一元一次方程的应用.解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版数学七年级上册第二章整式的加减单元综合检测题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、53.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是35.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A (1)(2) B. (1)(2)(3) C. (2)(3)(4) D. (1)(2)(3)(4)8.已知-2m6n与5x m2x n y是同类项,则( )A. x=2,y=1B. x=3,y=1C. x=32,y=1 D. x=3,y=09.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a元,则该商品的标价是( )A. 1720a元 B.2017a元 C.1825a元 D.2518a元10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-411.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 2312.大于1正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( )A 9 B. 10 C. 11 D. 12二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.18.一个三角形的第一边长2a+3b,第二边比第一边短a,第三边比第一边大2b,那么这个三角形的周长是__________.三、解答题(共66分)19.给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算.20.计算:(8a-7b)-(4a-5b)+(3a-2b).21.课堂上李老师给出了一道整式求值题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.23.已知-5x m y3+104x m-4xy2是关于x,y的六次多项式,求m的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m+3,第二项的次数为4+m,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m=6, ②所以m=2. ③于是原多项式为-5x2y3+104x2-4xy2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应等式.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:名称小麦玉米黄豆亩产量/千克400 600 220(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.答案与解析一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元【答案】C【解析】分析】用原价减去降低的价钱得出现价即可.【详解】售价为m元的商品,降价30%就是在原价的基础上减去30%m元,所以,现价是m-30%m=(1-30%)m元,故选C.【点睛】本题考查了列代数式,掌握销售问题中的基本数量关系是解决问题的关键.2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】【分析】先把等式左边的整式相加减,再分别令等式两边x的二次项系数、一次项系数及常数项分别相等即可.【详解】∵等式的左边=3x2-3x+2+x2-3x+3=(3+1)x2-(3+3)x+2+3=4x2-6x+5,∴A=4,B=6,C=5,故选D.【点睛】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键.3.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍【答案】A【解析】【分析】根据代数式来判定各选项给出的表达意义是否正确,注意“和”、“差”、“倍”、“商”的表述.【详解】A.3a2b⎛⎫⎪⎝⎭的意义应是“a除以2b的商的立方”,故A选项错误,符合题意;B. a+2b2的意义是a与b2的2倍的和,正确,不符合题意;C. (a+2b)2的意义是a与b的2倍的和的平方,正确,不符合题意;D. 2(a+b)2的意义是a与b的和的平方的2倍,正确,不符合题意, 故选A.【点睛】本题考查了代数式的意义,正确分析是解题的关键.4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是3【答案】D【解析】【分析】根据单项式系数以及次数的定义进行判断即可.【详解】单项式-23πxy5的数字因数是-3π5,所有字母指数的和为:1+2=3,所以单项式的系数是-35π,次数是3,故选D.【点睛】本题考查了单项式的系数与次数,熟记相关概念是解题的关键.5.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据题意可得m=-1,|5-n|=1或m=-2,|5-n|=4,求出m、n的值,然后求出m n的值即可.【详解】∵代数式2x4y+mx|5-n|y+xy化简之后为单项式,∴化简后的结果可能为2x4y,也可能为xy,当结果为2x4y时,m=-1,|5-n|=1,解得:m=-1,n=4或n=6,则m n=(-1)4=1或m n=(-1)6=1;当结果为xy时,m=-2,|5-n|=4,解得:m=-2,n=1或n=9,则m n=(-2)1=-2或m n=(-2)9=-29,综上,m n的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同【答案】D【解析】【分析】根据整式,单项式,多项式的概念分析各个式子即可得.【详解】单项式有3a,1π,xyz共3个,多项式有12x-y,a2-y+23,x y z3-+共3个,整式有12x-y,3a,a2-y+23,1π,xyz,x y z3-+共6个,故选D.【点睛】本题考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4)【答案】B【解析】试题分析:在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 考点:去括号法则.8.已知-2m 6n 与5x m 2x n y 是同类项,则( )A. x =2,y =1B. x =3,y =1C. x =32,y =1D. x =3,y =0 【答案】B【解析】【分析】根据同类项的概念可得2x=6,y=1,由此即可求得答案.