2018中考数学一轮复习 各知识点练习题分层设计二(代数式部分)

合集下载

2018年中考数学专题复习题及答案

2018年中考数学专题复习题及答案

2018年中考数学专题复习第一章 数与式 第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数, 722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】 三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字:⎪ ⎪ ⎪⎪ ⎩⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数(a >0)(a <0) 0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

中考第一轮复习讲义 第二讲 代数式与整式

中考第一轮复习讲义 第二讲  代数式与整式

第二讲 代数式与整式一.考点分析考点一.列代数式(含规律探索)例题1.一次知识竞赛共有20道选择题,规定答对一题得5分,不答或答错扣1分,如果某学生答对题数为x ,用代数式表示该学生的得分为( )A.5x-(20-x)B.100-(20-x)C.5xD.5x-5(20-x)-(20-x)例题2.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.例题3.观察下列数据:3579,,,,, (357911)x x x x x 它们是按一定规律排列的,依照此规律,第n 个数据是 (用含n 的式子表示).例题4.如图,观察各图中小圆点的摆放规律,并按这样的规律摆放下去,则第10个图形中小圆点的个数为 .考点二.代数式求值例题1.已知4a+3b=1,则整式8a+6b-3的值为 . 例题2.已知3,6x y xy +==,则22x y xy +的值为 .例题3.如果x=1时,代数式3234ax bx ++的值是5,那么x=-1时,代数式3234ax bx ++的值是 .例题4.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .考点三.非负数的性质例题1.120x y ++-=,那么xy= .例题2.若25(3)0a b -++=,则a-2b= .例题3.若21(2)3322102x y z -++-=,则式子2x yz 的值为 .考点四.整式的相关概念例题1.若单项式22m x y 与41-3n x y 可以合并成一项,则m n = . 例题2.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有( ) A.5个整式 B.4个单项,3个多项式 C.6个整式,4个单项式 D.6个整式,单项式与多项式个数相同例题3.(1)单项式-22xy π的系数是 ,次数是 ; (2)多项式125323+--xy y x 的次数 . 考点五.整式的运算例题1.下列计算正确的是( )A.325(3)6a a a -=B.331a a a a÷= C.22(-21)441a a a -=++ D.235235a a a += 例题2.4张长为a ,宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a+b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2,若S 1=2S 2,则a ,b 满足( )A.2a=5bB.2a=3bC.a=3bD.a=2b例题3.先化简,再求值:2(2)(43)a b a a b +-+,其中1,2a b ==.例题4.先化简,再求值:23(21)(21)(1)(2)(8)m m m m m +---+÷-,其中m 是方程220x x +-=的根.考点六.因式分解例题1.分解因式:44ax ay -= .例题2.下列等式从左到右的变形,属于因式分解的是( )A.2221(1)x x x +-=-B.22()()a b a b a b +-=-C.2244(2)x x x ++=+D.22(1)ax a a x -=-例题3.分解因式:22(2)(2)y x x y +-+= .例题4.若21x x +=,则433331x x x +++的值为 .例题5.把下列各式分解因式(1))()()(y x c x y b y x a -+---; (2)2296y xy x +-;(3)y x y x 2222-+-; (4)22216)4(x x -+.二.同步练习 1.4y x 33-它的系数为 ,次数为 . 2.多项式4423x xy 2y y 5x +--是 次 项式,它的最高次项是 ,二次项系数为 ,把这个多项式按y 降幂排列得 .3.若m 10y x 41与4n 13y x 31+是同类项,则m n = . 4.若05a a 2=-+,则20082a 2a 2++的值为 .5.计算:_______43=⋅-a a , 2a a a +⋅= , (a+2)(a-1)= .3条2条1条图66.若3,5==nm aa,则___________32=+nma.7.在多项式142+x中,添加一个单项式使其成为一个完全平方式,则添加的单项式是(只写出一个即可).8.把下列各式分解因式:(1)x2-xy=;(2)4x2-16=;(3)2x2+4x+2=;(4)x2-6x-7=;(5)a3-a2+a-1=.9.已知1)1(+-=nna,当1=n时,01=a;当2=n时,22=a;当3=n时,03=a…则654321aaaaaa+++++= .10.如图是小亮用8根,14根,20根火柴搭的1条,2条,3条“金鱼”,按此方法搭n条“金鱼”需要火柴根.(用含n的代数式表示)11.已知5,3a b ab-==,则代数式32232a b a b ab-+的值为 .12.观察下列各等式的数字特征:85358535⨯=-,1192911929⨯=-,17107101710710⨯=-……,将你所发现的规律用含字母a,b的等式表示出来: .13.下列运算正确的是()A.12-=÷xxx B. 33332244)2(yxxyx-=⋅-C.653)()(xxx-=-⋅-- D.22941)321)(321(yxyxyx-=+--14.下列从左到右的变形,属于因式分解的是()A.(x+2)(x+3)=x2+x+6B.ax-ay+1=a(x-y)+1C.8a2b3=2a2·4b3D.x2-4=(x+2)(x-2)15.计算:(1)22462(32)2m m m m⎡⎤--+-⎣⎦; (2)223()(3)(7)4a bc ab ac-÷-•-.16.先化简,再求值:(1),3)12(2)12(2++-+a a 其中2=a ; (2)2()()()x y x y x y x ⎡⎤-++-÷⎣⎦,其中11,2x y =-=.17.把下列各式因式分解:(1)x 3-4x ; (2)x 2-3xy -10y 2; (3) x 2-y 2-4x +4; (4)x 4-5x 2+4.18.对于实数a ,b ,c ,d 规定一种运算bc ad d c b a -=,如220)2(12201-=⨯--⨯=-, 那么当255)3(42=--x 时,求x 的值.三.拓展练习1.某商店压了一批商品,为尽快售出,该商店采取如下销售方案:将原来每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%,经过两次降价后的价格为 元(结果用含m 的代数式表示).2.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A. 52a b =B.a=3bC.72a b = D.a=4b3.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )A. 20192B.201812C.201912D.2020124.代数式2221126,4,,,2,5x y xy z y xy x x a b +-+-+-+ 中,不是整式的有 个.5.化简222222123323a b ab a b ab a b +-+--并按字母a 的降幂排列为 .6.若823x y a b +-与234y x y a b -的和是单项式,则x y += . 7.12x n a b -与223m a b -是同类项,则()2xm n -= .8.单项式0.25b c x y 与单项式1210.125m n x y ---的和是0.625n m ax y ,则abc = .9.若249x mx ++是一个完全平方式,则m 的值为 .10.已知22412x x m -+是一个完全平方式,则m 的值为 .11.计算2200120002002-⨯的结果是 .12.计算:(1)2200920072008⨯-; (2)22007200720082006-⨯;(3)22003451()(2)542x π--⎛⎫⎛⎫⎛⎫÷-+---÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (4)24643(21)(21)(21)1++++;(5)22222111111)(1)(1)(1)(1)234910-----(;(6)12345678921234567890123456789112345678902⨯-.13.求24832(21)(21)(21)(21)(21)(21)1-++++++的个位数字.14. 已知5m a =,3n a =,求23m n a +的值.15. 已知5m a =,275m n a +=,求n a 的值.16. 已知33m a =,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值.17. △ABC 中,a b c 、、为其三边长,且222a b c ab bc ac ++=++,试判断△ABC 的形状.18. 若20002001a x =+,20002002b x =+,20002003c x =+,求222a b c ab bc ac ++---的值.19.已知15a a +=,则221a a += ;21()a a-= . 20.若244210x x x-+=,则的值为 . 21.化简:(1)221111())2525a b a b ---(; (2)231)(231)a b a b -++-(;(3)222(9)(3)(3)(9)a a a a +-+-+.22. 已知()()31222a b ab a b +==--,,化简的结果是 . 23. 已知2012x xy xy y x y -=-=-,,则的值为 .24.若22ab =,则代数式()253ab a b ab b ---的值为 .25.若22011x y xy x xy y +==--+,,则的值为 .26.已知2()4x y -=,2()64x y +=,求①22x y +;②xy 的值.27. 已知:212x xy +=,215xy y +=,求()2x y +-()()x y x y +-的值.28. 已知:2(1)()5a a a b ---=-求代数式222a b ab +-的值.29. 已知2226100a b a b +-++=,求20061a b-的值.30. 先化简,再求值:2(23)(23)(3)a b a b a b +-+-,其中15,3a b =-=.31. 已知2215,31,3A x x B x x =-+=-+ 当23x =时,求2A B -的值.32.若()()2210231a b b ab ab ab +++=---⎡⎤⎣⎦,则的值是 .33.已知()()()()312m x y x y x y x y -⋅-⋅-=-,求()()22421225m m m m ++---的值.34.若0a b c ++=,则()()()a b b c c a abc ++++= .35.若2,3,5a b b c c d -=-=--=,则 ()()()a c b d a d --÷-= .36.已知3a b a b-=+,则()()()243a b a b a b a b +--=-+ . 37.若210m m +-=,则3222010m m +-= .38.若3220x x x ---= ,则4322451x x x x +---= .39.若2310x x x +++= ,则2320111x x x x +++++= .40.已知多项式731ax bx cx +++,当2x =-时,多项式的值为2010,则当2x =时,这个多项式的值为 .41.已知等式()()()221111x x ax x b x c x ++=+++++是关于x 的恒等式,则a= ,b= ,c= .42.如果2231x x +-与()()211a x b x c -+-+是同一个多项式,则a b c += . 43.已知()6212111021211102101x x a x a x a x a x a x a -+=++++++则01212a a a a ++++= ,12312a a a a ++++= ,02412a a a a ++++= ,121110921a a a a a a -+-++-= . 44.若a ,b ,c ,d 是整数,b 是正整数,且满,,a b c b c d c d a +=+=+=,则a b c d +++的最大值是 .45.已知0a b c d +++=,则()()()()()()333333a b a c b c b d a d c d +++++++++++= .46.已知等式()()222121k x k y k k z +-+--=与k 值无关,则x = ;y = ;z = .47.若()()2283a pa a a q ++-+中不含有32a a 和项,则p = ,q = .48.当x = ,y = 时,多项式22494121x y x y +-+-有最小值,此时这个最小值是 .49.若()()023236x x ----有意义,则x 的取值范围是 .50.若代数式2214250x y x y +-++的值为0,则x = ,y = .51.已知23a =,26b =,272c =,试问a b c 、、之间有什么关系?请说明理由.52.已知552a =,443b =,334c =,比较a b c 、、的大小.。

