新课标全国统考区:坐标系与参数方程(带答案)

合集下载

(完整版)坐标系与参数方程全国卷真题.docx

(完整版)坐标系与参数方程全国卷真题.docx

劝君莫惜金缕衣,劝君惜取少年时;花开堪折直须折《坐标系与参数方程》2017 高考试题选编1. (全国卷Ⅰ)在直角坐标系x3cos为参数),直线l 的参xOy 中,曲线 C 的参数方程为(y sinx a4t 数方程为1( t 为参数).y t( 1)若a1,求 C 与 l 的交点坐标;( 2)若C上的点到l距离的最大值为17 ,求 a .2. (全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos 4 .( 1)M为曲线C1上的动点,点P 在线段OM上,且满足| OM | | OP |16 ,求点P的轨迹 C2的直角坐标方程;( 2)设点A的极坐标为(2 ,) ,点B在曲线 C2上,求△ OAB 面积的最大值.33. (全国卷Ⅲ)在直角坐标系x2tl2的参数xOy 中,直线 l1的参数方程为k t( t 为参数),直线yx2m方程为m( m 为参数).设 l1与 l2的交点为P,当 k 变化时,P的轨迹为曲线 C .yk( 1)写出C的普通方程;( 2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:(cos sin )20 ,M为l 3与 C 的交点,求M的极径.4. (天津卷理)在极坐标系中,直线 4 cos() 1 0 与圆 2 sin的公共点个数为____.6x8t5. (江苏卷)在平面直角坐标系xOy 中,已知直线 l 的参数方程为t( t 为参数),曲线Cy2x 2s2的参数方程为( s 为参数).设P为曲线 C 上的动点,求点P 到直线l的距离的最小值.y 2 2 s6.(北京卷)在极坐标系中,点A在圆2 2 cos 4 sin40 上,点P的坐标为 (1, 0),则 | AP |的最小值为 _________.三、 2016 高考试题选编1. (全国卷Ⅰ)在直角坐标系xOy 中,曲线 C1的参数方程为x a cost0 ).在y( t 为参数, a1 a sin t以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C2 : 4 cos .(Ⅰ)说明 C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线 C3的极坐标方程为0 ,其中0 满足tan0 2 ,若曲线 C1和 C2的公共点都在C3上,求a .2. (全国卷Ⅱ)在直角坐标系xOy 中,圆 C 的方程为 x 6 2y 2 25 .( 1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;( 2)直线l的参数方程是x t cos10 ,求 l 的y,( t 为参数), l 与 C 交于 A ,B两点, | AB |t sin斜率 .3. (全国卷Ⅲ)在直角坐标系xOy 中,曲线 C1的参数方程为x 3 cos(为参数).以坐标原y sin点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin 2 2 .4( 1)写出C1的普通方程和C2的直角坐标方程;( 2)设点P在C1上,点Q在C2上,求| PQ |的最小值及此时P 的直角坐标.x 11 t 24. (江苏卷)在平面直角坐标系xOy 中,已知直线 l 的参数方程为( t 为参数),椭圆 C3y t2x cos的参数方程为(为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.y 2sin5. (北京卷)在极坐标系中,直线cos 3 sin 10 与圆2cos交于A ,两点,则 | AB | B____________.四、 2015高考试题选编6. ( 2015广东文)在平面直角坐标系 xOy 中,以原点 O 为极点,x轴的正半轴为极轴建立极坐标系,曲线 C1的极坐标方程为cos sin 2 ,曲线 C2x t 2( t 为参数),则 C1的参数方程为y 2 2 t与 C2交点的直角坐标为______________ .7. ( 2015 广东理)已知直线l的极坐标方程为 2 sin 2 ,点 A 的极坐标为 A 2 2 ,7,44则点 A 到直线 l 的距离为______________ .8. ( 2015安徽理)在极坐标系中,圆8 sin上的点到直线R距离的最大值为3__________ .9. ( 2015 北京理)在极坐标系中,点 2 ,到直线cos 3 sin6 的距离为______ .310. ( 2015湖南文)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,若曲线 C 的极坐标方程为2sin,则曲线 C 的直角坐标方程为___________ .11. ( 2015 重庆理)已知直线l 的参数方程为x1t( t 为参数),以坐标原点为极点,x 轴的y1t正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为2 cos2 4 (0 ,35),则直44线 l 与曲线 C 的交点的极坐标为_________________ .12. ( 2015 湖北理)在平面直角坐标系xOy 中,以 O 为极点,x轴的正半轴为极轴建立极坐标系,x1 t直线 l 的极坐标方程为sin 3 cos0,曲线 C 的参数方程为t( t 为参数), l 与 C 相y1tt交于 A , B 两点,则 | AB |___________ .13. ( 2015新课标全国Ⅰ, 10 分)在平面直角坐标系xOy中,直线C1: x 2 ,圆C2 : x 1 2y 2 21,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求 C1, C2的极坐标方程;(Ⅱ)若直线 C3的极坐标方程为(R ),设 C2与 C3的交点为 M , N ,求C2MN 的面积.414. (较难)( 201510 分)在平面直角坐标系xOy 中,曲线 C1x t cos新课标全国Ⅱ,:( t 为y t sin参数, t 0 ),其中 0,在以 O 为极点,x轴正半轴为极轴的极坐标系中,曲线C2 :2 sin , C3 : 2 3cos.(Ⅰ)求 C2与 C3交点的直角坐标;(Ⅱ)若C1与C2相交于点 A , C1与C3相交于点 B ,求| AB | 的最大值.15. ( 2015 江苏理)已知圆 C 的极坐标方程为22 2 sin4 0 ,求圆 C 的半径 .416. ( 2015 福建理)在平面直角坐标系x 1 3cost, xOy 中,圆 C 的参数方程为2 ( t 为参数) . 在y3sin t极坐标系(与在平面直角坐标系xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴非负半轴为极轴)中,直线 l 的方程为 2 sinm m R .4(Ⅰ)求圆 C 的普通方程及直线 l 的直角坐标方程;(Ⅱ)设圆心 C 到直线 l 的距离等于2,求 m 的值 .x53t17. ( 2015 湖南理)已知直线 l :2 ( t 为参数) . 以坐标原点为极点, x 轴的正半轴为极1 t y32轴建立极坐标系,曲线 C 的极坐标方程为2 cos .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程;(Ⅱ)设点 M 的直角坐标为5, 3 ,直线 l 与曲线 C 的交点为 A, B ,求 | MA | | MB | 的值 .x 3 1 t18. ( 2015 陕西)在平面直角坐标系xOy 中,直线 l 的参数方程为2( t 为参数),以原点y3 t2 为极点, x 轴正半轴为极轴建立极坐标系,圆 C 的极坐标方程为2 3 sin .(Ⅰ)写出圆 C 的直角坐标方程;(Ⅱ) P 为直线 l 上一动点,当 P 到圆心 C 的距离最小时,求 P 的直角坐标 .