圆锥曲线和方程复习导学案
圆锥曲线与方程教育教案及到导学案
圆锥曲线与方程导学案本资料为woRD文档,请点击下载地址下载全文下载地址§2.2.1椭圆及其标准方程学习目标.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.学习过程一、课前准备(预习教材理P61~P63,文P32~P34找出疑惑之处)复习1:过两点,的直线方程.复习2:方程表示以为圆心,为半径的.二、新课导学※学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔尖等于常数.新知1:我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.反思:若将常数记为,为什么?当时,其轨迹为;当时,其轨迹为.试试:已知,,到,两点的距离之和等于8的点的轨迹是.小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数.新知2:焦点在轴上的椭圆的标准方程其中若焦点在轴上,两个焦点坐标,则椭圆的标准方程是.※典型例题例1写出适合下列条件的椭圆的标准方程:⑴,焦点在轴上;⑵,焦点在轴上;⑶.变式:方程表示焦点在轴上的椭圆,则实数的范围.小结:椭圆标准方程中:;.例2 已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.变式:椭圆过点,,,求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程.※动手试试练1.已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是().A.B.6c.D.12练2.方程表示焦点在轴上的椭圆,求实数的范围.三、总结提升※学习小结.椭圆的定义:2.椭圆的标准方程:※知识拓展997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔•波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔•波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好c.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:.平面内一动点到两定点、距离之和为常数,则点的轨迹为().A.椭圆B.圆c.无轨迹D.椭圆或线段或无轨迹2.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是().A.B.c.D.3.如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是().A.4B.14c.12D.84.椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程是.5.如果点在运动过程中,总满足关系式,点的轨迹是,它的方程是.课后作业.写出适合下列条件的椭圆的标准方程:⑴焦点在轴上,焦距等于,并且经过点;⑵焦点坐标分别为,;⑶.2.椭圆的焦距为,求的值.§2.2.1椭圆及其标准方程学习目标.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.学习过程一、课前准备复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离是.复习2:在椭圆的标准方程中,,,则椭圆的标准方程是二、新课导学※学习探究问题:圆的圆心和半径分别是什么?问题:圆上的所有点到的距离都等于;反之,到点的距离等于的所有点都在圆上.※典型例题例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?变式:若点在的延长线上,且,则点的轨迹又是什么?小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程.变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么?※动手试试练1.求到定点与到定直线的距离之比为的动点的轨迹方程.练2.一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.三、总结提升※学习小结.①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;②相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程.※知识拓展椭圆的第二定义:到定点与到定直线的距离的比是常数的点的轨迹.定点是椭圆的焦点;定直线是椭圆的准线;常数是椭圆的离心率.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好c.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:.若关于的方程所表示的曲线是椭圆,则在().A.第一象限B.第二象限c.第三象限D.第四象限2.若的个顶点坐标、,的周长为,则顶点c的轨迹方程为().A.B.c.D.3.设定点,,动点满足条件,则点的轨迹是().A.椭圆B.线段c.不存在D.椭圆或线段4.与轴相切且和半圆内切的动圆圆心的轨迹方程是.5.设为定点,||=,动点满足,则动点的轨迹是.课后作业.已知三角形的一边长为,周长为,求顶点的轨迹方程.2.点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形.§2.2.2椭圆及其简单几何性质(1)学习目标.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.学习过程一、课前准备(预习教材理P43~P46,文P37~P40找出疑惑之处)复习1:椭圆上一点到左焦点的距离是,那么它到右焦点的距离是.复习2:方程表示焦点在轴上的椭圆,则的取值范围是.※学习探究问题1:椭圆的标准方程,它有哪些几何性质呢?范围:::对称性:椭圆关于轴、轴和都对称;顶点:(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比称为离心率,记,且.试试:椭圆的几何性质呢?图形:范围:::对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),(长轴,其长为;短轴,其长为;离心率:=.反思:或的大小能刻画椭圆的扁平程度吗?※典型例题例1求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是呢?小结:①先化为标准方程,找出,求出;②注意焦点所在坐标轴.例2点与定点的距离和它到直线的距离的比是常数,求点的轨迹.小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆.※动手试试练1.求适合下列条件的椭圆的标准方程:⑴焦点在轴上,,;⑵焦点在轴上,,;⑶经过点,;⑷长轴长等到于,离心率等于.三、总结提升※学习小结.椭圆的几何性质:图形、范围、对称性、顶点、长轴、短轴、离心率;2.理解椭圆的离心率.※知识拓展(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面的接触点是椭圆的焦点.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好c.