河北省中考数学一轮复习资料(2018)

河北省中考数学一轮复习资料(2018)

专题一 数与式一.实数的计算 1. 4+2)3(-﹣20140×|﹣4|+1)61(-. 2. 2)3(-+|﹣2|﹣20140﹣9+121-)(.3. 121-)(﹣(3﹣2)0﹣|﹣3|+4. 4. 24×13-4×18×(1-2)0;二.代数式的化简1.112+-x x •1222+--x x x x .2. (22ba a -﹣b a +1)÷a b b -.3.)111(122-+÷-x x x4. (x ﹣1﹣13+x )÷1442+++x x x三.代数式化简求值 1.直接给出字母的值 (1)(12+a a ﹣1-a a )+112-a ,其中a=2+1. (2)(b a a -﹣1)÷22b a b-,其中a=3+1,b=3﹣1.(3)先化简,再求值:222222()2a b a b b a a ab b a ab-+÷--+-,其中a ,b 1a +|b 3=0.(4)已知实数a 、b 满足式子0)3(22=-+-b a ,求)2(22ab ab a b a --÷-的值。

2.和三角函数结合的计算与化简 (1)﹣24﹣12+|1﹣4sin60°|+(π﹣32)0; (2)﹣24﹣12+|1﹣4sin60°|+(π﹣32)0; (3)2222322x y x y x y x y++---的值,其中x=2cos450+2,y=2(4)b a ba 2+-÷222244bab a b a ++-﹣1.其中a=2sin60°﹣tan45°,b=1.(5)11112122-÷+-•+--a a a a a a a ,其中1260sin 2)1(2+--=-oa3.化简后整体代入求值(1)已知3x y -=,求代数式2(1)2(2)x x y y x +-+-的值.(2)已知b a 211+=3,求代数式ba ab bab a 634452--+-的值(3)已知x+y=xy ,求代数式yx 11+﹣(1﹣x )(1﹣y )的值.(4)若代数式188322=++-a a ,那么代数式2692+-a a = 。