五、 2014 高考试题选编19. ( 2014安徽理)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位x t 1. 已知直线 l 的参数方程是t( t 为参数),圆 C 的极坐标方程是y 34 cos,则直线 l 被圆 C 截得的弦长为()A.14B.2 14C.2D.2 2x 1 cos 为参数)的对称中心 ()20. ( 2014 北京理)曲线2 (ysinA.在直线 y 2x 上 B. 在直线 y 2x 上 C.在直线 yx 1 上D.在直线 y x1 上21. ( 2011 安徽理)在极坐标系中,点2 ,到圆 2cos的圆心的距离为()322A.2B.4C.1D.39922. ( 2011 北京理)在极坐标系中,圆 2sin 的圆心的极坐标是( )A. 1 ,B. 1 ,C. 1, 0D. 1 ,22六、其他高考试题选编x 4 5 cost( t 为参数),以坐标原23. (2013 新课标全国Ⅰ, 10 分)已知曲线 C 1 的参数方程为 5 5sin ty点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为2sin .(Ⅰ)把 C 1的参数方程化为极坐标方程;(Ⅱ)求 C 1与 C 2 交点的极坐标(0 , 02) .x t1 24. 在直角坐标系xOy中,直线l的参数方程为t ( t 为参数).在以原点O为极点,x轴的y2正半轴为极轴的极坐标系中,曲线 C 的极坐标方程为3.1 2cos2(Ⅰ)直接写出直线l 的普通方程、曲线 C 的直角坐标方程;(Ⅱ)设曲线 C 上的点到直线l 的距离为 d ,求 d 的取值范围.25. ( 2012 新课标全国, 10 分)已知曲线C的参数方程是x 2 cos(为参数),以坐标原点1y3sin为极点, x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是 2 .正方形 ABCD 的顶点都在 C2上,且 A,B,C, D 依逆时针次序排列,点 A 的极坐标为 2 ,.3(Ⅰ)求点 A, B, C, D 的直角坐标;(Ⅱ)设 P 为 C1上任意一点,求 | PA |2| PB |2| PC |2| PD |2的取值范围.26. ( 2012 福建理)在平面直角坐标系中,以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系 . 已知直线l上两点M , N的极坐标分别为 2 , 0, 2 3 ,2,圆 C 的参数方程为2x 22cos y (为参数) .3 2sin(Ⅰ)设 P 为线段 MN 的中点,求直线OP 的平面直角坐标方程;(Ⅱ)判断直线 l 与圆 C 的位置关系.x2t x 5 cos 27. ( 2014 皖南八校联考)若直线l :( t 为参数)与曲线 C :y (为参数)y 1 4t m 5 sin 相切,则实数m 为 __________.28. ( 2015江西联考)在极坐标系中,曲线cos2 4 sin的焦点的极坐标为 __________. (规定:0 , 0 2 )29. ( 2013x cos(为参数),以原点为极点,x 轴的广州调研)已知圆 C 的参数方程为siny2正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin cos 1 ,则直线 l 截圆 C 所得的弦长为 __________.30. ( 2015 长春质量监测)在直角坐标系xOy 中,曲线 C1的参数方程为x22t( t 为参数),y12t以原点 O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2.1 3sin2(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;(Ⅱ)试判断曲线C1与 C2是否存在两个交点,若存在,求出两交点间的距离;若不存在,请说明理由 .31. ( 2014 大连双基测试)在直角坐标系xOy 中,圆 C1x 4 4cos的参数方程为(为参数),y4sin圆 C2x 2 cos为参数),以原点 O 为极点,x轴的正半轴为极轴建立极坐的参数方程为(y 2 2sin标系 .(Ⅰ)求C1和C2的极坐标方程;(Ⅱ)C1和 C2交于O , P 两点,求P 点的一个极坐标.32. ( 2014广州综合测试)在极坐标系中,直线sin cos a 与曲线2cos 4 sin相交于A ,B 两点,若 | AB | 2 3 ,则实数 a 的值为 ___________.33.(2013 惠州调研) 在极坐标系中, 已知两点 A , B 的极坐标分别为 3 ,、 4 , ,则 AOB (其36中 O 为极点)的面积为 ______________.(附:海伦公式 Sp p a p b p c ,其中 p1 a b c )2x 2 t C 的极坐标方程为2sin0 ,若34. 已知直线 l 的参数方程为1( t 为参数),圆y3t在圆 C 上存在一点 P ,使得点 P 到直线 l 的距离最小,则点P 的直角坐标为 __________.35. 已知在直角坐标系 xOy 中,圆 C 的参数方程为x 3 3 cos ( 为参数),以原点O 为极y1 3sin点, x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos0 .6(Ⅰ)写出直线 l 的直角坐标方程和圆C 的普通方程;(Ⅱ)求圆 C 截直线 l 所得的弦长 .36. 在平面直角坐标系xOy 中,圆 C 的参数方程为x 4cos ( 为参数),直线 l 经过点 P 1 , 2 ,y 4sin倾斜角.6(Ⅰ)写出圆 C 的标准方程和直线l 的参数方程;(Ⅱ)设直线 l 与圆 C 相交于 A 、 B 两点,求 | PA | | PB | 的值 .37. 在极坐标系中,曲线C 的方程为23,点 R 22 ,. 1 2sin 24(Ⅰ)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线 C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(Ⅱ)设 P 为曲线C上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.38. 以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线 C 的参数方程为x 2 cost( t 为参数).y 2 sin t(Ⅰ)若曲线 C 在点 1 ,1 处的切线为 l ,求 l 的极坐标方程;(Ⅱ)若点 A 的极坐标为 2 2 ,,且当参数t[0 , ] 时,过点A的直线 m 与曲线 C 有两个不同4的交点,试求直线m 的斜率的取值范围.x2cosA 0 , 3 , F1、 F2是此圆锥曲线的左、右39. 已知圆锥曲线C:(为参数)和定点y 3 sin焦点 .(Ⅰ)求直线AF2的普通方程;(Ⅱ)经过点 F1且与直线 AF2垂直的直线 l 交此圆锥曲线于M 、N两点,求| | MF1|| NF1 | | 的值.40. 已知曲线C1的极坐标方程为cos1,曲线 C2的极坐标方程为 2 2 cos.34(Ⅰ)将曲线C1、 C2的极坐标方程化为直角坐标方程;(Ⅱ)若点A是曲线C1上的一点,点 B 是曲线C2上的一点,求 A 、 B 两点间的最短距离.41. 在平面直角坐标系xOy中,直线l的参数方程为x t3m( t 为参数),若以坐标原点O y3t 2m为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为1 cos28cos .(Ⅰ)求曲线 C 的直角坐标方程;(Ⅱ)若直线l 与曲线 C 相切,求直线l 与坐标轴围成的三角形的面积.第21 页,共 16 页第22 页,共 16 页。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

