2013-2014学年上期期末高二(理科)数学考试答题卡(正式)

合集下载

浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)

浙江宁波市2024年高二下学期期末考试数学试题+答案 (1)

宁波市2023学年第二学期期末考试高二数学试题卷本试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、学校、准考证号填涂在答题卡上。

将条形码横贴在答题卡的“贴条形码区”。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

所有答案必须写在答题卡上,写在试卷上无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,不要折叠、不要弄破。

选择题部分(共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合U ={1,2,3,4,5},A ={1,2,4},B ={1,5},则∁U A ∩B =()A.⌀B.{1}C.{5}D.{1,5}2.已知复数z =1+2i ,则1z 的虚部为()A.25B.25iC.-25i D.-253.已知角α的终边过点-4,3 ,则sin α+cos αsin α=()A.-12B.-13C.14D.734.已知a ,b 为单位向量,则“a ⊥b ”是“a -2b =2a +b”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于直线m ,n 和平面α,β,下列说法错误的是()A.若m ⎳α,n ⎳α,m ,n 共面,则m ⎳nB.若m ⊂α,n ⎳α,m ,n 共面,则m ⎳nC.若m ⊥β,且α⎳β,则m ⊥αD.若m ⊥α,且m ⎳β,则α⊥β6.若ln x -ln y >y 2-x 2,则()A.ex -y>1 B.e x -y<1 C.ln x -y >0 D.ln x -y <07.袋子中有n 个大小质地完全相同的球,其中4个为红球,其余均为黄球,从中不放回地依次随机摸出2个球,已知摸出的2个球都是红球的概率为16,则两次摸到的球颜色不相同的概率为()\A.518B.49C.59D.13188.颐和园的十七孔桥,初建于清乾隆年间;永定河上的卢沟桥,始建于宋代;四川达州的大风高拱桥,修建于清同治7年.这些桥梁屹立百年而不倒,观察它们的桥梁结构,有一个共同的特点,那就是拱形结构,这是悬链线在建筑领域的应用.悬链线出现在建筑领域,最早是由十七世纪英国杰出的科学家罗伯特.胡克提出的,他认为当悬链线自然下垂时,处于最稳定的状态,反之如果把悬链线反方向放置,它也是一种稳定的状态,后来由此演变出了悬链线拱门,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为cosh x =e x +e -x 2,相应的双曲正弦函数的表达式为sinh x =e x -e -x2.若关于x 的不等式4m cosh 2x -4sinh 2x -1>0对任意的x >0恒成立,则实数m 的取值范围为()A.2,+∞B.[2,+∞)C.14,+∞ D.14,+∞ 二、选择题:本题共3小题,每小题6分,共18分。

2023-2024学年四川省绵阳市高二上学期期末教学质量测试数学检测试卷(有解析)

2023-2024学年四川省绵阳市高二上学期期末教学质量测试数学检测试卷(有解析)

EF F 两点,求 S△PAB 的最大值.
1.A
【分析】求出给定直线的斜率即可得该直线的一个方向向量 a ,再求与 a 共线的向量即可.
【详解】直线
2x
3
y
1
0
的斜率为
k
2 3
,则直线
2x
3
y
1
0
的一个方向向量
a
1,
2 3

对于
A,因
3
2 3
1
2
0
,即向量
(3,
2)

1,
2 3
共线,A
是;
对于Biblioteka 2 3rrr abc
r b
r c
2
3
rrr abc
1
r b
1
r c
2
r a
3 3 3.
故选:A.
7.C
【分析】连接 QA 、 OA ,由题意可得 QA QP ,所以 QA QO QP QO OP r , 根据双曲线的定义,即可得答案. 【详解】连接 QA 、 OA ,如图所示:
因为 l 为 PA 的垂直平分线,所以 QA QP ,
(1)求 a 的值; (2)估计家庭消费总支出的平均值及第 80 百分位数.(结果保留一位小数)
18.已知直线 l : kx y 2k 1 0 ( k R ),圆 C : x 12 y 12 9 . (1)试判断直线 l 与圆 C 的位置关系,并加以证明; (2)若直线 l 与圆 C 相交于 A , B 两点,求 AB 的最小值及此时直线 l 的方程.
.
-3-
15.已知 F1 、 F2 是双曲线 C :
x2 a2
y2 b2

2013-2014学年上学期期末考试(含答案)八年级数学

2013-2014学年上学期期末考试(含答案)八年级数学

八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。

浙江省嘉兴市2013至2014高二上学期期末测试数学理试题(B卷) 扫描版

浙江省嘉兴市2013至2014高二上学期期末测试数学理试题(B卷) 扫描版

嘉兴市2013~2014学年第一学期期末检测高二理科数学(B)参考答案(2014.1)一、选择题(本大题共12小题,每题3分,共36分)1.A ; 2.D ; 3.C ; 4.B ; 5.C ; 6.B ; 7.D ;8.D ;9.C ;10.A ;11.B .12.B .二、填空题(本大题共6小题,每题3分,共18分)13.25;14.锐角三角形; 15.5;16.]25,2[;17.),223[+∞+; 18.23. 三、解答题(本大题共6小题,第19、20题各6分,21、22、23题各8分,24题10分,共46分)19.(本题满分6分)已知2,1>>b a ,求证:b a ab +>+22. 解:因为)2)(1()2(2--=+-+b a b a ab , ……………3分 且2,1>>b a ,即02,01>->-b a .所以b a ab +>+22.………………6分20.(本题满分6分)已知命题p :对任意实数x ,022≥-+m x x 恒成立,命题q :函数23)1(2++-=x x m y 的图象是开口向上的抛物线.若“q p ∧”为假,“q p ∨”为真,求实数m 的取值范围.解:由命题p 可得044≤+=∆m ,所以1-≤m ,由命题q 可得m -1>0,即m >1.……………2分又因为“q p ∧”为假,“q p ∨”为真,所以q p ,中一真一假.可得: ⎩⎨⎧≤-≤11m m 或⎩⎨⎧>->11m m . …………4分 解得: 1-≤m 或1>m .…………6分21.(本题满分8分)已知空间三点)3,0,3(),2,1,1(),2,0,2(---C B A ,设AC b AB a ==,,求 (Ⅰ)><b a ,;(Ⅱ)平面ABC 的一个法向量n .解:(Ⅰ))0,1,1(=a ,)1,0,1(-=b , 所以1-=⋅b a ,2||=a ,2||=b ;………………2分所以21||||,cos -=>=<b a b a ,所以32,π>=<b a . …………………4分(Ⅱ)设),,(z y x n =,则由⎪⎩⎪⎨⎧=⋅=⋅0n AC n AB ,可得⎩⎨⎧=+-=+00z x y x ;……………6分取1,1,1=-==z y x ,可得平面ABC 的一个法向量为)1,1,1(-=n .………………8分22.(本题满分8分)如图,在边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,现将△AED ,△DCF ,△BEF 分别沿DE ,DF ,EF 折起,使A ,B ,C 重合于点1A ,得到三棱锥DEF A -1. (Ⅰ)求证:EF D A ⊥1;(Ⅱ)求D A 1与平面DEF 所成角大小的正切值.解:(Ⅰ)由题意可知,E A D A 11⊥,F A D A 11⊥;所以⊥D A 1平面EF A 1.…2分 又因为⊂EF 平面EF A 1,所以EF D A ⊥1.……………………4分(Ⅱ)如图,取EF 中点G ,连G A 1和DG , 可得EF DG ⊥,所以⊥EF 平面DG A 1. ……………………5分在平面DG A 1,过点1A 作DG M A ⊥1于M ,1A ⇒ABEFD C1A EFD(第22题图)可得EF M A ⊥1,所以⊥M A 1平面DEF .所以DM A 1∠即为所求线面角.……………………………6分 又221=G A ,21=D A ,所以42tan 1=∠DM A . 所以D A 1与平面DEF 所成角大小的正切值为42. ………………………8分23.(本题满分8分) 已知函数||)(a x x x f -=,]6,1[∈x .(Ⅰ)当1=a 时,求)(x f 的值域;(Ⅱ)若不等式9)(≤x f 在给定定义域]6,1[∈x 恒成立,求实数a 的取值范围. 解:(Ⅰ)当1=a 时,41)21()1()(22--=-=-=x x x x x x f ,…………………1分又因为]6,1[∈x ,所以30)6()(,0)1()(max min ====f x f f x f , 故此时)(x f 的值域[0,30] .…………………3分(Ⅱ)由题意可得,xa x x 99≤-≤-在]6,1[∈x 恒成立……………………4分 所以⎪⎪⎩⎪⎪⎨⎧-≥+≤x x a x x a 99,在]6,1[∈x 恒成立………………5分所以⎪⎩⎪⎨⎧≥≤296a a ,故实数a 的取值范围为629≤≤a . …………………8分 另解:由题意可得,9)6(≤f ,所以21529≤≤a .…………………4分又因为⎪⎩⎪⎨⎧≥-<+-=)(,)(,)(22a x ax x a x ax x x f ,(1)若6≤a ,则)(x f 在)2,1(a 上递增,在),2(a a上递减,在)6,(a 上递增,所以只需6)2(≤a f 即242≤a 即可,解得629≤≤a ;………………6分(第22题解答图)(2)若6>a ,则)(x f 在)2,1(a 上递增,在)6,2(a 上递减,此时只需6)2(≤af ,解得此时不存在这样的a . 综上,实数a 的取值范围为629≤≤a . ………………8分24.(本题满分10分)如图,底面为梯形的四棱锥P -ABCD 中,⊥PC 底面ABCD ,BC //DA ,BC AC ⊥, PC =BC =2AC =2,AD =3,M 为PB 中点,N 为线段PA 上一动点.(Ⅰ)在线段PA 上是否存在这样的点N ,使得MN //平面PCD ?若存在,试求PN 长度;若不存在,请说明理由. (Ⅱ)设二面角C -MN -A 的大小为θ,若∈θ]3,4[ππ,试求PN 的取值范围.解:(Ⅰ)以点C 为原点,CA ,CB ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,所以)0,0,0(C ,)0,0,1(A ,)0,2,0(B ,)0,3,1(-D ,)2,0,0(P ,)1,1,0(M .……1分假设存在这样的点N ,使得MN //平面PCD .设PA PN λ=,则)22,0,(λλ-N ,所以)21,1,(λλ--=MN .……………………2分设平面CDP 的法向量为),,(0000z y x n =,又因为)2,0,0(=CP ,)0,3,1(-=CD ,由⎪⎩⎪⎨⎧=⋅=⋅0000n CD n CP 可得⎪⎩⎪⎨⎧=-=0302000y x z ,取)0,1,3(0=n .…………………4分所以由00=⋅n MN ,解得33=λ.所以此时315||=PN .…………………5分 (Ⅱ)设平面CMN 的法向量为),,(1111z y x n =,又因为)1,1,0(=CM ,又设PA PN λ=,则PNMACBD(第24题图))22,0,(λλ-N ,所以)22,0,(λλ-=CN .由⎪⎩⎪⎨⎧=⋅=⋅0011n CN n CM 可得⎩⎨⎧=-+=+0)22(01111z x z y λλ,取)1,1,22(1--=λλn .……………6分同理,设平面AMN 的法向量为),,(2222z y x n =,可求得)1,1,2(2=n . …7分所以612922648644cos 22221+--=⨯+--==λλλλλλλλθ, ………………8分 又因为]3,4[ππθ∈,所以]22,21[cos ∈θ,解得7301026-≤≤-λ. ……9分 所以765510||5230-≤≤-PN . 故PN 的取值范围是]765510,5230[--. …………10分。

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。

2023-2024学年五年级数学上册期末素养测评基础卷(一)

2023-2024学年五年级数学上册期末素养测评基础卷(一)

20232024学年五年级数学上册期末素养测评卷【学易金卷·基础卷一】(考试分数:100分;考试时间:90分钟;难度系数:) 注意事项:1.答题前,填写好自己的姓名、班级、考号等信息,请写在答题卡规定的位置。

2.判断题、选择题必须使用2B 铅笔填涂答案,非判断、选择题必须使用黑色墨迹签字笔或钢笔答题,请将答案正确填写在答题卡规定的位置上。

3.所有题目必须在答题卡上作答,在试卷上作答无效。

4.考试结束后将试卷和答题卡一并交回。

5.测试范围:全册。

一、用心思考,认真填空。

(共27分)1.(本题2分)2.37 5.6⨯的积是( )位小数,3.780.06÷的商的最高位是( )位。

【答案】 三 十【分析】根据小数乘除法的计算方法,分别求出2.37 5.6⨯的积和3.780.06÷的商,据此可知2.37 5.6⨯的积是几位小数,3.780.06÷的商的最高位是什么位。

【详解】2.37 5.6⨯=13.2723.780.06÷=63则2.37 5.6⨯的积是三位小数,3.780.06÷的商的最高位是十位。

【点睛】本题考查小数乘除法,明确小数乘除法的计算方法是解题的关键。

2.(本题2分)根据135×32=4320,可知1.35×3.2=( ),4.32÷0.32=( )。

【答案】 4.32 13.5【分析】小数乘法法则:(1)按整数乘法的法则先求出积;(2)看因数中一个有几位小数,就从积的右边起数出几位点上小数点。

积÷因数=另一个因数,被除数÷1000,商÷1000;除数÷100,商×100,商最终÷(1000÷100)。

【详解】根据135×32=4320,可知1.35×3.2=4.32;4320÷32=135,4.32÷0.32=13.5【点睛】关键是掌握小数乘除法的计算方法,根据积和商的变化规律进行分析。

江苏省宿迁市2023-2024学年高二下学期6月期末考试数学试题(解析版)

江苏省宿迁市2023-2024学年高二下学期6月期末考试数学试题(解析版)