【详解】∵-2m 6n 与5x m 2x n y 是同类项,∴2x=6,y=1,∴x =3,y =1,故选B.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项中的两个相同:(1)所含字母相同;(2)相同字母的指数相同.9.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a 元,则该商品的标价是( ) A. 1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 【答案】D【解析】【分析】根据商品打折数与商品价钱的关系进行列式即可,打折后价格=原价格×10折数. 【详解】根据题意可知商品的标价为:a÷0.9÷0.8 =a×101098= 2518a 元,故选D.【点睛】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.11.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 23【答案】B【解析】【详解】试题分析:由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.解:∵2x2+3y+7=8,∴2x2+3y=1,则原式=3(2x2+3y)+8=3+8=11,故选B考点:代数式求值.12.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( ) A. 9 B. 10 C. 11 D. 12【答案】B【解析】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(1)(2)2m m-+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B.考点:规律型.二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.【答案】(1). 1 (2). 0【解析】【分析】根据同类项的定义可知m+1=3,再根据合并同类项的法则可得n-1=-1,由此即可得答案.【详解】∵a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,∴m+1=2,1+(n-1)=0,∴m=1,n=0,故答案为1,0.【点睛】本题考查了合并同类项以及同类项的定义,熟练掌握同类项的概念以及合并同类项的法则是解题的关键.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.【答案】1【解析】【分析】根据两者合并得结果是单项式可得5x2m-n y9与4x5y3n是同类项,继而根据同类项:所含字母相同且相同字母的指数也相同可得出关于m和n的方程,解出即可得出答案.【详解】∵5x2m-n y9-4x5y3n=x5y9,∴25 39m nn-=⎧⎨=⎩,∴43 mn=⎧⎨=⎩,∴m-n=4-3=1,故答案为1.【点睛】本题考查了合并同类项以及解二元一次方程组,解答本题关键是掌握同类项定义中两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.【答案】mn【解析】【分析】根据多项式次数的定义进行求解即可得.【详解】∵m,n都是正整数,且m>n,∴mnm>n,∴多项式x m+y n+z mn的次数是mn,故答案为mn.【点睛】本题考查了多项式的次数,熟知多项式的次数是指多项式中次数最高的单项式的次数是解题的关键.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.【答案】-2b2-ab-4【解析】【分析】由题意可知m=(a2-b2-4)-(a2+b2+ab),去括号后合并同类项即可得.【详解】由题意,m=(a2-b2-4)-(a2+b2+ab)=a2-b2-4-a2-b2-ab=-2b2-ab-4,故答案为-2b2-ab-4.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则以及合并同类项法则是解题的关键.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.【答案】-4x2+2xy+2【解析】【分析】根据规定的运算列式,然后去括号、合并同类项即可得.【详解】由题意:222xy 3x 2xy x 2x 35xy ------+=(xy-3x 2)-(22xy x --)+(22x 3--)-(5xy -+)=xy-3x 2+2xy+x 2-2x 2-3+5-xy=-4x 2+2xy +2,故答案为-4x 2+2xy +2.【点睛】本题考查了整式的加减,解题的关键是弄清规定运算的规则,正确列出式子.18.一个三角形的第一边长2a +3b ,第二边比第一边短a ,第三边比第一边大2b ,那么这个三角形的周长是__________.【答案】5a +11b【解析】【分析】先表示出三角形的三边长,然后根据三角形的周长公式列式进行计算即可得.【详解】三角形的第一边长是2a+3b ,则第二边长为2a+3b-a ,第三边长为2a+3b+2b,∴(2a+3b)+(2a+3b-a)+(2a+3b+2b)=2a+3b+2a+3b-a+2a+3b+2b=5a+11b,故答案为5a+11b.【点睛】本题考查了整式的加减的应用,解决本题的关键是熟记三角形的周长公式,即1=a+b+c .本题的关键是根据三角形的第一边长,求出另外两条边的边长.三、解答题(共66分)19.给出三个多项式:12x 2+x -1, 12x 2+3x +1, 12x 2-x ,请你选择其中两个进行加法运算. 【答案】详见解析.【解析】【分析】本题答案不唯一,列式后根据去括号法则以及合并同类项法则进行计算即可. 【详解】如选择12x 2+x -1, 12x 2+3x +1, 则:(12x 2+x -1)+( 12x 2+3x +1)=12x 2+x -1+ 12x 2+3x +1=x 2+4x ; 如选择12x 2+x -1,12x 2-x,则:(12x2+x-1)+(12x2-x)=12x2+x-1+12x2-x=x2-1;如选择12x2+3x+1,12x2-x,则:(12x2+3x+1)+(12x2-x)=12x2+3x+1+12x2-x=x2+2x+1;【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.20.计算:(8a-7b)-(4a-5b)+(3a-2b).【答案】7a-4b.【解析】【分析】先去括号,然后合并同类项即可.【详解】(8a-7b)-(4a-5b)+(3a-2b)=8a-7b-4a+5b+3a-2b=7a-4b.【点睛】本题考查了整式的加减,明确整式的加减就是合并同类项是解题的关键.21.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】【分析】先化简(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3),得结果为3,由此进行解答即可.