(完整版)坐标系与参数方程全国卷真题

(完整版)坐标系与参数方程全国卷真题

《坐标系与参数方程》2017高考试题选编1.(全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),直线l 的参数方程为⎩⎨⎧-=+=t y ta x 14(t 为参数).(1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a .2.(全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16||||=⋅OP OM ,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为)3,2(π,点B 在曲线2C 上,求△OAB 面积的最大值.3.(全国卷Ⅲ)在直角坐标系xOy 中,直线1l 的参数方程为⎩⎨⎧=+=t k y tx 2(t 为参数),直线2l 的参数方程为⎪⎩⎪⎨⎧=+-=k my mx 2(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :02)sin (cos =-+θθρ,M 为3l 与C 的交点,求M 的极径.4.(天津卷理)在极坐标系中,直线01)6cos(4=+-πθρ与圆θρsin 2=的公共点个数为____.劝君莫惜金缕衣,劝君惜取少年时;花开堪折直须折5.(江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎪⎩⎪⎨⎧=+-=28ty t x (t 为参数),曲线C 的参数方程为⎪⎩⎪⎨⎧==sy sx 2222(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.6.(北京卷)在极坐标系中,点A 在圆04sin 4cos 22=+--θρθρρ上,点P 的坐标为)0,1(,则||AP 的最小值为_________. 三、2016高考试题选编1.(全国卷Ⅰ)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==t a y ta x sin 1cos (t 为参数,0>a ).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 和2C 的公共点都在3C 上,求a .2.(全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为()25622=++y x .(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧==ααsin cos t y t x ,(t 为参数),l 与C 交于A ,B 两点,10||=AB ,求l 的斜率.3.(全国卷Ⅲ)在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==ααsin cos 3y x (α为参数).以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为224sin =⎪⎭⎫ ⎝⎛+πθρ.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.4.(江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23211(t 为参数),椭圆C的参数方程为⎩⎨⎧==θθsin 2cos y x (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.5.(北京卷)在极坐标系中,直线01sin 3cos =--θρθρ与圆θρcos 2=交于A ,B 两点,则=||AB ____________. 四、2015高考试题选编6.(2015广东文)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为()2sin cos -=+θθρ,曲线2C 的参数方程为⎪⎩⎪⎨⎧==ty tx 222(t 为参数),则1C 与2C 交点的直角坐标为 ______________ .7.(2015广东理)已知直线l 的极坐标方程为24sin 2=⎪⎭⎫ ⎝⎛-πθρ,点A 的极坐标为⎪⎭⎫ ⎝⎛47,22πA ,则点A 到直线l 的距离为 ______________ .8.(2015安徽理)在极坐标系中,圆θρsin 8=上的点到直线()R ∈=ρπθ3距离的最大值为__________ .9.(2015北京理)在极坐标系中,点⎪⎭⎫⎝⎛3,2π到直线()6sin 3cos =+θθρ的距离为 ______ .10.(2015湖南文)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,若曲线C 的极坐标方程为θρsin 2=,则曲线C 的直角坐标方程为 ___________ .11.(2015重庆理)已知直线l 的参数方程为⎩⎨⎧+=+-=t y tx 11(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为42cos 2=θρ(4543,0πθπρ<<>),则直线l 与曲线C 的交点的极坐标为 _________________ .12.(2015湖北理)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()0cos 3sin =-θθρ,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t t y tt x 11(t 为参数),l 与C 相交于B A ,两点,则=||AB ___________ .13.(2015新课标全国Ⅰ,10分)在平面直角坐标系xOy 中,直线2:1-=x C ,圆()()121:222=-+-y x C ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为4πθ=(R ∈ρ),设2C 与3C 的交点为N M ,,求MN C 2∆的面积.14.(较难)(2015新课标全国Ⅱ,10分)在平面直角坐标系xOy 中,曲线⎩⎨⎧==ααsin cos :1t y t x C (t 为参数,0≠t ),其中πα<≤0,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρθρcos 32:,sin 2:32==C C .(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.15.(2015江苏理)已知圆C 的极坐标方程为044sin 222=-⎪⎭⎫ ⎝⎛-+πθρρ,求圆C 的半径.16.(2015福建理)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+-=+=t y t x sin 32,cos 31(t 为参数).在极坐标系(与在平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为()R m m ∈=⎪⎭⎫ ⎝⎛-4sin 2πθρ.(Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值.17.(2015湖南理)已知直线⎪⎪⎩⎪⎪⎨⎧+=+=t y t x l 213235:(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=. (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)设点M 的直角坐标为()3,5,直线l 与曲线C 的交点为B A ,,求||||MB MA ⋅的值.18.(2015陕西)在平面直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23213(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为θρsin 32=. (Ⅰ)写出圆C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 五、2014高考试题选编19.