高二年级调研测试数学本试卷共4页,19小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.将条形码横贴在答题卡上“条形码粘贴处”.2.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新答案.不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算012456C C C ++=( )A. 20B. 21C. 35D. 36【答案】B 【解析】【分析】利用组合数计算公式计算可得结果.【详解】由组合数计算公式可得01245665C C C 152112×++=++=×. 故选:B2. 已知样本数据121x +,221x +,…,21n x +的平均数为5,则131x +,231x +,…,31n x +的平均数为( ) A. 6 B. 7C. 15D. 16【答案】B 【解析】【分析】根据平均数的性质即可得12,,,n x x x …的平均数为2,则可得到新的一组数据的平均数. 【详解】由题意,样本数据121x +,221x +,…,21n x +的平均数为5,设12,,,n x x x …的平均数为x , 即215+=x ,解得2x =,根据平均数性质知131x +,231x +,…,31n x +的平均数为317x +=. 故选:B3. 下表是大合唱比赛24个班级的得分情况,则80百分位数是( ) 得分 7 8 9 10 11 13 14 频数 4246242A. 13.5B. 10.5C. 12D. 13【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】因为00248019.2×=,24个班级的得分按照从小到大排序, 可得80百分位数是第20个数为13. 故选:D4. 已知a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列说法正确的是( ) A. 若a b ∥,b α⊂,则//a α B. 若//a α,b α⊂,则//a b C. //αγ,//βγ,则//αβ D. 若αγ⊥,βγ⊥,则//αβ【答案】C 【解析】【分析】由线线、线面、面面的位置关系即可求得本题. 【详解】若//a b ,b α⊂,则//a α或a α⊂,则A 错; 若//a α,b α⊂,则//a b 或a 与b 异面,则B 错;//αγ,//βγ,由平行的传递性可知,//αβ,则C 对;若αγ⊥,βγ⊥,则//αβ或相交.,D 错, 故选:C.5. 已知,,A B C 三点不共线,O 为平面ABC 外一点,下列条件中能确定,,,M A B C 四点共面的是( )的.A. OM OA OB OC =++B. 3OM OA OB BC =−−C. 1123OM OA OB OC =++D. 32OM OA OB BC =−−【答案】D 【解析】【分析】根据空间向量基本定理对选项逐个进行验证即可得出结论.【详解】由空间向量基本定理可知,若,,,M A B C 四点共面,则需满足存在实数,,x y z 使得OM xOA yOB zOC =++,且1x y z ++=, 显然选项A ,C 不成立;对于选项B ,由3OM OA OB BC =−−可得()33OM OA OB OC OB OA OC =−−−=− ,不合题意,即B 错误;对于D ,化简32OM OA OB BC =−−可得()323OM OA OB OC OB OA OB OC =−−−=−− ,满足()()3111+−+−=,可得D 正确; 故选:D6. 已知随机事件A ,B ,3()10P A =,1()2P B =,1(|)3P B A =,则(|)P A B =( ) A.15B.16 C.320D.110【答案】A 【解析】【分析】根据题意,由乘法公式代入计算可得()P AB ,再由条件概率公式,代入计算,即可得到结果. 【详解】因为3()10P A =,1()2P B =,1(|)3P B A =, 则()()131(|)31010P B A P A P AB ×=×==, 则()()1110(|)152P AB P A BP B ===. 故选:A7. 已知9290129(21)x a a x a x a x +=+++⋅⋅⋅+,则682424682222a a a a +++的值为( )A. 255B. 256C. 511D. 512【答案】A 【解析】【分析】利用二项式定理写出展开式的通项,令0x =求出0=1a ,分别令12x =、12x =−,再两式相加可得8202825622a a a +++=,再减去0a 即可. 【详解】令0x =,得0=1a , 令12x =,得93891202389251222222a a a a a a ++++++== , 令12x =−,得38912023********a a a a a a −+−++−= , 两式相加得82028251222a a a+++=, 得8202825622a a a +++= , 则682424682552222a a a a +++=. 故选:A.8. 某工厂有甲、乙、丙3个车间生产同一种产品,其中甲车间的产量占总产量的20%,乙车间占35%,丙车间占45%.已知这3个车间的次品率依次为5%,4%,2%,若从该厂生产的这种产品中取出1件为次 ) A.331000B.1033C.1433D.311【答案】C 【解析】【分析】根据题意,由全概率公式可得抽取到次品的概率,再由条件概率公式代入计算,即可求解. 【详解】记事件A 表示甲车间生产的产品, 记事件B 表示乙车间生产的产品, 记事件C 表示丙车间生产的产品, 记事件D 表示抽取到次品,则()()()0.2,0.35,0.45P A P B P C ===, ()()()0.05,0.04,0.02P D A P D B P D C ===,取到次品的概率为()()()()()()()P D P A P D A P B P D B P C P D C =++0.20.050.350.040.450.020.033=×+×+×=,若取到的是次品,此次品由乙车间生产的概率为:()()()()()()0.350.040.014140.0330.03333P B P D B P BD P B D P D P D ×=====.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列选项中叙述正确有( )A. 在施肥量不过量的情况下,施肥量与粮食产量之间具有正相关关系B. 在公式1xy=中,变量y 与x 之间不具有相关关系C. 相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度D. 某小区所有家庭年收入x (万元)与年支出y (万元)具有相关关系,其线性回归方程为ˆˆ0.8ybx =+.若20x =,16y =,则ˆ0.76b =. 【答案】ACD 【解析】【分析】AB 的正误,根据相关系数的性质可判断C 的正误,根据回归方程的性质可判断D 的正误.【详解】对于A ,在施肥量不过量的情况下,施肥量越大,粮食产量越高, 故两者之间具有正相关关系,故A 正确.对于B ,变量y 与x 之间函数关系,不是相关关系,故B 错误. 对于C ,因为210.80.6r r =>=,故相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度,故C 正确.对于D ,因为回归直线过(),x y ,故ˆ16200.8b=×+,故ˆ0.76b =,故D 正确. 故选:ACD.10. 已知点(2,3,3)A −−,(2,5,1)B ,(1,4,0)C ,平面α经过线段AB 的中点D ,且与直线AB 垂直,下列选项中叙述正确的有( ) A. 线段AB 的长为36的是B. 点(1,2,1)P −在平面α内C. 线段AB 的中点D 的坐标为(0,4,1)−D. 直线CD 与平面α【答案】BCD 【解析】【分析】由空间两点间的距离公式即可得到线段AB 的长,判断A ;由AB ⊥平面α,垂足为点D ,PD AB ⊥,即可判断B ;由中点坐标公式可得点D 的坐标,判断C ;设直线CD 与平面α所成的角为β,sin cos ,AB CD AB CD AB CDβ⋅==,通过坐标运算可得,判断D.【详解】因为点(2,3,3)A −−,(2,5,1)B , 所以6AB =,故A 错误;设D 点的坐标为(),,x y z ,因为D 为线段AB 的中点,所以2235310,4,1222x y z −++−+======−, 则D 的坐标为(0,4,1)−,故C 正确;因为点(1,2,1)P −,则()1,2,0PD =− ,又()4,2,4AB =,则()()1,2,04,2,40PD AB ⋅=−⋅=,所以PD AB ⊥,即PD AB ⊥, 又AB ⊥平面α,垂足为点D ,即D ∈平面α,所以PD ⊂平面α,故B 正确;由(1,4,0)C ,(0,4,1)D −,得()1,0,1CD =−−,设直线CD 与平面α所成的角为β,则sin cos ,ABβ= ,故D 正确.故选:BCD.11. 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为()E X 、()E Y ,方差为()D X 、()D Y ,则下列结论正确的是( )A. ()()5E X E Y +=B. ()()E X E Y <C. ()()D X D Y <D. ()()D X D Y =【答案】ABD 【解析】【分析】依题意可知不管如何交换红球个数始终只有5个,易知5X Y +=,利用期望值和方差性质可得A ,D 正确,C 错误;易知随机变量X 的所有可能取值为0,1,2,3,4,写出对应的概率并得出分布列,可得() 2.4E X =,()()5 2.6E Y E X =−=,可得B 正确.【详解】根据题意,记甲、乙两个袋子中红球个数分别为,X Y , 不管如何交换红球个数始终只有5个,易知5X Y +=,对于A ,由期望值性质可得()()()55E X E Y E Y =−=−,即()()5E X E Y +=,所以A 正确; 对于B ,易知随机变量X 的所有可能取值为0,1,2,3,4; 当从甲袋中取出2个红球,乙袋中取出2个黄球后交换,可得()()22222255C C 105C C 100P X P Y ====×=, 当从甲袋中取出1个红球,1个黄球,乙袋中取出2个黄球后交换,或者从甲袋中2个红球,乙袋中取出1个红球,1个黄球后交换,可得()()1111223232222555C C C C C 12314C C C 10025P X P Y ====+×==;当从甲袋中取出1个红球,1个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出2个红球,乙袋中取出取出2个红球;或者从甲袋中取出2个黄球,乙袋中取出取出2个黄球后交换,可得()()1111222223233322222222555555C C C C C C C C 422123C C C C C C 10050P X P Y ====×+×+×==; 当从甲袋中取出2个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出1个红球,1个黄球,乙袋中取出取出2个红球后交换,可得()()21111232323322225555C C C C C C 36932C C C C 10025P X P Y ====×+×==;当从甲袋中取出2个黄球,乙袋中取出2个红球后交换,可得()()22332255C C 941C C 100P X P Y ====×=,随机变量X 的分布列为所以期望值()132******** 2.4100255025100E X =×+×+×+×+×=, 可得()()5 2.6E Y E X =−=,即()()E X E Y <,可得B 正确; 对于C ,D ,由方差性质可得()()()()()251D Y D X D X D X =−=−=,即可得()()D X D Y =,所以C 错误,D 正确. 故选:ABD【点睛】关键点点睛:根据题意可得随机变量满足5X Y +=,利用期望值和方差性质可判断出AD 选项,再求出随机变量X 的分布列可得结论.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量X 服从正态分布()295,N σ,若(80)0.3P X <=,则(95110)P X ≤<=______. 【答案】0.2##15【解析】【分析】根据正态分布的对称性结合已知条件求解即可. 【详解】因为随机变量X 服从正态分布()295,N σ,(80)0.3P X <=, 所以(95110)(8095)0.5(80)0.2P X P X P X ≤<=<<=−<=, 故答案为:0.213. 如图,用四种不同颜色给图中的,,,,A B C D E 五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有______种.【答案】72 【解析】【分析】由图形可知点E 比较特殊,所以按照分类分步计数原理从点E 开始涂色计算可得结果.【详解】根据题意按照,,,,A B C D E 的顺序分5步进行涂色,第一步,点E 的涂色有14C 种,第二步,点A 的颜色与E 不同,其涂色有13C 种, 第三步,点B 的颜色与,A E 都不同,其涂色有12C 种,第四步,对点C 涂色,当,A C 同色时,点C 有1种选择;当,A C 不同色时,点C 有1种选择; 第五步,对点D 涂色,当,A C 同色时,点D 有2种选择;当,A C 不同色时,点D 有1种选择;根据分类分步计数原理可得,不同的涂色方法共有()111432C C C 121172×+×=种. 故答案为:7214. 如图,已知三棱锥−P ABC 的底面是边长为2的等边三角形,60APB ∠=°,D 为AB 中点,PA CD ⊥,则三棱锥−P ABC 的外接球表面积为______.【答案】20π3##20π3【解析】【分析】设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接OE , ABC 的外接圆的圆心为G ,连接OG ,OB ,可证四边形OGDE 为矩形,利用解直角三角形可求外接球半径,故可求其表面积.【详解】因为ABC 为等边三角形,D 为AB 中点,故CD AB ⊥, 而PA CD ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以CD ⊥平面PAB . 设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接,OE BE , 设ABC 的外接圆的圆心为G ,连接OG ,OB , 则OE ⊥平面PAB ,OG CD ⊥故//OE CD ,故,,,O G D E 共面,而DE ⊂平面PAB , 故CD DE ⊥,故四边形OGDE 为矩形.又12sinABBEAPB=×∠13OE DG CD===,故外接球半径为OB=,故外接球的表面积为1520π4π93×=,故答案为:20π3四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步聚.15.在()*23,Nnx n n≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)证明展开式中不存在常数项;(2)求展开式中所有的有理项.【答案】(1)证明见解析;(2)7128x,4672x,280x,214x.【解析】【分析】(1)根据题意可求得7n=,利用二项展开式的通项可得展开式中不存在常数项;(2)由二项展开式的通项令x的指数为整数即可解得合适的k值,求出所有的有理项.【小问1详解】易知第2,3,4项的二项式系数依次为123C,C,Cn n n,可得132C+C2Cn n n=,即()()()121262n n n n nn−−−+=×,整理得()()270n n−−=,解得7n=或2n=(舍);所以二项式为72x,假设第1k+项为常数项,其中Nk∈,即可得()1777277C 22C kk k kkk k x x −−−−=为常数项,所以1702k k −−=, 解得14N 3k =∉,不合题意; 即假设不成立,所以展开式中不存在常数项; 【小问2详解】由(1)可知,二项展开式的通项()1777277C22C kk k kk k k x x−−−−=可得, 其中的有理项需满足17Z 2k k −−∈,即37Z 2k −∈,且7k ≤;当30,77Z 2k k =−=∈,此时有理项为707772C 128x x =; 当32,74Z 2k k =−=∈,此时有理项为524472C 672x x =; 当34,71Z 2k k =−=∈,此时有理项为3472C 280x x =; 当36,72Z 2k k =−=−∈,此时有理项为16272142C x x−=; 综上可知,展开式中所有的有理项为7128x ,4672x ,280x ,214x . 16. 某校天文社团将2名男生和4名女生分成两组,每组3人,分配到A ,B 两个班级招募新社员. (1)求到A 班招募新社员的3名学生中有2名女生的概率;(2)设到A ,B 两班招募新社员的男生人数分别为a ,b ,记X a b =−,求X 的分布列和方差. 【答案】(1)35(2)85【解析】【分析】(1)由古典概型的概率求解122436C C 3C 5P ==; (2)由题意,X 的可能取值为2,0,2−,算出对应概率()2P X =−,()0P X =,()2P X =,即可列出X 的分布列,再求出()E X ,进而由公式求出方差.【小问1详解】到A 班招募新社员的3名学生中有2名女生的概率为122436C C 3C 5P ==. 【小问2详解】由题意,X 的可能取值为2,0,2−,则()032436C C 12C 5P X =−==,()122436C C 30C 5P X ===,()212436C C 12C 5P X ===, 所以X 的分布列为则()1312020555E X =−×+×+×=, 所以()()()()22213182000205555D X =−−×+−×+−×=. 17. 如图,正三棱柱111ABC A B C 中,D 为AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)当1AA AB的值为多少时,1AB ⊥平面1ACD ?请给出证明. 【答案】(1)证明见答案. (2 【解析】【分析】(1)连接1AC ,交1AC 于点O ,连接DO ,能证出1//BC DO ,则能证出1BC ∥平面1ACD.(2)先把1AB ⊥平面1ACD 当做条件,得出11AB A D ⊥,得出1AA AB的值,过程要正面分析. 【小问1详解】连接1AC ,交1AC 于点O ,连接DO , 因为O 是1AC 的中点,D 为AB 的中点, 所以DO 是1ABC 的中位线,即1//BC DO ,1BC ⊄平面1ACD ,DO ⊂平面1ACD , 所以1BC ∥平面1ACD . 【小问2详解】1AA AB =时,1AB ⊥平面1ACD ,证明如下:因为1AA AB =,11tan A AB ∴∠,111tan AA DA B AD ∠= 1111A AB DA B ∴∠=∠,1112DA B AA D π∠+∠= ,1112A AB AA D π∴∠+∠=,即11AB A D ⊥.因为三棱柱111ABC A B C 为正三棱柱,ABC ∴ 为正三角形,且1AA ⊥平面ABC ,1,CD AB CD AA ∴⊥⊥,1AB AA A ∩=,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A ,CD 平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1AB CD ⊥,1A D CD D = ,1,A D CD ⊂平面1ACD , 1AB ∴⊥平面1ACD .1AA AB∴18. 会员足够多的某知名户外健身俱乐部,为研究不高于40岁和高于40岁两类会员对服务质量的满意度.现随机抽取100名会员进行服务满意度调查,结果如下:年龄段满意度合计满意不满意 不高于40岁 50 20 70 高于40岁 25 5 30 合计7525100(1)问:能否认为,会员不高于40岁和高于40岁年龄结构对服务满意度有关;(2)用随机抽取的100名会员中的满意度频率代表俱乐部所有会员的满意度概率.从所有会员中随机抽取3人,记抽取的3人中,对服务满意的人数为X ,求X 的分布列和数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++).参考数据:()20P x χ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010x2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. (2)分布列见解析;94. 【解析】【分析】(1)首先根据列联表中的数据结合公式计算2χ值,然后对照表格得到结论;(2)由表格可知,对服务满意的人的概率为34,且33,4X B∼,根据二项分布公式即可求解. 【小问1详解】 由列联表可知:2217100(5052520)100.587255 2.072730630χ××−×<××==≈, 所以不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. 【小问2详解】由表格可知,对服务满意人的概率为34,且33,4X B∼, 则0,1,2,3X =,可得:()303110C 464P X ===,()2133191C 4464P X  ===   , ()22331272C 4464P X ===,()3333273C 464P X === , 故X 的分布列如图:可得()39344EX =×=. 19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥; (2)若π2θ=,求三棱台ABC DEF −的体积; (3)若A 到平面BCFE cos θ的值. 【答案】(1)证明见解析; (2)78(3)3cos 5θ=−的【解析】【分析】(1)利用三棱柱性质,根据线面垂直的判定定理可得AC ⊥平面BMN ,可证明结论; (2)由二面角定义并利用棱台的体积公式代入计算可得结果;(3)建立空间坐标系,求出平面BCFE 的法向量,利用点到平面距离的向量求法即可得出cos θ的值. 【小问1详解】取AC 的中点为M ,连接,NM BM ;如下图所示:易知平面//ABC 平面DEF ,且平面ABC ∩平面DACF AC =,平面DEF ∩平面DACF DF =; 所以//AC DF ,又因为1AD FC ==, 可得四边形DACF 为等腰梯形,且,M N 分别为,AC DF 的中点,所以MN AC ⊥, 因为2AB BC AC ===,所以BM AC ⊥, 易知BM MN M = ,且,BM MN ⊂平面BMN , 所以AC ⊥平面BMN ,又BN ⊂平面BMN ,所以AC BN ⊥; 【小问2详解】由二面角定义可得,二面角D AC B −−的平面角即为BMN ∠, 当π2θ=时,即π2BMN ∠=,因此可得MN ⊥平面ABC ,可知MN 即为三棱台的高,由1,2ADDF FC AC ====可得MN =;易知三棱台的上、下底面面积分别为DEFABC S S =因此三棱台ABC DEF −的体积为1738V =【小问3详解】由(1)知,BM AC ⊥,MN AC ⊥,二面角D AC B −−的平面角即为()0,πBMN θ∠=∈; 以M 为坐标原点,分别以,MA MB 所在直线为,x y 轴,过点M 作垂直于平面ABC 的垂线为z 轴建立如图所示的空间直角坐标系:可得()()()()1,0,0,1,0,0,,,0,0,0A C B N M θθ −,易知11,0,022NF MC==−,可得12F θθ − ;则()1,cos 2CBCF θθ =设平面BCFE 的一个法向量为(),,n x y z =,所以01cos sin 02n CB x n CF x y z θθ ⋅==⋅=++=, 令1y =,则1cos sin x z θθ−=,可得1cos sin n θθ−=; 显然()2,0,0AC =− ,由A 到平面BCFE,可得AC n n ⋅==,可得21cos 4sin θθ− =;整理得25cos 2cos 30θθ−−=,解得3cos 5θ=−或cos 1θ=; 又()0,πθ∈,可得3cos 5θ=−.【点睛】方法点睛:求解点到平面距离常用方法:(1)等体积法:通过转换顶点,利用体积相等可得点到面的距离;(2)向量法:求出平面的法向量,并利用点到平面距离的向量求法公式计算可得结果;。