【详解】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.【点睛】本题考查了整式加减——化简求值,熟练掌握去括号法则以及合并同类项法则是解答本题的关键.22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.23.已知-5x m y 3+104x m -4xy 2是关于x,y 的六次多项式,求m 的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m +3,第二项的次数为4+m ,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m =6, ②所以m =2. ③于是原多项式为-5x 2y 3+104x 2-4xy 2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.【答案】不正确,错在第①步.正确解法见解析.【解析】【分析】根据常数的次数不是单项式的次数进而得出m的值.【详解】不正确,错在第①步,正确解法:由原多项式知,第一项的次数为m+3,第二项的次数为m,第三项的次数为3,所以最高次数为m+3,又因为这个多项式是六次多项式,所以m+3=6,即m=3于是原多项式为-5x3y3+104x3-4xy2.【点睛】本题考查了多项式的次数,正确把握多项式的次数的定义是解题关键.注意常数的次数不是单项式的次数.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.【答案】(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【解析】【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【答案】(1)详见解析;(2)春风旅行社合算,理由见解析.【解析】【分析】(1)利用旅行社的收费标准可列出代数式,(2)把a=20代入即可求解.【详解】(1)春风旅行社的总费用为3×500+500a×50%=1 500+250a(元),华北旅行社的总费用为(3+a)×500×80%=1 200+400a(元);(2)当a=20时,春风旅行社费用为1 500+250×20=6 500(元),华北旅行社费用为1 200+400×20=9 200(元),6 500元<9 200元,故春风旅行社合算.【点睛】本题考查了列代数式以及代数式求值,正确理解题意列出代数式是解题的关键.26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.【答案】(1) (4-x);(2)三种农作物的总售价为(540x+7 440)元;(3)三种农作物的总售价为9 060元.【解析】【分析】(1)减去小麦、玉米的种植面积即可得;(2)根据种植面积×亩产量×销售单价列式计算即可得;(3)把x=3代入(2)中的结果即可求得答案.【详解】(1)由题意得,黄豆的种植面积为:10×(1-60%)-x=(4-x)(亩),故答案为(4-x);(2)三种农作物总售价为:10×60%×400×2+2×600x+220×(4-x)×3=4 800+1 200x+2 640-660x=(540x+7 440)(元),答:三种农作物的总售价为(540x+7 440)元;(3)当x=3时,540x+7 440=540×3+7 440=9 060(元),答:三种农作物的总售价为9060元.【点睛】本题考查了整式加减的应用,正确理解题意,弄清各量之间的关系列出式子是解题的关键.。
人教版七年级数学上册第二单元《整式的加减》测试练习题(含答案)
人教版七年级数学上册第二单元《整式的加减》测试练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A .297B .301C .303D .4003.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 5.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪ ⎪⎝⎭⎝⎭ 2552xy y -+,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( )A .245x y -B .2y x -C .5xD .24x6.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .57.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-58.下列各组数中,是同类项的是( )A . 22x y -与213yxB . 20.5xy -与20.5x yC .xyz 与xycD .3x 与2y9.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 10.已知关于x 、y 的多项式2247325mx xy x x nxy y +--+-合并后不含有二次项,则m +n 的值为( )A .-5B .-1C .1D .511.下列说法正确的是( )A . 3xy π的系数是3B .3xy π的次数是3C . 223xy -的系数是23- D .223xy -的次数是2 12.下列各式:﹣12mn ,m ,8,1a ,x 2+2x +6,25x y -,24x y π+,y 3﹣5y +1y 中,整式有( ) A .3个B .4个C .6个D .7个 二、填空13.多项式241259x x x -+-+是按照字母x 的_____排列的,多项式32219542a b a b ab ---是按照字母_____的_____排列的.14.若x a+1y 3与12x 4y 3是同类项,则a 的值是____. 15.若单项式122m x y -与单项式2113n x y +是同类项,则m n +=___________. 16.已知2310x x -+=,则2395x x -+=_________.17.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.三、解答题18.计算:3(x 2﹣2xy )﹣(x 2﹣6xy )﹣4y .19.(1)若(a ﹣2)2+|b +3|=0,则(a +b )2019= .(2)已知多项式(6x 2+2ax ﹣y +6)﹣(3bx 2+2x +5y ﹣1),若它的值与字母x 的取值无关,求a 、b 的值;(3)已知(a +b )2+|b ﹣1|=b ﹣1,且|a +3b ﹣3|=5,求a ﹣b 的值.20.先化简,再求值:()()()22222345x y xy x xy x xy ----+++,其中1x =-,2y =.21.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若3A B -的值与y 的取值无关,求x 的值.22.(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-; (2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值。
