九年级数学上册第3章3.6位似第2课时平面直角坐标系中的位似变换教案新版湘教版90
第3章 3.6 第2课时 坐标系中的位似图形
11.如图,在 12×12 的正方形网格中,△TAB 的顶点坐标分别为 T(1,1)、 A(2,3)、B(4,2). (1)以点 T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1 在位似中心右侧将△TAB 放大为△TA′B′,放大后点 A、B 的对应点分别为 A′、B′,画出△TA′B′并写 出点 A′、B′的坐标; (2)在(1)中,若 C(a,b)为线段 AB 上任一点,写出变化 后点 C 的对应点 C′的坐标. 解:(1)如图,A′(4,7),B′(10,4); (2)C′(3a-2,3b-2).
7.(烟台中考)如图,在平面直角坐标系中,正方形 ABCD 与正方形 BEFG
是以原点 O 为位似中心的位似图形,且相似比为13,点 A、B、E 在 x 轴上,
若正方形 BEFG 的边长为 6,则 C 点坐标为( A )
A.(3,2)
B.(3,1)
C.(2,2)
D.(4,2)
8.如图,在平面直角坐标系中,矩形 OABC 的顶点坐标分别为 O(0,0)、A(2,0)、 B(2,1)、C(0,1),以原点 O 为位似中心,将矩形 OABC 放大为原图形的 2 倍, 记所得矩形为 OA1B1C1,B 的对应点为 B1,且 B1 在 OB 的延长线上,则 B1 的坐标为 (4,2) . 9.如图,正方形 ABCD 和正方形 OEFG 中,点 A 和点 F 的坐标分别为(3,2)、 (-1,-1),则两个正方形的位似中心的坐标是 (1,0)或(-5,-2) .
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/92021/9/92021/9/92021/9/99/9/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月9日星期四2021/9/92021/9/92021/9/9 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/92021/9/92021/9/99/9/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/92021/9/9September 9, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/92021/9/92021/9/92021/9/9
九年级数学上册 23.6 图形与坐标教案 (新版)华东师大版-(新版)华东师大版初中九年级上册数学教
23.6 图形与坐标用坐标确定位置【知识与技能】能够在图形中建立适当的坐标系来描述物体的位置,并结合具体实例了解坐标系建立位置不同,点的坐标也随之变化;能够利用坐标找到点的位置;了解确定位置的两种方法.【过程与方法】通过实践、探索、观察、分析等数学活动过程,发展学生形象思维能力和数学应用能力.【情感态度】体验运用确定位置来解决实际问题,感受数学与人类生活的密切联系.【教学重点】建立平面直角坐标系用直角坐标和方位坐标确定物体的位置.【教学难点】建立恰当的坐标系确定物体的位置.一、创设情境,导入新知1.什么是平面直角坐标系?建立了平面直角坐标系后,平面上的点可以用什么来描述?2.画一个直角坐标系,并描出点A(1,2),B(-3,5),C(4,5),D(0,3)的位置.3.如图,四边形ABCD,在方格图中建立适当的直角坐标系,用点的坐标来表示各点的位置.你写出的点与别人相同吗?二、合作探究,理解新知问题1:确定点的位置夏令营举行野外拉练活动,老师交给大家一X地图,如图所示,在这X地图上,画一个直角坐标系,作为定向标记,有四座农舍的坐标是(1,2),(-3,5),(4,5),(0,3).目的地位于连结第一与第三座农舍的直线和第二与第四座农舍的直线的交点,请你在教材图中找出这个目的地所处的位置,你能估计出这个位置的坐标是什么吗?先确定出四座农舍的位置(即“创设情境,导入新知”中第2题的A、B、C、D四个点),过A、C作直线,过B、D作直线,两直线的交点P即是目的地,确定点P的坐标,过P作x 轴垂线,,过P作y轴垂线,,所以目的地P).问题2:你写出的坐标与别人相同吗?如图是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置.思考:(1)建立的直角坐标系是否相同?选定的坐标单位会一样吗?各点的坐标是否一样?(2)通过以上两个问题的研究,你如何确定一个点的位置?归纳:利用平面直角坐标系,我们可以较为方便地确定平面上点的位置,直角坐标系的位置不同,用坐标表示某地的位置也不同.一般地,在建立坐标系时,我们应尽量让较多的点位于坐标轴上,这样可以使点的坐标较容易给出,也方便于我们将所要研究的问题进行简化.思考:(1)这是利用什么方法来确定位置的?(2)用这种方法确定位置首先应该做什么?(3)需要几个数据来确定点的位置?(4)请举出实际生活中用这种方法来确定位置的例子.问题3:小明去某地考察环境污染问题,并且他事先知道下面的信息:“悠悠日用化工品厂”在他现在所在地的北偏东30度的方向距离此处3千米的地方;“明天调味品厂”在他现在所在地的北偏西45度的方向,距离此处的地方;“321号水库”在他现在所在地的南偏东27度的方向,距离此处的地方.根据这些信息,你能画一X图来表示各处的位置吗?在学生活动过程中,提出以下问题思考:(1)这又是用什么方法来确定位置的呢?(2)用这种方法确定位置必须要知道什么?(3)请举出生活中用这种方法确定位置的例子.归纳:用一个角度和距离也可以表示一个点的位置.三、尝试练习,掌握新知1.教材练习.2.根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.3.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课主要学习了什么内容,还有什么内容不清楚的?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材复习题第9题.2.如图,是某植物园的平面示意图.A、B、C、D、E、F分别表示梅、兰、竹、菊、月季、荷花六个花圃,请解决以下问题:(1)说出A、B、C、D、E、F在图上的坐标;(2)位于原点北偏东45度的是哪个花圃?23.6.2 图形的变换与坐标【知识与技能】理解点或图形的变化引起的坐标的变化规律,以及图形上的点的坐标的某种变化引起的图形变换,并应用于实际问题.