2013-2014学年上学期期末考试高二数学试题及答案

2013-2014学年上学期期末考试高二数学试题及答案

2013—2014学年上学期期终考试试卷2012级数学试卷一、填空题:(每题3分,共24分)1. 过点(1,3)且与直线1y -=x 平行的直线方程是2. 过圆4x 22=+y 上一点)1,3(-P 的切线方程是3. 点A(-2,1)到直线0243:=--y x l 的距离为4. 已知直线a ∥b ,且a ∥平面α,则b 与平面α的位置关系是5. 平行于同一平面两条直线的位置关系为6. 在60°的二面角βα--m 的面α内有一点A 到面β的距离为3,A 在β上的射影为A ′,则A ′到面α的距离为7. 用一个平面截半径为25cm 的球,截面面积是π492cm ,则球心到截面的距离为 8.抛掷两颗骰子,则“两颗骰子点数相同”的概率为二、选择题(每题3分,共30分)1.若直线0=++c by ax 通过第一、三、四象限,则 ( ) A. 0,0>>bc ab B. 0,0<>bc ab C. 0,0><bc ab D. 0,0<<bc ab2. 若直线02x =++ay 和02x 3=-y 互相垂直,则a 等于 ( )A. 23-B. 32- C. 32 D. 233. 方程04222=++-+m y x y x 表示一个圆,则 ( ) A. 5≤m B. 5m < C. 51<mD. 51≤m4. 空间中与同一条直线都垂直的两条直线的位置关系是 ( ) A.平行 B.相交 C.异面 D.以上都可能5.如果平面的一条斜线长是它在这个平面上的射影长的3倍,则这条斜线与平面所成角的余弦值为 ( )A .31 B.322 C.22 D.326. 长方体一个顶点上的三条棱长分别是a ,b ,c ,那么长方体的全面积是( ) A. ca bc ab ++ B. 222c b a ++ C. abc 2 D. )(2ca bc ab ++7.已知两球的球面面积比为4︰9 ,则两个球的体积比为 ( ) A. 2︰3 B. 4︰9 C. 8︰27 D. 4︰278.一副扑克牌有黑、红、梅、方各13张,大小王各1张,从中任取一张,则不同取法的种数是 ( ) A. 4 B. 54 C. 413 D. 1349.由1,2,3,4,5五个数字组成 个没有重复数字的三位数偶数( ) A. 12 B. 24 C. 36 D. 4810.某校对全校3000名学生的肺活量进行调查,准备抽取500名学生作为调查对象,则上面所述问题中的总体是 ( ) A.3000名学生 B.3000名学生的肺活量 C.500名学生 D.500名学生的肺活量 三、计算题:(共24分)1.已知点()5,3A 是圆0808422=---+y x y x 的一条弦的中点,求这条弦所在直线方程.(8分)2.求圆2x 22=+y 上的点到直线03=--y x 的最长距离。

2013-2014学年上学期期末考试理科数学答案

2013-2014学年上学期期末考试理科数学答案

2013-2014学年上学期期末调研考试高二理科数学答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1. D 2.C 3.B 4.C 5.C 6.D 7.C 8.B 9.A 10.A 11.C 12.D 二、填空题:本大题共4小题,每小题5分,共20分.13.32π; 14. 1+n n ; 15.34; 16. ①③④ 三、解答题:本大题6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)过抛物线)0(22>=p px y 的焦点F 的直线交抛物线于B A ,两点,通过点A 和抛物线顶点O 的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明:设),,2(020y pyA 则直线OA 的方程为)0(200≠=y x y py ①……………2分 准线方程为2p x -=② 联立①②可得点D 的纵坐标为02y p y -=③……………4分因为)0,2(p F ,所以可得直线AF 的方程为)2(22200px py py y --=,④ 其中.220p y ≠将④与)0(22>=p px y 联立可得点B 的纵坐标为02y p y -=⑤…………7分由③⑤可知,DB ∥x 轴.……………8分 当220p y =时,结论显然成立.……………9分所以,直线DB 平行于抛物线的对称轴.……………10分 18.(本小题满分12分)已知命题[]0,2,1:2≥-∈∀a x x p ;命题,:0R x q ∈∃使得01)1(020<+-+x a x .若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.解:p 真,则1≤a ,q 真,则,04)1(2>--=∆a 即3>a 或1-<a .………3分 因为“p 或q ”为真,“p 且q ”为假,所以p ,q 中必有一个为真,另一个为假,……………7分当p 真q 假时,有⎩⎨⎧≤≤-≤311a a 得11≤≤-a ,……………9分当p 假q 真时,有⎩⎨⎧-<>>131a a a 或得3>a ,……………11分综上,实数a 的取值范围为11≤≤-a 或3>a .……………12分 19.(本小题满分12分)如图,已知四棱锥ABCD P -的底面为等腰梯形,AB ∥BD AC CD ⊥,,H 为垂足,PH 是四棱锥的高,,E 为AD 中点.请建立合适的空间直角坐标系,在坐标系下分别解答下列问题.(1)证明:BC PE ⊥;(2)若,60=∠=∠ADB APB 求直线PA 与平面PEH 所成角的正弦值.BA解:以H 为原点,HP HB HA ,,所在直线分别为x 轴,y 轴,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则).0,1,0(),0,0,1(B A ………1分(1)证明:设),0,0)(,0,0(),0,0,(><n m n P m C 则).0,2,21(),0,,0(mE m D 可得).0,1,(),,2,21(-=-=→-→-m BC n mPE因为,0022=+-=⋅→-→-mm BC PE 所以BC PE ⊥.………4分 (2)由已知条件可得,1,33=-=n m 故).1,0,0(),0,63,21(),0,33,0(),0,0,33(P E D C ---………5分 设),,(z y x n =→为平面PEH 的法向量,则,00⎪⎩⎪⎨⎧=⋅=⋅→-→→-→HP n HE n 即⎪⎩⎪⎨⎧==--,0,06321z z y x ……………8分 因此可以取).0,3,1(=→n ……………9分 由),1,0,1(-=→-PA 可得,42,cos =><→→-n PA ……………11分 所以直线PA 与平面PEH 所成角的正弦值为.42……………12分 20.(本小题满分12分)如图,一个结晶体的形状为平行六面体.(1)如果其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60,求以这个顶点A 为端点的晶体的对角线的长与棱长的关系;(2)如果已知,1d AC =,,b AD a AB ==,1c AA =,并且以A 为端点的各棱间的夹角都相等为θ,试用d c b a ,,,表示θcos 的值;(3)如果已知该平行六面体的各棱长都等于a ,并且以某一顶点为端点的各棱间的夹角都等于θ,求这个平行六面体相邻两个面夹角α的余弦值.解:(1)设.60,1111=∠=∠=∠===DAA BAA BAD AD AA AB2121)(→-→-→-→-++=AA AD AB AC)(2112122→-→-→-→-→-→-→-→-→-⋅+⋅+⋅+++=AA AD AA AB AD AB AA AD AB,6)60cos 60cos 60(cos 2111=+++++= ……………2分所以,61=→-AC 即A 为端点的晶体的对角线的长是棱长的6倍.……………3分(2)21212)(→-→-→-→-++==AA AD AB AC d,cos )(2222θca bc ab c b a +++++=解得)(2cos 2222ca bc ab c b a d ++---=θ.……………6分(3)在平面1AB 内作E AB E A ,1⊥为垂足,在平面AC 内作F AB CF ,⊥为垂足..cos ,sin 1θθa BF AE a CF E A ====……………9分θα22111sin )()(cos a BF CB AE A A CFE A CF E A →-→-→-→-→-→-→-→-+⋅+=⋅⋅=θθθπθθπθθ2222222sin cos )cos(cos )cos(cos cos a a a a a +-+-+=.cos 1cos θθ+=……………12分11D CA21.(本小题满分12分)两个数列{}n a 和 {}n b ,满足)(2132*321N n nna a a a b nn ∈+⋅⋅⋅+++⋅⋅⋅+++=,6)12)(1(3212222++=+⋅⋅⋅+++n n n n .求证:{}n b 为等差数列的充要条件是{}n a 为等差数列. 证明:(必要性)由已知,得,2)1(32321n n b n n na a a a +=+⋅⋅⋅+++① …………………1分于是有,2)1()1(3211321--+=-+⋅⋅⋅+++n n b n n a n a a a ②……………2分 由①-②,得1)1(21)1(21---+=n n n b n b n a .………………3分 设等差数列{}n b 的公差为d ,由已知,得,11b a =则d n a b n )1(1-+=, 所以[]d n a d n a a n 23)1()1(322111∙-+=-+=.……………5分 所以数列{}n a 是以1a 为首项,以d 23为公差的等差数列.…………6分 (充分性)由已知,得,322)1(321n n na a a a b n n +⋅⋅⋅+++=+③ 设等差数列{}n a 的公差为/d ,则[]/1/1/11321)1()2(3)(232d n a n d a d a a na a a a n -++⋅⋅⋅+++++=+⋅⋅⋅+++)-3-32-2)321(222/1n n d n a +⋅⋅⋅++++⋅⋅⋅+++=(⎥⎦⎤⎢⎣⎡+-++∙++=2)1(6)12)(1(2)1(/1n n n n n d n n a ),1(322)1(2)1(/1-∙+∙++=n n n d n n a 由③,得),1(32/1-+=n d a b n …………………10分 所以数列{}n b 是以1a 为首项,以/32d 为公差的等差数列.……………11分综上,{}n b 为等差数列的充要条件是{}n a 为等差数列.…………………12分 22.(本小题满分12分)已知椭圆)0(1:22221>>=+b a by a x C 的右焦点与抛物线x y C 4:22=的焦点重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,.35=PF 过点)0,1(-A 作直线交椭圆与M 、N 两点.(1)求椭圆1C 的方程; (2)求MN 的最大值;(3)求线段MN 的中点R 的轨迹方程. 解:(1)易得),0,1(F 因为35=PF ,根据抛物线定义知,351=+p x 所以32=p x , 将),32(p y P 代入x y C 4:22=解得38=p y , 所以)38,32(P ,将点P 坐标代入)0(1:22221>>=+b a by a x C 得1389422=+b a ①……………3分 又在椭圆中有1222==-c b a ② 联立①②解得,3,422==b a所以椭圆1C 的方程为13422=+y x .……………4分 (2)当直线MN 垂直x 轴时,方程为,1-=x 此时线段MN 为通径MN =322=ab ; 当直线MN 不垂直x 轴时,设直线MN 的斜率为k ,方程为)1(+=x k y ,………5分与13422=+y x 联立消去y 得,01248)43(2222=-+++k x k x k 设),(),,(2211y x N y x M ,由韦达定理得2221222143124,438k k x x k k x x +-=+=+根据弦长公式得)43()124(4)43(641242242k k k k kMN +-⨯-++= 2243)1(12k k ++=……………6分设m k k =++22431,所以)041(41132≠---=m m m k 因为,02≥k 所以04113≥--m m ,解得,3141≤<m ……………7分所以,4123≤<m由前面知MN =322=ab 所以43≤≤MN ,故MN 的最小值为3(此时为通径长),最大值为4(此时为实轴长).……………8分 (3)设),,(y x R ),(),,(2211y x N y x M ,则21212,2y y y x x x +=+=,③………9分将),(),,(2211y x N y x M 分别代入13422=+y x 得 ,134,13422222121=+=+yx y x 两式相减得 ,4321212121-=++⨯--x x y y x x y y ④因为M 、N 、R 、A 四点共线,所以有12121+=--x yx x y y ⑤ 将③、⑤代入④化简得034322=++x y x ,……………11分因为点R 在椭圆1C 的内部,所以13422<+y x , 因此R 的轨迹方程为034322=++x y x (13422<+y x ).……………12分。