人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案
人教版七年级数学上册《第二章整式的加减》章节测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.下列代数式符合书写要求的是( ) A .2213x y B .2ab c ÷ C .xy D .32mn ⋅ 2.下列说法中,错误的是( ) A .单项式与多项式统称为整式B .多项式33a b +的系数是3C .2ab +是二次二项式D .单项式2x yz 的系数是1 3.把代数式“”用文字语言叙述,其中表述不正确的是( )A .比x 的倒数小5的数B .x 的倒数与5的差C .x 与5的差的倒数D .1除以x 的商与5的差 4.下列各组中的两项,不是同类项的是( )A .2a -和2aB .3a bc 和32a bc -C .23x 和33xD .2和0.15.把多项式3221ab a b -++按a 的降幂排列,正确的是( )A .3221ab a b -++B .2321a b ab -+C .2312a b ab +-D .3212ab a b -+6.下列各式运算,结果正确的是( )A .21a a -=B .2x y xy +=C .2222347m n mn m n +=D .222910x x x += 7.设a ,b 互为相反数,c ,d 互为倒数,则2018(a +b )﹣cd 的值是( )A .2018B .﹣1C .1D .08.有一列数1234,,,,,n a a a a a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2021a 值为( ).A .2B .-1C .12D .200二、填空题9.单项式-xy 3的次数是————.10.计算:()31a -= .11.用代数式表示:“a 的平方的倒数减去b 的差”是 .12.若710x y -与125m n x y -是同类项,则m = ,n = .13.若23m <<,化简32m m ---的结果是 .14.已知21m m -=,则代数式22020m m ++的值为 .15.如图是一组有规律的图案,它由若干个大小相同的圆组成.第1个图案中有6个白色的圆,第2个图案中有10个白色的圆,第3个图案中有14个白色的圆,依此规律,第10个图案中有 个白色的圆.三、解答题16.化简(1)()835x x ---(2)()()2221322a a a a --+++ (3)()()193213y y -++ (4)221523452ab ab ab ab ab ⎡⎤⎛⎫--+- ⎪⎢⎥⎝⎭⎣⎦17.有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.18.已知2231A x xy y =++-和2B x xy =-.(1)若()2230x y ++-=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.(3)若3A mB x --的值与x 的值无关,求y 的值.19.为了丰富校园体育生活,某学校准备举行运动会,学校需要采购秩序册x 份,他们的报价相同. 甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)请用含x 的式子表示,到甲厂采购需要支付________元,到乙厂采购需要支付________元;(2)当印制200份秩序册时,选哪个印刷厂所付费用较少,为什么?20.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前4天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这四天该钢笔的售价情况和售出情况,如下表所示:第1天第2天第3天第4天每支价格相对标准价格(元)1-+01-2售出支数(支)12153233(1)填空:第一天售价是___________元,该天赚了___________元;(2)求新华文具用品店这四天出售这种钢笔一共赚了多少元;(3)新华文具用品店为了促销这种钢笔,决定从下周一起推出两种促销方式:方式一:购买不超过5支钢笔,每支12元;若购买超过5支钢笔,则5支钢笔,每支12元,超过5支钢笔的部分,每支降价4元;方式二:每支售价9元.x>)支钢笔作为奖品时,如果用方式一购买需要花费___________元,若在该店购买林老师在该店购买x(510支钢笔作为奖品,选择上述两种促销方式中哪种方式购买更省钱?___________(直接填写方式一或方式二).参考答案1.C2.B3.C4.C5.B6.D7.B8.C9.410.33a -11.21b a -12.8 1213.25m -+/5-2m14.202115.4216.(1)115x +(2)241a +(3)51y +(4)23ab17.(1)>,<,>;(2)2c .18.(1)10-;(2)=1x -;(3)1y =. 19.(1)4.8500,6200x x ++(2)选乙厂的付费较少 20.(1)11,60(2)282元(3)()820x +,方式二.。
最新人教版初中数学七年级数学上册第二单元《整式的加减》测试题(含答案解析)
一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.下列各题正确的是( ) A .由743x x =-移项得743x x -= B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---= D .由()217x x +=+去括号、移项、合并同类项得5x = 3.若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6-4.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3. A .38 B .34 C .28 D .44 5.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm6.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +257.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .48.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 9.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n10.甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物( ) A .吨B .吨C .吨D .吨11.下列判断错误的是 ( )A .若,则B .若,则C .若,则D .若,则12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.若方程2(2)3m m x x ---=是一元一次方程,则m =________.14.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 15.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.16.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x-亥61=-的x 的值为__________. 17.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x=__________.18.要使代数式154t+与15()4t-的值互为相反数,则t的值是_________.19.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.20.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.三、解答题21.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?22.如表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分),按套餐1和套餐2计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当主叫通话时间t(分)满足什么条件时,选择套餐1省钱;当主叫通话时间t(分)满足什么条件时,选择套餐2省钱.月基本费/元主叫通话时间/分上网流量/MB套餐149200500套餐269250600接听超时费(元/分)超流量费(元/MB)套餐1免费0.20.323.运用等式的性质解下列方程: (1)112x +=; (2)212x -=; (3)185x =-; (4)3212x x =+; (5)352x-=(需检验); (6)2153x +=-(需检验); (7)23257m m -=(需检验) 24.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?25.学校要购入两种记录本,预计花费460元,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本. (1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱? 26.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答. 【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.2.D解析:D 【分析】根据解一元一次方程的步骤计算,并判断. 【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误; D 、由()217x x +=+去括号得:227x x +=+, 移项、合并同类项得5x =,故正确. 故选:D . 【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.3.B解析:B【分析】x+=2,解方程可得.由已知可得4【详解】x+=2,解得x=-2.由已知可得4故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.4.C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.5.C解析:C【解析】试题分析:原来正方形的边长为x,则=39,解得:x=5.考点:一元一次方程的应用6.B解析:B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x+20=4x﹣25.故选B.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.7.D解析:D 【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断. 【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x-个,需要长方形纸板3×1202x -张,因此可得120433602xx -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.8.C解析:C 【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.9.A解析:A【分析】要比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m=0无解,∴m>0.(2)∵|3x−4|+n=0有一个解,∴n=0.(3)∵|4x−5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.10.C解析:C【解析】【分析】本题可以设甲,乙,丙三辆卡车所运货物的质量分别为:6x,7x,4.5x,根据乙车运货量-甲车运货量=12吨,可以列出方程7x-6x=12,解得即可.【详解】解:设甲,乙,丙三辆卡车所运货物的质量分别为:6x吨,7x吨,4.5x吨,根据题意得:7x-6x=12,解得:x=12.所以三辆卡车共运货物=6x+7x+4.5x=17.5x=17.5×12=210.故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是:根据题意设甲,乙,丙三辆卡车所运货物的质量分别为:6x 吨,7x 吨,4.5x 吨,找到等量关系,然后列出方程.11.D解析:D 【解析】 【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案. 【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则,正确;D. 当c=0时,若,a 就不一定等于b ,故本选项错误;故选D. 【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.12.D解析:D 【解析】 【分析】把分母中的根式化去的过程称为分母有理化,所有分母的最小公倍数是6,因此两边同时乘6;把得到的方程去括号得到另一个形式的方程,由此判断. 