(2014安徽理)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=31t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A.14B.142C.2D.2220.(2014北京理)曲线⎩⎨⎧+=+-=θθsin 2cos 1y x (θ为参数)的对称中心 ( )A. 在直线x y 2=上B. 在直线x y 2-=上C. 在直线1-=x y 上D. 在直线1+=x y 上21.(2011安徽理)在极坐标系中,点⎪⎭⎫⎝⎛3,2π到圆θρcos 2=的圆心的距离为( )A.2B.942π+C.912π+ D.322.(2011北京理)在极坐标系中,圆θρsin 2-=的圆心的极坐标是( )A.⎪⎭⎫ ⎝⎛2,1πB.⎪⎭⎫ ⎝⎛-2,1π C.()0,1 D.()π,1六、其他高考试题选编23.(2013新课标全国Ⅰ,10分)已知曲线1C 的参数方程为⎩⎨⎧+=+=t y tx sin 55cos 54(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 2=. (Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(πθρ20,0≤≤≥).24.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=-=21t y t x (t 为参数).在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为θρ2cos 213+=.(Ⅰ)直接写出直线l 的普通方程、曲线C 的直角坐标方程; (Ⅱ)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围.25.(2012新课标全国,10分)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且D C B A ,,,依逆时针次序排列,点A 的极坐标为⎪⎭⎫⎝⎛3,2π.(Ⅰ)求点D C B A ,,,的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.26.(2012福建理)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点N M ,的极坐标分别为()0,2,⎪⎪⎭⎫⎝⎛2,232π,圆C 的参数方程为⎪⎩⎪⎨⎧+-=+=θθsin 23cos 22y x (θ为参数). (Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (Ⅱ)判断直线l 与圆C 的位置关系.27.(2014皖南八校联考)若直线⎩⎨⎧-==t y t x l 412:(t 为参数)与曲线⎪⎩⎪⎨⎧+==θθsin 5cos 5:m y x C (θ为参数)相切,则实数m 为__________.28.(2015江西联考)在极坐标系中,曲线θθρsin 4cos 2=的焦点的极坐标为__________.(规定:πθρ20,0≤≤≥)29.(2013广州调研)已知圆C 的参数方程为⎩⎨⎧+==2sin cos θθy x (θ为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1cos sin =+θρθρ,则直线l 截圆C 所得的弦长为__________.30.(2015长春质量监测)在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧+-=-=ty tx 2122(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρ2sin 312+=.(Ⅰ)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(Ⅱ)试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,请说明理由.31.(2014大连双基测试)在直角坐标系xOy 中,圆1C 的参数方程为⎩⎨⎧=+=ααsin 4cos 44y x (α为参数),圆2C 的参数方程为⎩⎨⎧+==ββsin 22cos 2y x (β为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C 和2C 的极坐标方程;(Ⅱ)1C 和2C 交于P O ,两点,求P 点的一个极坐标.32.(2014广州综合测试)在极坐标系中,直线()a =-θθρcos sin 与曲线θθρsin 4cos 2-=相交于B A ,两点,若32||=AB ,则实数a 的值为___________.33.(2013惠州调研)在极坐标系中,已知两点B A ,的极坐标分别为⎪⎭⎫ ⎝⎛3,3π、⎪⎭⎫⎝⎛6,4π,则AOB ∆(其中O 为极点)的面积为______________. (附:海伦公式 ()()()c p b p a p p S ---=∆,其中()c b a p ++=21) 34.已知直线l 的参数方程为⎩⎨⎧+=-=ty tx 312(t 为参数),圆C 的极坐标方程为0sin 2=+θρ,若在圆C 上存在一点P ,使得点P 到直线l 的距离最小,则点P 的直角坐标为__________.35.已知在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+=+=θθsin 31cos 33y x (θ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为06cos =⎪⎭⎫⎝⎛+πθρ. (Ⅰ)写出直线l 的直角坐标方程和圆C 的普通方程; (Ⅱ)求圆C 截直线l 所得的弦长.36.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x (θ为参数),直线l 经过点()2,1P ,倾斜角6πα=.(Ⅰ)写出圆C 的标准方程和直线l 的参数方程;(Ⅱ)设直线l 与圆C 相交于A 、B 两点,求||||PB PA ⋅的值.37.在极坐标系中,曲线C 的方程为θρ22sin 213+=,点⎪⎭⎫ ⎝⎛4,22πR .(Ⅰ)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(Ⅱ)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.38.以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==ty tx sin 2cos 2(t 为参数). (Ⅰ)若曲线C 在点()1,1处的切线为l ,求l 的极坐标方程;(Ⅱ)若点A 的极坐标为⎪⎭⎫ ⎝⎛4,22π,且当参数],0[π∈t 时,过点A 的直线m 与曲线C 有两个不同的交点,试求直线m 的斜率的取值范围.39.已知圆锥曲线C :⎪⎩⎪⎨⎧==ααsin 3cos 2y x (α为参数)和定点()3,0A ,1F 、2F 是此圆锥曲线的左、右焦点.(Ⅰ)求直线2AF 的普通方程;(Ⅱ)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求||||||11NF MF -的值.40.已知曲线1C 的极坐标方程为13cos -=⎪⎭⎫ ⎝⎛-πθρ,曲线2C 的极坐标方程为⎪⎭⎫ ⎝⎛-=4cos 22πθρ.(Ⅰ)将曲线1C 、2C 的极坐标方程化为直角坐标方程;(Ⅱ)若点A 是曲线1C 上的一点,点B 是曲线2C 上的一点,求A 、B 两点间的最短距离.第21 页,共16 页第22 页,共16页 41.在平面直角坐标系xOy 中,直线l 的参数方程为⎪⎩⎪⎨⎧--=+=mt y m t x 233(t 为参数),若以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()θθρcos 82cos 1=-. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相切,求直线l 与坐标轴围成的三角形的面积.。