(新课标)2013-2014学年高二数学上学期期末考试试题 理

(新课标)2013-2014学年高二数学上学期期末考试试题 理

(1) (2) (3) (4) (5)2013-2014学年度上学期期末考试 高二数学(理)试题【新课标】一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 用数学归纳法证明不等式2n >n 2时,第一步需要验证n 0=_____时,不等式成立( ) A. 5 B. 2和4 C. 3 D. 1 2.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件 3.如图,长方形的四个顶点为)2,0(),2,4(),0,4(),0,0(C B A O ,曲线x y =经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中 阴影区域的概率是( )A .125B .21C . 43D . 324. 如图,第(1)个图案由1个点组成,第(2)个图案由成,第(4)个图案由13个点组成,第(5)个图案由排列规律,第100个图形由多少个点组成( )A. 9900B. 9901C. 9902D. 9903 5. 抛物线2y ax =的焦点坐标是( )A .1(0,4aB .1(0,)4a -C .(0,4a -D .(0,)4a6. 设双曲线)0,0(12222>>=-b a bya x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A.x y 2±= B .x y 22±= C . x y 2±= D.x y 21±= 7. 已知椭圆22221x y a b+=(0a b >>)中,,,a b c 成等比数列,则椭圆的离心率为( )A.2 B .35 C .D 8. 设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 ( ) A .2) B .C .(25),D .(2 9. 对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A .f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)10. 设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( )A .1a <-B .1a >-C .1a e <-D .1a e>-11. 已知32()32f x x x =-+,1,2x x 是区间[]1,1-上任意两个值,12()()M f x f x ≥-恒成立,则M 的最小值是( )A. -2B. 0C. 2D. 4 12. 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-二、填空题:本大题共4小题,每小题5分。

2013-2014学年高二上学期期末联考数学(理)试题(含答案)

2013-2014学年高二上学期期末联考数学(理)试题(含答案)

学校 姓名 联考证号2013-2014学年高二上学期期末联考数学(理)试题注意事项:1.答题前,考生务必用蓝、黑色墨水笔或圆珠笔将学校名称、姓名、班级、联考证号、座位号填写在试题和试卷上。

2.请把所有答案做在试卷上,交卷时只交试卷,不交试题,答案写在试题上无效。

3.满分150分,考试时间120分钟。

一.选择题(每小题给出的四个选项中,只有一个选项正确每小题5分,共60分) 1. 已知全集}4,3,2,1{=U ,}1{=A ,}42{,=B ,则A ∪=)(B C U A.}1{B.}3,1{C.}3{D.}3,2,1{2. 直线012=+-y x 与直线012=++y ax 的垂直,则=aA. 1B. 1-C. 4D. 4-3. 已知两个不同的平面βα、和两条不重合的直线n m 、,有下列四个命题:①若m //n ,α⊥m ,则α⊥n ; ②若α⊥m ,β⊥m ,则α//β; ③若α⊥m ,β⊂m ,则βα⊥; ④若m //α,n //α,则m //n . 其中正确命题的个数是 A. 1个B. 2个C. 3个D. 4个4. 到两坐标轴距离之和为6的点的轨迹方程是A.0=+y xB.6||=+y xC.6=±y xD.6||||=+y x5. 执行如图所示的程序框图,其输出的结果是A. 1B.21- C.45- D.813-6. “1=k ”是“直线0=+-k y x 与圆122=+y x 相交”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 一个棱锥的三视图如图,则该棱锥的体积是A.34 B.38 C.4 D.88.直线过点)0,1(-且与圆x y x 222=+相切,若切点在第四象限,则直线的方程为 A.013=+-y x B.013=++y x C.013=+-y x D.013=++y x 9. 正方体1111D C B A ABCD -中,下列结论错误..的是 A.AC ∥平面11BC A B.⊥1BC 平面CD B A 11C.C B AD 11⊥D.异面直线1CD 与1BC 所成的角是45º 10. 已知向量)2,0(),cos ,2cos 2sin 2(),3,1(π∈-==x x x x ,若b a ⊥,则=x A.6πB.3πC.32π D.65π11. 设抛物线x y 82=的焦点为F ,准线为,P 为抛物线上的一点,l PA ⊥,垂足为A .若直线AF 的斜率为3-,则=||PF A.4 B.8 C.34 D.3812. 已知函数⎪⎩⎪⎨⎧-<≤-+---≥-+=13,)2(11,325)(22x x x x x x f ,则函数2)()(x x f x g -=的零点个数为 A.1 B.2 C.3 D.4二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上) 13. 在区间]2,3[-上随机取一个数,x 则1||≤x 的概率是___________.14. 已知函数⎩⎨⎧<>=0,30,log )(2x x x x f x,则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛41f f 的值为___________. 15. 已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(4,,则该双曲线的离心率为___________.16. 设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上.若该球的表面积为37π,则棱长=a ___________. 三.解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上.只写最终结果的不得分) 17.(本小题满分10分)命题:p 函数xa y )22(+=是增函数.命题],1,1[:-∈∀x q 32+--≤x x a 成立, 若q p ∧ 为真命题,求实数a 的取值范围. 18.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 是边长为2的 正方形,CD PD BC PB ⊥⊥,,且2=PA ,E 为PD 中点.(1)求证:⊥PA 平面ABCD ; (2)求二面角D AC E --的余弦值.19.(本小题满分12分) 如图,在△ABC中,52,4==AC B π,552cos =C .(1)求A sin ;(2)设BC 的中点为D ,求中线AD 的长.20.(本小题满分12分)矩形ABCD 的对角线AC 、BD 相交于点M (2,0),AB 边所在直线的方程为:063=--y x , 若点)5,1(-N 在直线AD 上.(1)求点A 的坐标及矩形ABCD 外接圆的方程;(2)过点)1,0(-P 的直线m 与ABCD 外接圆相交于A 、B 两点,若4||=AB , 求直线m 的方程.21.(本小题满分12分)等差数列}{n a 的前n 项和为n S ,且225,5153==S a .(1)数列}{n b 满足:,1),(-1*1=∈=+b N n a b b n n n 求数列}{n b 的通项公式; (2)设,221n c n a n +=+求数列}{n c 的前n 项和n T .22(本小题满分12分)已知椭圆E 的中心在坐标原点、对称轴为坐标轴,且抛物线y x 242-=的焦点是它的一个焦点,又点)2,1(A 在该椭圆上. (1)求椭圆E 的方程;(2)若斜率为2直线与椭圆E 交于不同的两点C B 、,当ABC 面积的最大值时,求直线的方程.高二数学(理科A类)双向细目表。

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)

2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)2016-2017学年XXX(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)命题p:“a=-2”是命题q:“直线ax+3y-1=0与直线6x+4y-3=0垂直”成立的()A。

充要条件 B。

充分非必要条件C。

必要非充分条件 D。

既不充分也不必要条件2.(5分)XXX为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大。

在下面的抽样方法中,最合理的抽样方法是()A。

简单随机抽样 B。

按性别分层抽样C。

按年级分层抽样 D。

系统抽样3.(5分)圆(x+2)²+y²=4与圆(x-2)²+(y-1)²=9的位置关系为()A。

内切 B。

相交 C。

外切 D。

相离4.(5分)已知双曲线的离心率为2,那么双曲线的渐近线方程为()A。

B。

x±y=0C。

2x±y=0 D。

5.(5分)函数f(x)=x²-x-2,x∈[-5,5],在定义域内任取一点x,使f(x)≤0的概率是()A。

B。

C。

D。

6.(5分)设实数x,y满足,则μ=的取值范围是()A。

[,2] B。

[,]C。

[,2] D。

[2,]7.(5分)有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做研究经验交流,则每个班至少去一名的不同分派方法种数为()A。

200 B。

180C。

150 D。

2808.(5分)柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A。

取出的鞋不成对的概率是0B。

取出的鞋都是左脚的概率是0C。

取出的鞋都是同一只脚的概率是0D。

取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是1/39.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A。

2024-2025学年高二上学期期中模拟考试数学试题02(新高考地区专用,直线与圆 椭圆)含解析

2024-2025学年高二上学期期中模拟考试数学试题02(新高考地区专用,直线与圆 椭圆)含解析

2024-2025学年高二数学上学期期中模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:空间向量与立体几何+直线和圆的方程+椭圆。

5.难度系数:0.62。

第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{},,a b c 为空间的一个基底,则下列各组向量中能构成空间的一个基底的是()A .a b + ,c b + ,a c- B .2a b + ,b ,a c- C .2a b +,2c b + ,a b c++r r r D .a b + ,a b c ++r r r ,cA .π2B .π3C .π4D .π6【答案】B3.设定点()10,2F -,()20,2F ,动点P 满足条件()120PF PF m m m+=+>,则点P 的轨迹是()A .椭圆B .线段C .射线D .椭圆或线段4.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,113CF CC =,则异面直线EF 与11B D 所成角的余弦值为()A .23B C .26D .21故选:C .5.已知直线l :3mx y ++和直线:,则“1m =-”是“l ∥A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【答案】B【详解】当//l n 时,(m m6.已知椭圆22:1(0)M a b a b +=>>的左、右焦点分别为12,F F ,点P 在M 上,Q 为2PF 的中点,且121,FQ PF FQ b ⊥=,则M 的离心率为()A .3B .13C .12D 根据题意可知112PF F F ==又Q 为2PF 的中点,可得PQ12均过定点,且圆12均与轴、轴相切,则圆12的半径之积为()A .ab B .2abC .22a b+D .222a b +为线段AF 的中点,过点N 的平面α与棱,,AB AC AD 分别交于,,O P Q ,设四面体AOPQ 的体积为V ',则V V'的最小值为()A .14B .18C .116D .127【答案】C【详解】连接AM ,由题意知:()1122AN AF AD DF ==+ ()111362AD AB AC =+⨯+=令AOx AB APy AC ⎧=⎪⎪⎪=⎨,则AO AB x AP AC y ⎧=⎪⎪⎪=⎨选对的得6分,部分选对的得部分分,有选错的得0分.9.下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线1l ,2l 的方向向量分别是()2,3,1a =-,()2,3,1b =-- ,则12l l //B .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥C .直线l 的方向向量()112a ,,=- ,平面α的法向量是()6,4,1u =-,则l α⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则//l α10.已知直线,圆00为圆C 上任意一点,则下列说法正确的是()A .2200x y +的最大值为5B .00y x 的最大值为5C .直线l 与圆C 相切时,k =D .圆心C 到直线l 的距离最大为411.已知直线:(0)l y kx k =≠交椭圆221x y a b+=于A ,B 两点,1F ,2F为椭圆的左、右焦点,M ,N 为椭圆的左、右顶点,在椭圆上与2F 关于直线l 的对称点为Q ,则()A .若1k =,则椭圆的离心率为B .若13MA MB k k =-,则椭圆的离心率为3C .1//l FQ D .若直线BQ 平行于x 轴,则k =对于A ,若1k =,则(0,)Q c 所以2222c cc e a b cc ===+对于B ,设0,0,则(B三、填空题:本题共3小题,每小题5分,共15分.12.已知点P 在圆22(5)(5)16x y -+-=上,点()()4,0,0,2A B ,当PBA ∠最小时,PB =.13.下列关于直线方程的说法正确的是.①直线sin 20x y θ-+=的倾斜角可以是2;②直线l 过点()2,3-,并且在两坐标轴上的截距相等的直线方程为10x y +-=;③过点()00,P x y 的直线0Ax By C ++=的直线方程还可以写成()()000A x x B y y -+-=;④经过()11,A x y ,()22,B x y 两点的直线方程可以表示为111212y y x x y y x x --=--.1111的棱长为3,P 是侧面11(包括边界)上一动点,E 是棱CD 上一点,若APB DPE ∠=∠,且APB △的面积是DPE 面积的9倍,则三棱锥P ABE -体积的最大值是..77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知直线l 的方程为:()()211740m x m y m +++--=.(1)求证:不论m 为何值,直线必过定点M ;(2)过点M 引直线1l 交坐标轴正半轴于A B 、两点,当AOB 面积最小时,求AOB 的周长.()1740++--=m y m 可得:(m ,所以直线l 过定点()3,1M ......................51111平面11(1)求证:平面11AB C ⊥平面1A BC ;(2)设点P 为1AC 的中点,求平面ABP 与平面BCP 夹角的余弦值.【详解】(1)证明1AA ⊥ 平面,ABC BC ⊂平面ABC ,1AA BC ∴⊥.又1,AB BC AA AB A ⊥⋂= ,且1,AA AB ⊂平面11ABB A ,BC ∴⊥平面11ABB A .1AB ⊂ 平面111,ABB A BC AB ∴⊥.又111,AB A C A C BC C ⊥⋂= ,且1,AC BC ⊂平面1A BC ,1AB ∴⊥平面1A BC .1AB ⊂ 平面11AB C ,∴平面11AB C ⊥平面1A BC ......................6分(2)由(1)知11AB A B ⊥,所以四边形11ABB A 为正方形,即12AA AB ==,且有22AC =.以点A 为原点,以1,AC AA 所在直线分别为,y z 轴,以过A 点和AC 垂直的直线为x 轴,建立空间直角坐标系A xyz -,如图所示,则()()()()()110,0,2,0,22,0,2,2,0,2,2,2,0,2,1A C B B P ,所以()()()2,0,1,0,2,1,2,2,0BP AP CB =-==-,设平面ABP 的一个法向量 =s s ,则0,0,BP n AP n ⎧⋅=⎪⎨⋅=⎪⎩ 即20,20,x z y z ⎧-+=⎪⎨+=⎪⎩取()1,1,2n =- ,同理可得平面BCP 的一个法向量()2,2,2m = ,所以()()2,2,21,1,2221cos ,2224112222m n m n m n ⋅-⋅====++⨯++⨯ ,所以平面ABP 与平面BCP 夹角的余弦值为12......................15分17.(15分)已知椭圆C :()222210+=>>x y a b a b的焦距为22,离心率为22.(1)求C 的标准方程;(2)若5,02A⎛⎫- ⎪⎝⎭,直线l:()302x ty t=+>交椭圆C于E,F两点,且AEF△的面积为2,求t的值.联立则12232ty yt+=-+,12y y=-设直线l与x轴的交点为D⎛⎝如图,在四棱锥P ABCD-中,平面PAD⊥平面ABCD,PA PD⊥,AB AD⊥,PA PD=,1AB=,2AD=,AC CD==.(1)求证:PD⊥平面PAB.(2)求直线PB与平面PCD所成角的正弦值.(3)在棱PA上是否存在点M,使得//BM平面PCD?若存在,求出AM AP的值;若不存在,请说明理由.【详解】(1)∵平面PAD⊥平面ABCD,且平面PAD⋂平面ABCD AD=,且AB AD⊥,AB⊂平面ABCD,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB PD⊥,又PD PA⊥,且PA AB A=,,PA AB⊂平面PAB,∴PD⊥平面PAB;.......................5分(2)取AD中点为O,连接,CO PO,19.(17分)已知圆O的方程为2,1-的圆O的切线方程;(1)求过点()(2)已知两个定点(),2A a ,(),1B m ,其中R a ∈,0m >.P 为圆O 上任意一点,PA n PB =(n 为常数),①求常数n 的值;②过点(),E a t 作直线l 与圆22:C x y m +=交于M 、N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.。