【详解】把分母中的根式化去的过程称为分母有理化,分母的最简公分母是6,则两边同时乘6得:2(x -1)-(x +2)=3(4-x),故③正确; 去括号得:2x -2-x -2=12-3x ,故②正确, 故选:D. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.二、填空题13.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定解析:1或2 【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值. 【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =; ②当20m -=时,解得2m =. 综上,1m =或2. 故答案为:1或2. 【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.14.18【分析】设轮船在静水中的速度为千米小时则水流速度为千米小时由逆水速度静水速度水流速度列出方程可求解【详解】解:设轮船在静水中的速度为千米小时则水流速度为千米小时由题意可得:解得:轮船在静水中的速解析:18 【分析】设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时,由逆水速度=静水速度-水流速度,列出方程,可求解. 【详解】解:设轮船在静水中的速度为x 千米/小时,则水流速度为(20)x -千米/小时, 由题意可得:(20)16x x --=, 解得:18x =,∴轮船在静水中的速度为18千米/小时,故答案为:18. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,掌握公式:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.15.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m=解析:45 【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可. 【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立, 则化简以后方程的一次项系数以及常熟项都是0, 移项得:(23)251(3)+-=+-m x x m n , 合并同类项得:(222)13-=+-m x m n , ∴222=0-m ,13=0+-m n , ∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.16.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键 解析:34- 【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=- 126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 17.【分析】根据共生数对的定义进行分析列式求解即可【详解】由已知可得解得x=故答案为:【点睛】考核知识点:解一元一次方程理解题意是关键 解析:13【分析】根据共生数对的定义进行分析,列式,求解即可.【详解】由已知可得221x x -=--解得x=13故答案为:1 3【点睛】考核知识点:解一元一次方程.理解题意是关键.18.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】因为代数式154t+与15()4t-的值互为相反数,所以154t++15()4t-=0,解得:t=1 10,【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 19.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg,则一个果冻质量为2xg,再根据图②列出关于x的方程求解即可.【详解】解:由图①设一块巧克力质量为xg,则一个果冻质量为2xg,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.20.8人【解析】【分析】设张老师带的学生数为x 人车费原价为a 元/人则在甲车主处需要费用为08a (1+x )元在乙车主处需要09ax 元根据两车的费用一样建立方程求出其解即可【详解】设张老师带的学生数为x 人车解析:8人【解析】【分析】设张老师带的学生数为x 人,车费原价为a 元/人,则在甲车主处需要费用为0.8a (1+x )元,在乙车主处需要0.9ax 元,根据两车的费用一样建立方程求出其解即可.【详解】设张老师带的学生数为x 人,车费原价为a 元/人,由题意,得0.8a (1+x )=0.9ax ,解得:x=8,故答案为:8人.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据当两车主的费用一样建立方程是关键.三、解答题21.(1)80个(2)15张(3)6张;9张【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.22.(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出.【详解】(1)143,109,900套餐1:490.2(220200)0.3(800500)+⨯-+⨯-490.2200.3300=+⨯+⨯49490=++143=(元).套餐2:690.2(800600)+⨯-690.2200=+⨯6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =.故答案为:143;109;900.(2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等;当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =;当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)12x =-;(2)32x =;(3)13x =-;(4)12x =;(5)16x =;(6)9x =-;(7)70m =-【分析】(1)两边同时减1即可求解;(2)两边同时加1,再同时除以2即可求解;(3)两边同时减5,然后两边同时除以-1即可求解;(4)两边同时减去2x ,即可求解;(5)两边同时减1,然后两边同时乘2即可求解,注意检验;(6)两边同时减去3,然后两边同时除以23即可求解,注意检验; (7)两边同时加327m ⎛⎫-⎪⎝⎭,得1235m -=.两边除以135-,即可求解,注意检验. 【详解】(1)两边减1,得12x =-. (2)两边加1,得23x =,两边除以2,得32x =. (3)两边减5,得13x =-,两边除以-1,得13x =-.(4)两边减2x ,得12x =.(5)两边加3,得82x =,两边乘2,得16x =. 