2018年中考数学专题《代数式》复习试卷含答案解析.doc

2018年中考数学专题《代数式》复习试卷含答案解析.doc

2018年中考数学专题复习卷: 代数式一、选择题1.以下各式不是代数式的是()A. 0B.C.D.2.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则()A. B. C. D.4.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A. 零B. 负数C. 正数D. 整数5.代数式相乘,其积是一个多项式,它的次数是()A. 3B. 5C. 6D. 26.已知a+b=5,ab=1,则(a-b)2=( )A. 23B. 21C. 19D. 177.若|x+2y+3|与(2x+y)2互为相反数,则x2﹣xy+y2的值是()A. 1B. 3C. 5D. 78.已知a、b满足方程组,则3a+b的值为()A. 8B. 4C. ﹣4D. ﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6aB. 6a+bC. 3aD. 10a-b10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A. B. C. D. 无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为( )A. 121B. 113C. 105D. 9212.如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x 轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A. B. C. D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,则m2+n的值是________15.若a x=2,b x=3,则(ab)3x=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于________.20.若规定一种特殊运算※为:a※b=ab- ,则(﹣1)※(﹣2)________.21.按照某一规律排列的一组数据,它的前五个数是:1,,,,,按照这样的规律,这组数据的第10项应该是________.22.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。

2018年中考数学总复习测试卷2--代数式(有答案)

2018年中考数学总复习测试卷2--代数式(有答案)

2018年中考数学总复习测试卷2--代数式考试时间:120分钟,满分:150分一、选择题(每小题4分,共40分). 1.下列运算正确的是( C )A .5m +2m =7m 2B .-2m 2²m 3=2m 5C .(-a 2b)3=-a 6b 3D .(b +2a)(2a -b)=b 2-4a 22.若3x=4,9y=7,则3x -2y的值为( A ) A.47 B.74 C .-3 D.273.下列结论正确的是( B )A.-πab 2的系数是-1, B.使式子21+x 有意义的x 的取值范围是x>-2, C. 多项式1+2mn -πmn 2的次数是4, D.若分式112+-a a 的值等于0,则a=±14.若抛物线y =x 2-x -1与x 轴的交点坐标为(m ,0),则代数式m 2-m +2 018的值为( D ) A .2 016 B .2 017 C .2 018 D .2 019 5.如图①,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为( B )A .2a -3bB .4a -8bC .2a -4bD .4a -10b 6. 化简二次根式22a a a +-的结果是( B ) A. 2--a B. 2---a C. 2-aD. 2--a7.当1<x<2时,化简∣1-x ∣+4-4x +x 2的结果是( C ) A. -1 B. 2x -1 C. 1 D. 3-2x8.(2014杭州)若(+)•w =1,则w =( D )A .a+2(a ≠﹣2)B .﹣a+2(a ≠2)C .a ﹣2(a ≠2)D .﹣a ﹣2(a ≠﹣2)9.(2017眉山)已知14m 2+14n 2=n -m -2,则1m -1n 的值等于( C )A .1B .0C .-1D .-1410.(2017绵阳)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a 1,第2幅图形中“”的个数为a 2,第3幅图形中“”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( C )A.2021B.6184C.589840D.421760二.填空题(每小题4分,共24分)11.(2017安顺)分解因式:x 3-9x =__x(x +3)(x -3)__.12.(2017安顺)若代数式x 2+kx +25是一个完全平方式,则k =__±10__.13.(扬州)若x 3y m -4与x n +1y 5是同类项,则m 2+n 2=___85_____;14.(佛山)若(x +2)(x -1)=x 2+mx +n ,则m +n =__-1__.15.(2016沧州)当s =t +12时,代数式s 2-2st +t 2的值为__41__.16.(2017滨州)观察下列各式:21³3=11-13; 22³4=12-14;23³5=13-15;……请利用你所得结论,化简代数式:21³3+22³4+23³5+…+2n (n +2)(n ≥3且为整数),其结果为__3n 2+5n2(n +1)(n +2)__.三.解答题:(共86分)17.(8分)(2015河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x =x 2-5x +1.(1)求所捂的二次三项式;(2)若x =6+1,求所捂二次三项式的值.解:(1)设所捂的二次三项式为A ,则A =x 2-2x +1;(2) 若x =6+1,A =(x -1)2=(6+1-1)2=6.18.(8分)(2017百色)阅读理解:用“十字相乘法”分解因式2x 2-x -3的方法.(1)二次项系数2=1³2;(2)常数项-3=-1³3=1³(-3),验算:“交叉相乘之和”;1³3+2³(-1)=1,1³(-1)+2³3=5, 1³(-3)+2³1=-1,1³1+2³(-3)=-5. (3)发现第③个“交叉相乘之和”的结果1³(-3)+2³1=-1,等于一次项系数-1,即(x +1)(2x-3)=2x 2-3x +2x -3=2x 2-x -3,则2x 2-x -3=(x +1)(2x -3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x -12=__(x +3)(3x -4)__.19.(8分)(2017怀化)先化简,再求值:(2a -1)2-2(a +1)(a -1)-a(a -2),其中a =2+1.解:原式=4a 2-4a +1-2a 2+2-a 2+2a=a 2-2a +3,当a =2+1时,原式=3+22-22-2+3=4.20.(8分)(2017哈尔滨)先化简,再求代数式1x -1÷x +2x 2-2x +1-xx +2的值,其中x =4sin60°-2.解:原式=1x -1²(x -1)2x +2-xx +2=x -1x +2-x x +2=-1x +2, 当x =4si n60°-2=4³32-2=23-2时, 原式=-123-2+2=-36.21.(8分)(2017安顺)先化简,再求值:(x -1)÷⎪⎭⎫⎝⎛-+112x ,其中x 为方程x 2+3x +2=0的根.解:原式=(x -1)÷2-x -1x +1=(x -1)÷1-xx +1=(x -1)³x +11-x=-x -1.由x 为方程x 2+3x +2=0的根,解得x =-1或x =-2. 当x =-1时,原式无意义,所以x =-1舍去; 当x =-2时,原式=-(-2)-1=2-1=1. 22.(8分)(2017张家界)先化简⎪⎭⎫ ⎝⎛-11-1x ÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选一个适当的数代入求值.解:⎪⎭⎫ ⎝⎛-11-1x ÷x 2-4x +4x 2-1 =x -2x -1³(x +1)(x -1)(x -2)2=x +1x -2, ∵2x -1<6,∴2x <7,∴x <72,正整数解为1,2,3,当x =1或2时,原式都无意义,∴x =3, 把x =3代入上式得:原式=3+13-2=4.23.(8分)若x 2+3x +1=0,求x 2+1x2的值.解:x 2+3x +1=0, x +3+1x =0,x +1x=-3,⎝ ⎛⎭⎪⎫x +1x 2=(-3)2,x 2+2²x ²1x +1x 2=9,x 2+2+1x 2=9,x 2+1x2=7.24.(8分)(2016秦皇岛一模)(1)对于a ,b 定义一种新运算“☆”;a ☆b =2a -b ,例如5☆3=2³5-3=7,若x ☆5<-2,求x 的取值范围;(2)先化简,再求值:x 2-2x x 2-4x +4÷xx 2-4,其中x 的值是(1)中的正整数解.解:(1)根据题意,得2x -5<-2,解得x <32;(2)原式=x (x -2)(x -2)2²(x +2)(x -2)x =x +2. ∵x <32且x 为正整数,∴x =1,∴当x =1时,原式=x +2=3.25.(10分)设y =kx ,是否存在实数k ,使得代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为x 4?若能,请求出所有满足条件的k 的值;若不能,请说明理由. 解:能.原式=(4x 2-y 2)(x 2-y 2+3x 2)=(4x 2-y 2)(4x 2-y 2)=(4x 2-y 2)2,当y =kx 时,原式=(4x 2-k 2x 2)2=(4-k 2)2x 4,令(4-k 2)2=1,解得k =±3或± 5.∴当k =±3或±5时,原式可化简为x 4.26.(12分)回答下列问题:【问题提出】在解决某些数学问题中,比较两个数或代数式的大小,常用“作差法”,即求M-N 的差,若M-N >0,则M >N ;若M-N=0,则M=N ;若M-N <0,则M <N.【问题解决】如图1,把边长为a+b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,试比较两个小正方形面积之和M 与两个矩形面积之和N 的大小.解:由图可知:M=a 2+b 2,N=2ab ,∴M-N=a 2+b 2-2ab=(a-b )2,∵a ≠b ,∴(a-b )2>0, ∴M-N >0,∴M >N.【类别应用】(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a 、b 是正数,且a ≠b ),试比较小丽和小颖所购买商品的平均价格的高低. (2)试比较图2和图3中两个矩形周长M 1、N 1的大小(b >c ).【联系拓广】小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b >a >c >0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最长?请说明理由.解:类比应用(1)2b a +-b a ab +2=)(24)(2b a ab b a +-+=)(2)(2b a b a +-∵a 、b 是正数,且a ≠b ,∴)(2)(2b a b a +->0 ∴2b a +>b a ab +2,∴小丽所购买商品的平均价格比小颖的高;(2)由图知,M 1=2(a+b+c+b )=2a+4b+2c ,N 1=2(a-c+b+3c )=2a+2b+4c , M 1-N 1=2a+4b+2c-(2a+2b+4c )=2(b-c ),∵b >c ,∴2(b-c )>0,即:M 1-N 1>0,∴M 1>N 1, ∴第一个矩形大于第二个矩形的周长. 联系拓广设图5的捆绑绳长为L 1,则L 1=2a ³2+2b ³2+4c ³2=4a+4b+8c , 设图6的捆绑绳长为L 2,则L 2=2a ³2+2b ³2+2c ³2=4a+4b+4c , 设图7的捆绑绳长为L 3,则L 3=3a ³2+2b ³2+3c ³2=6a+4b+6c , ∵L 1-L 2=4a+4b+8c-(4a+4b+4c )=4c >0,∴L 1>L 2, ∵L 3-L 2=6a+4b+6c-(4a+4b+4c )=2a+2c >0, ∴L3-L1=6a+4b+6c-(4a+4b+8c )=2(a-c ),∵a >c ,∴2(a-c )>0,∴L3>L1.∴第二种方法用绳最短,第三种方法用绳最长.。