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:.若椭圆的离心率,则的值是().A.B.或c.D.或2.若椭圆经过原点,且焦点分别为,,则其离心率为().A.B.c.D.3.短轴长为,离心率的椭圆两焦点为,过作直线交椭圆于两点,则的周长为().A.B.c.D.4.已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于,则点的坐标是.5.某椭圆中心在原点,焦点在轴上,若长轴长为,且两个焦点恰好将长轴三等分,则此椭圆的方程是.课后作业.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴与;⑵与.2.求适合下列条件的椭圆的标准方程:⑴经过点,;⑵长轴长是短轴长的倍,且经过点;⑶焦距是,离心率等于.§2.2.2椭圆及其简单几何性质学习目标.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系.学习过程一、课前准备(预习教材理P46~P48,文P40~P41找出疑惑之处)复习1:椭圆的焦点坐标是()();长轴长、短轴长;离心率.复习2:直线与圆的位置关系有哪几种?如何判定?二、新课导学学习探究问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?典型例题例1已知椭圆,直线:。
《圆锥曲线抛物线》导学案(复习版).docx
《圆锥曲线(3):抛物线的基本知识》导学案(复习版)一. 知识全解(一)概念1・知识:1) __________________________________________ 定义:平面内与一个定点F 和一条定直线/( ___________________________________________ )的距离—的点的轨迹叫做抛物 线,点F 叫做抛物线的—,定直线/叫做抛物线的 _________ c (简称:一动两定距离相等)2) 定义式:设动点为M,定点为F,定直线为且动点到定点距离为|MF|,动点到定直线 的距离为d ,则由抛物线的定义可知抛物线上的点满足 _______________2 •全解:1) 平面内与一个定点F 和一条定直线/的距离相等的点的轨迹是抛物线,对吗?为什么? 2) 平面平面内与一个定点F 和一条定直线/(/不过F )的距离不等的点的轨迹一定不是抛 物线,对吗?为什么?3) 判断下列轨迹是不是抛物线,若是指出焦点和准线。
(二)标准方程1・知识:1)标准方程:(1) _____________________________________________________ 焦点在兀轴正半轴: (2) ________________________________________________ 焦点在y 轴正半轴: (3) ________________________________________________ 焦点在牙轴负半轴: (4) ________________________________________________ 焦点在y 轴负半轴: 2) 标准方程下的图形:(1) ________________________________________________ 焦点在兀轴正半轴: (2) ________________________________________________ 焦点在y 轴正半轴: (3) ________________________________________________ 焦点在牙轴负半轴: (4) ________________________________________________ 焦点在y 轴负半轴: 3) 焦点坐标:(1)标准方程为y 2=2px (p > 0) u>焦点坐标是 ___________ (2) _____________________________________________ 标准方程为x 2=-2py (p>0) <^>焦点坐标是 ___________________________________________(3) _____________________________________________ 标准方程为于=2卞(/7>0)0焦点坐标是 _____________________________________________ 。
圆锥曲线定义复习导学案
圆锥曲线定义复习导学案学习目标:知识目标:理解并掌握圆锥曲线的定义能力目标:能用定义处理轨迹,最值范围问题情感目标:激发学生的学习兴趣,培养学生不断发现,探究的精神,培养教学审美意识。
学习过程问题1:若点P6=,则动点P的轨迹为()A、椭圆B、双曲线C、线段D、圆变式探究:能否对上式略作改动,使P点轨迹有所改变?问题2=表示的曲线为抛物线,请类比探究方程()230x y m=-+>又表示何种曲线。
三、反馈练习1、动点P22x y=--,则动点P轨迹为()A、椭圆B、双曲线C、抛物线D、两条直线2、(全国高考题)已知:动圆M与圆()221:42C x y++=外切,与圆()222:42C x y-+=内切,则动圆圆心M的轨迹方程为。
3、(08苏、锡、常、缜四市联考)设双曲线221916x y-=的右焦点F,P是双曲线上任意一点,点A 的坐标为(9,2),则35PA PF+的最小值为。
A、9B、365C、425D、545合作探究:问题1:请同学们观察反馈练习中第3题PF前的系数35与离心率e的关系。
你能否找到规律,并能将这一规律推广到所有的圆锥曲线中(可自己举例探究)问题2:在问题1的基础上,将PF前系数变为1,则又可用什么方法处理?是否可将这一题型推广到所有圆锥曲线中。
四、课后练习1、探究方程()10m=>表示什么曲线2、一动圆与已知圆()22131O x y=++=外切,与圆()222:381O x y-+=内切试求动圆圆心轨迹方程。
五、课堂小结1、第一定义:形式:两个定点,定值(之差、之和),注意2a与2c间关系第二定义:形式定点,定直线、距离之比,注意定点与定直线的位置关系及比值范围2、利用定义解决最值问题形如1|PA PFe+及轨迹问题。
(新课程)高中数学《第二章 圆锥曲线与方程》导学案 新人教A版选修21
1.掌握椭圆、双曲线、抛物线的定义及标准方程;2.掌握椭圆、双曲线、抛物线的几何性质;3.能解决直线与圆锥曲线的一些问题.7881,文P 66~ P 69找出疑惑之处)复习2:① 若椭圆221x my +=,则它的长半轴长为__________;②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ;③以椭圆2212516x y +=的右焦点为焦点的抛物线方程为 .二、新课导学※ 典型例题例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化?变式:若曲线2211x y k k+=+表示椭圆,则k 的取值范围是 .小结:掌握好每类标准方程的形式.例2设1F ,2F 分别为椭圆C :2222x y a b+ =1 (0)a b >>的左、右两个焦点.⑴若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程.变式:双曲线与椭圆2212736x y +=有相同焦点,且经过点4),求双曲线的方程.※ 动手试试练1.已知ABC ∆的两个顶点A ,B 坐标分别是(5,0)-,(5,0),且AC ,BC 所在直线的斜率之积等于m (0)m ≠,试探求顶点C 的轨迹.