【过程与方法】经历图形坐标变化与图形平移、旋转、放大、缩小等之间的关系,培养学生的形象思维.【情感态度】在观察、探索的过程中让学生获得发现的喜悦;体验数学活动中充满着探索和创造;引导学生敢于面对学习和生活中的困难和挫折,培养学生坚强的意志和品质.【教学重点】图形坐标变化与图形变换之间的关系.【教学难点】图形坐标变化与图形变换规律的探究.一、创设情境,导入新知1.在平面直角坐标系中,如果A点的坐标是(x,y),那么这个点关于x轴、y轴、原点的对称点坐标是______、______、________.2.△ABC中,AB=AC=5,BC=6,建立直角坐标系,写出各顶点的坐标.3.你能画出与△ABC成轴对称的三角形吗?请画一个以直线BC为对称轴的三角形.4.将点A(-3,-2)向右平移4个单位,得到点A′,在图上标出这个点,并写出它的坐标,把点A向上平移5个单位呢?把点A向左或向下平移,观察它们的变化,你能从中发现什么规律吗?再找几个点试一试!二、合作探究,理解新知问题1:平移变换与坐标在“创设情境,导入新知”第2题中,如果以C为坐标原点,CB所在直线为x轴建立直角坐标系如图所示.思考:(1)A、B、C三点在直角坐标系中的坐标是什么?(2)把△ACB向右平移3个单位之后,得到△A′B′C′,三个顶点的坐标是什么?与△ABC三个顶点相比,相应顶点坐标有什么变化?结论:相应顶点的横坐标都增加了3个单位,而纵坐标都不变.(3)若把△ABC向左平移3个单位,相应顶点坐标有什么变化?相应顶点的横坐标都减少了3个单位,而纵坐标都不变.(4)改变△ABC的位置,再将△ABC左、右平移,相应顶点坐标怎样变化?由上述的几个变换过程,可以得到一个图形沿x轴左、右平移,它们的纵坐标、横坐标各有什么变化?它们的纵坐标都不变,横坐标有变化.向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位.(5)如果将一个图形上下平移,图形上点的坐标又有什么变化规律?图形上点的横坐标不变,向上平移几个单位,纵坐标加上几个单位;向下平移几个单位,纵坐标就减少几个单位.问题2:对称变换与坐标思考:(1)如图,将△AOB沿x轴翻转,对应点的坐标有什么变化?横坐标不变,纵坐标变为原来的相反数.(2)如果沿y轴翻转呢?纵坐标不变,横坐标变为原来的相反数.(3)如果图形关于原点对称呢?横坐标、纵坐标都变为原来的相反数.练习:完成教材“试一试”.问题3:位似变换与坐标思考:如图,(1)△COD的各顶点坐标是什么?C(1,2),O(0,0),D(2,0).△AOB各顶点坐标是什么?A(2,4),O(0,0),B(4,0).(2)△COD与△AOB对应顶点是怎样变化的?将△COD各顶点的横、纵坐标分别乘以2,就得到△AOB各顶点的坐标.(3)△COD与△AOB相似吗?若相似,相似比是多少?相似,相似比是1∶2.(4)比较△COD与△AOB的各对应顶点坐标的变化,它们的横纵坐标都按比例扩大,这种变化与它们的相似比有什么关系呢?都扩大了相似比的倍数.(5)△COD与△AOB是位似图形,且都在位似中心O的同侧,若△COD与△AOB在位似中心O的两侧,对应顶点的坐标的变化与相似比又有什么关系呢?变换后对应点横、纵坐标都乘以相似比的相反数.归纳:以原点为位似中心作位似变换,若位似比是k,当原图形与新图形在y轴两侧(即对应点在y轴两侧)时,那么位似图形上对应点的坐标比等于位似比的相反数;当新图形与原图形在y轴同侧(即对应点在y轴同侧)时,那么位似图形上对应点的坐标比等于位似比.三、尝试练习,掌握新知1.如图,已知在平面直角坐标系中有一个正方形ABCO.(1)写出A、B、C、O四个点的坐标.(2)若A向右移动两个单位,B点也向右平移两个单位,写出A、B的坐标,这时四边形ABCO是什么图形?(3)在(2)的图形中B、C两点要怎样变化才能使四边形ABCO为正方形?2.将图中的点A(6,0),B(6,3),C(6,6),D(0,3)作如下变化:(1)纵坐标保持不变,横坐标分别变成原来的2倍,再将所得的点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标加2,再将所得的点用线段依次连结起来,所得的图案与原来的图案相比有什么变化?(3)纵坐标保持不变,横坐标分别乘以-1,所得的图案与原来的图案相比有什么变化?3.如下图,已知:(1)AC的长等于______;(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是______;(3)若将△ABC绕点C按顺时针方向旋90°后得到△A1B1C1,则A点的对应点A1的坐标是______.4.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知通过本节课的学习,你有什么收获?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题23.6第2题.,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按下列要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);②将四边形ABCD沿x轴翻转180°,得到四边形A′B′C′D′,再将四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.。
新湘教版九年级上册初中数学 课时2 平面直角坐标系中图形的位似变换 教案(教学设计)
第3章图形的相似3.6 位似课时2 平面直角坐标系中图形的位似变换【知识与技能】1.了解用坐标描述位似变换的基本原理,理解以原点为位似中心的坐标变化规律.2.能利用原点为位似中心的坐标变化规律找出对应点的坐标.3.能运用位似原理作出位似图形.【过程与方法】1.进一步提高学生利用图形的变换解决问题的能力及小组合作、共同探究的能力,养成良好的数学思维习惯.2.通过总结平移、轴对称、旋转和位似四种变换的异同,进一步理解图形变换的区别.3.让学生在应用位似知识解决问题的过程中,体验数形结合思想方法在解题中的应用.【情感态度与价值观】1.使学生亲身经历坐标系下位似变换的基本原理,感受数学学习的应用性和挑战性.2.经历坐标系下画位似图形的过程,培养学生动手操作的良好习惯,培养学生的数学应用意识.3.进一步体验合作互助及交流能力,感受数学创造的乐趣,增强学好数学的信心.运用坐标系下的位似变换原理作出位似图形.把一个图形放大或缩小后,理解点的坐标变化的规律.多媒体课件.导入一:【复习提问】(1)什么是位似图形?位似图形有什么性质?(2)如何把一个图形放大或缩小?(3)作位似图形需要注意什么?【师生活动】学生思考回答,教师点拨并补充.