新课标高考《坐标系与参数方程》(选修4-4)含答案

新课标高考《坐标系与参数方程》(选修4-4)含答案

第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π)(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.热点二参数方程及其应用[例2](2014·福建高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x=a-2t,y=-4t(t为参数),圆C的参数方程为⎩⎪⎨⎪⎧x=4cos θ,y=4sin θ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.2.倾斜角为α的直线l过点P(8,2),直线l和曲线C:⎩⎨⎧x=42cos θ,y=2sin θ(θ为参数)交于不同的两点M1,M2.(1)将曲线C的参数方程化为普通方程,并写出直线l的参数方程;(2)求|PM1|·|PM2|的取值范围.[例3](2014·辽宁高考)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为⎩⎪⎨⎪⎧x=2+t cos α,y=t sin α(t为参数).曲线C的极坐标方程为ρsin2θ=8cos θ.热点三极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,热点二参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. 热点三极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6.(2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。

(完整版)选修4-4坐标系与参数方程-高考题及答案

(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。

坐标系与参数方程(带答案)

坐标系与参数方程(带答案)

坐标系与参数方程专题⏹ 温故知新1.坐标系 (1)坐标变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点(λx ,μy ),称φ为坐标系中的伸缩变换. (2)极坐标系在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=yx (x ≠0). 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M (a ,0)且垂直于极轴:ρcos_θ=a ;(3)直线过M (b ,π2)且平行于极轴:ρsin_θ=b .4.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则该圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a ,0),半径为a :ρ=2a cos_θ; (3)当圆心位于M (a ,π2),半径为a :ρ=2a sin_θ.⏹ 举一反三考点一、平面直角坐标系中的伸缩变换 例1、 求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标. [解] 设曲线C ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求. 变式练习 1.在同一平面直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.解:设变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入第二个方程,得2λx -μy =4,与x -2y =2比较系数得λ=1,μ=4,即⎩⎪⎨⎪⎧x ′=x ,y ′=4y .因此,经过变换⎩⎪⎨⎪⎧x ′=x ,y ′=4y 后,直线x -2y =2变成直线2x ′-y ′=4.考点二、极坐标与直角坐标的互化例2、 (2014·高考天津卷改编)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,求a 的值.[解] 由ρ=4sin θ,可得x 2+y 2=4y ,即x 2+(y -2)2=4. 由ρsin θ=a ,可得y =a .设圆的圆心为O ′,y =a 与x 2+(y -2)2=4的两交点A ,B 与O 构成等边三角形,如图所示. 由对称性知∠O ′OB =30°,OD =a . 在Rt △DOB 中,易求DB =33a , ∴B 点的坐标为⎝⎛⎭⎫33a ,a .又∵B 在x 2+y 2-4y =0上,4.在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .(1)求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标;(2)点B 经过φ变换得到点B ′⎝⎛⎭⎫-3,12,求点B 的坐标; (3)求直线l :y =6x 经过φ变换后所得到的直线l ′的方程.解:(1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2,于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)即为所求. (2)设B (x ,y ),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 得到⎩⎪⎨⎪⎧x =13x ′,y =2y ′.由于点B ′的坐标为⎝⎛⎭⎫-3,12,于是x =13×(-3)=-1,y =2×12=1,∴B (-1,1)即为所求. (3)由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得⎩⎪⎨⎪⎧x =x ′3,y =2y ′.代入直线l :y =6x ,得到经过伸缩变换后的方程y ′=x ′,因此直线l ′的方程为y =x .5.(2015·福建泉州质检)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4;因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎫θ+π4=22. 6.求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数.证明:建立如图所示的极坐标系,设抛物线的极坐标方程为ρ=p1-cos θ(p >0).PQ 是抛物线的弦,若点P 的极角为θ,则点Q 的极角为π+θ, 因此有|FP |=p1-cos θ,|FQ |=p 1-cos (π+θ)=p1+cos θ.所以1|FP |+1|FQ |=1-cos θp +1+cos θp =2p(常数).原命题得证.大试牛刀1.(2015·唐山市统一考试)已知圆C :x 2+y 2=4,直线l :x +y =2.以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系.(1)将圆C 和直线l 的方程化为极坐标方程;(2)P 是l 上的点,射线OP 交圆C 于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |2,当点P 在l 上移动时,求点Q 轨迹的极坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入圆C 和直线l 的直角坐标方程得其极坐标方程为 C :ρ=2,l :ρ(cos θ+sin θ)=2.(2)设P ,Q ,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ |·|OP |=|OR |2,得ρρ1=ρ22. 又ρ2=2,ρ1=2cos θ+sin θ,所以2ρcos θ+sin θ=4,故点Q 轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0).2.(2013·高考课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0,得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为(2,π4),(2,π2).3.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,。

坐标系与参数方程(带答案)