练2.斜率为2的直线l与双曲线22132x y-=交于A,B两点,且4AB=,求直线l的方程.三、总结提升※学习小结1.椭圆、双曲线、抛物线的定义及标准方程;2.椭圆、双曲线、抛物线的几何性质;3.直线与圆锥曲线.※知识拓展圆锥曲线具有统一性:⑴它们都是平面截圆锥得到的截口曲线;⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线;⑶它们的方程都是关于x,y的二次方程.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.曲线221259x y +=与曲线221259x y k k+=-- (9)k <的( ). A .长轴长相等 B .短轴长相等C .离心率相等D .焦距相等2.与圆221x y +=及圆228120x y x +-+=都外切的圆的圆心在( ) .A .一个椭圆上B .双曲线的一支上C .一条抛物线上D .一个圆上3.过抛物线28y x =的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则AB 等于( ).A .10B .8C .6D .44.直线1y kx =-与双曲线224x y -=没有公共点,则k 的取值范围 .5.到直线3y x =+的距离最短的抛物线24y x =上的点的坐标是 .1.就m 的不同取值,指出方程22(1)(3)(1)(3)m x m y m m -+-=--所表示的曲线的形状.2. 抛物线22x y =-与过点(0,1)M -的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.。
第二章圆锥曲线与方程导学案
§2.3.2双曲线的简单几何性质(1)1.理解并掌握双曲线的几何性质.一、课前准备:(预习教材理P 56~ P 58,找出疑惑之处)复习1:写出满足下列条件的双曲线的标准方程: ①3,4a b ==,焦点在x 轴上;②焦点在y 轴上,焦距为8,2a =.复习2:前面我们学习了椭圆的哪些几何性质?这些性质是如何确定的?二、新课导学:※ 学习探究 问题1:由椭圆的哪些几何性质出发,类比探究双曲线22221x y a b -=的几何性质?范围:x : y :对称性:双曲线关于 轴、 轴及 都对称. 顶点:( ),( ). 实轴,其长为 ;虚轴,其长为 . 离心率:1ce a=>. 渐近线:①双曲线22221x y a b-=的渐近线方程为: .②为什么要叫做渐近线呢?问题2:双曲线22221y x a b-=的几何性质?图形:范围:x : y :对称性:双曲线关于 轴、 轴及 都对称.顶点:( ),( )实轴,其长为 ;虚轴,其长为 .离心率:1ce a=>.渐近线:双曲线22221y x a b-=的渐近线方程为: .你能得出求双曲线渐近线的一般方法吗? 新知:你知道什么叫实轴和虚轴吗?实轴与虚轴等长的双曲线叫 双曲线.※ 典型例题例1求双曲线2214925x y -=的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.变式:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑵离心率e(5,3)M-;⑶渐近线方程为23y x=±,经过点9(,1)2M-.※动手试试练1.求以椭圆22185x y+=的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.练2.对称轴都在坐标轴上的等轴双曲线的一个焦点是1(6,0)F-,求它的标准方程和渐近线方程.三、总结提升:※学习小结双曲线的图形、范围、顶点、对称性、离心率、渐近线.※知识拓展与双曲线22221x ya b-=有相同的渐近线的双曲※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.双曲线221168x y-=实轴和虚轴长分别是().A.8、B.8、C.4、D.4、2.双曲线224x y-=-的顶点坐标是().A.(0,1)±B.(0,2)±C.(1,0)±D.(2,0±)3.双曲线22148x y-=的离心率为().A.1 B C D.2 4.双曲线2241x y-=的渐近线方程是.5.经过点(3,1)A-,并且对称轴都在坐标轴上的等轴双曲线的方程是.1.求焦点在y轴上,焦距是16,43e=的双曲线的标准方程.2.求与椭圆2214924x y+=有公共焦点,且离心率54e=的双曲线的方程.§2.3.2双曲线的简单几何性质(2)1.从具体情境中抽象出椭圆的模型; 2.掌握椭圆的定义; 3.掌握椭圆的标准方程.5860,文P 51~ P 53找出疑惑之处) 复习1:说出双曲线的几何性质?复习2:双曲线的方程为221914x y -=,其顶点坐标是( ),( );渐近线方程 .二、新课导学※ 学习探究探究1:椭圆22464x y +=的焦点是?探究2:双曲线的一条渐近线方程是0x =,则可设双曲线方程为?问题:若双曲线与22464xy +=有相同的焦点,它的一条渐近线方程是0x =,则双曲线的方程是?※ 典型例题例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m ,上口半径为13m ,下口半径为25m ,高为55m ,试选择适当的坐标系,求出此双曲线的方程.例2点(,)M x y 到定点(5,0)F 的距离和它到定直线l :165x =的距离的比是常数54,求点M 的轨迹.(理)例3过双曲线22136x y -=的右焦点,倾斜角为30的直线交双曲线于,A B 两点,求,A B 两点的坐标.变式:求AB ?思考:1AF B ∆的周长?※动手试试练1.若椭圆22214x ya+=与双曲线2212x ya-=的焦点相同,则a=____.练 2 .若双曲线2214x ym-=的渐近线方程为y x=,求双曲线的焦点坐标.三、总结提升※学习小结1.双曲线的综合应用:与椭圆知识对比,结合;2.双曲线的另一定义;3.(理)直线与双曲线的位置关系.※知识拓展双曲线的第二定义:到定点的距离与到定直线的距离之比大于1的点的轨迹是双曲线.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.若椭圆2212516x y+=和双曲线22145x y-=的共同焦点为F1,F2,P是两曲线的一个交点,则12PF PF∙的值为().A.212B.84C.3D.212.以椭圆2212516x y+=的焦点为顶点,离心率为2的双曲线的方程().A.2211648x y-= B.221927x y-=C.2211648x y-=或221927x y-= D. 以上都不对3.过双曲线的一个焦点2F作垂直于实轴的直线,交双曲线于P、Q,1F是另一焦点,若∠12PFQπ=,则双曲线的离心率e等于().1B.C. 1D. 24.双曲线的渐近线方程为20x y±=,焦距为10,这双曲线的方程为_______________.5.方程22141x yk k+=--表示焦点在x轴上的双曲线,则k的取值范围.1.已知双曲线的焦点在x轴上,方程为22221x ya b-=,两顶点的距离为8,一渐近线上有点(8,6)A,试求此双曲线的方程.§2.4.1抛物线及其标准方程掌握抛物线的定义、标准方程、几何图形.一、课前准备(预习教材理P64~ P67,文P56~ P59找出疑惑之处)复习1:函数2261y x x=-+的图象是,它的顶点坐标是(),对称轴是.