2018年中考数学基础巩固复习专题(二) 代数式

2018年中考数学基础巩固复习专题(二)  代数式

中考数学基础巩固复习专题(二) 代数式【知识要点】:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式;(2)单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号(4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同;两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项;(6)因式分解与整式乘法的过程恰为相反。

知识点2 整式的运算 (如结构图)知识点3 因式分解多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=- 写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。

中考数学第一轮复习学案之第二单元:代数式与运算

中考数学第一轮复习学案之第二单元:代数式与运算

初中数学中考第一轮复习导学案第二单元:代数式与运算考点一: 单项式与多项式1、下列式子:x 2+1,+4,,,﹣5x ,0中,整式的个数是( )A 、6B 、5C 、4D 、3 2、下列各式中,次数为5的单项式是( ) A 、5ab B 、a 5b C 、a 5+b 5 D 、6a 2b 3 3、多项式xy 2+xy +1是( ) A 、二次二项式 B 、二次三项式 C 、三次二项式 D 、三次三项式 4、只含有x ,y ,z 的三次多项式中,不可能含有的项是( ) A 、2x 3 B 、5xyz C 、﹣7y 3D 、2xy 31、单项式:数与字母或字母与字母相乘组成的代数式叫做单项式。

(1)①单独一个数或一个字母也是单项式;②分母中含有字母的一定不是单项式;③ π是数字,不是字母。

(2)单项式的系数:单项式中的数字因数叫做这个单项式的系数.(3)单项式的次数:一个单项式中的所有字母的指数的和叫做这个单项式的次数。

2、多项式的次数:多项式中次数最高的单项式的次数是多项式的次数。

3、单项式和多项式统称整式1、下列整式中,( )是多项式 A 、100tB 、v +2.5C 、πr 2D 、11-x2、下列结论正确的是( )A 、0不是单项式B 、52abc 是五次单项式C 、﹣x 是单项式D 、是单项式3、单项式-3πxy 2z 3的系数和次数分别是( ) A 、﹣π,5 B 、﹣1,6 C 、﹣3π,6 D 、﹣3,7 A 、五次三项式 B 、三次五项式 C 、三次二项式 D 、二次三项式4、下列说法正确的是( )A 、2π是一次单项式B 、多项式1+x ﹣x 2按x 作降幂排列是x 2+x ﹣1C 、是多项式 D 、5a ﹣3是由5a 和﹣3组成的一次二项式5、单项式-的系数是 ,次数是 6、多项式414x -的最高次项的系数是7、多项式8xy ﹣5x 2+4x 3y +1是 次 项式;按字母x 的降幂排列是 8、多项式2x n y +x 是三次二项式,那么n 的值是9、要使关于x ,y 的多项式my 3+3nx 2y +2y 3﹣x 2y +y 不含三次项,求2m +3n 的值是 、考点二:同类项与合并同类项1、下列选项中,两个单项式属于同类项的是()A、a3与b3B、3x2y与﹣4x2yzC、x2y与﹣xy2D、﹣2a2b与ba22、下列各组整式中,是同类项的一组是()A、2t与t2B、2t与t+2C、t2与t+2D、2t与t3、下列运算结果正确的是()A、5x﹣x=5B、2x2+2x3=4x5C、﹣n2﹣n2=﹣2n2D、a2b﹣ab2=04、若﹣x m y4与x3y n是同类项,则(m﹣n)9=、1、同类项与合并同类项(1)同类项的判断标准:①所有的字母相同②相同的字母的指数分别相同。