坐标系与参数方程(带答案)
2/4
建立极坐标系,曲线 C 的极坐标方程为 ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),求直线 l 与曲线 C 的公共点的极径 ρ.
x=2+t, 解:参数方程 化为普通方程为 y=x+1.由 ρsin2θ-4cos θ=0,得 ρ2sin2θ-4ρcos θ=0,其对应的直角坐标 y=3+t y=x+1, x=1, 方程为 y2-4x=0,即 y2=4x.由 2 可得 故直线和抛物线的交点坐标为(1,2),故交点的极径为 12+22= y =4x y=2,
x′=λx(λ>0), x′=x, 解:设变换为 代入第二个方程,得 2λx-μy=4,与 x-2y=2 比较系数得 λ=1,μ=4,即 y′=μy(μ>0), y′=4y. x′=x, 因此,经过变换 后,直线 x-2y=2 变成直线 2x′-y′=4. y′=4y
x=4+5cos t, 2.(2013· 高考课标全国卷Ⅰ)已知曲线 C1 的参数方程为 (t 为参数),以坐标原点为极点,x 轴的正半 y=5+5sin t
1 1 (1)求点 A 3,-2经过 φ 变换所得的点 A′的坐标;(2)点 B 经过 φ 变换得到点 B′-3,2,求点 B 的坐标; (3)求直线 l:y=6x 经过 φ 变换后所得到的直线 l在同一平面直角坐标系中,已知伸缩变换 φ: 2y′=y.
大试牛刀
1.(2015· 唐山市统一考试)已知圆 C:x2+y2=4,直线 l:x+y=2.以 O 为极点,x 轴的正半轴为极轴,取相同的单 位长度建立极坐标系. (1)将圆 C 和直线 l 的方程化为极坐标方程; (2)P 是 l 上的点,射线 OP 交圆 C 于点 R,又点 Q 在 OP 上且满足|OQ|· |OP|=|OR|2,当点 P 在 l 上移动时,求点 Q 轨迹的极坐标方程. 解:(1)将 x=ρcos θ,y=ρsin θ 代入圆 C 和直线 l 的直角坐标方程得其极坐标方程为 C:ρ=2,l:ρ(cos θ+sin θ)=2. (2)设 P,Q,R 的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ|· |OP|=|OR|2,得 ρρ1=ρ2 2. 2 又 ρ2=2,ρ1= , cos θ+sin θ 2ρ 所以 =4, cos θ+sin θ 故点 Q 轨迹的极坐标方程为 ρ=2(cos θ+sin θ)(ρ≠0).

选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)

选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)

x = 4 cos2 ,
2.(2020
年全国统一高考数学试卷(文科)(新课标Ⅱ))已知曲线
C1,C2
的参数方程分别为
C1:
y
=
4
sin
2
(θ
为参数),C2:
x y
= =
t t
+ −
1, t 1
(t
为参数).
t
(1)将 C1,C2 的参数方程化为普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C1,C2 的交点为 P,求圆心在极轴上,且经过
(2)设 C 上点的坐标为: (cos , 2sin )
则C
上的点到直线 l
的距离
d
=
2 cos + 2
3 sin
+11
=
4
sin
+
6
+ 11
7
7
当 sin
+
6
=
−1 时,
d
取最小值
则 dmin = 7
5.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))在极坐标系中,O 为极点,点 M (0 ,0 )(0 0) 在
C1
表示以坐标原点为圆心,半径为
1
的圆;(2)
(
1 4
,
1 4
)
.
x = cos t
【分析】(1)当
k
= 1 时,曲线 C1
的参数方程为
y
=
sin
t
(t
为参数),
两式平方相加得 x2 + y2 = 1 ,
所以曲线 C1 表示以坐标原点为圆心,半径为 1 的圆;

2007-2019年新课标全国卷理——坐标系与参数方程

2007-2019年新课标全国卷理——坐标系与参数方程

2007-2019年全国课标卷坐标系与参数方程试题1.(本小题满分10分)1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,. (Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程;(Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.6.在平面直角坐标系xOy 中,已知曲线1C的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.7.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M的极坐标为34π⎛⎫ ⎪⎝⎭,直线l的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.8.己知直线l 的参数方程为132x t y t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求11PA PB+的值.9.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为222x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.(23)(本小题满分10分)选修4—4:坐标系与参数方程。

14-2007-2015年新课标全国卷理——坐标系与参数方程

14-2007-2015年新课标全国卷理——坐标系与参数方程

2007-2015年全国课标卷坐标系与参数方程试题(2007年宁夏卷)B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程;(Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.(2008年宁夏卷)23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 1:cos ()sin x y θθθ=⎧⎨=⎩为参数,曲线C 2:()x t y ⎧⎪⎪⎨⎪⎪⎩为参数。

(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C 。

写出1'C ,2'C 的参数方程。

1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由。

(2009年宁夏卷)(23)(本小题满分10分)选修4—4:坐标系与参数方程。

已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线 332,:2x t C y t =+⎧⎨=-+⎩(t 为参数)距离的最小值。

(2010年课标全国卷)23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2:x cos sin y θθ=⎧⎨=⎩(θ为参数), (Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。

2020版新高考复习理科数学教学案:坐标系与参数方程 含答案

2020版新高考复习理科数学教学案:坐标系与参数方程 含答案
(2)解法一:曲线C的直角坐标方程为x2+y2-2x-8=0.
将直线l的参数方程代入曲线C的直角坐标方程整理.得t2+(2 sinα+2cosα)t-5=0.
因为Δ=(2 sinα+2cosα)2+20>0.所以可设该方程的两个根分别为t1.t2.
则t1+t2=-(2 sinα+2cosα).t1t2=-5.
【例2】[20xx·全国卷Ⅱ]在极坐标系中.O为极点.点M(ρ0.θ0)(ρ0>0)在曲线C:ρ=4sinθ上.直线l过点A(4,0)且与OM垂直.垂足为P.
(1)当θ0= 时.求ρ0及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时.求P点轨迹的极坐标方程.
解:(1)因为M(ρ0.θ0)在C上.当θ0= 时.
(1)求A.B两点间的距离;
(2)求点B到直线l的距离.
解:(1)设极点为O.在△OAB中.A .B .由余弦定理.得
AB= = .
(2)因为直线l的方程为ρsin =3.
则直线l过点 .倾斜角为 .
又B .所以点B到直线l的距离为
(3 - )×sin =2.
■模拟演练——————————————
1.[20xx·南昌二模]已知在平面直角坐标系xOy中.直线l的参数方程为 (t为参数).以坐标原点为极点.x轴非负半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ2-2ρcosθ-2=0.点P的极坐标是 .
所以点P的直角坐标为(1,1).
(2)解法一:将 代入 +y2=1.并整理得41t2+110t+25=0.
Δ=1102-4×41×25=8 000>0.
故可设方程的两根为t1.t2.
则t1.t2为A.B对应的参数.且t1+t2=- .
依题意.点M对应的参数为 .