复习2:点M与定点(2,0)F的距离和它到定直线8x=的距离的比是1:2,则点M的轨迹是什么图形?二、新课导学※学习探究探究1:若一个动点(,)p x y到一个定点F和一条定直线l的距离相等,这个点的运动轨迹是怎么样的呢?新知1:抛物线平面内与一个定点F和一条定直线l的距离的点的轨迹叫做抛物线.点F叫做抛物线的;直线l叫做抛物线的.新知2:抛物线的标准方程定点F到定直线l的距离为p(0p>).建立适当的坐标系,得到抛物线的四种标准形式:试试:抛物线220y x=的焦点坐标是(),准线方程是;抛物线212x y=-的焦点坐标是(),准线方程是.※典型例题例1 (1)已知抛物线的标准方程是26y x=,求它的焦点坐标和准线方程;(2)已知抛物线的焦点是(0,2)F-,求它的标准方程.变式:根据下列条件写出抛物线的标准方程:⑴焦点坐标是(0,4);⑵准线方程是14x=-;⑶焦点到准线的距离是2.例2 一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态的射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径为4.8m ,深度为0.5m ,试建立适当的坐标系,求抛物线的标准方程和焦点坐标.※ 动手试试练1.求满足下列条件的抛物线的标准方程: (1) 焦点坐标是(5,0 )F -;(2) 焦点在直线240x y --=上.练2 .抛物线22y px = (0)p >上一点M 到焦点距离是a ()2pa >,则点M 到准线的距离是 ,点M的横坐标是 .三、总结提升※ 学习小结1.抛物线的定义;2.抛物线的标准方程、几何图形.※ 知识拓展 焦半径公式:设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若00(,)M x y 在抛物线22y p x =上,则pM F x =+※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1.对抛物线24y x =,下列描述正确的是( ). A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)162.抛物线280x y +=的准线方程式是( ). A .2x = B .2x =- C .2y = D .2y =- 3.抛物线210y x =的焦点到准线的距离是( ).A. 52B. 5C. 152D. 104.抛物线212y x =上与焦点的距离等于9的点的坐标是 . 5.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为. 1.点M 到(0,8)F 的距离比它到直线7y =-的距离大1,求M 点的轨迹方程.2.抛物线22y px = (0)p >上一点M 到焦点F 的距离2MF p =,求点M 的坐标.§2.4.2 抛物线的简单几何性质(1)1.掌握抛物线的几何性质;2.根据几何性质确定抛物线的标准方程.一、课前准备(预习教材理P68~ P70,文P60~ P61找出疑惑之处)复习1:准线方程为x=2的抛物线的标准方程是.复习2:双曲线221169x y-=有哪些几何性质?二、新课导学※学习探究探究1:类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质?新知:抛物线的几何性质试试:画出抛物线28y x=的图形,顶点坐标()、焦点坐标()、准线方程、对称轴、离心率.※典型例题例1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点(2,M-,求它的标准方程.变式:顶点在坐标原点,对称轴是坐标轴,并且经过点(2,M-的抛物线有几条?求出它们的标准方程.小结:一般,过一点的抛物线会有两条,根据其开口方向,用待定系数法求解.例2斜率为1的直线l经过抛物线24y x=的焦点F,且与抛物线相交于A,B两点,求线段AB的长.变式:过点(2,0)M作斜率为1的直线l,交抛物线24y x=于A,B两点,求AB.小结:求过抛物线焦点的弦长:可用弦长公式,也可利用抛物线的定义求解.※动手试试练1. 求适合下列条件的抛物线的标准方程:⑴顶点在原点,关于x轴对称,并且经过点(5M,4)-;⑵顶点在原点,焦点是(0,5)F;⑶焦点是(0,8)F-,准线是8y=.三、总结提升※学习小结1.抛物线的几何性质;2.求过一点的抛物线方程;3.求抛物线的弦长.※知识拓展抛物线的通径:过抛物线的焦点且与对称轴垂直的直线,与抛物线相交所得的弦叫抛物线的通径.其长为2p.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.下列抛物线中,开口最大的是().A.212y x=B.2y x=C.22y x=D.24y x=2.顶点在原点,焦点是(0,5)F的抛物线方程().A.220y x=B.220x y=C.2120y x=D.2120x y=3.过抛物线24y x=的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则AB 等于().A.10B.8C.6D.4 4.抛物线2(0)y ax a=≠的准线方程是.5.过抛物线22y x=的焦点作直线交抛物线于11(,)A x y,22(,)B x y两点,如果126x x+=,则AB= .1.根据下列条件,求抛物线的标准方程,并画出图形:⑴顶点在原点,对称轴是x轴,并且顶点与焦点的距离等到于6;⑵顶点在原点,对称轴是y轴,并且经过点(6,3)P--.2 M是抛物线24y x=上一点,F是抛物线的焦点,60xFM∠=,求FA.§2.4.2 抛物线的简单几何性质(2)1.掌握抛物线的几何性质;2.抛物线与直线的关系.一、课前准备(预习教材理P70~ P72,文P61~ P63找出疑惑之处)复习1:以原点为顶点,坐标轴为对称轴,且过点(2,3)P-的抛物线的方程为().A.29 4y x= B. 29 4y x=-或24 3x y=-C. 24 3x y= D. 29 2y x=-或24 3x y=复习2:已知抛物线22(0)y px p=->的焦点恰好是椭圆2211612x y+=的左焦点,则p= .二、新课导学※学习探究探究1:抛物线22(0)y px p=>上一点的横坐标为6,这点到焦点距离为10,则:①这点到准线的距离为;②焦点到准线的距离为;③抛物线方程;④这点的坐标是;⑤此抛物线过焦点的最短的弦长为.※典型例题例1过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.(理)例2已知抛物线的方程24y x=,直线l过定点(2,1)P-,斜率为k k为何值时,直线l与抛物线24y x=:只有一个公共点;有两个公共点;没有公共点?小结:① 直线与抛物线的位置关系:相离、相交、相切 ;②直线与抛物线只有一个公共点时, 它们可能相切,也可能相交.※ 动手试试练1. 直线2y x =-与抛物线22y x =相交于A ,B两点,求证:OA OB ⊥.2.垂直于x 轴的直线交抛物线24y x =于A ,B 两点,且AB =AB 的方程.三、总结提升※ 学习小结1.抛物线的几何性质 ;2.抛物线与直线的关系.※ 知识拓展过抛物线22(0)y px p =>的焦点F 的直线交抛物线于M ,N 两点,则11MF NF +为定值,其值为2p.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1.过抛物线22(0)y px p =>焦点的直线交抛物线于A ,B 两点,则AB 的最小值为( ). A. 2p B. p C. 2p D. 