导入二:完成下列作图.如图,△ABC的三个顶点坐标分别为A(2,3),B(1,1),C(5,1).(1)将△ABC向左平移3个单位长度得到△A1B1C1,写出A1,B1,C1的坐标;(2)写出△ABC关于x轴对称的△A2B2C2的三个顶点A2,B2,C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出点A3,B3,C3的坐标.【师生活动】学生通过平移、对称、旋转的规律回答变化后的坐标,教师点评,导入新课.[过渡语]在平面直角坐标系中,可以用坐标表示平移、旋转、对称等变换,类似地,位似作为一种图形变换,也可以用图形坐标之间的关系来表示,这就是我们今天要探究的内容.[设计意图]通过复习回顾位似图形的有关知识,为本节课的学习做好铺垫,以实例回顾平移、轴对称、旋转(中心对称)等变换的坐标表示,体会数与形之间的联系,激发学生探究用坐标规律表示位似的兴趣.一、位似图形的坐标(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△AOC三个顶点的坐标分别为A(4,4),O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大.观察对应顶点坐标的变化,你有什么发现?思路一【师生活动】学生在课前准备的坐标系下动手画图,然后小组交流结果.教师在巡视过程中及时关注和提醒学生画出的位似图形是否有两种,对学生展示的结果点评.观察各对应顶点坐标之间的关系,小组合作交流,师生共同归纳结论.【问题】运用这个规律时有什么限制?一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).思路二教师引导思考、操作、演示.(1)在坐标系下画以原点为位似中心的图形,你能画出几个?如何画?(如图)(1)(2)(2)在课前准备的坐标系下分别画出位似图形.(3)图(1)中点A',B'的横、纵坐标与点A,B的横、纵坐标之间有什么关系?(利用相似可得点A',B'的横、纵坐标是点A,B的横、纵坐标的)(4)图(1)中点A″,B″的横、纵坐标与点A,B的横、纵坐标之间有什么关系?(利用相似可得点A″,B″的横、纵坐标的绝对值是点A,B的横、纵坐标的)(5)在图(2)中点A″,C'的横、纵坐标与点A,C的横、纵坐标之间有什么关系?(6)你能归纳关于原点对称的图形各对应顶点坐标之间的关系吗?【师生活动】学生在教师的引导下,画出图形,证明对应顶点之间的关系,最后归纳总结结论,教师引导学生思考,对画图及回答作出点评,然后课件展示图形变化过程中坐标之间的变化,最后师生共同归纳总结结论.【课件展示】一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).[设计意图]学生通过动手操作画出图形,通过观察、讨论,得出以原点为位似中心的图形的对应点之间的坐标规律,学生经历知识的形成过程,体验成功的快乐,增强学生学习数学的自信心,同时培养学生归纳总结能力,体会从特殊到一般及数形结合在数学中的应用.二、例题讲解如图,△ABO三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0),以原点O为位似中心,画一个三角形,使它与△ABO的相似比为.【思考】(1)所要画的是三角形,所以解决问题的关键是确定哪些点的坐标?(2)确定这些点的坐标与已知点的坐标之间有什么关系?如何确定这些点的坐标?【师生活动】学生独立思考后,画出图形,小组交流答案,学生展示结果,教师点评.【追加提问】你能总结画一个图形以原点为位似中心的位似图形的步骤吗? 学生小组交流,教师补充,归纳画图步骤:(1)根据以原点为位似中心的图形坐标变化规律,求出各顶点的坐标;(2)在坐标系下根据各顶点坐标描出各点;(3)依次连接各顶点可得所求作的图形.如图,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C的坐标为(-4,2),求这两个正方形的位似中心的坐标.【教师引导分析】(1)两个位似图形的特征是什么?(每对对应点与位似中心共线;对应线段平行或在同一条直线上)(2)位似中心的位置有几种?哪几种?(两种,位似图形在位似中心的同侧或异侧)(3)观察图形,当位似中心在位似图形同侧时,位似中心是不是在特殊直线上? (DG,AO在x轴上,故位似中心在x轴上)(4)当位似中心在位似图形同侧时,位似中心还在哪条与已知有关的直线上? (过对应点C,F所在的直线上或过对应点B,E所在的直线上)(5)当位似中心在位似图形同侧时,如何求位似中心的坐标?(求直线CF(或BE)与x轴的交点坐标)(6)观察图形当位似中心在位似图形异侧时,位似中心在什么位置?(直线不唯一.直线OC,DE的交点)(7)当位似中心在位似图形异侧时,如何求位似中心的坐标?(求直线OC与直线DE的交点坐标,直线不唯一)解:①当两个位似图形在位似中心同侧时,位似中心就是CF与x轴的交点.设直线CF的解析式为y=kx+b,将C(-4,2),F(-1,1)的坐标分别代入,得解得即y=-x+,令y=0得x=2,∴位似中心的坐标是(2,0).②当位似中心在两个正方形之间时,可求直线OC的解析式为y=-x,直线DE的解析式为y=x+1,得解得即位似中心的坐标为.∴位似中心的坐标为(2,0)或.[设计意图]通过例题,巩固位似图形对应点的坐标之间的关系,让学生感受运用新知识解决问题的简捷性,从而获得成功感;例题2是用坐标描述位似图形的拓展,让学生体会位似中心不在坐标原点的有关计算,开阔了学生视野,加强学生对前后知识之间的联系,体会数形结合思想在数学中的应用.三、平移、旋转、轴对称、位似四种变换的异同[过渡语]我们已经学习了平移、轴对称、旋转和位似等图形的变化方式,你能在下图的图案中找到它们吗?四种变换有什么异同?【师生活动】学生小组合作交流后回答,教师对学生的回答点评,观察角度不同,学生的答案也不同.【四种变换的异同】图形经过平移、旋转、轴对称后,图形的位置虽然改变了,但是图形的大小和形状没有改变,即两个图形是全等的;而图形经过位似变换后,图形是相似的.[设计意图]设计开放性的题目让学生回顾思考各种图形变换,并归纳异同,将平移、旋转、轴对称和位似联系,完善认知结构,与课前导入首尾呼应,使教学过程通顺、流畅.[知识拓展](1)以原点为位似中心的位似变换,其对应点的坐标关系可表示为(新图形与原图形的相似比为k):与P(x,y)位于位似中心同侧的对应点P(kx,ky);与P(x,y)位于位似中心异侧的对应点P2(-kx,-ky).当k>1时,是将1图形扩大;当0<k<1时,是将图形缩小.