北京市西城区2013-2014学年高二上学期期末考试数学理试题Word版含答案

北京市西城区2013-2014学年高二上学期期末考试数学理试题Word版含答案

北京市西城区2013 — 2014学年度第一学期期末试卷高二数学 2014.1(理科)试卷满分:150分 考试时间:120分钟题号一二三本卷总分1718 19 20 21 22分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.圆2221x y y ++=的半径为( ) A. 1B.C. 2D. 42.双曲线1922=-y x 的实轴长为( ) A. 4B. 3C. 2D. 13.若(,1,3)x =-a ,(2,,6)y =b ,且//a b ,则( ) A. 1,2x y ==- B. 1,2x y == C. 1,22x y ==- D. 1,2x y =-=-4.命题“x ∀∈R ,20x ≥”的否定为( ) A. x ∀∈R ,20x < B. x ∀∈R ,20x ≤ C. x ∃∈R ,20x ≥D. x ∃∈R ,20x <5. “n m =”是“方程122=+ny mx 表示圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件6.关于直线,a b 以及平面,M N ,下列命题中正确的是( ) A. 若//a M ,//b M ,则//a b B. 若//a M ,b a ⊥,则b M ⊥ C. 若b M ⊂,且a b ⊥,则a M ⊥D. 若a M ⊥,//a N ,则M N ⊥7.已知12,F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点, 8AB =,则22AF BF +=( ) A. 2B. 10C. 12D. 148.某几何体的三视图如图所示,则它的体积等于( ) A. 8B. 6C. 4D.839.已知平面内两个定点(1,0),(1,0)A B -,过动点M 作直线AB 的垂线,垂足为N .若2MN AN BN =⋅,则动点M 的轨迹是( )A. 圆B. 抛物线C. 椭圆D. 双曲线10. 已知正方体1111D C B A ABCD -,点E ,F ,G 分别 是线段B B 1,AB 和1A C 上的动点,观察直线CE 与F D 1,CE 与1DG .给出下列结论:①对于任意给定的点E ,存在点F ,使得1D F ⊥CE ; ②对于任意给定的点F ,存在点E ,使得⊥CE F D 1; ③对于任意给定的点E ,存在点G ,使得1D G ⊥CE ; ④对于任意给定的点G ,存在点E ,使得⊥CE 1D G .其中正确结论的个数是( ) A. 1个 B. 2个C. 3个D. 4个二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 已知抛物线的准线为1-=x ,则其标准方程为_______.俯视图侧视图正视图F D A BC A 1B 1C 1D 1E G12. 命题“若x y >,则x y >”的否命题是:__________________.13. 双曲线221412x y -=的离心率为_______;渐近线方程为_______. 14. 一个正方体的八个顶点都在同一个球面上,则球的表面积与这个正方体的表面积之比为_______.15. 如图,长方体1111ABCD A B C D -中,ABCD 是边长为1的正方形,1D B 与平面ABCD 所成的角为45, 则棱1AA 的长为_______;二面角1B DD C --的 大小为_______. 16. 已知M 为椭圆22143x y +=上一点,N 为椭圆长轴上一点,O 为坐标原点. 给出下列结论:① 存在点,M N ,使得OMN ∆为等边三角形; ② ②不存在点,M N ,使得OMN ∆为等边三角形;③存在点,M N ,使得90OMN ∠=;④不存在点,M N ,使得90OMN ∠=. 其中,所有正确结论的序号是__________.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,在四棱锥ABCD P -中,底面ABCD 为矩形,⊥PA 底面ABCD ,M 、N 分别是AB 、PC 中点.(Ⅰ)求证://MN 平面PAD ; (Ⅱ)求证:MN AB ⊥.18.(本小题满分13分)已知圆C 经过坐标原点O 和点(2,2),且圆心在x 轴上.(Ⅰ)求圆C 的方程;(Ⅱ)设直线l 经过点(1,2),且l 与圆C 相交所得弦长为32,求直线l 的方程.ABCDNPMDABCA 1B 1C 1D 119.(本小题满分13分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,12AC CB CC ===,E 是AB 中点.(Ⅰ)求证:1AB ⊥平面1A CE ;(Ⅱ)求直线11A C 与平面1A CE 所成角的正弦值.20.(本小题满分14分)如图所示,四边形ABCD 为直角梯形,CD AB //,BC AB ⊥,ABE ∆为等边三角形,且平面ABCD ⊥平面ABE ,222AB CD BC ===,P 为CE 中点.(Ⅰ)求证:AB ⊥DE ;(Ⅱ)求平面ADE 与平面BCE 所成的锐二面角的余弦值;(Ⅲ)在ABE ∆内是否存在一点Q ,使PQ ⊥平ABECDP·ABCA 1B 1C 1E面CDE ,如果存在,求PQ 的长;如果不存在,说明理由.21.(本小题满分13分)已知抛物线2:12C y x =,点(1,0)M -,过M 的直线l 交抛物线C于,A B 两点.(Ⅰ)若线段AB 中点的横坐标等于2,求直线l 的斜率; (Ⅱ)设点A 关于x 轴的对称点为A ',求证:直线A B '过定点.22.(本小题满分14分)已知,,A B C 为椭圆22:22W x y +=上的三个点,O 为坐标原点.(Ⅰ)若,A C 所在的直线方程为1y x =+,求AC 的长;(Ⅱ)设P 为线段OB 上一点,且3OB OP =,当AC 中点恰为点P 时,判断OAC ∆的面积是否为常数,并说明理由.北京市西城区2013 — 2014学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2014.1一、选择题:本大题共10小题,每小题4分,共40分.1.B2.C3.A4.D5.B6.D7.C8.C9.D 10. B 二、填空题:本大题共6小题,每小题5分,共30分.11. x y 42= 12. 若x y ≤,则x y ≤. 13. 2,y =14. π:2 15.45 16. ①④注:一题两空的试题,第一空3分,第二空2分;16题,仅选出①或④得3分;错选得0分.三、解答题:本大题共6小题,共80分. 17. 证明:(Ⅰ)取PD 中点Q ,连结AQ,NQ .因为 N 是PC 中点, 所以 1//2NQ DC . ………………2分 又M 是AB 中点,1//2AM DC , 所以 //AM NQ ,四边形AQNM 是平行四边形. ………4分 所以 //MN AQ . ………………5分 因为 MN Ë平面PAD ,AQ Ì平面PAD , 所以 //MN 平面PAD . ………………7分(Ⅱ)因为 PA ^平面ABCD ,所以 PA AB ^. ………………8分又 ABCD 是矩形,所以 AB AD ^. (9)ABCDNPM Q分所以 AB ^平面PAD , ………………10分 所以 AB AQ ^. ………………11分又 //AQ MN ,所以 AB MN ^. ………………13分18. 解:(Ⅰ)设圆C 的圆心坐标为(,0)a ,依题意,有a =, ………………2分即2248a a a =-+,解得2a =, ………………4分 所以圆C 的方程为22(2)4x y -+=. ………………6分 (Ⅱ)依题意,圆C 的圆心到直线l 的距离为1, ………………8分所以直线1x =符合题意. ………………9分 另,设直线l 方程为2(1)y k x -=-,即20kx y k --+=,1=, ………………11分解得34k =-, ………………12分 所以直线l 的方程为32(1)4y x -=--,即34110x y +-=. ………………13分综上,直线l 的方程为10x -=或34110x y +-=. 19.(Ⅰ)证明:因为111ABC A B C -是直三棱柱, 所以11CC AC ,CC BC ^^,又90ACB?o ,即AC BC ^. ………………2分 如图所示,建立空间直角坐标系C xyz -.(200)A ,,,1(022)B ,,,(110)E ,,,1(202)A ,,, 所以 1=(222)AB ,,-uuu r ,=(110)CE ,,u u r , 1=(202)CA ,,uuu r. ………………4分又因为 10AB CE ?uuu r uu r ,110AB CA ?uuu r uuu r, ………………6分所以 1AB CE ^,11AB CA ^,1AB ^平面1A CE . ………………7分(Ⅱ)解:由(Ⅰ)知,1=(222)AB ,,-uuu r是平面1A CE 的法向量, ………………9分11==(200)C A CA ,,uuu r uu r, ………………10分则 111111111cos C A AB C A ,AB C A AB×狁=uuu u r uuu ruuu u r uuu r uuu u r uuu r 3=. ………………12分 设直线11A C与平面1A CE 所成的角为q , 则111sin =cos C A ,AB狁uuu u r uuu rq 3=. 所以直线11AC 与平面1A CE 所成角的正弦值为3. ………………13分 20. (Ⅰ)证明:取AB 中点O ,连结OD,OE , ………………1分因为△ABE 是正三角形,所以AB OE ^. 因为 四边形ABCD 是直角梯形,12DC AB =,AB //CD , 所以 四边形OBCD 是平行四边形,OD //BC , 又 AB BC ^,所以 AB OD ^. 所以 AB ^平面ODE ,………………3分 所以 AB DE ^. ………………4分 (Ⅱ)解:因为平面ABCD ⊥平面ABE ,AB OE ^,所以OE ^平面ABCD ,所以 OE OD ⊥. ………………5分 如图所示,以O 为原点建立空间直角坐标系则 (100)A ,,,(100)B ,,-,(001)D ,,,(101)C ,,-,(00)E .所以 =(101)AD ,,-uuu r ,=(01)DE -u u u r, ………………6分设平面ADE 的法向量为1n 111=()x ,y ,z ,则1100DE ADìï?ïíï?ïïîuuu r uuu r n n 11110z x z ìï-=ïÛíï-+=ïî, ………………7分 令11z =,则11x =,13y =.所以1n =(11)3,. ………………8分 同理求得平面BCE 的法向量为2n =(10),-, ………………9分设平面ADE 与平面BCE 所成的锐二面角为θ,则cos θ1212×=n n n n 7=.所以平面ADE 与平面BCE所成的锐二面角的余弦值为7. ………………10分 (Ⅲ)解:设22(0)Q x ,y ,,因为11()22P -,所以2211()22PQ x ,y =+--uu u r ,=(100)CD ,,uu u r,=(01)DE -uu u r . 依题意00PQ CD PQ DEìï?ïíï?ïïîuu u r uu u ruu u r uuu r ,,即22102102x ,y ,ìïï+=ïïïíïï-+=ïïïî………………11分 解得 212x =-,2y = ………………12分符合点Q 在三角形ABE 内的条件. ………………13分所以,存在点1(0)23Q ,-,使PQ ^平面CDE,此时3PQ =.…………14分 21.解:(Ⅰ)设过点(1,0)M -的直线方程为(1)y k x =+,由 2(1),12,y k x y x =+⎧⎨=⎩ 得2222(212)0k x k x k +-+=. ………………2分因为 20k ≠,且2242(212)4144480k k k ∆=--=->,所以,((0,3)k ∈. ………………3分设11(,)A x y ,22(,)B x y ,则2122122k x x k -+=,121x x =. ………………5分 因为线段AB 中点的横坐标等于2,所以2122622x x k k+-==, ………………6分解得k =符合题意. ………………7分 (Ⅱ)依题意11(,)A x y '-,直线212221:()y y A B y y x x x x +'-=--, ………………8分又 21112y x =,22212y x =,所以 222112()y x x y y y =-+-, ………………9分12212112y y x y y y y =--- (10)分因为 221212144144y y x x ==, 且12,y y 同号,所以1212y y =, (11)分所以 2112(1)y x y y =--, ………………12分所以,直线A B '恒过定点(1,0). ………………13分22. 解:(Ⅰ)由2222,1x y y x ⎧+=⎨=+⎩ 得2340x x +=,解得0x =或43x =-, ………………2分 所以,A C 两点的坐标为(0,1)和41(,)33--, ………………4分所以AC =………………5分(Ⅱ)①若B 是椭圆的右顶点(左顶点一样),则B , 因为3OB OP =,P 在线段OB上,所以3P,求得AC =6分 所以OAC ∆的面积等于4=23391⨯. ………………7分 ②若B 不是椭圆的左、右顶点,设:(0)AC y kx m m =+≠,1122(,),(,)A x y C x y , 由22,22y kx m x y =+⎧⎨+=⎩ 得222(21)4220k x kmx m +++-=, ………………8分122421kmx x k +=-+,21222221m x x k -=+, 所以,AC 的中点P 的坐标为222(,)2121km mk k -++, ………………9分所以2263(,)2121km m B k k -++,代入椭圆方程,化简得22219k m +=. ……………10分计算AC ==…………11分=9m. ………………12分 因为点O 到AC 的距离O AC d -=. ………………13分所以,OAC ∆的面积2OACO AC S AC d ∆-1=⋅4299m 1=⨯=. 综上,OAC ∆面积为常数49. ………………14分高考资源网版权所有!投稿可联系QQ :1084591801。