无法确定 2.抛物线210y x =的焦点到准线的距离是( ). A. 52 B. 5 C. 152 D. 10 3.过点(0,1)且与抛物线24y x =只有一个公共点的直线有( ). A .1条 B .2条 C .3条 D .0条 4.若直线2x y -=与抛物线24y x =交于A 、B 两点,则线段AB 的中点坐标是______.5.抛物线上一点(-到焦点(,0)F x 的距离是6,则抛物线的标准方程是 .1.已知顶点在原点,焦点在x 轴上的抛物线与直线21y x =+交于P ,Q两点,PQ 的方程.2. 从抛物线22(0)y px p =>上各点向x 轴作垂线段,求垂线段中点的轨迹方程,并说明它是什么曲线.第二章 圆锥曲线与方程(复习)1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题.一、课前准备 (预习教材理P 78~ P 81,文P 66~ P 69找出疑惑之处)复习2: ① 若椭圆221x my +=半轴长为__________;②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆2212516x y +=的右焦点为焦点的抛物线方程为 .二、新课导学 ※ 典型例题例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化?变式:若曲线2211x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :2222x y a b + =1 (0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程.变式:双曲线与椭圆2212736x y +=有相同焦点,且经过点,求双曲线的方程.※动手试试练1.已知ABC∆的两个顶点A,B坐标分别是(5,0)-,(5,0),且AC,BC所在直线的斜率之积等于m(0)m≠,试探求顶点C的轨迹.练2.斜率为2的直线l与双曲线22132x y-=交于A,B两点,且4AB=,求直线l的方程.三、总结提升※学习小结1.椭圆、双曲线、抛物线的定义及标准方程;2.椭圆、双曲线、抛物线的几何性质;3.直线与圆锥曲线.※知识拓展圆锥曲线具有统一性:⑴它们都是平面截圆锥得到的截口曲线;⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线;⑶它们的方程都是关于x,y的二次方程.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1.曲线221259x y+=与曲线221259x yk k+=--(9)k<的().A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等2.与圆221x y+=及圆228120x y x+-+=都外切的圆的圆心在().A.一个椭圆上B.双曲线的一支上C.一条抛物线上D.一个圆上3.过抛物线28y x=的焦点作直线l,交抛物线于A,B两点,若线段AB中点的横坐标为3,则AB 等于().A.10B.8C.6D.4 4.直线1y kx=-与双曲线224x y-=没有公共点,则k的取值范围.5.到直线3y x=+的距离最短的抛物线24y x=上的点的坐标是.1.就m的不同取值,指出方程22(1)(3)(1)(3)m x m y m m-+-=--所表示的曲线的形状.2.抛物线22xy=-与过点(0,1)M-的直线l相交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程.。
圆锥曲线与方程导学案
圆锥曲线与方程导学案(总43页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除曲线与方程学习目标1.理解曲线的方程、方程的曲线;2.求曲线的方程.3. 通过曲线的方程,研究曲线的性质.学习过程一、课前准备2=(12)2y x-≤≤的图象.x复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.二、新课导学※学习探究探究任务一:到两坐标轴距离相等的点的集合是什么?写出它的方程.问题:能否写成y x=,为什么?新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C与一个二元方程(,)0F x y=之间,如果具有以下两个关系:1.曲线C上的点的坐标,都是的解;2.以方程(,)0F x y=的解为坐标的点,都是的点,那么,方程(,)0F x y=叫做这条曲线C的方程;曲线C叫做这个方程(,)0F x y=的曲线.注意:1如果……,那么……;2“点”与“解”的两个关系,缺一不可;3曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4曲线与方程的这种对应关系,是通过坐标平面建立的.试试:1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ .2.曲线220x xy by +-=上有点(1,2)Q ,则b = .新知:根据已知条件,求出表示曲线的方程.※ 典型例题例1 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±.变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗例2设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.变式:已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为原点)所在直线的方程是0x =吗为什么反思:BC 边的中线的方程是0x =吗?小结:求曲线的方程的步骤:①建立适当的坐标系,用(,)M x y 表示曲线上的任意一点的坐标;②写出适合条件P 的点M 的集合{|()}P M p M =;③用坐标表示条件P ,列出方程(,)0f x y =;④将方程(,)0f x y =化为最简形式;⑤说明以化简后的方程的解为坐标的点都在曲线上.※ 动手试试练1.下列方程的曲线分别是什么?(1) 2x y x = (2) 222x y x x-=- (3) log a x y a =练2.离原点距离为2的点的轨迹是什么它的方程是什么为什么※ 当堂检测1. 与曲线y x =相同的曲线方程是( ).A .2x y x= B .y =C .y =.2log 2x y =2.直角坐标系中,已知两点(3,1)A ,(1,3)B -,若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1, 则点C 的轨迹为 ( ) .A .射线B .直线C .圆D .线段3.(1,0)A ,(0,1)B ,线段AB 的方程是( ). A .10x y -+= B .10x y -+=(01)x ≤≤C .10x y +-=D .10x y -+=(01)x ≤≤4.已知方程222ax by +=的曲线经过点5(0,)3A 和点(1,1)B ,则a = ,b = . 5.已知两定点(1,0)A -,(2,0)B ,动点p 满足12PA PB =,则点p 的轨迹方程是 .二、求曲线方程1、圆心C的坐标为(6,0),半径为4r=,求此圆的方程.探究:若4AB=,如何建立坐标系求AB的垂直平分线的方程.※典型例题例1 有一曲线,曲线上的每一点到x轴的距离等于这点到(0,3)A的距离的2倍,试求曲线的方程.