2018年中考数学真题知识分类练习试卷:代数式(有答案)

2018年中考数学真题知识分类练习试卷:代数式(有答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。

2018年中考数学真题知识分类练习试卷:代数式(含答案)

2018年中考数学真题知识分类练习试卷:代数式(含答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式2018中考数学真题汇编:代数式一.选择题(共25小题)1.(2018?齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018?大庆)某商品打七折后价格为a元,则原价为()A.a元 B.a元 C.30%a元 D.a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018?河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018?临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018?枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018?桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2018?安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a 万件和b万件,所以b=(1+22.1%)2a.故选:B.8.(2018?河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.9.(2018?贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.10.(2018?重庆)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.11.(2018?包头)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.12.(2018?武汉)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.13.(2018?淄博)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.14.(2018?台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.15.(2018?随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.571【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n 个正方形数为n2,当n=19时,=190<200,当n=20时,=210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196,则m+n=386,故选:C.16.(2018?十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.17.(2018?临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,D正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.18.(2018?绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633【分析】由三角形数阵,知第n行的前面共有1+2+3+…+(n﹣1)个连续奇数,再由等差数列的前n 项和公式化简,再由奇数的特点求出第n行从左向右的第m个数,代入可得答案.【解答】解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.19.(2018?宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.20.(2018?重庆)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【分析】根据第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3可得第④个图形中三角形的个数为2+2×7.【解答】解:∵第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3,……∴第⑦个图案中三角形的个数为2+2×7=16,故选:C.21.(2018?绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚) (1)(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.22.(2018?重庆)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.23.(2018?绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.24.(2018?济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.25.(2018?烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.【解答】解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.二.填空题(共17小题)26.(2018?岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.27.(2018?白银)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:128.(2018?菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.29.(2018?杭州)计算:a﹣3a=﹣2a.【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:a﹣3a=﹣2a.故答案为:﹣2a.30.(2018?成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.31.(2018?黔南州)根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.【解答】解:∵ +﹣1=, +﹣=, +﹣=, +﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.32.(2018?咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.【分析】根据数列得出第n个数为,据此可得前2018个数的和为++++…+,再用裂项求和计算可得.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.33.(2018?孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.34.(2018?淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.35.(2018?荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=, +2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.36.(2018?常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出的人心里想的数是9.来,若报出来的数如图所示,则报4【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.37.(2018?永州)对于任意大于0的实数x、y,满足:log2(x?y)=log2x+log2y,若log22=1,则log216= 4.【分析】利用log2(x?y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2?2?2?2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.38.(2018?桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)第1列第2列第3列第4列列行第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13……………第n行…………【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).39.(2018?泰安)观察“田”字中各数之间的关系:则c的值为270或28+14.【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+1440.(2018?枣庄)将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.41.(2018?自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.42.(2018?遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.三.解答题(共3小题)43.(2018?安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1 【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n ﹣1故应填:证明:=∴等式成立44.(2018?河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?。

2018年中考数学试题分项版解析汇编(第02期)专题1.3 代数式(含解析)

2018年中考数学试题分项版解析汇编(第02期)专题1.3 代数式(含解析)