(2)在直角坐标系中,把一个图形进行平移、轴对称、旋转和位似变换,其对应点的坐标都有各自的变化规律:①平移变换是横坐标或纵坐标加上(或减去)平移的距离.②轴对称变换,以x轴为对称轴,则对应点的横坐标相等,纵坐标互为相反数;以y轴为对称轴,则对应点的纵坐标相等,横坐标互为相反数.③在旋转变换中,一个图形绕原点旋转180°,则旋转前后两个图形上的对应点的横坐标与纵坐标分别互为相反数.④位似变换中,当以原点为位似中心时,变换前后两个图形上的对应点的横(或纵)坐标之比的绝对值等于相似比.1.位似变换中对应点坐标的变化规律:一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky). 2.平移、轴对称、旋转和位似四种变换的异同.第2课时1.位似图形的坐标2.例题讲解例1例23.平移、旋转、轴对称、位似四种变换的异同一、教材作业二、课后作业【基础巩固】1.将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是()A.将各点的纵坐标乘2,横坐标不变B.将各点的横坐标乘2,纵坐标不变C.将各点的横坐标、纵坐标都乘2D.将各点的纵坐标都减2,横坐标都加22.如图,在平面直角坐标系中,以原点为位似中心,将△AOB扩大为原来的2倍,得到△OA'B'.若点A的坐标是(1,2),则点A'的坐标是()A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)3.如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)4.在平面直角坐标系中,已知E(-4,2),F(-2,-2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E'的坐标是()A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)5.如图是△AOB和△COD,它们是位似图形,则△COD与△AOB的相似比是.6.△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),试将△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,则A'点的坐标为,B'点的坐标为.7.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为.【能力提升】8.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图),则小鱼上的点(a,b)对应大鱼上的点是.9.如图,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于A的位似图形,且O'的坐标为(-1,0),则点B'的坐标为.10.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即∶=(不写解答过程,直接写出结果).【拓展探究】11.如图,在△ABC中,BC=1,AC=2,∠C=90°.(1)在图(1)中,画△A'B'C',使△A'B'C'∽△ABC,且相似比为2∶1;(2)若将(1)中△A'B'C'称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在图(2)中设计一个以点O为对称中心,并且以直线l为对称轴的图案.【答案与解析】1.C解析:将各点的纵坐标乘2,横坐标不变,是将图形竖直方向拉伸,将各点的横坐标乘2,纵坐标不变,是将图形水平方向拉伸,图形的形状发生变化,故A,B不属于位似变换;将各点的纵坐标都减2,横坐标都加2,是将图形平移,故D不属于位似变换;将各点的横坐标、纵坐标都乘2,是以坐标原点为位似中心的位似变换.故选C.2.C解析:根据以原点为位似中心的坐标变化规律,可得△AOB扩大为原来的2倍,对应点的坐标为(2,4)或(-2,-4).故选C.3.A解析:∵线段CD和线段AB关于原点位似,∴△ODC∽△OBA,∴==,即==,∴CD=1,OD=2,∴C(2,1).故选A.4.D解析:根据题意得点E的对应点E'的坐标是(-2,1)或(2,-1).故选D.5.3∶5解析:由图可知=,即为两三角形的相似比.6.解析:∵△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,∴A'点的坐标为,B'点的坐标为.7.(,)解析:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴OA∶OD=1∶.∵点A的坐标为(1,0),即OA=1,∴OD=.∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为(,).8.(-2a,-2b)解析:根据题意易得两个图形是以原点O为位似中心的位似图形,且大鱼与小鱼的相似比是2∶1,∴对应点的坐标是(-2a,-2b).9.解析:如图,过点B作BE⊥x轴于点E,过点B'作B'F⊥x轴于点F.∵点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(-1,0),∴==.由题知AE=1,EO=2,BE=3,∴==,∴=,解得AF=.∴EF=,∴FO=2-=.由=,解得B'F=4,则点B'的坐标为.10.解:(1)如图的△A1B1C1即为所求. (2)如图的△A2B2C2即为所求. (3)1∶411.解:答案不唯一.(1)如图(1). (2)如图(2).通过复习回顾位似图形的有关知识,为本节课的学习做好铺垫,以实例回顾平移、轴对称、旋转等变换的坐标表示,体会数与形之间的联系,激发学生探究用坐标规律表示位似图形的兴趣.本节课的重点是探究位似图形坐标之间的规律,并能应用规律解决有关问题,通过学生动手操作、小组合作交流,共同归纳出结论,在学生探究过程中突出了学生是课堂的主体,让学生在课堂上展示自己,增强自信心.例题的设计把本节课的内容进行了拓展,即位似中心不是坐标原点的情况,联系了前后知识,开阔了学生的视野,拓展了学生的思维,提高数学思维能力.本节课是位似的第2课时,主要探究位似图形坐标的特征,并能应用探索的规律解决有关问题,在教学设计中关注学生的课堂参与,表面看课堂气氛活跃了,但是只有部分学生积极发言,调动学生的积极性的技巧还存在问题,另外例2的设计目的是把本节课知识进行拓展,但题的难度有点大,给予讨论的时间不够长,有些学生没有真正掌握,在以后的教学中,要注重难易程度的把握.。
湘教版九年级数学上册课件3.6位似第二课时
1.通过这节课,同学们学到了什么? 2.对本节课你有什么困惑?