变式:现有一曲线在x轴的下方,曲线上的每一点到x轴的距离减去这点到点(0,2)A,的距离的差是2,求曲线的方程.小结:点(,)P a b到x轴的距离是;点(,)P a b到y轴的距离是;点(1,)P b到直线10+-=的距离是.x y例2已知一条直线l和它上方的一个点F,点F到l的距离是2,一条曲线也在l的上方,它上面的每一点到F的距离减去到l的距离的差都是2,建立适当的坐标系,求这条曲线的方程.※动手试试练1.有一曲线,曲线上的每一点到x轴的距离等于这点到直线10+-=的距离的2倍,x y试求曲线的方程.练2. 曲线上的任意一点到(3,0)B两点距离的平方和为常数26,求曲线的方程.A-,(3,0)※ 学习小结1.曲线的方程、方程的曲线;2.求曲线的方程的步骤:①建系,设点;②写出点的集合;③列出方程;④化简方程;⑤验证.3. 通过曲线的方程,研究曲线的性质.※ 知识拓展求轨迹方程的常用方法有:直接法,定义法,待定系数法,参数法,相关点法(代入法),交轨法等.【课后作业】1.方程[]2(3412)log (2)30x y x y --+-=的曲线经过点(0,3)A -,(0,4)B ,(4,0)C ,57(,)34D -中的( ).A .0个B .1个C .2个D .3个2.曲线y =0y x +=的交点个数一定是( ).A .0个B .2个C .4个D .3个3.若定点(1,2)A 与动点(,)P x y 满足4OP OA •=,则点P 的轨迹方程是 .4.已知曲线C 的方程为 22y x = ,曲线C 上有点(1,2)A ,A 的坐标是不是22y x = 的解?__________点(0.5,)t 在曲线C 上,则t =___ .5点(1,2)A -,(2,3)B -,(3,10)C 是否在方程2210x xy y -++=表示的曲线上为什么6. 求和点(0,0)O ,(,0)A c 距离的平方差为常数c 的点的轨迹方程.7.已知点C的坐标是(2,2),过点C的直线CA与x轴交于点A,过点C且与直线CA垂直的直线CB与y轴交于点B.设点M是线段AB的中点,求点M的轨迹方程.§椭圆及其标准方程1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握点的轨迹的求法;4.掌握椭圆的定义及标准方程.(0,1),(2,0)的直线方程.复习2:方程22-++=表示以为圆心, 为半径的.(3)(1)4x y Array二、新课导学※学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点: ①分清动点和定点;②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b a b+=>> 其中222b a c =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 . ※ 典型例题例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c =y 轴上;⑶10,a b c +==变式:方程214x y m+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).A ..6 C ..12练2 .方程219x y m-=表示焦点在y 轴上的椭圆,求实数m 的范围.※ 当堂检测1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 10,点M 的轨迹是 ,它的方程是 .(二)椭圆及其标准方程问题:圆22650x y x +++=的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;反之,到点(3,0)-的距离等于2的所有点都在圆 上.※ 典型例题例1在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?变式: 若点M 在DP 的延长线上,且32DM DP =,则点M 的轨迹又是什么?小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.例2设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程 .变式:点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么?※ 动手试试练1.求到定点()2,0A 与到定直线8x =的动点的轨迹方程.练2.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.三、总结提升 ※ 学习小结1.椭圆的定义及标准方程;2. ①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.※ 知识拓展椭圆的第二定义:到定点F 与到定直线l 的距离的比是常数e (01)e <<的点的轨迹. 定点F 是椭圆的焦点; 定直线l 是椭圆的准线; 常数e 是椭圆的离心率.※ 当堂检测1.若关于,x y 的方程22sin cos 1x y αα-=所表示的曲线是椭圆,则α在( ).A .第一象限B .第二象限C .第三象限D .第四象限2.若ABC ∆的个顶点坐标(4,0)A -、(4,0)B ,ABC ∆的周长为18,则顶点C 的轨迹方程为( ).A .221259x y +=B .221259y x += (0)y ≠C .221169x y +=(0)y ≠D .221259x y+=(0)y ≠3.设定点1(0,2)F - ,2(0,2)F ,动点P 满足条件124(0)PF PF m m m+=+>,则点P 的轨迹是( ).A .椭圆B .线段C .不存在D .椭圆或线段4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是 .5. 设12,F F 为定点,|12F F |=6,动点M 满足12||||6MF MF +=,则动点M 的轨迹是 .【课后作业】1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.2. 椭圆2214x y n+=的焦距为2,求n 的值.3.点M 与定点(0,2)F 的距离和它到定直线8y =的距离的比是1:2,求点的轨迹方程式,并说明轨迹是什么图形.§ 椭圆及其简单几何性质1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 3.根据椭圆的方程研究曲线的几何性质; 4.椭圆与直线的关系.一、课前准备复习1:椭圆2211612x y+=上一点P到左焦点的距离是2,那么它到右焦点的距离是.复习2:方程2215x ym+=表示焦点在y轴上的椭圆,则m的取值范围是.二、新课导学※学习探究问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.试试:椭圆221169y x+=的几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:cea== .反思:ba或cb的大小能刻画椭圆的扁平程度吗?※典型例题例1 求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y+=呢?小结:①先化为标准方程,找出,a b,求出c;②注意焦点所在坐标轴.例2 点(,)M x y与定点(4,0)F的距离和它到直线25:4l x=的距离的比是常数45,求点M的轨迹.