专题1.3 代数式一、单选题1.【四川省内江市2018年中考数学试卷】下列计算正确的是( )A .B .C .D .【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A ,a+a=2a≠a 2,故该选项错误; B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a ﹣1)2=a 2﹣2a+1≠a 2﹣1,故该选项错误; D ,a3÷a=a 2,故该选项正确, 故选:D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.2.【湖北省恩施州2018年中考数学试题】下列计算正确的是( ) A . a 4+a 5=a 9B . (2a 2b 3)2=4a 4b 6C . ﹣2a (a+3)=﹣2a 2+6a D . (2a ﹣b )2=4a 2﹣b 2【答案】B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.【湖北省宜昌市2018年中考数学试卷】下列运算正确的是( ) A . x 2+x 2=x 4B . x 3•x 2=x 6C . 2x 4÷x 2=2x 2D . (3x )2=6x 2【答案】C【解析】分析:根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论. 详解:A 、x 2+x 2=2x 2,选项A 错误; B 、x 3•x 2=x 3+2=x 5,选项B 错误; C 、2x 4÷x 2=2x4﹣2=2x 2,选项C 正确;D 、(3x )2=32•x 2=9x 2,选项D 错误. 故选:C .点睛:本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.4.【湖北省宜昌市2018年中考数学试卷】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A . a=1,b=6,c=15B . a=6,b=15,c=20C . a=15,b=20,c=15D . a=20,b=15,c=6 【答案】B点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.【山东省威海市2018年中考数学试题】已知5x=3,5y=2,则52x ﹣3y=( )A .B . 1C .D . 【答案】D【解析】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x ﹣3y的值为多少即可.详解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=.故选:D.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.【湖南省张家界市2018年初中毕业学业考试数学试题】观察下列算式: , , ,,, , , …,则…的未位数字是( )A. 8 B. 6 C. 4 D. 0【答案】B点睛:本题考查的是尾数特征,根据题意找出数字循环的规律是解答此题的关键.7.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.8.【湖北省武汉市2018年中考数学试卷】计算(a﹣2)(a+3)的结果是()A. a2﹣6 B. a2+a﹣6 C. a2+6 D. a2﹣a+6【答案】B【解析】【分析】根据多项式的乘法法则进行解答即可.【详解】(a﹣2)(a+3)=a2+3a-2a-6=a2+a﹣6,故选B.【点睛】本题考查了多项式的乘法,熟练掌握多项式乘法的运算法则是解题的关键.【湖北省随州市2018年中考数学试卷】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”9.(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A. 33 B. 301 C. 386 D. 571【答案】C【点睛】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=,第n个正方形数为n2.10.【湖北省随州市2018年中考数学试卷】下列运算正确的是()A. a2•a3=a6 B. a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2 D.(﹣a2)3=﹣a6【答案】D【解析】【分析】根据同底数幂的乘法、同底数幂的除法、完全平方公式、幂的乘方逐一进行计算即可得.【详解】A、a2•a3=a5,故A选项错误;B、a3÷a﹣3=a6,故B选项错误;C、(a﹣b)2=a2﹣2ab+b2,故C选项错误;D、(﹣a2)3=﹣a6,故D选项正确,故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.11.【山东省烟台市2018年中考数学试卷】如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A. 28 B. 29 C. 30 D. 31【答案】C点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.12.【湖北省黄石市2018年中考数学试卷】下列计算中,结果是a7的是()A. a3﹣a4 B. a3•a4 C. a3+a4 D. a3÷a4【答案】B【解析】分析:根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.13.【江苏省盐城市2018年中考数学试题】下列运算正确的是()A. B. C. D.【答案】C点睛:本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.14.【四川省内江市2018年中考数学试题】下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.(a﹣1)2=a2﹣1 D.a3÷a=a2【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a-1)2=a2-2a+1≠a2-1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.15.【浙江省宁波市2018年中考数学试卷】在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2a B. 2b C. D.【答案】B【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题16.【山东省菏泽市2018年中考数学试题】若,,则代数式的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为:点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.17.【江苏省泰州市2018年中考数学试题】计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】分析:直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.详解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.点睛:此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.18.【浙江省杭州市临安市2018年中考数学试卷】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】109【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.19.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.【答案】【解析】分析:根据给定等式的变化,可找出变化规律“(n为正整数)”,依此规律即可得出结论.详解:∵,,,…,∴(n为正整数).∵2018=2×1009,∴.故答案为:.点睛:本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“(n为正整数)”是解题的关键.20.【江苏省淮安市2018年中考数学试题】(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).21.【山东省淄博市2018年中考数学试题】将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【答案】2018点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.22.【四川省达州市2018年中考数学试题】已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a2m-n==4.5.故答案为:4.5.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.23.【湖北省孝感市2018年中考数学试题】我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.24.【广西壮族自治区桂林市2018年中考数学试题】将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.25.【黑龙江省大庆市2018年中考数学试卷】若2x=5,2y=3,则22x+y=_____.【答案】75【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案即可.【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解题的关键.26.【广西壮族自治区玉林市2018年中考数学试卷】已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.【答案】2【解析】【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.27.【上海市2018年中考数学试卷】某商品原价为a元,如果按原价的八折销售,那么售价是_____元.(用含字母a的代数式表示).【答案】0.8a【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.28.【上海市2018年中考数学试卷】计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为:2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键. 29.【吉林省长春市2018年中考数学试卷】计算:a2•a3=_____.【答案】a5.【解析】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为:a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.30.【云南省昆明市2018年中考数学试题】若m+=3,则m2+=_____.【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.31.【广西钦州市2018年中考数学试卷】观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是_____.【答案】3【点睛】本题考查了规律题——数字的变化类,正确得出尾数变化规律是解题关键.32.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=_____.【答案】63【解析】【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【详解】∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.33.【湖北省黄冈市2018年中考数学试题】若a-=,则a2+值为_______________________.【答案】8点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.34.【四川省成都市2018年中考数学试题】已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.三、解答题35.【山东省淄博市2018年中考数学试题】先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【答案】2ab﹣1,=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.36.【湖南省邵阳市2018年中考数学试卷】先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【答案】4ab,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.37.【江苏省无锡市2018年中考数学试题】计算:(1)(﹣2)2×|﹣3|﹣()0;(2)(x+1)2﹣(x2﹣x)【答案】(1)11;(2)3x+1.点睛:本题主要考查了整式的运算与实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值、完全平方公式、去括号法则、合并同类项等考点的运算.38.【湖北省襄阳市2018年中考数学试卷】先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【答案】3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x、y的值代入化简后的式子即可解答本题.【详解】(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)×(2﹣)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.39.【湖北省宜昌市2018年中考数学试卷】先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【答案】点睛:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.40.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.百度文库是百度发布的供网友在线分享文档的平台。