教师引导学生动手操作.作图时要注意:①首先确定位似中 心;②确定原图形的关键点,如三角形有三个关键点,即它的 三个顶点;③确定位似比,根据位似比的取值,可以判断是将 一个图形放大还是缩小;④符合要求的图形不唯一,因为所作 的图形与所确定的位似中心的位置有关,并且同一个位似中心 的两侧各有一个符合要求的图形.
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午4时49分21.11.816:49November 8, 2021
2.提出课题教师出示问题,引入新课. 学生思考,尝试回答.
1.教材第97页动脑筋. (1)图形间有什么关系? (2)坐标变化中有什么规律? 2.归纳 位似变换中对应点的坐标的变化规律:在平面直角坐标系 中,如果位似变换是以原点为位似中心,相似比为k,那么位似 图形对应点的坐标的比等于k或-k.
3.△ABC中,AB=AC=5,BC=6,以C为原点,CB所在直线为x 轴,建立平面直角坐标系.
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一4时49分0秒16:49:008 November 2021
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午4时49 分0秒下午4时49分16:49:0021.11.8第三 Nhomakorabea 图形的相似
九年级数学上册 3.6 第2课时 平面直角坐标系中的位似
3.6 位似第2课时 平面直角坐标系中的位似教学目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换. 重点、难点1.重点:用图形的坐标的变化来表示图形的位似变换. 2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.一.创设情境活动1 教师活动:提出问题:(教材P98页探究:)(1)如图27.3-4(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?图27.3-4(2)如图27.3-4(2),△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现? 学生活动: 学生小组讨论,共同交流,回答结果.教师活动:分析:略(见教材P61的例题分析)解:略(见教材P98的例题解答) 【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .二、应用例题(教材P99页 例)活动2例(教材P62的例题)分析:略(见教材P62的例题分析)解:略(见教材P62的例题解答) 问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A′′的坐标为(-6×)21(-,6×)21(-),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)三、课堂练习活动3 教材P62页.1、2四、在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.活动41.如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.27.3-62.(教材P99)图27.3-6所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗? 分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略.五、小结活动51、谈谈你这节课学习的收获.2、课后作业 教材P99页.。
湘教版九年级上册说课稿3.6 位似
湘教版九年级上册说课稿3.6位似一. 教材分析湘教版九年级上册数学第三单元“位似”是学生在学习了相似图形、平行线等知识后的新知识。
这部分内容主要让学生了解位似图形的概念,掌握位似变换的性质,并能够运用位似知识解决实际问题。
教材通过丰富的实例,引导学生探究位似图形的性质,从而培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似图形有了初步的认识。
但位似知识相对较抽象,学生理解和接受可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,创设合适的学习情境,激发学生的学习兴趣,帮助学生理解和掌握位似知识。
三. 说教学目标1.知识与技能目标:让学生理解位似图形的概念,掌握位似变换的性质,能够识别和判断位似图形。
2.过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受数学在生活中的应用。
四. 说教学重难点1.教学重点:位似图形的概念,位似变换的性质。
2.教学难点:位似图形的判断,位似变换在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、师生互动、合作探究的教学方法,引导学生积极参与课堂讨论,提高学生的数学素养。
2.教学手段:利用多媒体课件、实物模型、几何画板等教学工具,直观展示位似图形的变换过程,帮助学生理解和掌握位似知识。
六. 说教学过程1.导入新课:通过展示一些生活中的位似现象,如相似的建筑、相似的生物形态等,引导学生关注位似现象,激发学生的学习兴趣。
2.探究新知:让学生观察、分析实例,引导学生发现位似图形的性质,通过师生互动,总结出位似图形的定义和位似变换的性质。
3.巩固新知:设计一些练习题,让学生运用位似知识解决问题,巩固所学内容。
4.拓展应用:结合实际问题,让学生运用位似知识解决实际问题,培养学生的应用能力。
九年级数学上册知识点---- 平面直角坐标系中的位似变换
归纳:
1. 在平面直角坐标系中,以原点为位似中心作一个 图形的位似图形可以作两个.
2. 当位似图形在原点同侧时,其对应顶点的坐标的 比为 k;当位似图形在原点两侧时,其对应顶点的 坐标的比为-k.
3. 当 k>1 时,图形扩大为原来的 k 倍;当 0<k<1 时,图形缩小为原来的 k 倍.
练一练
可以确定其他顶点的 坐标.
自己试一试.
解:利用位似中对应点的坐标的变化规律,分别取 点 A′ (-3,6),B′ (-3,0),O (0,0). 顺次连接 点 A′ ,B′ ,O,所得的 △A′ B′ O 就是要画的一个 图形.
练一练 在平面直角坐标系中,四边形 OABC 的顶点坐标
分别为 O (0,0),A (6,0),B (3,6),C (-3,3). 以 原点 O 为位似中心,画出四边形 OABC 的位似图形, 使它与四边形 OABC 的相似是 2 : 3.
标都乘 2 ;在平面 3
4 C
2
直角坐标系中描点
A″
A
O (0,0),A″ (-4, -4 0),B″ (-2,-4), C″ (2,-2),用线 段顺次连接O,A″,
O -2
B″ -4
6x 4 C″
B″,C″.