小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆 .※ 动手试试练1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =;⑵焦点在y 轴上,3c =,35e =;⑶经过点(3,0)P -,(0,2)Q -;⑷长轴长等到于20,离心率等于35.※ 当堂检测1.若椭圆2215x y m+=的离心率e =,则m 的值是( ).A .3B .3或253C 2.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为( ). A .34 B .23 C .12 D .143,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为( ).A .3B .6C .12D .244.已知点P 是椭圆22154x y +=上的一点,且以点P 及焦点12,F F 为顶点的三角形的面积等于1,则点P 的坐标是 .5.某椭圆中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是 .(二)椭圆在生活中的应用例1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F ,已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =,试建立适当的坐标系,求截口BAC 所在椭圆的方程.变式:若图形的开口向上,则方程是什么?小结:①先化为标准方程,找出,a b ,求出c ; ②注意焦点所在坐标轴.※ 动手试试练1已知地球运行的轨道是长半轴长81.5010a km =⨯,离心率0.0192e =的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.练2.经过椭圆2212x y +=的左焦点1F 作倾斜角为60的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长.※ 学习小结1 .椭圆的几何性质:图形、范围、对称性、顶点、长轴、短轴、离心率;2 .理解椭圆的离心率 3.椭圆在生活中的运用;4 .椭圆与直线的位置关系:相交、相切、相离(用∆判定).【课后作业】1.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y+=与221 1612x y+=;⑵22936x y+=与221 610x y+=.2.求适合下列条件的椭圆的标准方程:⑴经过点(P-,Q;⑵长轴长是短轴长的3倍,且经过点(3,0)P;⑶焦距是8,离心率等于0.8.3.求下列直线310250x y+-=与椭圆221254x y+=的交点坐标.4.若椭圆22149x y+=,一组平行直线的斜率是32⑴这组直线何时与椭圆相交?⑵当它们与椭圆相交时,这些直线被椭圆截得的线段的中点是否在一直线上?§ 双曲线及其标准方程学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.1.理解并掌握双曲线的几何性质.学习过程 一、课前准备52 P 55,文P 45~ P 48找出疑惑之处)复习1:椭圆的定义是什么椭圆的标准方程是什么复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.二、新课导学 ※ 学习探究问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
高考数学第二轮复习 圆锥曲线导学案1
总结:
四、典型例题
例1 双曲线的中心在原点,实轴在 轴上,且与圆 交于点 , 如果过点 的圆的切线恰平行于双曲线的左顶点与虚轴的上端点的连线,求双曲线的方程.
例2.如图,椭圆 ( )的左、右焦点分别为 , 是椭圆的右准 线上的两个动点,且 .
画川高级中学高三数学(体艺) 学案
复习课题:圆锥曲线1
〖导学过程〗
1、复习目标:
掌握圆锥曲线的相关知识,能解决基础的相关问题
二.知识整理:
三、小题 练习
1.已知定 点 ,在满足下列条件的平面上动点P的轨迹中是椭圆的是A. B.
C. D.
2.方程 表示的曲线是_____
3.已知方程 表示椭圆,则 的取值范围为____
(1)设曲线 是以 为直径的圆,试判断原点 与圆 的位 置关系;
(2)设椭圆的离心率为 , 若双曲 线 的一个焦点 为 ,那么 的值为.
2.过点 且与双曲线 有公共渐近线的双曲线方程是.
3.已知抛物线方程为 ,若抛物线上一点到 轴的距离等于5,则它 到抛物线的焦点的距离等于____;
高中数学第2章圆锥曲线与方程复习一导学案苏教版选修11
江苏省响水中学高中数学 第2章《圆锥曲线与方程》复习一导学案 苏教版选修1-1一、学习方针:1、巩固椭圆的定义和标准方程;2、能运用椭圆的标准方程以及椭圆的定义(①②)处理一些简单的实际问题二、课前预学:1、求适合下列条件的椭圆的标准方程:(1)a=4, b=3,焦点在x 轴上 ;(2)b=1, c=15 ,焦点在y 轴上 ;(3)两个焦点分别是F1(-2, 0),F2(2, 0),并且过点P(52 , -32 ) ;2、椭圆x29+y22=1的焦点为F1,F2,点P 在椭圆上,若|PF1|=4,则∠F1PF2的大小为________.三、课堂探究:1、已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45和25, 过P 作长轴的垂线刚好过椭圆的一个焦点,求椭圆的方程.2、在椭圆2218x y t +=内有一点(2,1)A ,过点A 的直线l 的斜率为1-,且与椭圆交于,B C 两点,线段BC 的中点刚好是A ,试求椭圆的方程.3、(1)已知椭圆中心在原点,求经过两点A(0,2)和1(3)2B的椭圆的标准方程.(2)已知椭圆中心在原点,它在x轴上的一个焦点与短轴两个端点连线互相垂直,且此焦点和x轴较近端点的距离为4(21),求椭圆方程和准线方程.4、已知椭圆C: 2222:1(0)x y C a b a b +=>>的摆布焦点分别为12,F F ,其上的动点M 到一个焦点的距离最大为3,点M 对F1F2的张角最大为60︒.(1)求椭圆的方程;(2)设椭圆C 在X 轴上的两个顶点分别为A,B,点P 是椭圆C 内的动点,且2PA PB PO =,求PA PB ⋅的取值范围.5、已知点,A B 分别是椭圆2213620x y +=长轴的摆布端点,点F 是椭圆的右焦点,P 在椭圆上,且位于x 轴上方, PA PF ⊥.(1)求P 点的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到M 的距离d 的最小值.四、课堂检测:1、点.P 在椭圆192522=+y x 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是 。
江苏省响水中学高二数学 第2章《圆锥曲线与方程》复习二导学案
x2 y2 6、双曲线 C 与椭圆27+36=1 有相同焦点,且经过点( 15,4). (1)求双曲线 C 的方程;
3
ห้องสมุดไป่ตู้ 2
(2)若 F1,F2 是双曲线 C 的两个焦点,点 P 在双曲线 C 上,且∠F1PF2=120°, 求△F1PF 2 的面积.
3
3
2
5、已知过抛物线 y2 2 pxp 0的焦点,斜率为 2 2 的直线交抛物线于 Ax1, y2 ,
B x2,
y2 (
x1
x2 )两点,且
AB
9
.
(1)求该抛物线的方程;
(2) O 为坐标原点, C 为抛物线上一点,若 OC OA OB ,求 的值.
四、课堂检测:
1、已知方程
x2 k 3
y2 2k
1
表示焦点在
y
轴上的双曲线,
则 k 的取值范围为____________
2、设双曲线的左准线与两条渐近线交于 A, B 两点,左焦点在以 AB 为直径的圆内,
则该双曲线的离心率的取值范围为___________
3、已知双曲线 4x2 – y2 + 64 = 0 上一点 M 到它的 一个焦点的距离等于 1,
点 M 到另一个焦点的距离
。
4、(1)抛物线 y 4x2 的焦点坐标为______________
(2)设抛物线的顶点在原点,准线方 程为 x 2 ,则抛物线的方程是
5、已知直线 l 过抛物线 C 的焦点,且与 C 的对称轴垂直, l 与 C 交于 A,B 两点,|AB|=12, P 为 C 的准线上一点,则 ABP 的面积为________. 6、经过点 P(4, 2) 的抛物线的标准方程为_________________
高考数学专题复习系列 圆锥曲线与方程导学案
圆锥曲线与方程1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第1课时 椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 . ②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+b x a y ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断? 3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,22PF =4.焦点三角形应注意以下关系(老师补充画出图形): (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r ∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知 |OA |=.)(221||211r a r a PF -=-⨯= 故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。
圆锥曲线与方程章节复习导学案(含答案)
圆锥曲线与方程复习导学案一、我的知识我完善1、课标要求(1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;(2)经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;(3)了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。
2、命题走向本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,从近十年高考试题看,选择题、填空题和解答题都涉及到,所占比重也比较稳定,难度上易、中、难三档题都有,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识,而解答题则主要考查直线与圆锥曲线的位置关系和处理综合性问题的基本技能、基本方法。
3、根据以下知识网络请你说说各板块你所学到的东西二、我的例题我探究题型一圆锥曲线定义的应用圆锥曲线的定义是相应标准方程和几何性质的“根”,对于圆锥曲线的有关问题,要有运用定义去解题的意识,“归根”是一种重要的解题策略。
例1 若点)1,2(P ,1F 、2F 是椭圆171622=+y x 的左、右焦点,点A 是椭圆上一个动点,求||||2AF AP +的最值.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------变式训练1已知F 是双曲线112422=-y x 的左焦点,点)4,1(A ,P 是双曲线右支上的动点,则||||PA PF +的最小值为---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 变式训练2 已知点P 是抛物线x y 22=上的一个动点,又点)2,0(M ,求点P 到点M 的距离与点P 到该抛物线准线的距离之和的最小值.--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 小结:对于椭圆和双曲线常把曲线上的点到焦点的距离转化为到另一个焦点的距离,对于抛物线常把到焦点的距离和到准线的距离进行转化,再利用数学结合的思想去解决有关最值问题题型二 圆锥曲线性质的问题有关圆锥曲线的焦点、离心率、渐近线等几何性质是历年来高考中必考的,考试只要掌握基本公式和概念,利用数学结合思想基本可以顺利解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章圆锥曲线与方程(复习)
学习目标
1.掌握椭圆、双曲线、抛物线的定义及标准方程;
2.掌握椭圆、双曲线、抛物线的几何性质;
3.能解决直线与圆锥曲线的一些问题.
学习过程
一、课前准备
复习1:完成下列表格:
椭圆双曲线抛物线定义
图形
标准方程
顶点坐标
对称轴
焦点坐标
离心率
(以上每类选取一种情形填写)
复习2:
①若椭圆221
x my
+=的离心率为
3
2
,则它的长半轴长为__________;
②双曲线的渐近线方程为20
x y
±=,焦距为10,则双曲线的方程为;
③以椭圆
22
1
2516
x y
+=的右焦点为焦点的抛物线方程为.
二、新课导学
典型例题
例1 当α从0 到180 变化时,方程
22cos1
x yα
+=表示的曲线的形状怎样变化?
变式:若曲线
22
1
1
x y
k k
+=
+
表示椭圆,则k的取值范围是.
小结:掌握好每类标准方程的形式.
例2设
1
F,
2
F分别为椭圆C:
22
22
x y
a b
+ =1
(0)
a b
>>的左、右两个焦点.
⑴若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
⑵设点K是(1)中所得椭圆上的动点,求线段
1
F K的中点的轨迹方程.
变式:双曲线与椭圆22
12736
x y +=有相同焦点,且经过点(15,4),求双曲线的方程.
练一练
练1.已知ABC ∆的两个顶点A ,B 坐标分别是(5,0)-,(5,0),且AC ,BC 所在直线的斜率之积等于m (0)m ≠,试探求顶点C 的轨迹.
练2.斜率为2的直线l 与双曲线22
132
x y -=交于A ,B 两点,且4AB =,求直线l 的方程.
三、总结提升 学习小结
1.椭圆、双曲线、抛物线的定义及标准方程;2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. 4、圆锥曲线具有统一性:
⑴它们都是平面截圆锥得到的截口曲线;
⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x ,y 的二次方程.
当堂检测
1.曲线221259x y +=与曲线22
1259x y k k
+=--(9)k <的( )
. A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等 2.与圆221x y +=及圆228120x y x +-+=都外切的圆的圆心在( ) .
A .一个椭圆上
B .双曲线的一支上
C .一条抛物线上
D .一个圆上 3.过抛物线28y x =的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则
AB 等于( )
. A .10 B .8 C .6 D .4 4.直线1y kx =-与双曲线224x y -=没有公共点,则k 的取值范围 . 5.到直线3y x =+的距离最短的抛物线24y x =上的点的坐标是 .
6.就m 的不同取值,指出方程22(1)(3)(1)(3)m x m y m m -+-=--所表示的曲线的形状.
7. 抛物线2
2
x y =-与过点(0,1)M -的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为
1,求直线l 的方程.。