2018-2019年中考数学一轮复习第2节 代数式与整式

2018-2019年中考数学一轮复习第2节 代数式与整式

第2节代数式与整式(必考,2~4道,近2年均考查4道,8~17分)玩转重庆10年中考真题(2008~2017年)命题点1代数式求值(10年4考,近2年连续考查)1. (2016重庆B卷8题4分)若m=-2,则代数式m2-2m-1的值是( )A. 9B. 7C. -1D. -92. (2017重庆A卷6题4分)若x=-13,y=4,则代数式3x+y-3的值为( )A. -6B. 0C. 2D. 6命题点2整式的运算(10年14考,仅2015B卷未考查)3. (2014重庆B卷2题4分)计算5x2-2x2的结果是( )A. 3B. 3xC. 3x2D. 3x44. (2016重庆A卷3题4分)计算a3·a2正确的是( )A. aB. a5C. a6D. a95. (2010重庆2题4分)计算2x3·x2的结果是( )A. 2xB. 2x5C. 2x6D. x56. (2011重庆2题4分)计算(a3)2的结果是( )A. aB. a5C. a6D. a97. (2012重庆3题4分)计算(ab)2的结果是( )A. 2abB. a2bC. a2b2D. ab28. (2016重庆B卷5题4分)计算(x2y)3的结果是( )A. x6y3B. x5y3C. x5yD. x2y39. (2013重庆A卷2题4分)计算(2x3y)2的结果是( )A. 4x6y2B. 8x6y2C. 4x5y2D. 8x5y210. (2017重庆B卷3题4分)计算a5÷a3结果正确的是( )A. aB. a2C. a3D. a411. (2014重庆A卷2题4分)计算2x6÷x4的结果是( )A. x2B. 2x2C. 2x4D. 2x10命题点3整式的化简(10年6考,近3年连续考查)12. (2017重庆A卷21(1)题5分)计算:x(x-2y)-(x+y)2.13. (2016重庆B卷21(1)题5分)计算:(x-y)2-(x-2y)(x+y).14. (2015重庆B卷21(1)题5分)计算:2(a+1)2+(a+1)(1-2a).拓展训练1. 计算:(x+2y)2-(x+y)(3x-y).命题点4因式分解(仅2008年单独考查,其余均在分式的化简及求值中考查) 15. (2008重庆12题3分)分解因式:ax-ay=________.命题点5图形规律探索(必考)16. (2015重庆A卷11题4分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )第16题图A. 21B. 24C. 27D. 3017. (2013重庆A卷10题4分)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为 2 cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,…,则第(10)个图形的面积为( )第17题图A. 196 cm2B. 200 cm2C. 216 cm2D. 256 cm218. (2009重庆8题4分)观察下列图形,则第n个图形中三角形的个数是( )第18题图A. 2n+2B. 4n+4C. 4n-4D. 4n19. (2016重庆B卷9题4分)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )第19题图A. 43B. 45C. 51D. 5320. (2017重庆A卷10题4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )第20题图A. 73B. 81C. 91D. 10921. (2017重庆B卷10题4分)下列图形都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )第21题图A. 116B. 144C. 145D. 15022. (2010重庆8题4分)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~图④中相同的是( )第22题图A. 图①B. 图②C. 图③D. 图④23. (2008重庆19题3分)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有________个.第23题图拓展训练2. 如图是一组有规律的图案,第1个图形有1个▲,第2个图形有4个▲,第3个图形有7个▲,第4个图形有10个▲,…,则第7个图形中▲的个数为( )第2题图A. 16B. 17C. 18D. 193. 如图都是由相同大小的按一定规律排成的,其中图①有3个,图②有8个,图③有15个,…,按此规律排下去,图⑧共有的个数为( )A. 80B. 73C. 64D. 72答案1. B2. B3. C4. B5.B6. C7. C8. A9. A10. B11. B 12. 解:原式=x2-2xy-(x2+2xy+y2)(1分)=x2-2xy-x2-2xy-y2(3分)=-4xy-y2.(5分)13. 解:原式=x2-2xy+y2-x2-xy+2xy+2y2(3分)=-xy+3y2.(5分)14. 解:原式=2(a2+2a+1)+a-2a2+1-2a(2分)=2a2+4a+2+a-2a2+1-2a(3分)=3a+3.(5分)拓展训练1解:原式=x2+4xy+4y2-(3x2-xy++3xy-y2)=-2x2+2xy+5y2.15. a(x-y)16. B【解析】第①个图形有2×3=6个小圆圈;第②个图形有3×3=9个小圆圈;第③个图形有4×3=12个小圆圈;…;按此规律,第⑦个图形一共有8×3=24个小圆圈.17. B【解析】第(1)个图形的面积为1×1×2=2 cm2;第(2)个图形的面积为2×2×2=8 cm2;第(3)个图形的面积为3×3×2=18 cm2;第(4)个图形的面积为4×4×2=32 cm2;…;由此规律可以看出第(n)个图形的面积为n2×2=2n2cm2.故第(10)个图形的面积为102×2=200 cm2.18. D【解析】第1个图有4个三角形,第2个图有8个三角形,第3个图有12个三角形,…,由此可知三角形的个数是对应的图形序号的4倍,∴第n个图形中有4n个三角形,故选D.19. C【解析】图形①的星星颗数为:2=1+(2×1-1);图形②的星星颗数为:6=(1+2)+(2×2-1);图形③的星星颗数为:11=(1+2+3)+(2×3-1);图形④的星星颗数为:17=(1+2+3+4)+(2×4-1);…;则图形○n的星星颗数为:(1+2+…+n )+(2n -1)=n (n +1)2+2n -1,所以图形⑧的星星颗数为:8×(8+1)2+2×8-1=51. 20. C 【解析】由前4个图形观察得,可以把每个图形分成两部分,第一部分是最下面的一层,这一层菱形的个数比图形序数多1,剩下的为第二部分,这一部分菱形的个数是图形序数的平方,由此规律可得第个图形中菱形的个数为:n 2+n +1,则第⑨个图形中菱形的个数为:92+9+1=91.21. B 【解析】第①个图形中的颗数为:4=1×2+2;第②个图形中的颗数为:11=2×3+2+3;第③个图形中的颗数为:21=3×4+2+3+4;…;由此可知:第○,n )个图形中的颗数为:n (n +1)+2+3+4+...+n +1=n (n +1)+n (n +3)2=n (3n +5)2,∴第⑨个图形中的颗数为:9×(3×9+5)2=144.22. B 【解析】∵平角为180°,每一次只旋转45°,∴经过180÷45=4次旋转后两个矩形重合如题图④,而10÷4=2……2,即第10次旋转后与图②相同.23. 181 【解析】找出每幅拼图中圆的排列规律,将该规律用算式表示出来:1×1,1×1+2×2;2×2+3×3;3×3+4×4,…,然后将算式中的数据用含拼图序号n 的代数式表示,即可归纳出公式:(n -1)2+n 2,则图⑩中,完整的圆共有(10-1)2+102=181.拓展训练2 D 【解析】观察发现:第1个图形有1个▲;第2个图形有3×2-3+1=4个▲;第3个图形有3×3-3+1=7个▲;第4个图形有3×4-3+1=10个▲;…;第n 个图形有3n -3+1=3n -2个▲;则第7个图形中▲的个数为3×7-2=19.拓展训练3 A 【解析】图①有2×2-1=3个,图②有3×3-1=8个,图③有4×4-1=15个,…,图有(n +1)(n +1)-1=n 2+2n 个,当n =8时,n 2+2n =82+2×8=80.。

【鲁教版】2018中考数学一轮复习:各知识点练习题分层设计(打包24套)

【鲁教版】2018中考数学一轮复习:各知识点练习题分层设计(打包24套)

(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。

近年中考数学一轮复习各知识点练习题设计二(代数式部分)(无答案)鲁教版(2021年整理)

近年中考数学一轮复习各知识点练习题设计二(代数式部分)(无答案)鲁教版(2021年整理)

山东省龙口市兰高镇2018中考数学一轮复习各知识点练习题分层设计二(代数式部分)(无答案)鲁教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省龙口市兰高镇2018中考数学一轮复习各知识点练习题分层设计二(代数式部分)(无答案)鲁教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省龙口市兰高镇2018中考数学一轮复习各知识点练习题分层设计二(代数式部分)(无答案)鲁教版的全部内容。

(代数式部分)A级基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有()A.(15+a)万人 B.(15-a)万人 C.15a万人 D。

错误!万人2.若x=m-错误!,y=错误!+错误!,则xy的值是( )A.2 错误! B。

2 错误! C.m+n D.m-n3.若x=1,y=错误!,则x2+4xy+4y2的值是( ) A.2 B.4 C。

错误! D .124.已知a-b=1,则代数式2a-2b-3的值是()A.-1 B.1 C.-5 D.55.已知实数x,y满足错误!+(y+1)2=0,则x-y等于( )A.3 B.-3 C.1 D.-16.若|x-3|+|y+2|=0,则x+y的值为__________.7.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是____________元.8.已知代数式2a3b n+1与-3a m+2b2是同类项,2m+3n=________。