2013—2014学年(上)期末考试(高二)(1)

2013—2014学年(上)期末考试(高二)(1)

入学编号科类班级序号姓名考号考场座号总分语文数学外语政治历史20120413文2016代永奇200111628118149988485 20121165文20235王旭20021249911983867767 20120081文20639吕瑞璞200313477108113605568 20120573文20869杨溪柳20041451212886915870 20121249文20720黄祎茹20051551411181896877 20121336文20524刘黎明20061649412598834368 20120424文20456王壮壮200717541112127697570 20121507文20344彭亚利20081840811167544274 20120744文20141于美静2009195991211211188181 20121499文20255郑哲201011043812245746667 20120759文20618何孟香201111151511096947074 20120802文20812谷留琦2012112517120100786778 20121638文20751宋菲201311340711340614962 20121084文20547文博201411441011250613867 20123045文20458肖向宁201511535810750704251 20120554文2038崔田田201611651412380987567 20120011文20150张圆圆20171176391271481147482 20120877文20229宋丽俊20181185641101321016179 20120577文20675赵璐201911946612066746075 20120879文20824金士雅202012041311960454673 20120865文20769杨露2021121556109961098183 20121118文20574赵原野202212242110450814682 20120541文20442屈梦雅202312349711984727676 20121273文20346秦珂202412451111388917566 20120698文20114李宁2025125540112125747475 20120750文20249张璐20261265971331141097978 20121026文20623华怡202712749212372796371 20120999文20847师斐斐202812850512079867066 20123049文20722李晨202912940212440564754 20121558文20555邢世荣203013042711660534770 20120772文20412崔美琪203113147711861796877 20120602文20358魏闪闪2032132574118126848283 20120475文2012陈超203313352813086867873 20120333文20257訾路颍20341346441351401038786 20120336文20620贺文芳203513553212297965678 20120792文20813郭珂莹2036136546124801087584 20120454文20737路二盈20371374579582706268 20120479文20522李英杰2038138535121891107368 20121252文20479周晨203913950611984787075 20120853文20334李园园20401405831231231038280 20121195文20120秦刘媛2041141564122891038676 20120453文2021安家辉2042142563125112866982 20120755文20656魏洋洋204314349611189906864 20120192文20860王银行204414447012501068079 20120467文20738吕菡星2045145543115108987385 20121268文20534宋嘉怡204614647110277935771 20121421文20453王清清2047147559122941087587 20120249文20119潘文文20481486181221351238578 20120230文20225任寒冰2049149552125125767474 20123055文20678耿瑞玉205015044711361796473 20120244文20118潘美迪2051151564115120997277 20120068文20245杨宇恒2052152604118145917782 20120536文20124陶文雅2053153547132741216574 20120095文2028杜宝珠2054154584118117111827120120170文20131王文静20551556311371261197877 20120360文20221牛洒2056216041201331157580 20120987文20148张婷205722528114105837974 20120406文20546魏琦2058235571271101155677 20121151文2048程思媛20592446911958877170 20121062文20345钱亚茹20602547211474916963 20121687文20870尹一然20612642111156765262 20120014文2063晁文静20622754312695867272 20121696文20750宋帆206328493115801015456 20121524文2026程鑫玉206429496117102944764 20120280文20147张晶晶20652105941181391048274 20121632文2051常鑫蕊206621145511278895156 20121753文20470张迪2067212000000 20120720文20347宋清丽2068213514113114936868 20120888文20871余家宁206921447212667716070 20120741文20655韦亚南2070215507112101727174 20120797文20739牛志豪2071216521119801107462 20120400文2029樊佳佳20722176041211371147275 20120834文20122宋斌2073218546109112977376 20120986文2054陈春艳20742195931221151098979 20121740文2046陈思敏207522045211458605982 20121405文20366杨馥宇2076221538118108966582 20121745文20830李田田2077222523119113836868 20120604文20631李一凡2078223500115117637257 20121054文20232王朵207922451512494916764 20120287文2013陈静祎20802255851231021157781 20121240文20562于钰洁208122644211661676871 20121009文20433刘超2082227480106101814872 20121542文20330李想208322849112282815969 20120937文2082曹盼盼208422950911680916681 20120213文20240闫蕴文2085230556123124846677 20120331文20117吕小雅20862316191191391088481 20121292文20565张静楠208723244011750736462 20121114文20472张淑美20882335351161021046673 20121115文20375赵田2089234514119711067172 20121743文20212郭聪聪20902355511311061047459 20120252文20128王迪阳20912366301301311198185 20120490文20523林果2092237547120105997174 20120702文20457韦启龙2093238508108118656764 20121299文20322胡聪华209423951612197816772 20120270文20250张明航2095240570119114917087 20120348文2011包贝贝20962416001351081097483 20120586文2053晁香归2097242513110109996870 20120159文20215李璐亦209824351212374947280 20120760文20113寇向博209924454911491998077 20121326文20247袁佳宝210024551599134767258 20120024文2017豆浩然21012466461211391308581 20121079文20243杨曦210224751512975816873 20120628文20153赵亚敏2103248569126111997372 20120061文20210樊天琪21042496081231381137574 20120921文20116刘艳楠21052506021251221128277 20121555文20218李怡然210625153499891177678 20120110文20137杨梦园21072526251181321218478 20120275文20228石悦2108253562129122926376 20120128文20129王芳210925460813313098808320120499文20216李茜21102556031261421127572 20120031文2015崔帅2111316241271361157583 20120169文20231孙明洋2112325761271231066269 20120910文2062曹书臣211333548115971047474 20121219文20561银军杰21143439210161545059 20121146文20746任奕菲21153548812574747856 20121173文20818贺雯雯21163646476107847063 20121303文20460辛蕾21173752312099887374 20120931文2031曹聪颖211838524116105787265 20120988文20135邢姚211939538125100897168 20120371文20213胡锐21203105261171061026362 20121486文20614巩静文212131146711390815464 20120752文20540王宁212231249012269767674 20121411文20765徐静2123313542123100946275 20121554文20873张沛212431450012490884971 20121078文20471张佳佳2125315501114801047166 20120930文20349孙尹尹2126316548118971037873 20120383文20151赵琳212731752411299887170 20120328文20246袁航2128318570124111997779 20120763文20653王艺文2129319521124861086568 20120840文20578周杨213032051612195666881 20121348文20726李莎莎213132151511882737579 20121023文20850宋乐乐2132322542133751087375 20120827文20429李倩213332350012193796968 20121085文20356王永奇213432450011587806871 20121216文20144岳冰洁213532550311199627485 20120379文20244杨颍娟2136326571121127997375 20121424文20633刘畅213732745712271815466 20121072文20566张美美213832849511859897374 20121407文20779张珍珍2139329549122122816582 20120898文20856王晨阳214033050711393528180 20121000文20445宋柳阳214133148711569957169 20121153文20138杨田田2142332541110122747578 20120146文2025谌莹21433336051311151186884 20121357文20641任晁阳2144334506117103625481 20120304文2052晁金粮214533549911596785475 20121034文2073曹瑞芳214633651011984946372 20120799文20821贾新新214733750413084826370 20120508文20121沈颖丹2148338587131119997282 20120025文20238薛奎21493396401251501157980 20120621文2067崔倩2150340537131112785863 20121119文2059杜娟215134149711182886575 20120983文20777张少航215234251912965897881 20121003文20855万迪215334349712490936460 20120457文20126田甜21543445871211231087680 20120565文20211高仕琦2155345615133139987285 20120743文20645滕豫2156346518112101916877 20120804文20549吴浩21573474519684545579 20121750文20730李媛媛2158348559123102986983 20120711文2014程婉丽2159349568129131928165 20120119文20256朱鹏21603506311261371167584 20120184文20640罗嘉鸣21613515541181211016367 20121189文20541王亚楠216235249711385746774 20120649文20123宋小革21633536381281451048583 20121182文20253赵婷婷216435453711611394647020121338文20664袁珂欣2165355546122110897279 20120863文20111柯聪聪21663565711181211127459 20120098文20252赵明21673576711371431218392 20120082文20145臧贝贝21683586041201321048181 20120166文2022安奇2169359589115144987269 20120687文20149张向东2170360555118108907578 20121717文20242杨静静217141508112109836172 20120496文20478郑景月217242546123102866881 20120147文20230苏军军2173436191241451126882 20120667文20439聂琳佳21744451512195866872 20121280文20237轩梦楚217545555119108787185 20121228文20462薛兵迪21764649211677846381 20120748文20254赵雯雯21774754810897987682 20120495文2047程培荣21784850911790916766 20121284文20234王鑫羽2179495601161091037082 20120292文20134吴尚勇21804105751161231037478 20120989文20519黄佳美218141148512863985476 20120276文20728李洋洋21824125681271081077082 20121459文20676周士岐218341340710551764166 20120889文20370张菲菲2184414535126116816571 20121092文20877张赟218541551511971797881 20120264文20233王家军218641652412481936683 20120635文2018杜亚宁218741749411665887574 20121060文20529吕东东218841850612190646674 20121321文20713谷雨2189419512117110745879 20120843文20661杨露露2190420468115541125173 20120688文2039豆美2191421549106137966773 20121478文20826李纯219242250311691698183 20121349文20236韦克露2193423569120145796377 20120488文20112寇佳宁219442454512198927980 20121015文20530罗瑞219542552411598798171 20120916文20716郭旭隆219642649911199787371 20120500文20648王昊21974275731181101066783 20120767文20342潘荣荣2198428531122137546282 20120815文20843钱晓璐2199429518124781056666 20121090文20241杨二奇22004305781041331047277 20121183文20140姚璞220143147510685766566 20120713文20513关成龙2202432571121128877870 20120662文20775张琳2203433545122108987375 20120784文20629李霖22044345491201031076972 20120332文20310杜鹏2205435555121105976782 20120557文20823金琳琳2206436535124102996565 20121008文20220吕秋艳22074376241341241088384 20121248文20110贾力宁220843854112990966680 20121666文20512耿鸿星220943951311790956771 20123007文20723李果221044042710958985160 20120735文20662杨萌迪22114415451271031067667 20121070文20332李晓晗221244249311481956869 20120518文20226邵亚茹22134435831131301037683 20120477文20142于盼婷2214444542117111857873 20120610文20515郭永召221544548511389646976 20121723文20763文壮飞2216446525871141026579 20121270文20624黄雅静221744750011896926166 20120603文20248张傲22184486251311361168472 20120127文20136杨萌萌221944956411611686827720120669文20514郭易222045053712886767580 20120548文2023陈冬楠2221451541124751017283 20120085文20125田铭22224526421321391098489 20121582文20543王洋222345350411774956678 20121715文20222牛之栋2224454593121144877577 20120319文20152赵倩倩2225455577129114947980 20120124文2024陈林豪22264566081231261217581 20120343文2019韩银恒2227457569116128997569 20120860文20224潘亚楠2228458595129135888279 20120301文20139杨钰22294596151261171208578 20120353文20239闫硕22304605811241091057377 20123008文20767杨豪22315145211279496470 20121443文20127田甜22325246611768865868 20121168文20772袁野22335346310875715873 20121235文20414杜浩22345444410866795361 20121575文20364轩永航22355541210756695367 20121030文20544王艺文223656514104111837470 20121234文20876张影蝶22375749012282855173 20121145文2066程明22385841112147695169 20121706文20214胡有源22395941110953515578 20121047文20778张永杰224051049711771747382 20121477文20428李琪224151150112288786672 20121258文20354王祥仁224251242911080465571 20121271文20560姚利敏224351344810861887458 20122021文20864辛雅静雯224451444810671397476 20121581文20672张智赟224551542811333645880 20121108文20227石路224651642911761865662 20121011文20711高亚楠224751748211869787668 20120568文20417范君224851847411180837071 20121140文2036程璐璐224951947211985786275 20121318文20563臧文娟225052046111660646877 20120389文20846尚淑雅225152142010266556760 20121489文2069窦俐媛225252239010744744364 20120690文20760王鹏飞225352349910595865484 20121129文20448滕沛霖225452445511181635575 20120684文20357王自强225552544711264487570 20121242文20570张颍225652648710868766781 20121438文20878周祎225752744211582505071 20121671文20627李佳莹225852843711377675760 20121471文20744秦臻2259529459109102685663 20120686文2042晁建航226053052212093846679 20123005文20336刘俊楠226153142811755586361 20122030文20521李怡文226253244010765535682 20120592文20853滕扬226353342710836885374 20121294文20745屈亚美226453444510281715670 20121566文20475赵宁226553544912484364483 20121508文20315郭奕兵2266536437105105485567 20120798文20520李铭226753743311931856669 20121492文20827李凡226853845011170884072 20121368文20718和蒙柳226953948311199835364 20121453文2041白鑫涛227054041011367405373 20121067文20324黄巍227154150311980737178 20121307文20553谢慧杰227254244811080735563 20120401文20829李杰2273543537124106846376 20121676文20729李颍超22745443611004041486520120939文20441秦蓉蓉227554545410876877066 20121481文20362徐笑琰227654645411360936061 20120962文2055陈浩辉227754745611358795770 20120958文20874张茜茜227854851812087976180 20121526文20752宋亚斐227954944110971606467 20120452文20451王晨228055045311962705370 20121365文20341米晓涵228155146411348768578 20121269文20533尚恒228255240410073505459 20121069文20759王俊鹤228355346110491787159 20121430文20426寇菲228455439610961704058 20121351文20319韩琪2285555524111113837368 20121437文20757王晨228655638810151623671 20121042文2044陈孟瑶228755743510543836375 20121191文20727李帅228855845610741867078 20121315文20474赵海洋228955943111344746671 20121707文20749师佳琦229056042511253547068 20121389文20669张倩22916141912253675664 20120924文20143于晴22926246511661666174 20121081文20663杨荣荣22936340411631875662 20120851文20518胡涵博22946439811656394963 20120920文20365闫笛22956553111596898371 20120494文20866徐真22966647412566707664 20120583文20774张静22976742411658405280 20120862文20431李想22986846611677556777 20121071文20219卢文童22996949612696706371 20120531文20133王远芳2300610557124110918270 20121468文20643滕江鹏23016113669936635156 20120476文20557邢艺宾230261247612180656474 20121192文20337刘颖230361348412090706967 20121592文20879宋亚磊230461438911063453566 20123012文20766杨帆23056153979850466377 20121236文20434刘阳230661642210561616070 20121144文2027崔新奎230761745211968645173 20121710文20632梁小龙230861834510920633268 20121285文20517何浩洋2309619360024120 20121100文20340毛颍231062047111774967259 20121622文20837吕璐璐23116213279622545949 20121344文20776张龙231262246611087515877 20121625文20461徐桐23136232903715862260 20121171文20613高永星231462443211540845266 20120998文20550吴丽君231562548110968956465 20121040文20367杨曼曼231662647511852847278 20121506文20833刘亚婷231762742711178645457 20121432文20764夏旭阳231862843710288647051 20121570文20476赵新凯23196292609135194436 20121523文20619和万里23206303161105542265 20123036文20542王亚琼232163144511650795974 20120692文20329李婉232263247512684836863 20121431文20841潘琳232363341712555584682 20121320文20721金格格232463452113088857279 20120816文20432李雨田232563543210067666467 20120456文20616郭晓仪2326636506119115737162 20120956文20568张培娇2327637498116102717458 20121136文20361徐硕232863848312572886076 20121653文20839吕时雨23296393631046038526820121016文20742齐荷233064046711076935967 20121446文20455王昱童233164148511779856869 20122008文20660杨辽静233264246711283717471 20121301文20573赵美鸽233364350611778996583 20120856文20371张佳培233464444912145996071 20121214文20867薛贝贝233564540510541825256 20120429文20732刘蒙恩233664645011046815977 20121414文2045陈诗雨233764737211231515177 20121396文20647田一苇233864844312156775668 20120771文20572赵芳233964948111083667570 20121748文20374赵美婷234065036611522516558 20121535文20875张雪234165146610883646562 20120645文20736卢航23426524259663725371 20120232文20411崔浩楠234365343312936845175 20121445文20668张静234465445712468665863 20121038文20579朱志浩234565550511880618476 20121302文20339罗梦娇234665643311665805467 20121176文20635刘铭234765744911283845660 20121166文20551仵晗234865843810777725856 20121399文20335梁涵2349659459117103585671 20121180文20625贾林虎235066041011568613669 20121185文2086陈颍颍23517146810287896469 20121749文2064陈亚美2352723799855646354 20121458文20353王嘉祥23537347810793666571 20121505文20443石京园235474300840564175 20121544文20747任志旭2355753839870436157 20121473文20569张心怡2356764369762846663 20120952文20146张桉宾235777496110861085570 20121463文20861王照珂23587844411165966067 20121465文20636刘思裔23597945110971985262 20121541文2035程芳236071046811398766064 20121612文20421郭子颖236171148811275827378 20121037文20748申英歌236271248011058907574 20121208文20564张楚楚236371344111558855958 