平面直角坐标系中的图形变换
至此,我们已经学 习了四种变换:平移、 轴对称、旋转和位似, 你能说出它们之间的异 同吗?在右图所示的图 案中,你能找到这些变 换吗?
B" (-2 ,0 ).
2. △ABC 三个顶点坐标分别为 A (2,3),B (2,1),
C (5,2),以点 O 为位似中心,相似比为 2,将
△ABC 放大,观察对应顶点坐标的变化.
y 6
位似第2课时平面直角坐标系中的位似变换教案
第3章图形的相似
3.6 位似
【应用举例】
例1 [教材P99例] 如图3-6-44,在平面直角坐标系中,已知平行四边形OABC的顶点坐标分别为O(0,0),A(3,0),B(4,2),C(1,2).以坐标原点O为位似中心,将OABC放大为原图形的3倍.
图3-6-44
图3-6-45
解:将平行四边形OABC的各顶点的坐标分别乘3,得O(0,0),A′(9,0),B′(12,6),C′(3,6),依次连接点O,A′,B′,C′,则四边形OA′B′C′即为所要求的图形,如图3-6-45所示.
变式一如图3-6-46,在直角坐标系中,四边形OABC 的顶点坐标分别是O(0,0),A(3,0),B(4,4), C(-2,3).画出四边形OABC以O为位似中心的位似图形,使它与四边形OABC的位似比是2∶1.
图3-6-46
变式二如图3-6-47,在平面直角坐标系中,以原点O为位似中心,用上一节课的方法画出五边形OBCDE的位似图形,使它与五边形OBCDE的位似比为1∶2.比较两个图形对应点的坐标,你能发现什么?。
北师大版九年级上册数学 4.8 第2课时 平面直角坐标系中的位似变换 优秀教案
第2课时 平面直角坐标系中的位似变换1.理解位似图形的坐标变化规律;(难点)2.能熟练在坐标系中根据坐标的变化规律作出位似图形.(重点)一、情景导入 观察如图所示的坐标系中的几个图形,它们之间有什么联系?二、合作探究 探究点:平面直角坐标系中的位似变换 【类型一】 求在坐标系中进行位似变化对应点的坐标在平面直角坐标系中,已知点A(6,4),B (4,-2),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A.(3,2)B.(12,8)C.(12,8)或(-12,-8)D.(3,2)或(-3,-2)解析:根据题意画出相应的图形,找出点A 的对应点A ′的坐标即可.如图,△A ′B ′O 与△A ″B ″O 即为所作的位似图形,可求得点A 的对应点的坐标为(3,2)或(-3,-2).故选D. 方法总结:位似图形与位似中心有两种情况:(1)位似图形在位似中心两侧;(2)位似图形在位似中心同侧.若题中未指明位置关系,应该分两种情况讨论,防止漏解.【类型二】 在平面直角坐标系中画位似图形如图,在平面直角坐标系中,A (1,2),B (2,4),C (4,5),D (3,1)围成四边形ABCD ,作出一个四边形ABCD 的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.解析:以坐标原点O 为位似中心的两个位似图形,一种可能是位似图形在位似中心同侧,此时各顶点的坐标比为2;另一种可能是位似图形在位似中心的两侧,此时各顶点的坐标比为-2,此题作出一个即可.解:如图,利用位似变换中对应点的坐标的变化规律,分别取A ′(2,4),B ′(4,8),C ′(8,10),D ′(6,2),顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′.则四边形A ′B ′C ′D ′就是四边形ABCD 的一个位似图形.方法总结:画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k (或除以±k ),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可.三、板书设计平面直角坐标系中的位似变换:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.位似变换是特殊的相似变换.以学生的自主探究为主线,培养学生的探索精神和合作意识.注重数形思想的渗透,通过坐标变换,在平面坐标系中,让学生画图、观察、归纳、交流,得出结论.在学习和探讨的过程中,体验特殊到一般的认知规律.通过交流合作,体验到成功的喜悦,树立学好数学的自信心.。
2023九年级数学上册第3章图形的相似3.6位似第2课时平面直角坐标系中的位似图形教案(新版)湘教版
- 评估学生对位似图形的定义、性质和判定方法的掌握程度。
- 评价学生在位似变换和坐标表示方面的理解能力。
2. 小组讨论成果展示:
- 评估学生在小组讨论中的合作精神和沟通能力。
- 检查学生对位似图形的应用和解决实际问题的能力。
- 评价学生对位似图形作图方法的掌握程度。
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对位似图形的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决位似图形问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与位似图形内容相关的拓展知识,拓宽学生的知识视野。
- 针对学生在位似图形学习过程中的表现,给予积极的反馈和鼓励。
- 指出学生在位似图形理解和应用方面存在的不足,并提供改进建议。
- 鼓励学生提出疑问,解答学生的困惑,促进学生的深入学习。
反思改进措施
(一)教学特色创新
1. 引入实际案例:在教学过程中,引入与位似图形相关的实际案例,如地图制作、建筑设计等,使学生能够更好地理解位似图形的应用价值。
3. 随堂测试:
- 设计随堂测试题,涵盖位似图形的定义、性质、判定方法和应用。
- 评估学生的答题准确率和解题思路。
- 分析学生存在的常见错误和问题。
4. 作业完成情况:
- 检查学生作业的完成质量,包括解题的正确性、步骤的清晰性和书写的规范性。
- 评估学生对位似图形知识的巩固程度和应用能力。
5. 教师评价与反馈:
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
3.6 位似 (课件)2024-2025湘教版 数学九年级上册
课堂新授
例4 如图3.6-7, 已知四边形ABCD,将四边形ABCD以点 A为位似中心放大,使放大后的图形与原图形是位似 图形,且放大后的图形与原图形对应线段的比为 2∶1.
课堂新授
解题秘方:紧扣“位似图形的定义和性质”,按画位 似图形的步骤作图(画法不唯一).