9.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是________(用含m,n的式子表示).10.已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.B级中等题11.若a2-b2=14,a-b=错误!,则a+b的值为() A.-错误! B.错误! C.1D.212.化简错误!得____________ ;当m=-1时,原式的值为________ .13.把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是()图X1-2-1A.4m cm B.4n cm C.2(m+n) cm D.4(m-n) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是( )A.①② B.①③ C.②③ D.①②③15.已知A=2x+y,B=2x-y,计算A2-B2.C级拔尖题16.若3x=4,9y=7,则3x-2y的值为() A.错误! B。

2018年中考数学第一轮复习专题

2018年中考数学第一轮复习专题

2018 年中考数学第一轮复习专题训练(一)(代数式、整式及因式分解)一、填空题:(每题 3 分,共 36 分)1、对代数式3a 可以解释为____________。

2、比 a 的 3 倍小 2 的数是____。

23、单项式-xy的系数是____,次数是____。

22 34、计算: (-3x y ) =________。

5、因式分解: x 2y - 4y =________。

6、去括号: 3x 3- (2x 2- 3x + 1)=________。

7、把 2x 3-x y + 3x 2- 1 按 x 的升幂排列为________。

8、一个多项式减去4m 3+ m 2+ 5,得 3m 4- 4m 3-m 2+ m - 8,则这个多项式为_____。

9、若 4x 2+kx + 1 是完全平方式,则k =____。

210、已知 x - ax - 24 在整数范围内可分解因式,则整11、请你观察右图,依据图形的面积关系,使可得到一个非常熟悉的公 式,这个公式为__________。

12、用边长为 1cm 的小正方形搭如下的塔状图形, 则第 n 次所搭图形的周长是____cm 。

(用含 n 的代数式表示)第 1 次 第 2 次第 3 次第 4 次二、选择题:(每题 4 分,共 24 分)1、用代数式表示“a 与b 的差的平方”为()A 、a - b2B 、 a 2- b2C 、 (a - b)2D 、 2a - 2b2、下列计算正确的是()6、若 (a + b)2= 49, ab = 6,则 a - b 的值为()A 、- 5B 、± 5C 、 5D 、± 4三、计算:(每题6 分,共 24 分)1、 3x 2-[ 7x - (4x - 3)-2x 2] 2、 3a 2b (2a 2b 2-3ab)3、 (2a - b) (- 2a - b)4、[ (x + ) 2- y (2x + )]÷ 2xy y四、因式分解:(每题6 分,共 24 分)1、- a + 2a 2- a32、 x 3-4x3、 a 4- 2a 2b 2+ b44、 (x + 1)2+ 2(x + 1)+ 1336B 、 3 2 5A 、2a + a = 2a(-a) · (- a )=- aC 、 (- 3a 2)2=6a 4D 、(-a)5÷ (- a)3= a23、下列各组的两项不是同类项的是()A 、2ax 2与 3x2B 、- 1 和 3C 、 2x y 2 和- y 2x D 、 8x y 和- 8x y4、多项式x 2- 5x - 6 因式分解所得结果是()A 、(x + 6) (x - 1)B 、 (x - 6) (x + 1)C 、 (x -2) (x + 3)D 、 (x + 2) (x - 3)5、若代数式5x 2+ 4x y - 1 的值是 11,则 5 x 2+ 2x y +5 的值是()2A 、11B 、11C 、 7D 、9五、( 8 分)下面的图形是旧边长为l 的正方形按照某种规律排列而组成的。

2018届成都市中考数学基础巩固专题复习(二)代数式

2018届成都市中考数学基础巩固专题复习(二)代数式

走进2018年中考初中数学基础巩固复习专题(二)代数式【知识要点】:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式; (2)单项式的次数是所有字母的指数之和; 多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号 (4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同; 两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项; (6)因式分解与整式乘法的过程恰为相反。

知识点2 整式的运算 (如结构图) 知识点3 因式分解多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有: (1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式. (2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=-μ写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax寻找满足a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。

2018中考数学:必考知识点:代数式

2018中考数学:必考知识点:代数式

2018中考数学:必考知识点:代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1。

代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2。

整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3。

单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x,=│x│等。

4。

系数与指数区别与联系:①从位置上看;②从表示的意义上看5。

同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6。

根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7。

算术平方根⑴正数a的正的平方根([a与平方根的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8。

同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9。

指数⑴(幂,乘方运算)①a>0时,>0;②a <0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a0)负整指数:=1/(a0,p是正整数)二、运算定律、性质、法则1。

分式的加、减、乘、除、乘方、开方法则2。

分式的性质⑴基本性质:=(m0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(代数式部分)
A 级 基础题
1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )
A .(15+a )万人
B .(15-a )万人
C .15a 万人 D.15a
万人 2.若x =m -n ,y =m +n ,则xy 的值是( )
A .2 m
B 。

2 n
C .m +n
D .m -n
3.若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 C.32 D .12
4.已知a -b =1,则代数式2a -2b -3的值是( )
A .-1
B .1
C .-5
D .5
5.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( )
A .3
B .-3
C .1
D .-1
6.若|x -3|+|y +2|=0,则x +y 的值为__________.
7.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.
8.已知代数式2a 3b
n +1与-3a m +2b 2是同类项,2m +3n =________.
9.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).
10.已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.
B 级 中等题
11.若a 2-b 2=14,a -b =12,则a +b 的值为( ) A .-12 B.12
C .1
D .2
12.化简m 2-163m -12
得____________ ;当m =-1时,原式的值为________ .
13.把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )
图X1-2-1
A .4m cm
B .4n cm
C .2(m +n ) cm
D .4(m -n ) cm
14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:
①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .
其中是完全对称式的是( )
A .①②
B .①③
C .②③
D .①②③
15.已知A =2x +y ,B =2x -y ,计算A 2-B 2.
C 级 拔尖题
16.若3x =4,9y =7,则3
x -2y 的值为( ) A.47 B.74 C .-3 D.27
17.一组按一定规律排列的式子(a ≠0):
-a 2,a 52,-a 83,a 114
,…, 则第n 个式子是________(n 为正整数).
选做题 18.)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭
的值.
19.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形 (不重叠无缝隙),则该矩形的面积是( )
A .2 cm 2
B .2a cm
2 C .4a cm 2 D .(a 2-1)cm 2。

相关文档
最新文档