坐标系与参数方程及答案

坐标系与参数方程及答案

极坐标方程、参数方程1.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为2.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为 x =t 2,y =2 2t(t 为参数),则C 1与C 2交点的直角坐标为.3.在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M,N,求△C 2MN 的面积.4. 在直角坐标系xOy 中,曲线C 1: x =t cos α,y =t sin α(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2 3cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.5. 在直角坐标系xOy 中,直线l 的参数方程为 x =3+12t ,y = 32t (t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2 3sin θ.(1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.极坐标方程、参数方程1.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为答案x 2+y 2-2y=02.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为 x =t 2,y =2 2t(t 为参数),则C 1与C 2交点的直角坐标为.答案(2,-4)3.在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M,N,求△C 2MN 的面积.析(1)因为x=ρcosθ,y=ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(5分)(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3 2ρ+4=0,解得ρ1=2 2,ρ2= 2.故ρ1-ρ2= 2,即|MN|= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.(10分)4. 在直角坐标系xOy 中,曲线C 1: x =t cos α,y =t sin α(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2 3cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.解析(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-23x=0.联立x2+y2-2y=0,x2+y2-23x=0,解得x=0,y=0或x=32,y=32.所以C2与C3交点的直角坐标为(0,0)和32,32.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(23cos α,α).所以|AB|=|2sin α-23cos α|=4sin α-π3.当α=5π6时,|AB|取得最大值,最大值为4.5. 在直角坐标系xOy中,直线l的参数方程为x=3+12t,y=32t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,☉C的极坐标方程为ρ=23sin θ.(1)写出☉C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标. 解析(1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x2+y2=23y,所以x2+(y-3)2=3.(2)设P3+12t,32t,又C(0,3),则|PC|=3+12t2+32t-32= t2+12,故当t=0时,|PC|取得最小值, 此时,P点的直角坐标为(3,0).。

坐标系与参数方程答案

坐标系与参数方程答案

坐标系与参数方程答案1) 坐标系: 将x轴和y轴正方向延长为无限长直线并交于原点,分别标记为x轴和y轴。

另外,根据需要可以再加上z轴,垂直于xy平面,并经过原点。

2)参数方程:一般形式的参数方程为(x(t),y(t),z(t)),其中t是参数。

具体的题目中会给出参数方程的具体形式和参数的取值范围。

题目及答案:题目1:坐标系中,A点的坐标为(2,3),B点的坐标为(5,-1),求线段AB的中点坐标。

答案:线段AB的中点坐标为[(2+5)/2,(3+(-1))/2]=(3.5,1).题目2:已知参数方程为x=2t+1,y=t^2-3,求参数t=2时,对应的点的坐标。

答案:将参数t=2代入参数方程得到x=2(2)+1=5,y=(2^2)-3=1.所以对应的点的坐标为(5,1).题目3:求过点P(1,4)且与直线y=2x+3垂直的直线的方程。

答案:由于直线y=2x+3的斜率为2,与垂直直线的斜率为-1/2题目4:已知参数方程为x = cos(t), y = sin(t),t的取值范围为[0, 2π],求对应的轨迹方程。

答案:将参数方程中x = cos(t)和y = sin(t)代入得到(x^2) + (y^2) = cos^2(t) + sin^2(t) = 1,所以对应的轨迹方程为x^2 + y^2 = 1,即单位圆。

题目5:坐标系中,已知A点坐标为(2,3),对称点关于y轴的坐标为(-2,3),求线段AA'的长度。

答案:题目6:已知参数方程为x=t^2+2t,y=t^2-1,求参数t=1时,对应的点的坐标。

答案:将参数t=1代入参数方程得到x=(1^2)+2(1)=3,y=(1^2)-1=0.所以对应的点的坐标为(3,0).题目7:求过点P(1,2)且平行于直线y=3x+1的直线的方程。

答案:由于直线y=3x+1的斜率为3,与平行直线的斜率也为3题目8:已知参数方程为x = e^t, y = ln(t),t的取值范围为(0, +∞),求对应的轨迹方程。

坐标系与参数方程典型例题含高考题----答案详细)

坐标系与参数方程典型例题含高考题----答案详细)

选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标全国统考区(宁夏、吉林、黑龙江)分类汇编:坐标系与参数方程一、解答题1 .在平面直角坐标系xoy 中,动点A 的坐标为(2-3sin α,3cos α-2),其中α∈R.在极坐标系(以原点O 为极点,以x 轴非负半轴为极轴)中,直线C 的方程为ρcos(θ-4π)=a.(Ⅰ)判断动点A 的轨迹的形状;(Ⅱ)若直线C 与动点A 的轨迹有且仅有一个公共点,求实数a 的值.错误!未指定书签。

2. 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)试分别将曲线C l 的极坐标方程θθρcos sin -=和曲线C 2的参数方程为参数)t ty tx (cos 2sin 2⎪⎩⎪⎨⎧==化为直角坐标方程和普通方程:(II)若红蚂蚁和黑蚂蚁分别在曲线C l 和曲线C 2上爬行,求红蚂蚁和黑蚂蚁之间的最大距离(视蚂蚁为点).错误!未指定书签。

3.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点(5,)A α (α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于,B C 两点.(1)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出直线l 和曲线L 的普通方程. (2)求BC的长.错误!未指定书签。

4. 已知曲线C 的极坐标方程为1ρ=,以极点为原点,极轴为轴的正半轴建立直角坐标系,直线l 的参数方程12(2t x t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (Ⅰ)写出直线l 的普通方程与曲线C 的直角坐标方程(Ⅱ)设曲线C 经过伸缩变换''3x x y y⎧=⎪⎨=⎪⎩得到曲线'C ,设曲线'C 上任意一点为(,)M x y ,求x +的最小值5. 平面直角坐标系xoy 中,点A (2,0)在曲线1C :cos ,(0,sin x a a y ϕϕϕ=⎧>⎨=⎩为参数)上.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为:=a cos ρθ (Ⅰ)求曲线2C 的普通方程(Ⅱ)已知点M,N 的极坐标分别为12(,),(,)2πρθρθ+,若点M,N 都在曲线1C 上,求221211ρρ+的值6.在直角坐标系xOy 中, 过点)23,23(P 作倾斜角为α的直线l 与曲线1:22=+y x C相交于不同的两点N M ,.(Ⅰ) 写出直线l 的参数方程; (Ⅱ) 求 PN PM 11+ 的取值范围.7 . 在极坐标系中,曲线L :2sin 2cos ρθθ=,过点(5,)A α(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点.(1)以极点为原点,极轴为x 的正半轴,取与极坐标相同的单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程; (2)求BC的长.8 .直线l:θθρsin 3cos 28+=9 . 在极坐标系中,已知直线l 的极坐标方程为sin()14πρθ+=圆C 的圆心是)4C π,.(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.10.在直角坐标系中直线L 过原点O,倾斜角为3π,在极坐标系中(与直角坐标系有相同的长度单位,极点为原点,极轴与x 的非负半轴重合)曲线C:θρcos -23=,(1)求曲线C 的直角坐标方程; (2)直线L 与曲线C 交于点,M N ,求ON OM 的值.11 . 已知在直角坐标系xOy 中,直线l 的参数方程为3x t y =-⎧⎪⎨⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为24cos 30ρρθ-+=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点P 是曲线C 上的一个动点,求它到直线l 的距离的取值范围.12. 在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩ (α为参数) M是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C .(1)求2C 的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB.13.已知曲线C 的极坐标方程为θθρ2sin cos 4=,直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x (t 为参数,0≤α<π).(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.14. 在平面直角坐标系xOy 中,已知曲线1:221=+y x C ,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线6)sin cos 2(:=θ-θρl . (Ⅰ)将曲线1C 上的所有点的横坐标、纵坐标分别伸长为原来的3、2倍后得到曲线2C 试写出直线l 的直角坐标方程和曲线2C 的参数方程;(Ⅱ)在曲线2C 上求一点P,使点P 到直线l 的距离最大,并求出此最大值.15. 已知圆1C 的参数方程为=cos =sin x y ϕϕ⎧⎨⎩(ϕ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆2C 的极坐标方程为2cos()3πρθ=+.(Ⅰ)将圆1C 的参数方程化为普通方程,将圆2C 的极坐标方程化为直角坐标方程; (Ⅱ)圆1C 、2C 是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.16. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.点M 的极坐标为(4,)2π,圆C 以M为圆心,4为半径;又直线l 的参数方程为11x t y ⎧=+⎪⎪⎨⎪⎪⎩(t 为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)试判定直线l 和圆C 的位置关系.若相交,则求直线l 被圆C 截得的弦长.17.在直角坐标系xOy 中,直线l 过点P(0,21) ,且倾斜角为150°.以O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为0cos 22=+θρρ=0 (θ为参数,ρ> 0).I 、写出直线l 的参数方程和圆C 的直角坐标方程:II 、设直线l 与圆C 相交于A,B 两点,求 ︱PA ︱ ·︱PB ︱的值.18. 在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=--=ty t x 322(t 为参数),直线l 与曲线1)2(:22=--x y C 交于B A ,两点(1)求||AB 的长;(2)在以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为)43,22(π,求点P 到线段AB 中点M的距离.19. 已知在直角坐标系xOy 中,圆锥曲线C 的参数方程为2cosx y θθ=⎧⎪⎨⎪⎩(θ为参数),定点(0,A,12,F F 是圆锥曲线C 的左,右焦点(Ⅰ)以原点为极点,x 轴为正半轴为极轴建立极坐标系,求经过点1F 且平行于直线2AF 的直线l 的极坐标方程; (Ⅱ)在(Ⅰ)的条件下,设直线l 与圆锥曲线C 交于,E F 两点,求弦EF 的长【精品推荐】新课标全国统考区(宁夏、吉林、黑龙江)2013届高三名校理科最新试题精选(一)分类汇编18:坐标系与参数方程参考答案一、选择题 错误!未找到引用源。

错误!未找到引用源。

(2)错误!未找到引用源。

解:(1)依题得,点A 的直角坐标为(4,3)曲线L 的普通方程为:22y x =直线l 的普通方程为:1y x =-.(2)设1122(,),(,)B x y C x y{221y x y x ==-联立消去y 得2410x x -+=由韦达定理得12124,1x x x x +==,由弦长公式得12BC x =-=错误!未找到引用源。

(1)22:21);:1y x C x y -=-+=圆(2)曲线22':19x C y +=令3cos 3cos sin x x y θθθθ=⎧∴+=+⎨=⎩)θφ=+x ∴+最小值错误!未找到引用源。

本小题满分10分错误!未找到引用源。

错误!未找到引用源。

(Ⅰ)由题意得,点A 的直角坐标为()3,4曲线L 的普通方程为:x y 22=直线l 的普通方程为:1-=x y(Ⅱ)设B(11,y x )C(22,y x )⎩⎨⎧-==122x y x y 联立得0142=+-x x 由韦达定理得421=+x x ,121=⋅x x由弦长公式得621212=-+=x x k BC错误!未找到引用源。

选修4-4 :坐标系与参数方程(1)直线0832=-=y x 曲线C:1422=+y x(Ⅱ)设曲线C 上任一点为()2cos ,sin Mϕϕ,它到直线的距离为d 0ϕ满足:0043cos ,sin 55ϕϕ==.∴当0ϕϕπ-=时,max d =解法二 ;用直角坐标方程,先求与l 平行且与曲线C 相切的切线方程,再求平行线间的距离也可(略)错误!未找到引用源。

(Ⅰ)圆C 的极坐标方程为:)4sin(22πθρ+= ·········5 分(Ⅱ)圆心到直线距离为1,圆半径为2,所以弦长为2 ···········错误!未找到引用源。

(1)0964322=--+x y x(2)512 错误!未找到引用源。

选修4-4:坐标系与参数方程解:(I)直线l 的普通方程为0y -+=曲线C 的直角坐标方程为:22430xy x +-+=【或22(2)1x y -+=】(II)曲线C 的标准方程为22(2)1x y -+=,圆心(2,0)C ,半径为1;∴圆心(2,0)C 到直线l 的距离为:d==所以点P 到直线l 的距离的取值范围是[1,1]22-+ 错误!未找到引用源。

解:(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y2,由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α.从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3 错误!未找到引用源。

相关文档
最新文档