20120972文20840孟雪颍236471452112277967173 20121206文20651王帅宾236571545010869676669 20120808文20377郑文迪2366716545122116987567 20121447文20446宋昱珂236771735611415543676 20121013文20731刘凡玉236871841310958526174 20121635文2056崔博23697193238235444866 20121343文20815何向银23707203069540612054 20120520文20610窦天佑237172147711477736670 20121130文2034陈旭237272247811579867261 20121530文20450田明园237372335810140544264 20121574文20712龚怡彬237472438110345665352 20120897文20862王自超237572546512045766673 20121305文20677朱苗苗237672644810374766469 20121376文20312方明明237772746111147937562 20121401文20465杨培霞237872843810775885064 20121690文20761王亚婷237972940010460735262 20121730文20820胡燕燕238073041311801034668 20121134文20628李珂238173143411458825956 20121608文20338卢金瑶238273244311855715959 20121588文20452王露238373337512037534263 20121209文20756王伯昊23847344471117568546020121221文20859王亚萍238573541612159745756 20121482文20642宋银珂238673634911338713157 20121243文20376赵一238773743612452724966 20121204文20410程哲23887383827075694266 20121527文20724李金帅23897393989862535467 20121050文20817贺龙飞23907403809946534868 20121512文20637刘通239174140811260534872 20121212文20328李宛桢239274237111548693457 20121237文20459谢承启239374344211260785465 20120855文20780赵宇航239474450011667987775 20121224文20835卢壮壮239574537810340495672 20121422文20658夏苗苗239674639811736755556 20123046文20331李向阳239774740111156484964 20120742文20415杜洋洋2398748514117102846372 20121101文20714郭佳239974942311151715370 20120642文2083曹赛赛240075040210310846172 20120594文20654王钰琦240175145811650937063 20122036文20352滕婷婷240275242811764705764 20121500文20438马薪婷240375341312047555466 20121207文20816何心愿240475440711150664569 20123048文20634刘恒雷24057553419536553852 20121281文20311杜怡静240675645511659886072 20120871文20828李广240775747012073647172 20120900文20659杨莲芳240875851211795827269 20121563文20834卢行24097593549650493571 20121534文2068董一博241076042411655565467 20121230文20781朱田田24118142111642825365 20121296文20814韩占辉24128234410746512361 20120447文20466杨玉敏24138353011599908270 20120836文20556邢亚芳24148440310262784355 20121217文20649王锦伟24158544310067745764 20121065文20314巩竞宇2416863649731594470 20123041文20217李思婵24178740411636825262 20121514文20771银梦24188846511570947252 20121501文20819胡晓冬24198939210670604050 20120769文20435卢静雯242081042611349786365 20121450文20510杜亦非242181151610799737181 20121426文20611杜世美242281243511073775160 20121440文20323胡胜皓242381336010135763961 20121107文20223潘倩242481448911889856761 20121708文20734刘雨果242581544410181337376 20121057文2087程琳242681645312391586072 20123039文20468于艳迪242781747910388827173 20121177文20511付亚苗24288184279796775946 20121724文20646田宸嘉242981937310146625462 20121587文20326焦颖243082039411855564357 20121394文2071安泽鹏243182138810741564567 20121213文20836鲁涵璐243282250812082996076 20121392文20444宋菲243382344411266655772 20120954文20554邢盼盼243482443011554885759 20120623文20617韩昀彤243582537811248644962 20120785文20313高远2436826543125117848062 20121261文2072蔡萌萌24378273949520815966 20120880文20863吴闯243882849011387736469 20121469文20480朱佳林24398293911106035327620121670文20558徐露24408303958965515373 20121352文20615郭琼琼244183141411550765065 20120859文20316郭云锐244283245110967816172 20121380文20758王昊24438334259850725575 20120780文20831李婷婷244483445010959865674 20120620文20463闫贇兵244583538311525585374 20121132文20571赵方244683650211198776571 20120606文20674赵利244783747710980715974 20121295文2037程珊珊244883850912382856775 20121369文20743钱晨阳24498393739665414953 20120915文20838吕蒙娇2450840512113691027476 20121334文20423贺锦锦24518414379691725567 20121597文20548吴迪24528423319120534758 20121371文2061安志远245384338010747674759 20120693文20360邢梦龙245484446411755646287 20121089文20770杨洋245584546611282737265 20121488文20842祁琳24568463979476464274 20121603文20427李晨铭245784743011581445772 20121543文20516韩依华245884837910967733451 20121359文2076陈家鑫2459849000000 20121665文20844屈动动246085028410150321930 20120979文2049程文雅2461851527108127887668 20121483文2058窦冰雪246285242810476594971 20120721文2077代文君246385343010455785671 20121133文20858王锐246485446711272666574 20121470文20469袁丁246585548411170846385 20121211文20725李孟孟2466856307945694454 20121496文20865邢祎飒24678573109745541649 20121097文20733刘亚孟246885846510877816269 20121533文20852滕亚美246985933910626713157 20120664文20715郭嘉琪247086049712356917381 20121444文20671张圳通24719141811261454674 20121537文20577周涵2472923358956434346 20122022文20473张雨涵24739337310226763473 20121457文20373张婷婷24749444412471836064 20121103文20719侯鑫鑫2475953659233516471 20121147文20854仝涵24769643310262796059 20121681文20130王璐24779740310360605656 20121388文20673张宗豪24789841811650695266 20123044文20526刘祎24799939811861535951 20121762文20425靳珂248091036211160564046 20121546文20317郭蕴铺24819113539865493551 20121245文20741祁子怡248291242210978636060 20121313文20849师亚磊248391339911247385170 20121713文20132王艺浩2484914600521200 20121643文20626蒋书要24859153529710416765 20123042文20576郑怡敏248691646410746747181 20121474文20477赵言248791737610731554865 20121553文20355王颍248891839312131585075 20120764文20755万迪248991940211043815361 20121552文20822焦雪24909203381045634868 20123040文20652王嗣元24919213277839435059 20121264文20535宋丽敏249292246710590816666 20121487文20422韩钰娇249392344311857736564 20121649文20333李易卓2494924395887629507320121516文20735娄丽24959253478945425057 20121667文2089董亮亮249692639311243526267 20121557文20657吴林非24979273269425583863 20122020文20528鲁迪249892840211652596447 20121569文20418葛晓爽249992938610376515156 20121545文20359吴嘉豪250093041410968516259 20123043文20762王赵启25019313977142626572 20121536文20810樊龙25029323639660384365 20121328文20638刘真真250393338211145653962 20121522文20552武玫淳25049343649060314575 20123047文20454王亚楠250593542610870686061 20121550文20343潘雅鸽250693637510559484864 20121540文2078樊印鹏25079373468650344776 20121297文20666张港旗250893833811610423477 20121317文20532钱翰文25099393729672385054 20121565文20424贾留发251094036010745334572 20121686文20348宋绍博2511941304885663559 20121682文20753孙建行25129423379660293360 20121518文20665臧雪明251394333711215544358 20121658文20567张宁25149443616755456668 20121006文20430李甜露251594539210843674674 20121647文2033陈蒙恩251694631310045215246 20121655文20710高翔251794737510455165266 20121702文20650王君一25189483259550234159 20123056文20580蔡潮龙25199493278945185562 20122016文20436吕海帆252095038511061236975 20122006文20318韩明辉2521951000000 20123037文20667张嘉婷252295237411232734268 20123038文20559许宇航25239533339270252054 20121382文2043陈奎元25249543379620553462 20121630文20670张巧慧252595534410546544255 20121694文20536宋钊25269563338357445948 20121577文20447孙磊25279573319550403754 20121504文20621胡艳茹252895836610249584371 20121593文20527卢斌豪2529959264920485569 20121497文20437罗叙良25309602469610133052 20121619文20369尤东方253110135010050514560 20121416文20857王果果25321022809220433253 20121402文2074晁金鹏25331032818420354846 20121254文20539王苗苗25341044219649896460 20121744文20467叶倩倩25351052559420462544 20121362文20612冯永棋253610632010115713551 20121363文20251张晓磊25371073699648744755 20121568文20372张帅25381082392340453150 20121591文2085曹志江25391093139633344258 20121525文2075晁孟楠2540101042710670546071 20121589文20575郑群瀚254110114128672347465 20121538文20449田锦梁254210121523915311241 20121390文20644滕炎奇254310132868925444146 20121705文20327李恺源2544101439210370614361 20121586文2088迟宗仁254510152579115282551 20121729文20717郭泳兰254610163978565396864 20123060文20581贾富豪25471017185810243842 20121628文20419巩粱博2548101820010015271024 20121454文2065成龙2549101912305516122020121721文20351谭琳允25501020174060381246 20121521文20851孙恩铭25511021193325283356 20120878文20740牛壮2552102241410869485665 20121659文20538王帝25531023000000 20121609文20413丁昊2554102425002500 20121645文20630李烨25551025203055244036 20121719文20321贺创255610263002365384658 20121594文20848师帅255710273608765175773 20121735文20754谭斌255810283839370266061 20121551文2057崔迅25591029123110321862 20121391文20416段营营25601030493114108797265 20121758文20622华世良256110316401523026 20120821文2032晁思远25621032476111111725563 20121517文2081蔡浩阳2563103339410778245851 20121656文20768杨晶晶256410342666730274258 20121066文20531南方浩2565103542310782356464 20121629文20440牛子健2566103643211078315673 20121725文20325黄雅博2567103741211085616242 20121029文2084曹谊菲2568103843910776665256 20123058文20782周鹏立25691039138920251638 20121461文20537宋志浩25701040533026024 20121760文20464严惠钰2571104145811270686073 20121056文20350邰颍颍25721042536119901106879 20121728文20825李承基25731043480028020 20121573文20363徐志林2574104428002800 20123006文20868薛泽秦25751045000000 20121701文20368杨赛2576104631003100地理班级名次年级名次班进退级进退94711416 67482011-6 7321248-12-106 7911165722 8813157133 772321748 8831040-15 6056419-43-262 771732-5-4 6453348-5-166 7112150-3-8 749146417 8255421-53-352 8256416-41-259 3866502-53-324 7116157-30 943604 812962939 7127275-9-85 7046407-45-347 7837304 5853394-50-313 7017206-4-28 7819170-9-32 8040108-12-39 841633-3-15 8420222-3-35 8416185-10-61 8156430-44-260 8150377-22-150 7426248-9-46 81250566 7542125-5-9 932311 839121654 751901165 8034297-14-79 7461163-15 8013180-12-106 7214311110 8828621595 893066-16-44 7419212-3-30 8025264-17-129 646989102 7131262-9-57 73169877 751118212 783579-30-72 5735326-11-96 812862738 911225-4-15 8134881075 852*******94581231 811225714 7342125-9-41 72371423 6428266-9-48 6132259-15-69 6442394-32-248 92798-6-80 8721219-17-132 7249212-3-59 771835822 6936302-19-128 079572-63-377 5816157-12-62 7824259-10-91 7714178627 769138977 85122547 793590-16-44 7913625185 7934309-23-134 698109-5-37 7251351035 7617195-13-94 7543150771 872141-11-15 5941340-29-205 7224243-6-29 7824224-9-42 7513172-6-42 823373-8-20 8810161031 7443345-19-136 744116632 7516157-5-15 773680115 84610010 78488737 8612175-8-65 7815147243 892655-5-13 911631-14-25 5711163-7-74 6946165-8-64 883381-11 7643150-13-85 901200 894315020 882557-3-8 85921-1-11 841530517 7540120742 92812-110 803167-2-7 84132121667615291536 88914-5-1 892448926 8448519136 6763453-44-258 8122229-1-4 6431285-12-70 697135-5-58 8813130-11-99 8541109-17-55 764112831 6525270-6-68 7324225-1-18 887101234 7819195129 6614193-3-18 79585445 8444130-20-76 80265512 70101381171 85814753 8812150-7-55 7821011472 7016195-1-13 7922195-14-74 7245189011 762552-7-14 6329297-5-67 8222216-18-127 77481429 8815178-4-28 6821231-1-4 8238104121 891124-5-16 8915180-3-23 81182011-6 7815171-27 7517187-14-103 8419391135 9135-1-2 958111-119 7620206-1-11 7711142667 6620206-16-114 791939-5-7 888192658 6911143-3-3 8337312-9-85 84269894 70276019144 9348-1-4 842780-27 8420206-18-137 ******** 8039111-1-1074590980 872452520 951168 861425-7-3 911938-4-10 863275-14-33 7147175-4-59 86290548 88716-6-15 739150-4-34 943475-11-30 7119222-11-80 873785425 7811172-5-51 803268314 812349-14-24 6626233-8-55 741609103 6851421-47-320 7610116-5-15 8710150-8-82 7742130-1-20 7647217-6-87 91131801-25 7414165-7-64 6324267-13-119 70481229 6318189-1-7 85285702 753694-9-34 8071303-9 6717201114 89151212 7411122668 7971432-3 882346310 7748254-1-45 87252440 6959401 78381344 83375-2-54 8041161-6 9161452 8038104224 73111631455 5144377-28-170 6669415115 6623219-7-32 78214336 7837101429 7426233-18-138 788129-7-66 6717195-4-27 8651264 872862-12-25925111-4-79 8638104-19-65 8924311 74161870-24 891836-8-22 812247930 829211221 8225571144 8217341331 891219213 932245-5-9 7836309-12-62 6949275223 7831289-9-54 7736331-5-20 6054411029 72101572078 7721225957 5448414-6-72 6555414-2-20 8019206329 751419327168 6750371-11-5 5938322928 8235322-1-27 804237336 4754371070 732424021148 5927257331 5332259380 76342904-2 70433984-35 58544583-8 7517201848 703130218120 7844326590 872523123121 7437340-16-108 63383511890 6133293-4-5 80813720142 7451373-28-116 77433451574 6840377-14-117 6539329-5-15 783531922144 5747351471 6347360-7-62 69333153-15 732323821145 6452416-20-97 822118915153 6738322620 84311121136 6772497-27-10947323051289 67413056104 79353001352 73714340220 7041343-4-9 7933307-8-40 6436285-915 6857425-1-40 5832290010 5853445625 761313020192 6764460-13-54 6642357-10-38 7435300545 6346367874 684638529 5744399930 875028107 5252425938 7560437-27-194 771112211127 7323257410 7849388-22 7429275547 7049212376 80317117164 6161488-18-130 723025223118 6825236-47 7056459-31-200 6360441-19-75 6550392032 77523094150 5365512-11-80 078568-19-118 533426221179 4766527-21-169 832727521119 7072543-32-191 7541364415 802824117104 7130254368 6340377-2-69 624235123119 3573550-14-80 6074534-48-299 67403291129 513025410116 5144402-14-120 67913823162 6844364-9-37 66151801895 771920523112 6226238473 4159494-6-107622627017104 6722233-12 56252701030 64131801755 5343319-13-8 69494245-12 7737315-10-48 5063484-15-65 6536336838 7728241719 5564488-22-98 84292751256 7046385-7-47 5843360-21-100 78292971886 86151851964 5149360-534 5433319712 6845348-4-34 5439293-1116 6149416-22-173 572726723107 4557472-18-145 762724631217 4471541-13-74 5466464-9-32 64463552-3 6746212337 45363311548 5931312-3-63 5735267280 682022936230 732524325159 66423431559 82613817105 713231527140 6769420191 6168504-25-130 5954407-13 4873532-43-297 3669539-8-70 77212481452 652724625183 5766502-21-102 6268469-11-37 8530281-9-49 623432225133 73382904100 5440348758 4958435-24-121 7846407-19-140 6540359-2-37 8146336-18-27 6061477-15-75 7938326-9-3849454031235 3964509-32-242 7348355161 6059467-6-29 6459437-5-21 66574702-18 6350419-22-170 4863486-22-101 7339340-14-73 6716195954 5858474-18-152 5953437-22-177 7357434-113 761015712103 6750390-14-63 7250430-11-111 66282952095 5651373574 7151407448 6648421-14-126 6567515-16-96 6040302598 702526423 77131651792 5362505-4-64 7643388-8-88 6352394-11-28 5663513-20-163 74512437246 6358428231 81363361358 6365492-19-90 5656425-122 6229281853 6655453-25-171 5848383-21-108 85814747227 64393571153 4866499-18-86 6951228021 804033124136 49323071-22 622524525179 52503772-11 4860481-19-142 6559448-6-16 7264460-22 711417528161 723633125 5748368-2-21 4358474-24-195 7579818177 7363448-3-7 842122535190 7855457-5-336462446-19-107 5847404520 6142312-22-80 75463851351 66333152298 5858464-23-137 80171922083 842124834188 772017212145 6970481-9-26 781116525135 5641351-13-72 6271525-33-237 53564702-16 7936285-12-18 6227275110 6552441-8-89 6147368-8-21 4564472-29-212 080572-25-148 5270545-11-93 60612716133 694937350 66433682098 782827023109 71232361495 4176538-20-109 4968537-21-174 682928122125 4864516-18-155 73192061289 80454001775 5868522-7-52 6262481-1-7 424533114147 5471491-5-13 713936023116 6851428174 65454001898 5660437246 4964496-2-20 5567506-7-26 525139216103 81514361244 14525651-33 72635071-7 853********* 706047634 5860451143 54564301273 5065517-1-31 5870527-5-23 593227032217 663833626147 7958446449。