课堂新授
解:当原图与新图形 在点 A 同侧时,如图 3.6-8,四边形 AB1C1D1 就是所求作的图形;当原图形与新图形在点 A 异 侧时,如图 3.6-9,四边形AB1C1D1就是所求作的图形 .
课堂新授
解题秘方:先根据位似中心及位似比作图,再利 用位似变换时对应点的坐标变化规律 求对应点的坐标.
课堂新授
(1)画出以点O为位似中心,在y轴的左侧将△OBC放大为 原来的2 倍(即新图与原图的位似比为2∶1)的位似图形 △OB′C′; 解:如图3.6-10,延长BO到点B′, 使OB′=2OB. 延长CO到点C′, 使OC′=2OC,连接B′C′,则 △OB′C′就是要画的图形.
课堂新授
知识点 4 平面直角坐标系中的位似
知4-讲
1. 位似变换时对应点的坐标变化规律: 在平面直角坐标系中,如果位似变换是以原点为位似中心,
位似比为k,那么位似图形对应点的坐标的比等于k或-k. 即若原图形的某一顶点坐标为(x0,y0),则其位似图形对 应顶点的坐标为(kx0,ky0)或(-kx0,-ky0). 注意:这里的位似比指的是新图形与原图形的对应边的比.
∵ AB∶ DE = 1∶ 2,∴S △ ABC=(1 ) 2= 1. S △ DEF 2 4
∵△ ABC 的面积为 4,∴△ DEF 的面积为 16. 答案:D
感悟新知
3-1. [ 中考·重庆 ] 如图,△ ABC与△ DEF 位似,点 O 为位似中心,相似比为 2 ∶ 3.若△ ABC的周长 为 4,则△ DEF的周长是( B ) A. 4 B. 6 C. 9 D. 16
位似变换中点的坐标的确定(数学湘教版九年级)
位似变换中点的坐标的确定在平面直角坐标系中,如果位似变换是以原点为位似中心,变换后的图形与变换前图形的相似比为k,那么原图上点(x,y)的对应点的坐标为(kx,ky)或(-kx,-ky);对于位似中心非原点的位似变换,解题时要充分发挥位似图形的定义和相似三角形的性质的作用.一、已知原坐标及相似比例1在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的12后得到线段CD,则点A的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)解析:根据题意,得线段CD与线段AB是以原点O为位似中心,相似比为12的位似图形.因为线段CD在第一象限,所以点C的横坐标和纵坐标均为对应点A的横坐标和纵坐标的一半.所以端点C的坐标为(3,4).故选C.点评:在位似变换中,已知原图形的坐标及相似比,可以直接利用位似变换规律求对应点的坐标.解题时要注意位似图形位于位似中心的同侧还是异侧,确定所乘相似比的正负.二、已知原坐标,不知相似比例2在平面直角坐标系中,△OAB各顶点的坐标分别为O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若点B的对应点B′的坐标为(0,-6),则点A 的对应点A′的坐标为()A.(-2,-4) B.(-4,-2) C.(-1,-4) D.(1,-4)解析:因为点B(0,3)的对应点B′的坐标为(0,-6),点O为位似中心,所以△OA′B′与△OAB的相似比为2,且△OA′B′与△OAB位于位似中心的两侧,所以点A(1,2)的对应点A'的坐标为(-2,-4).故选A.点评:在位似变换中,已知原图形的坐标,但没有给出相似比,要先通过一组对应点的坐标求出相似比,再按照位似变换的规律求解.三、已知原坐标及相似比,同异侧不确定例3在平面直角坐标系中,以原点O为位似中心,把△AOB放大到原来的2倍,若点P(m,n)是线段AB上一点,则点P的对应点P′的坐标为()A.(2m,2n) B.(2m,2n)或(-2m,-2n)C.(12m,12n) D.(12m,12n)或(-12m,-12n)解析:以原点O为位似中心,把△AOB放大到原来的2倍,所以变换后的图形与原图形的相似比为2.把△AOB放大可以在位似中心的同侧放大,也可以在异侧放大,所以点P的对应点P′的坐标为(2m,2n)或(-2m,-2n).故选B.点评:在位似变换中,当题中没有给出明确的限定条件时,需要分位似图形在位似中心的同侧和异侧两种情况进行讨论,变换后与变化前的对应点坐标的比等于k或-k.四、位似中心非原点例4如图,在△ABC中,B,C两个顶点在x轴的上方,点A的坐标是(1,0),以点A为位似中心,把△ABC的边长缩小为原来的12,记所得图形为△ADE.设点C的对应点E的横坐标为a,则点C的横坐标为 .解析:分△ABC 与△ADE 在点A 的同侧和异侧两种情况进行讨论.①如图,当△ABC 与△ADE 在点A 的同侧时,过点E 作EM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N.因为点A 的坐标是(1,0),点E 的横坐标为a ,所以AM=1-a.因为△ADE 与△ABC 的相似比为12,所以12AE AC =. 因为ME ∥CN ,所以AM AE AN AC =,即112a AN -=.解得AN=2-2a. 所以点C 的横坐标为-(2-2a-1)=2a-1.②如图,当△ABC 与△ADE 在点A 的异侧时,过点E'作E'F ⊥x 轴于点F.因为点A 的坐标是(1,0),点E'的横坐标为a ,所以AF=a-1.同理,得AN=2a-2.所以点C 的横坐标为-(2a-2-1)=3-2a.综上,点C 的横坐标为2a-1或3-2a.点评:在位似变换中,若位似中心不是原点,首先要确定位似图形的位置,再在图中寻找或构造相似三角形,利用其性质解题. FE'D'。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳:一个多边形的顶点坐标分别扩大或缩小相同的倍数,所得到的图形与原图形是以坐标原点为位似中心的位似图形.