检验:当16x =时,左边=5=右边,故16x =是原方程的解. (6)两边减1,得263x =-,两边除以23,得9x =-. 检验:当9x =-时,左边=-5=右边,故9x =-是原方程的解. (7)两边同时加327m ⎛⎫-⎪⎝⎭,得1235m -=. 两边除以135-,得70m =-. 检验:当70m =-时,左边=-30=右边,故70m =-是原方程的解.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 24.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 25.(1)购买A 种记录本120本,B 种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B 种记录本x 本,则购买A 种记录表(2x +20)本,依题意,得:3(2x +20)+2x =460,解得:x =50,∴2x +20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键26.623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】 解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =-解得:331mx=-,4(37)1935 x x-=-4747x=1x=由题意得:311 31m--=解得:623 m=-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m的式子表示x,然后根据题意列出方程.。
七年级数学上册第二章《整式的加减》考试卷-人教版(含答案)
七年级数学上册第二章《整式的加减》考试卷-人教版(含答案)一、单选题(本大题共10小题,每小题3分,共30分)1.下列式子:① 0;②x2﹣2xy+1y;③1a;④2212x xx++-;⑤﹣23x+y;⑥5π;⑦12x+.中整式的个数为()个.A.2 B.3 C.4 D.52.下列运算中,正确的是()A.2a +3b= 5ab B.3a2b-3ba2=0C.2x3+3x2=5x5D.5y2-4y2=13.下列说法不正确的是()A.0不是单项式B.单项式a的系数是1C.7m2n2+3是四次二项式D.6m2+9mn+5n2是二次三项式4.下列各组式子中,是同类项的是()A.3a2b与-3ab2B.3a与3a2C.3a与-5b D.3 与 -55.(湖南长沙月考)一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是()A.a2﹣7a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣3a+46.(安顺单元测试)若 3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为 0,则mn 的值是()A.﹣2 B.﹣1 C.2 D.17.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.-x+2 B.-x-2 C.x=2 D.-29.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1B .2,1,4C .1,4,2D .2,4,110.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题(本大题共8小题,每小题3分,共24分) 11.单项式-2πX 2y 4的系数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册第二章 整式的加减测试题
一、选择题
1.计算3x 2-x 2的结果是( )
A .2
B .2x 2
C .2x
D .4x 2
2.某商品打七折后价格为a 元,则该商品的原价为( )
A .a 元
B.107a 元 C .30%a 元
D.710a 元 3.下列运算正确的是( )
A .2(a -1)=2a -1
B .a 2b -ab 2=0
C .2a 3-3a 3=a 3
D .a 2+a 2=2a 2
4.如图,将边长为3a 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形较长的边长为( )
A .3a +2b
B .3a +4b
C .6a +2b
D .6a +4b
5.若单项式a m -1b 2与12
a 2
b n 的和仍是单项式,则n m 的值是( ) A .3
B .6
C .8
D .9
6.按一定规律排列的单项式如下:a ,-a 2,a 3,-a 4,a 5,-a 6,…,则第n 个单项式是( )
A .a n
B .-a n
C .(-1)n +1a n
D .(-1)n a n 7.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %.已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m 元/千克,则( )
A.m=24(1-a%-b%)
B.m=24(1-a%)b%
C.m=24-a%-b%
D.m=24(1-a%)(1-b%)
二、填空题
8.单项式5mn2的次数是________.
9.已知a2+2a=1,则3(a2+2a)+2的值为________.
10.化简:(7a-5b)-(4a-3b)=________.
11.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台的进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.
12.如图是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形,则第(5)个图案中有________个正方形,第(n)个图案中有________个正方形.
13.如图是一个运算程序的示意图,若开始输入的x值为625,则第2018次输出的结果为________.
三、解答题
14.嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);
(2)嘉淇的妈妈说:“你猜错了,我看到该题的答案是常数.”通过计算说明原题中的系数“”是几.
1.B2.B. 3.D. 4.A. 5.C.6.C7.D.
8.3
9.5
10.3a-2b.
11.1.08a.
12.14(3n-1)
13.1
14.解:(1)(3x2+6x+8)-(6x+5x2+2)
=3x2+6x+8-6x-5x2-2
=-2x2+6.
(2)设“”是a,
则原式=(ax2+6x+8)-(6x+5x2+2)
=ax2+6x+8-6x-5x2-2
=(a-5)x2+6.
因为该题的答案是常数,所以a-5=0,解得a=5,即原题中的系数“”是5。