邯郸市2013-2014学年高二上学期期末考试数学理试题含答案

邯郸市2013-2014学年高二上学期期末考试数学理试题含答案

邯郸市2013-2014学年度第一学期期末教学质量检测高二数学试题(理科)注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟。

2、全部答案在答题卡上完成,答在本试题上无效。

3.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

第I 卷(共60分)一 、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{}n a 中,若134=a ,257=a ,则公差d 等于A .1B .2 C.3 D.4 2.“1=a ”是“12=a ”的A .充分不必要条件B .必要不充分条件 C.充要条件 D.既不充分又不必要条件3在ABC ∆中,60,43,42oA a b ===,则B =A.30oB.45oC. 120D.1354.已知命题p :负数的立方都是负数,命题:q 正数的对数都是负数,则下列命题中是真命题的是A .()q p ∨⌝ B.q p ∧ C .()()q p ⌝∨⌝ D .()()q p ⌝∧⌝5.设双曲线12222=-by a x )0,0(>>b a 的虚轴长为2,焦距为32,则双曲线的渐近线方程为 A .x y 22±= B .x y 2±= C .x y 21±= D .x y 2±= 6.如图所示,已知两座灯塔A 、B与海洋观测站C的距离都等于a ,灯塔A 在观测站C的北偏东20,灯塔B在观测站C的南偏东40,则灯塔A 与灯塔B的距离为A .akmB .akm 2C .akm 3 D.akm 27设变量y x ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩≥≤≥,则32z x y =-+的最小值为A .6-B .4-C .2-D .8-8在ABC ∆中,角A 、B、C所对的边分别是a 、b 、c ,若b a 21=,B A 2=,则B cos 等于 A .31 B .41 C.51 D.61 9正方体1111D C B A ABCD -中,点M 是1AA 的中点,CM 和1DB 所成角的余弦值为A.33 B.53 C.73 D.93 10.下列各式中,最小值等于2的是 A .xyy x + B .41422+++x x C.θθtan 1tan +D.x x -+22 11已知椭圆12222=+by a x )0(>>b a 的离心率21=e ,右焦点为)0,(c F ,方程02=-+c bx ax 的两个实根1x ,2x ,则点),(21x x PA .必在圆222=+y x 内 B. 必在圆222=+y x 上 C .必在圆222=+y x 外 D.以上三种情况都有可能12在各项均为正数的等比数列{}n a 中,公比)1,0(∈q .若553=+a a ,462=a a ,n n a b 2log =数列{}n b 的前n 项和为n S ,则当nS S S n +++ 2121取最大值时,n 的值为A.8B.9C.8或9D.17第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分。

2013~2014学年度上学期二调考试

2013~2014学年度上学期二调考试

兀 D .[齐)B .叩为等比数列,且.a 5=4,a 9 =64,则I^T =(B . ±16C . 16f (X )的图象()2013〜2014学年度上学期二调考试高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟. 第I 卷(选择题共60 分)、选择题:(本题共12个小题,每小题 5分,共60分,在四个选项中,只有一项是符合要求 的) 1.设S n 是等差数列 {a n }的前 n 项和,S 5 =3@2七8),则―5的值为()9311A. -B.-63 3C.-5 5D.-62、如果f (X )是二次函数,且「(X )的图象开口向上,顶点坐标为 (1,V 3 ),那么曲线y = f(X )上任一点的切线的倾斜角 a 的取值范围是5、已知等比数列(a j 的公比q =2,且2a 4,a 6,48成等差数列,则A. 127B. 255C. 511D.1023 6、已知函数f (x ) = Asin (eo x +申)(其中A 》。

, 部分图象如右图所示,为了得到 g (x ) =sin 2x 的图象,则只需将{a j 的前8项和为(兀 A . (0,3]3、在△ABC 中, AB=BC =3, ZABC =30° , AD 是边 BC 上的高,则AD .AC 的值等于(4、已知数列 A.向右平移n 个长度单位6nB. 向右平移」个长度单位127、函数f(x) =2x|log0.5x|—1的零点个数为(整数,则实数a 的取值范围是()B.黑〕TTT TTTT TQA +QB +QC = BC ,RA + RB + RC = CA ,则△ PQR 的面积与^ ABC 的面积之比为()f(X)= —2x 2+12x —18,若函数 y = f(X)—log a (| X |+1)在(0^)上至少有三个零点,则取值范围是(A . (0爭B .(吋45C . (0=)5V 6D .咔)R 上的奇函数f(x),满足f(x —4)= —f(x),且在区间[0,2】上是增函数,方程f(X)=m(m A 0),在区间[一8,8】上有四个不同的根 x 1,x 2,x 3,x 4,则x ^x 2 +X 3 +& =(A . — 12 2013〜2014学年度上学期二调考试• 2 -C. 向左平移n 个长度单位6D. 向左平移 芒个长度单位12A. 1B.2C. 3D.48、设集合A= {x X2 +2x-3》0}.X2-2ax -1 <0,a >0}.若 AR B 中恰含有一个D . (1,母9、在△ ABC 所在平面上有三点 P 、Q 、R ,满足 PA +PB +P^ = AB ,A . 1:2B . 1:3C . 1:4D . 1:510、已知函数f(X)=x n,n 亡N*)的图象与直线x=1交于点P ,若图象在点P 处的切线与x轴交点的横坐标为xn ,贝y log 2013 X 1 + log 2013 X 2 + …+ log 2013 X 2012 的值为()11、定义域为 B . 1 — log 201320 1 2 C . - Iog 2oi32012R 的偶函数f (x)满足对P X 忘R ,有f(x +2)= f(x)- f (1),且当 [2,3]时,12、已知定义在 C .— 4高三年级数学(理科)试卷第n 卷非选择题(共90分)二、填空题(本题共 4个小题,每小题 5分,共20分.把每小题的答案填在答题纸的相应位置)JI13、由曲线y =sinx,y=cosx 与直线x=0,x=—所围成的平面图形(图中的阴影部分)的面积2f (X )的单调递增区间是 ]k 兀+二,k 兀+—Z );L6 3」存在经过点(a,b )的直线与函数f (x )的图象不相交.三、解答题(共6个题,共70分,把每题的答案填在答卷纸的相应位置)17、(本题10分)在^ ABC 中,角A 、B 、C 所对的边分别为 a 、b 、c , q= ( 2a , 1), p=14、在等比数列{a n }中,若a 7 +a 8+ a 9 + a i0 二158a 8 a 9—9,则丄+丄+丄」8a7a8a 9 a1015、在直角三角形ABC 中,N ACB=90° ,AC =BC =2,点P 是斜边AB 上的一个三等分点,则T r T TCP CB +CP CA= __________ .16设 f (x )= asin2x+ bcos2xa,b 亡 R,ab 工0 •若 f (x )兰 f对一切X 亡R 恒成立,则 ①(11兀,兀f< f —11215;③f (X )既不是奇函数也不是偶函数;JI 以上结论正确的是(写出所有正确结论的编号)(2b-c , cosC )~2cos2C+1的取值范围. (1)求sin A的值;(2)求三角函数式1+tanC18、(本题12分)数列{a n }的前n 项和为S n ,且S n = n(n + 1)(n € N *). ⑴求数列{a n }的通项公式;⑵若数列{b n }满足:a n = 3^+ 32+ <1 + 3^^+…+ 3“+ 4,求数列{b n }的通项公式;⑶令C n = ^4怖€ N *),求数列{C n }的前n 项和T n .佃、(本题12分)=—,AB=2 ,点 D 在线段 AC 上,且 AD=2DC , BD =空3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档