通过课件展示作图的步骤及过程,不仅能吸引学生的注意力,同时,让学生学会听课、观察、对比.通过仔细观察,对比自己的作图过程,掌握在直角坐标系中作多边形的位似图形的方法,并能对作图方法进行初步归纳(用自己的语言描述).通过[探究]的第1题第(4)问引导学生初步发现规律.
教学难点
通过位似的相关概念和性质判断直角坐标系中两个多边形是否位似;比较放大或缩小后的图形与原图形的坐标与位似比的关系,总结规律.
授课类型
新授课
课时
教具
多媒体课件
教学活动
教学步骤
师生活动
设计意图
回顾
我们上节课学习了位似图形,常会看到这样一些图片.(多媒体出示)
观察下列图形,哪些是位似图形?
图3-6-40
活动
一:
创设
情境
导入
新课
【课堂引入】
如图3-6-41,在直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3),按要求完成下列问题:
(1)将点O,A,B的横、纵坐标都乘2,得到三个点,以这三个点为顶点的三角形与△OAB是位似图形吗?如果是,指出其位似中心和位似比;
(2)如果将点O,A,B的横、纵坐标都乘-2呢?
变式一 如图3-6-46,在直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(-2,3).画出四边形OABC以O为位似中心的位似图形,使它与四边形OABC的位似比是2∶1.
图6-46
变式二 如图3-6-47,在平面直角坐标系中,以原点O为位似中心,用上一节课的方法画出五边形OBCDE的位似图形,使它与五边形OBCDE的位似比为1∶2.比较两个图形对应点的坐标,你能发现什么?
(2)你能自己在直角坐标系中创作一个多边形,仿照上面的要求操作,得到相同的结论吗?
(3)通过前面的探究,你发现了什么?
图3-6-43
教师要及时抓住这些学生资源,引发学生思考,引导学生探究,必要时可用课件展示一例,最终形成统一结论.并鼓励和表扬学生的质疑精神和求变思维.
1.请同学们自己完成问题.
2.让学生动手在直角坐标系中创作一个多边形,并将顶点的横、纵坐标都乘同一个数,得到新坐标,画出新多边形,判断两个多边形是否为位似图形,并求出位似中心和位似比.此过程教师巡视学生的操作,并适时给予必要的指导.
问题(多媒体出示):
(1)什么是位似图形?
(2)如何判断两个图形是否位似?
(3)怎样求两个位似图形的位似比?
(4)如何将画在纸上的一个图片放大,使放大前后对应线段的比为1∶2?你有哪些方法?
同学们不妨将这些图形放在平面直角坐标系中试试看.
本节课的内容需要大量用到判断两个图形是否位似以及求位似比的方法,而通过直角坐标系确定一个多边形的位似图形,是将多边形放大或缩小的常用方法之一.通过复习,回顾位似图形的相关知识,为新课的进行做好铺垫.
活动
三:
开放
训练
体现
应用
【应用举例】
例1[教材P99例]如图3-6-44,在平面直角坐标系中,已知平行四边形OABC的顶点坐标分别为O(0,0),A(3,0),B(4,2),C(1,2).以坐标原点O为位似中心,将OABC放大为原图形的3倍.
图3-6-44
图3-6-45
解:将平行四边形OABC的各顶点的坐标分别乘3,得O(0,0),A′(9,0),B′(12,6),C′(3,6),依次连接点O,A′,B′,C′,则四边形OA′B′C′即为所要求的图形,如图3-6-45所示.
图3-6-41
让学生在活动中举一反三,善于发现,勤于探究,敢于质疑,学会总结,形成自主学习的良好习惯,为新课的学习做好铺垫,有利于帮助学生体会新旧知识之间的联系与转化.
活动
二:
实践
探究
交流新知
【探究】以坐标原点为位似中心的位似图形的坐标特点
1.如图3-6-42,在直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).按要求完成下列问题:
(1)将点O,A,B的横、纵坐标都乘2,得到三个点O′,A′,B′,请你在坐标系中找到这三个点;
(2)以这三个点为顶点的三角形与△OAB位似吗?为什么?
(3)如果位似,指出其位似中心和相似比.
(4)如果将点O,A,B的横、纵坐标都乘-2呢?
图3-6-42
2.(1)如图3-6-43在直角坐标系中,四边形ABCD的顶点坐标分别为A(4,2),B(8,6),C(6,10),D(-2,6).将点A,B,C,D的横、纵坐标都乘 ,得到四个点,以这四个点为顶点的四边形与四边形ABCD位似吗?如果位似,指出其位似中心和位似比;
问题解决
能熟练准确地利用图形的位似将一个图形放大或缩小.了解常用的几种图形的放大或缩小的数学依据.
情感态度
通过学习,进一步培养学生应用已有知识解决数学问题的能力,培养学生逆向思维和类比思想,发展有条理的思考和语言表达能力.
教学重点
通过探究得到平面直角坐标系中多边形上点的坐标变化与其位似图形的关系,并能应用该结论将一个多边形放大或缩小.
(1)顶点A1的坐标为________,B1的坐标为________,C1的坐标为________;
(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换得到△A2B2C2,且△A2B2C2恰与△DEF拼成一个平行四边形(非正方形),写出符合要求的变换过程.
第3章 图形的相似
3.6位似
第2课时位似变换与作图
课题
第2课时位似变换与作图
授课人
教
学
目
标
知识技能
在平面直角坐标系中,感受以原点为位似中心的多边形的坐标变换与位似比之间的关系.
数学思考
经历探究平面直角坐标系中,以原点为位似中心的多边形的坐标变换与位似比之间关系的过程,领会所学知识,并通过实例进一步理解位似图形及相关概念和性质.
图3-6-47
对本节知识进行巩固练习,以达到熟练掌握的目的.
分层设练,使学生的知识、技能呈螺旋式上升,也是一种对思维与能力的训练.
【拓展提升】
例2在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0),B(3,0),C(2,1),D(4,3),E(6,5),F(4,7).按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2∶1放大得△ABC的位似图形△A1B1C1,并解决下列问题: