2020春七年级数学下册期中数学试卷及答案

合集下载

2020春七年级下册期中数学试卷有答案

2020春七年级下册期中数学试卷有答案

(第5题图)DOCBA第二学期期中考试试卷初一数学(2+4)(时间:90分钟,满分:110分)一、选择题:(每题3分,共24分)1.下列运算正确的是………………………………………………………………………………()A.a3+a3=2a6B.a6÷a2=a3 C.(-a)3(-a5) =-a8D.(-2a3) 2=4a62.下列各式从左到右的变形,是因式分解的是…………………………………………………()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2 D.a2+4=(a+2)2-4a3.下列图形中,是轴对称图形的为…………………………………………………………… ()4.等腰三角形有一个角为80°,顶角等于…………………………………………………… ()A.80°B.20°C.80°或20°D.80°或100°5. 如图,已知AB、CD交于点O,AO=CO,BO=DO,则在以下结论中:①AD=BC;②∠A=∠C;③∠ADB=∠CBD;④∠ABD=∠CDB,正确结论的个数为…………()A. 4个B. 3个C. 2个D.1个6.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是……… ()A.a>b B.a=b C.a<b D.与a、b大小无关7. 如图,在△ABC中,BC = 8 cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于…………………………………………………()A.6 cm B.8 cm C.10 cm D.12 cm8. 如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正确结论的个数为…………………………………………………………………………()A.1 B.2 C.3 D.4二、填空:(每空2分,共16分)9. 科学家发现一种病毒的直径约为0.0000043米,用科学记数法表示为米.10.已知一个多边形的内角和等于外角和的4倍,则此多边形的边数为 .11. 如图将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,∠3=______°.12. 将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1=________°.13. 等腰三角形的两边长分别为3cm和6cm,则它的周长为______________.14.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=_______.15. 如图,∠ABC,∠ACB的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.△AMN的周A B C D(第8题图)EAB CDADB CE(第7题图)(第11题图)(第12题图)(第15题图)长为18,则AB +AC = .16.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为2,则△DEF 的周长为 .三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)(1) |1|2011125.0221032-++⨯-⎪⎭⎫ ⎝⎛- (2) ()()2271023422a a a a a ÷-+- (3) 先化简,再求值:()()()1122+--+a a a ,其中a = 3218. 因式分解:(本题满分9分,每小题3分)(1) y xy y x 8822+- (2) ()()2222b a b a --- (3) 16)5(8)5(222+-+-x x19.计算:(本题满分6分,每小题3分)(1) 解下列方程组 ⎩⎨⎧=+=-18223y x y x(2) 解不等式组:3112(21)51x x x x -<+⎧⎨-≤+⎩20.(本题满分6分)尺规作图:如图,已知在两条公路OA ,OB 的附近有C ,D 两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P 的位置到两个超市的距离相等,且到两条公路的距离也相等,请你用直尺和圆规找出摄像头P 的位置.21.(本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l .①将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形△A’B’C’; ②画出△DEF 关于直线l 对称的三角形△D’E’F’; ③填空:∠C+∠E= .22.(本题满分8分)已知关于x ,y 的方程组 的解满足x <0,y >0. (1)x =________, y = (用含a 的代数式表示);(2)求a 的取值范围;(3)若2x •8y =2m,用含有a 的代数式表示m ,并求m 的取值范围.23.(本题满分8分)已知:如图, AD ∥BC ,EF 垂直平分BD ,与AD ,BC ,BD 分别交于点E ,F ,O .求证:(1)△BOF ≌△DOE ; (2)DE =DF .O A BC D(第16题图)E O A C B ⎩⎨⎧-=---=-a y x a y x 32124.(本题满分8分)某地区为绿化环境,计划购买甲、乙两种树苗共计n 棵.有关甲、乙两种树苗的信息如图所示:(1)当n =400时,如果购买甲、乙两种树苗共用27000元,那么甲、乙两种树苗各买了多少棵? (2)实际购买这两种树苗的总费用恰好为27000元,其中甲种树苗买了m 棵. ①写出m 与n 满足的关系式;②要使这批树苗的成活率不低于92%,求n 的最大值.25.(本题满分10分)如图,已知△ABC 中,AB =AC =12厘米,(即∠B =∠C ),BC =9厘米,点M 为AB 的中点, (1)如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A运动.①若点Q 的运动速度与点P 的运动速度相等,经过1.5秒后,△BPM 与△CQP 是否全等?请说明理由. ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPM 与△CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?ABC··P Q·M 1.甲种树苗每棵60元; 2.乙种树苗每棵90元;3.甲种树苗的成活率为90%; 4.乙种树苗的成活率为95%.信息初一数学(2+4)第二学期期中测试卷答案一、选择题:(每题3分,共24分)DCBC AACD二、填空:(每空2分,共16分)9.4.3×10-6 10.10 11.70 12. 1813. 15cm 14.11 15.18 16. 6三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)(1) 5 (2)(3) 原式=4a+5 值:11 18.因式分解:(本题满分9分,每小题3分)(1)(2)(3)19.计算:(本题满分6分,每小题3分)(1)(2) -3≤x<120.(本题满分6分)略21.(本题满分6分)图见右.③填空:∠C+∠E=45°.22.(本题满分8分)(1)x=__-2a+1______, y=-a+2 (用含a的代数式表示);(2)(3)23.(本题满分8分)(1)用AAS 或ASA 证明全等(3分)(2)∵EF 垂直平分BD∴DF=BF ……………………5分∵EF ⊥BD∴∠2=∠3……………………6分∵∠1=∠2∴∠1=∠3……………………7分 ∴DE=DF ……………………8分24.(本题满分8分)(1) 甲种树苗300棵,乙种树苗100棵.…………………… 3分 (2)①60m +90(n-m )=27000,即m =3n -900……………………4分 ②90%m +95%(n-m )≥92%n ……………………5分 ∴3n -5m ≥0∴3n -5(3n -900)≥0……………………6分∴n ≤375……………………7分∴n 的最大值为375.…………………… 8分25.(本题满分10分) (1)∵t =1.5s∴BP =CQ =2×1.5=3 ∴CP =BC —BP =6∵BM = 21AB =6 ∴BM =CP又∵BP =CQ ,∠B =∠C∴△MBP ≌△PCQ …………………… 3分 (2)能……………………………… 4分 ①∵v P ≠v Q ,∴BP ≠CQ∵∠B =∠C ,∴若△BMP ≌△CQP则CQ =BM =6,CP =BP = 21BC =4.5∴此时得时间t = 2BP = 49s …………………… 6分∴v Q = t CQ == 38cm/s…………………… 7分 ②设经过x 秒后两点第一次相遇. 由题意得: 38x = 2x + 2×12解得:x =36(s).…………………………………………8分 此时点P 共运动了 2×36=72 cm∵72=2×33+6,…………………………………………9分 ∴在BC 边相遇.答:经过36s 第一次相遇,相遇点在边BC 上.………… 10分。

2020人教版七年级下册数学《期中考试卷》含答案

2020人教版七年级下册数学《期中考试卷》含答案

2020⼈教版七年级下册数学《期中考试卷》含答案七年级下学期期中测试数学试卷⼈教版⼀.选择题(共10⼩题)1.点P (2,-3)() A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限2. 4的算术平⽅根是()B. 2C. ±2D. 3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 227 4.有下列命题:①对顶⾓相等;②若a ∥b ,b ∥c ,则a ∥c ;③在同⼀平⾯内,若a ⊥b ,b ⊥c ,则a ∥c ;④ac =bc ,则a =b .其中正确的有()A. 1个B. 2个C. 3个D. 4个 5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm ),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?7.(b ﹣3)2=0,则(a +b )2019等于()A. 1B. ﹣1C. ﹣2019D. 20198.下列说法错误的是()A. 2±B. 64的算术平⽅根是4C. 0=D. 0≥,则x =19.点P (3﹣2m ,m )不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限10.如图,把⼀张长⽅形纸⽚ABCD 沿EF 折叠后,点C 、D 分别落在C ′、D ′位置上,EC ′交AD 于点G ,已知∠EFG =56°,则∠BEG 等于()A. 112°B. 88°C. 68°D. 56°⼆.填空题(共6⼩题)11.若⼀个正数平⽅根是3a +2和2a ﹣1,则a 为_____.12.若点P (3a ﹣2,2a +7)在第⼆、四象限的⾓平分线上,则点P 的坐标是_____. 13.互为相反数,则b a =_____. 14.如图楼梯截⾯,其中AC =3m ,BC =4m ,AB =5m ,要在其表⾯铺地毯,地毯长⾄少需_____⽶.15.如图,直线l 1∥l 2,若∠1=130°,∠2=60°,则∠3=__________. 的的是16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.三.解答题(共8⼩题)(1(2;(3)|﹣|+1|+|1﹣|.18.求下列各式中的x .(1)4(3x +1)2﹣1=0;(2)(x +2)3+1=0.19.如图所⽰,直线AB ,CD 相交于点O ,P 是CD 上⼀点.(1)过点P 画AB 垂线段PE .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)说明线段PE ,PO ,FO 三者的⼤⼩关系,其依据是什么?20.△ABC 在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.21.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平⾏的直线上,PQ=3,求Q点的坐标.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.23.已知a、b满⾜b24.已知点A(1,a),将线段OA平移⾄线段BC,B(b,0),a是m+6n=3,n,且m<n,正数b满⾜(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的⾯积;(3)如图2,若∠AOB=a,点P为y轴正半轴上⼀动点,试探究∠CPO与∠BCP之间的数量关系.答案与解析⼀.选择题(共10⼩题)1.点P(2,-3)在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).2. 4的算术平⽅根是()B. 2C. ±2D.【答案】B【解析】试题分析:根据算术平⽅根的定义可得4的算术平⽅根是2,故答案选B.考点:算术平⽅根的定义.3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 22 7【答案】B【解析】【分析】根据⽆理数是⽆限不循环⼩数,逐⼀验证即可.【详解】A=2,是整数,属于有理数,故选项不符合题意;B.C.3.14属于有理数,故选项不符合题意;D.227是分数,属于有理数,故选项不符合题意.故选:B.【点睛】本题考查了⽆理数的定义,注意有理数的化简变形,理解⽆理数的定义是解题的关键.4.有下列命题:①对顶⾓相等;②若a∥b,b∥c,则a∥c;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c;④ac=bc,则a=b.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C根据对顶⾓定义,平⾏的“传递性”以及平⾏判定的条件,等式的性质进⾏逐⼀验证判断即可.【详解】①对顶⾓相等,是正确的;②若a∥b,b∥c,则a∥c,是正确的;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c,是正确的;④当a=1,b=2,c=0时,ac=bc,但a≠b,∴ac=bc,则a=b,是错误的;故选:C.【点睛】本题考查了平⾏线的概念和性质,等式的性质,熟练掌握相关概念内容是解题的关键.5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 【答案】B【解析】【分析】根据题意,电脑主板是⼀个多边形,由周长的定义可知,周长是求围成图形⼀周的长度之和,计算周长只需要把横着的和竖着的所有线段加起来即可.【详解】由图形可得出:该主板的周长是:24+24+16+16+4×4=96(mm ),故该主板的周长是96mm ,故选:B .【点睛】本题考查了不规则多边形周长的求解⽅法,理解周长的定义是求解的关键. 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?【答案】A【解析】【分析】求出a ,b ,得出,4=,5,根据,3的度数求出,5的度数,即可得出答案.【详解】解:∴∠4=∠5,∵∠3=108°,∴∠5=180°-108°=72°,∴∠4=72°,故选A .【点睛】本题考查了平⾏线的性质和判定的应⽤,能灵活运⽤性质和判定进⾏推理是解此题的关键.7.(b﹣3)2=0,则(a+b)2019等于()A. 1B. ﹣1C. ﹣2019D. 2019【答案】B【解析】【分析】根据⾮负数的性质,⾮负数的和为0,即每个数都为0,可求得a、b的值,代⼊所求式⼦即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了⾮负数的性质,以及-1的奇次⽅是-1,理解⾮负数的性质是解题关键.8.下列说法错误的是()A. 2± B. 64的算术平⽅根是4≥,则x=1 =0【答案】B【解析】【分析】根据平⽅根、算术平⽅根、⽴⽅根的概念对选项逐⼀判定即可.B.64的算术平⽅根是8,错误;C=,正确;D0≥,则x=1,正确;故选:B.【点睛】本题考查了平⽅根、算数平⽅根,⽴⽅根的概念,理解概念内容是解题的关键.9.点P(3﹣2m,m)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据象限内的点坐标的特征,分点P的横坐标是正数和负数两种情况讨论求解即可.【详解】当m>1.5时,点在第⼆象限;当m=1.5时,点在y轴上;当0<m<1.5时,点在第⼀象限;当m=0时,点x轴上;当m<0时,点在第四象限;故选:C.【点睛】本题考查了点坐标在象限内时的取值范围,注意分类讨论思想的应⽤.10.如图,把⼀张长⽅形纸⽚ABCD沿EF折叠后,点C、D分别落在C′、D′的位置上,EC′交AD于点G,已知∠EFG=56°,则∠BEG等于()A. 112°B. 88°C. 68°D. 56°【答案】C【解析】【分析】根据平⾏线和折叠的性质可知,∠GEF=∠CEF=∠EFG=56°,由平⾓的定义计算即可.【详解】∵AD∥BC,∠EFG=56°,∴∠EFG=∠FEC=56°,由折叠的性质可知,∠FEC=∠FEG,∴∠GEC=∠FEC+∠FEG=112°,∴∠BEG=180°-∠GEC=68°,故选:C.【点睛】本题考查了平⾏线和折叠结合的性质,平⾓的定义,熟练掌握平⾏和折叠的关系是解题的关键,也是中考常考的重难点.⼆.填空题(共6⼩题)11.若⼀个正数的平⽅根是3a+2和2a﹣1,则a为_____.【答案】15 -.【解析】【分析】根据⼀个正数的平⽅根有两个,且互为相反数可得3a+2+2a﹣1=0,解出a即可.【详解】由题意得,3a+2+2a﹣1=0,解得:a=15 -.故答案为:15 -.【点睛】本题考查了正数的平⽅根的定义,互为相反数的两个数和为0的性质,理解平⽅根的定义是解题的关键.12.若点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,则点P的坐标是_____.【答案】(﹣5,5).【解析】【分析】根据第⼆、四象限的⾓平分线上的点,横纵坐标互为相反数,由此可列出关于a的⽅程,解出a的值即可求得点P的坐标.【详解】∵点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).故答案为:(﹣5,5).【点睛】本题考查了点坐标在象限⾓平分上的性质和列⼀次⽅程求解的问题,熟记点坐标在象限⾓平分线上的性质是解题的关键.13.互相反数,则ba=_____.【答案】32.【解析】【分析】根据⽴⽅根的概念,结合相反数的定义,可知两个被开⽅数也互为相反数,由两数和为0可列出关于a、b的关系式,化简整理即可.∴(3a﹣1)+(1﹣2b)=0,∴3a=2b,∴ba=32.故答案为:32.【点睛】本题考查了⽴⽅根的概念,相反数的定义,由关系式求两数的⽐值,理解⽴⽅根和相反数的概念是解题的关键.14.如图是楼梯截⾯,其中AC=3m,BC=4m,AB=5m,要在其表⾯铺地毯,地毯长⾄少需_____⽶.【答案】7.【解析】【分析】根据图形可知,由三⾓形三边长可知,满⾜勾股数,△ABC是直⾓三⾓形,需要铺的地毯的长度即为AC+BC的长度,数值代⼊计算即可.【详解】根据题意结合图形可知,△ABC三边长满⾜勾股数,是直⾓三⾓形,所以要铺的地毯的长度即为AC+BC,∴4+3=7(⽶).答:地毯长⾄少需7⽶.故答案为:7.【点睛】本题考查了勾股数判定直⾓三⾓形,图形的折叠和展开图与⽔平距离和竖直距离之间的关系,理解⽴体图展开成平⾯图形的关系是解题的关键.15.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=__________.【答案】70°【解析】试题分析:,直线l1,l2,,,4=,1=130°,,,5=,4﹣,2=70°,,,5=,3=70°.,故答案为70°.考点:平⾏线的性质.16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.【答案】(15,5)【解析】由图形可知:点的个数依次是1,2,3,4,5,…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14⾏点的⾛向为向上,∴纵坐标为从第92个点向上数8个点,即为8,∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学⽣的观察图形的能⼒和理解能⼒,解此题的关键是根据图形得出规律,题⽬⽐较典型,但是是⼀道⽐较容易出错的题⽬.三.解答题(共8⼩题)17.计算:(1(2;(3)|﹣|+1|+|1﹣|.【答案】(1)5;(2)﹣1;(3【解析】【分析】(1)根据开平⽅的运算进⾏计算即可得;(2)根据开平⽅和开⽴⽅的运算进⾏化简,然后进⾏加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本⾝,负数的绝对值是它的相反数,0的绝对值是0,进⾏化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣﹣1,.【点睛】本题考查了实数的混合运算法则,开平⽅,开⽴⽅的化简求值,去绝对值符号的化简,注意化简时符号的问题.18.求下列各式中的x.(1)4(3x+1)2﹣1=0;(2)(x+2)3+1=0.【答案】(1)1x=﹣16或2x=﹣12;(2)x=﹣3.【解析】【分析】(1)根据题意,把-1移项,然后直接开⽅即可求得;(2)由题⽬可知,把+1移项,根据⽴⽅根的定义,直接开⽴⽅计算可得.【详解】(1)4(3x+1)2﹣1=0,4(3x+1)2=1,(3x+1)2=14,3x+1=±12,∴1x=﹣16或2x=﹣12故答案为:1x=﹣16或2x=﹣12;(2)(x+2)3+1=0,(x+2)3=﹣1,x+2=﹣1,∴x=﹣3,故答案为:-3.【点睛】本题考查了利⽤直接开平⽅和开⽴⽅的⽅法求⽅程的解,注意开平⽅有两个根,且互为相反数.19.如图所⽰,直线AB,CD相交于点O,P是CD上⼀点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的⼤⼩关系,其依据是什么?【答案】(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”【解析】【分析】前两问尺规作图见详解,第(3)问中利⽤垂线段最短即可解题.【详解】(1)(2)如图所⽰.(3)在直⾓△FPO中,PO<FO,在直⾓△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.【点睛】本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的⽅法和步骤,垂线段的性质是解题关键.20.△ABC在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.【答案】(1)(1,3)、(2,0)、(4,1);(2)如图所⽰,△OB′C′即为所求,见解析;B′(1,﹣3)、C′(3,﹣2).(3)△OB′C′的⾯积为72.【解析】【分析】(1)根据点在平⾯直⾓坐标系的位置,可分别写出点所对应的坐标即可;(2)根据平移前后点A与对应点O坐标的位置,可以得出图形△ABC向左平移1个单位、向下平移3个单位,由此可得出平移后点B′、C′的坐标;(3)利⽤割补法,把△OB′C′补成⼀个正⽅形,减去三个直⾓三⾓形的⾯积计算即可.【详解】(1)由图形知A(1,3),B(2,0),C(4,1);故答案为:(1,3)、(2,0)、(4,1);(2)由A(1,3)及其对应点O(0,0)知,需将△ABC向左平移1个单位、向下平移3个单位,如图所⽰,△OB′C′即为所求,其中B′(1,﹣3)、C′(3,﹣2),故答案为:B′(1,﹣3)、C′(3,﹣2);(3)△OB ′C ′的⾯积为3×3﹣12×1×3﹣12×3×2﹣12×1×2=72,故答案为:72.【点睛】本题考查了平⾯直⾓坐标系内,点坐标的表⽰,平移图形的变化关系,割补法求⼀般三⾓形的⾯积,熟记平⾯直⾓坐标系的点坐标的表⽰是解题的关键.21.已知,点P (2m ﹣6,m +2).(1)若点P 在y 轴上,P 点的坐标为;(2)若点P 和点Q 都在过A (2,3)点且与x 轴平⾏直线上,PQ =3,求Q 点的坐标.【答案】(1)P (0,5);(2)Q 点坐标为(-1,3)或(-7,3)【解析】【分析】(1)根据y 轴上点的横坐标为0,得2m -6=0,求m 值即可得P 点坐标;(2)根据题意可得直线PQ 经过A 点且平⾏于x 轴,可得P 、Q 的纵坐标均为3,由此得m+2=3,确定m 值后根据PQ=3,可得Q 点的横坐标.【详解】解:(1)∵点P 在y 轴上∴2m -6=0∴m=3∴m+2=3+2=5∴P (0,5)(2)根据题意可得PQ ∥x 轴,且过A (2,3)点,∴m+2=3∴m=1的∴2m-6=-4∴P(-4,3)∵PQ=3∴Q点横坐标-4+3=-1,或-4-3=-7∴Q点坐标为(-1,3)或(-7,3)【点睛】本题考查y轴上和平⾏于x轴上点坐标的特征,根据此特征确定点的横坐标或纵坐标是解答此题的关键.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∵AB∥CD∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.【答案】AB∥EF,理由见解析;填空答案:AB∥EF,两直线平⾏,内错⾓相等;等量代换,∠E,∠DCE,CD,同旁内⾓互补,两直线平⾏;平⾏于同⼀直线的两条直线互相平⾏.【解析】【分析】根据平⾏线性质,可得∠BCD=80°,进⽽可得到∠E+∠ECD=180°,可证明EF∥CD,由。

2020年春七年级下期中数学试卷6含答案

2020年春七年级下期中数学试卷6含答案

七年级(下)期中数学试卷一、选择题:每题3分,共45分。

在每小题的四个选项中,只有一项是符合题目要求的。

请把正确的选项填涂在答题卡上。

1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x32.已知a=()﹣2,b=(﹣2)3,c=(x﹣2)0(x≠2),则a,b,c的大小关系为()A.b<a<c B.b<c<a C.c<b<a D.a<c<b3.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.14.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.235.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.06.下列说法正确的是()A.相等的角是对顶角B.一个角的补角必是钝角C.同位角相等D.一个角的补角比它的余角大90°7.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1078.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形形(不重叠无缝隙),则该长方形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°10.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°11.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°12.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个14.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s15.如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α二.填空题:每题3分,共18分,将答案填在各题的横线上.16.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为.17.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.18.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.19.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD 绕点O按逆时针方向至少旋转度.20.如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数°.21.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.三、解答题:共7小题,满分57分,解答应写出文字说明,说理过程或演算步骤。

2020年七年级下册数学期中试卷(含答案)

2020年七年级下册数学期中试卷(含答案)

2020年春七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.下列运算正确的是()A.B.(﹣3)3=27 C.=2 D.=32.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.53.若式子在实数范围内有意义,则x的取值范围是()A.x>5 B.x≥5C.x≠5D.x≥04.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180°D.∠3=∠55.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°6.下面生活中的物体的运动情况可以看成平移的是()A.摆动的钟摆B.在笔直的公路上行驶的汽车C.随风摆动的旗帜D.汽车玻璃上雨刷的运动7.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)8.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,0)B.(﹣1,0)C.(3,﹣1)D.(﹣3,﹣1)9.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)10.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.的平方根为 .12.把命题“对顶角相等”改写成“如果…那么…”的形式: . 13.若某数的平方根为a+3和2a ﹣15,则a= .14.10、把点A (-4,2)向右平移3个单位长度得A 1的坐标是 ; 把点A (-4,2)向下平移3个单位长度得A 2的坐标是 ;15.如图,若∠1=∠2,则互相平行的线段是__ ___________;16..若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是_ ________.17.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上.若∠EFG=55°,则∠1= ,∠2= .18.规定用符号[m ]表示一个实数m 的整数部分,例如:=0,[3.14]=3.按此规定[+2]的值为 .三、解答题(共66分) 19、(12分)计算(1)、327-+2)3(--31- (2)、33364631125.041027-++---20、(8分)如图,AD ∥BC ,AD 平分∠EAC ,∠EAD=50°,求∠B 和∠C 的度数。

2020年初一数学下期中试卷含答案

2020年初一数学下期中试卷含答案
解得:3≤a<4,
故答案为:3≤a<4
【点睛】
本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a的不等式组是解题关键.
16.32°【解析】【分析】根据在同一平面内垂直于两条平行线中的一条直线那么必定垂直于另一条直线推知AM⊥a;然后由平角是180°∠1=58°来求∠2的度数即可【详解】∵直线a∥bAM⊥b∴AM⊥a;∴∠
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
6.A
解析:A
【解析】
【分析】
【详解】

由①,得x<4,
由②,得x≤﹣3,由①②得,
原不等式组的解集是x≤﹣3;
故选A.
7.D
解析:D
【解析】
【分析】
根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.
A.∠1和∠2是同旁内角B.∠1和∠3是对顶角
C.∠3和∠4是同位角D.∠1和∠4是内错角
5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132°B.134°C.136°D.138°
6.不等式组 的解集,在数轴上表示正确的是( )
A. B. C. D.
7.下列图形中, 和 的位置关系不属于同位角的是()
(1)在平面直角坐标系中画出△ABC;
(2)写出点 的坐标是_____________; 坐标是___________;
(3)此次平移也可看作 向____平移了______个单位长度,再向_____平移了____个单位长度得到△ABC.

年七年级下册期中数学试卷及答案-(2020)

年七年级下册期中数学试卷及答案-(2020)

七年级〔下〕期中数学试卷一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7 B.﹣7C.±7D.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3 C.4 D.54.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行7.〔4分〕以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2D.=38.〔4分〕以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个9.〔4分〕点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕10.〔4分〕假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1B.3C.4D.911.〔4分〕假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕12.〔4分〕如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕A.50°B.55°C.60°D.65°1二、填空〔每小4分,共32分〕13.〔4分〕的平方根.14.〔4分〕把命“角相等〞改写成“假如⋯那么⋯〞的形式:.15.〔4分〕中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐.16.〔4分〕如所示,用直尺和三角尺作直AB,CD,从中可知,直 AB与直CD的地点关系.17.〔4分〕如,a∥b,∠1=70°,∠2=40°,∠3=度.18.〔4分〕x、y数,且+〔y+2〕2=0,y x=.19.〔4分〕平方根等于它自己的数是.20.〔4分〕在平面直角坐系中,于平面内任一点〔m,n〕,定以下两种:1〕f〔m,n〕=〔m,n〕,如f〔2,1〕=〔2,1〕;2〕g〔m,n〕=〔m,n〕,如g〔2,1〕=〔2,1〕依照以上有:f[g〔3,4〕]=f〔3,4〕=〔3,4〕,那么g[f〔3,2〕]=.三、解答〔每8分,共16分〕21.〔8分〕算〔1〕+;〔2〕||〔〕|2|.22.〔8分〕解以下方程1〕4x216=0;2〕〔x1〕3=125.四、解答〔23-25每10分,26-27每12分,共54分〕23.〔10分〕推理填空:如:①假定∠1=∠2,∥〔内角相等,两直平行〕;假定∠DAB+∠ABC=180°,∥〔同旁内角互,两直平行〕;②当∥,2∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当∥时,∠3=∠C〔两直线平行,同位角相等〕.24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.26.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.(27.〔12分〕研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.3七年级〔下〕期中数学试卷参照答案与试题分析一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7B.﹣7C.±7D.【剖析】依据一个正数有两个平方根,它们互为相反数解答即可.2∴±=±7,应选:C.【评论】本题考察了平方根的观点,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的重点.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.【剖析】依据平移的观点:在平面内,把一个图形整体沿某一的方向挪动,这类图形的平行挪动,叫做平移变换,简称平移,即可选出答案.【解答】解:依据平移的观点,察看图形可知图案B经过平移后能够获得.应选:B.【评论】本题主要考察了图形的平移,在平面内,把一个图形整体沿某一的方向挪动,学生混杂图形的平移与旋转或翻转,而误选.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3C.4D.5【剖析】依据无理数的三种形式:①开方开不尽的数,②无穷不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.应选B.【评论】本题考察了无理数的定义:无穷不循环小数叫无理数,常有形式有:①开方开不尽的数,如等;②无穷不循环小数,如⋯等;③字母,如π等.4.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.【剖析】依据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,依据其定义;故本选项正确;C、依据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、依据三角形的外角必定大于与它不相邻的内角;故本选项错误.应选B.4【评论】本题考察了对顶角、邻补角、平行线的性质及三角形的外角性质,本题考察的知识点许多,熟记其定义,是解答的根基.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限【剖析】横坐标小于0,纵坐标大于0,那么这点在第二象限.【解答】解:∵﹣2<0,3>0,∴〔﹣2,3〕在第二象限,应选B.【评论】本题考察了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是根基知识要娴熟掌握.6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行【剖析】在同一平面内,两直线的地点关系有2种:平行、订交,依据以上结论判断即可.【解答】解:A、∵在同一平面内,两直线的地点关系是平行、订交,2种,∴在同一平面内,两直线的地点关系是平行、订交〔订交不必定垂直〕,故本选项错误;B、在同一平面内,不平行的两条直线必定订交,故本选项错误;C、在同一平面内,不垂直的两直线可能平行,可能订交,故本选项错误;D、在同一平面内,不订交的两条直线必定平行,故本选项正确;应选D.【评论】本题考察了对平行线的理解和运用,注意:①在同一平面内,两直线的地点关系有种:平行、订交,②订交不必定垂直.7.以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2 D.=3【剖析】依据算术平方根、立方根计算即可.【解答】解:A、,错误;3C、,正确;D、,错误;应选C【评论】本题考察算术平方根、立方根,重点是依据算术平方根、立方根的定义计算.8.以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个【剖析】依据对顶角的性质、平行公义、平行线的判断定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不必定是对顶角,①错误;在同一平面内,假定a∥b,b∥c,那么a∥c,②正确;同旁内角不必定互补,③错误;5互为邻补角的两角的角均分线相互垂直,④正确,应选:C.【评论】本题考察的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.9.点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕【剖析】依据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:依据题意,∵点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为〔0,﹣1〕.应选D.【评论】本题考察了点的坐标平移,依据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的重点.10.假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1 B.3C.4D.9【剖析】依照平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,2a﹣1﹣a+2=0.解得:a=﹣1.2a﹣1=﹣3.∴这个正数是9.应选:D.【评论】本题主要考察的是平方根的定义和性质,依照平方根的性质列出对于a的方程是解题的重点.11.假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕【剖析】可先依据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,从而判断出点的符号,获得详细坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,M坐标为〔2,﹣1〕.应选C.【评论】考察点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕6A.50°B.55°C.60°D.65°【剖析】第一依据AD∥BC,求出∠FED的度数,而后依据称的性,折叠前后形的形状和大小不,地点化,和角相等,可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性知,∠FED=∠FED′=65°,∴∠AED′=180°2∠FED=50°.故∠AED′等于50°.故:A.【点】本考了:1、折叠的性;2、矩形的性,平行的性,平角的观点求解.二、填空〔每小4分,共32分〕13.的平方根±3.【剖析】依据平方根的定即可得出答案.【解答】解:8l的平方根±3.故答案:±3.【点】此考了平方根的知,属于基,掌握定是关.14.把命“角相等〞改写成“假如⋯那么⋯〞的形式:假如两个角是角,那么它相等.【剖析】命中的条件是两个角相等,放在“假如〞的后边,是两个角的角相等,放在“那么〞的后边.【解答】解::角,:相等,故写成“假如⋯那么⋯〞的形式是:假如两个角是角,那么它相等,故答案:假如两个角是角,那么它相等.【点】本主要考了将原命写成条件与的形式,“假如〞后边是命的条件,“那么〞后边是条件的,解决本的关是找到相的条件和,比.15.中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐〔1,5〕.【剖析】第一依据A、B两点的坐确立坐系,而后确立出C的坐即可.7【解答】解:如图,,∵A,B两点的坐标分别为〔﹣3,3〕,〔3,3〕,∴线段AB的中垂线为y轴,且向上为正方向,最下边的水平线为x轴,且向右为正方向,C点的坐标为〔﹣1,5〕.故答案为:〔﹣1,5〕.【评论】本题主要考察了坐标确立地点,解题的重点是确立坐标原点和x,y轴的地点及方向.16.以下列图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的地点关系为平行.【剖析】依据同位角相等,两直线平行判断.【解答】解:依据题意,∠1与∠2是三角尺的同一个角,因此∠1=∠2,因此,AB∥CD〔同位角相等,两直线平行〕.故答案为:平行.【评论】本题考察了平行线的判断娴熟掌握同位角相等,两直线平行,并正确识图是解题的重点.17.如图,a∥b,∠1=70°,∠2=40°,那么∠3= 70度.【剖析】把∠2,∠3转变为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,8∴∠3=∠ABC=70°.故答案为:70.【评论】本题考察了平行线与三角形的有关知识.18.x、y为实数,且+〔y+2〕2=0,那么y x=﹣8.【剖析】依据非负数的性质列式求出x、y的值,而后辈入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,x3因此,y=〔﹣2〕=﹣8.【评论】本题考察了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.平方根等于它自己的数是0.【剖析】依据平方根的定义即可求出平方根等于它自己的数.20的平方根是0.∴平方根等于它自己的数是0.故填0.【评论】本题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.在平面直角坐标系中,对于平面内任一点〔m,n〕,规定以下两种变换:1〕f〔m,n〕=〔m,﹣n〕,如f〔2,1〕=〔2,﹣1〕;2〕g〔m,n〕=〔﹣m,﹣n〕,如g〔2,1〕=〔﹣2,﹣1〕依照以上变换有:f[g〔3,4〕]=f〔﹣3,﹣4〕=〔﹣3,4〕,那么g[f〔﹣3,2〕]=〔3,2〕.【剖析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算次序及坐标的符号变化.【解答】解:∵f〔﹣3,2〕=〔﹣3,﹣2〕,g[f〔﹣3,2〕]=g〔﹣3,﹣2〕=〔3,2〕,故答案为:〔3,2〕.【评论】本题考察了一种新式的运算法那么,考察了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,重点是理解两种运算改变了哪个坐标的符号.三、解答题〔每题8分,共16分〕21.计算〔1〕﹣+﹣;〔2〕|﹣ |﹣〔﹣〕﹣|﹣2|.【剖析】〔1〕原式利用平方根、立方根定义计算即可获得结果;2〕原式利用绝对值的代数意义化简,计算即可获得结果.【解答】解:〔1〕原式=2﹣﹣+1=1;〔2〕原式=﹣+﹣2+=2﹣2.【评论】本题考察了实数的运算,娴熟掌握运算法那么是解本题的重点.22.〔8分〕解以下方程91〕4x2﹣16=0;2〕〔x﹣1〕3=﹣125.【剖析】〔1〕依据平方根的定义计算即可;〔2〕依据立方根的定义计算即可.【解答】解:〔1〕4x2=16,2x=4,2〕x﹣1=﹣5,x=﹣4.【评论】本题考察了平方根和立方根,掌握它们的定义是解题的重点.四、解答题〔23-25题每题10分,26-27题每题12分,共54分〕23.推理填空:如图:①假定∠1=∠2,那么AD∥CB〔内错角相等,两直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两直线平行,同位角相等〕.【剖析】依据平行线的性质和平行线的判断直接达成填空.两条直线平行,那么同位角相等,内错角相等,同旁内角互补;反之亦建立.【解答】解:①假定∠1=∠2,那么AD∥CB〔内错角相等,两条直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两条直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两条直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两条直线平行,同位角相等〕.【评论】在做此类题的时候,必定要仔细察看,看两个角究竟是哪两条直线被第三条直线所截而形成的角.(24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.10【剖析】〔1〕依据平面直角坐标系写出各点的坐标即可;2〕依据网格构造找出点A、B、C平移后的对应点A′、B′、C′的地点,而后按序连结即可,再依据平面直角坐标系写出点A′、B′、C′的坐标;3〕利用△ABC所在的矩形的面积减去周围三个直角三角形的面积,列式计算即可得解.【解答】解:〔1〕A〔﹣2,﹣2〕,B〔3,1〕,C〔0,2〕;2〕△A′B′C′以下列图,A′〔﹣3,0〕、B′〔2,3〕,C′〔﹣1,4〕;〔3〕△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣﹣,=20﹣13,=7.【评论】本题考察了利用平移变换作图,娴熟掌握网格构造正确找出对应点的地点是解题的重点.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.【剖析】求出2<<3,依据的范围求出+1和﹣1的范围,求出a、b的值,代入求出即可.【解答】解:∵2<3∴3+1<4,1﹣1<2,a=3,b=﹣2,2a+3b=2×3+3×〔﹣2〕=3.【评论】本题考察了估量无理数的性质和二次根式的加减的应用,解本题的重点是求出a、b的值.1126.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【剖析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,DG∥AB,∴∠DGC=∠BAC.【评论】本题考察了平行线的性质和判断的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.27.研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【剖析】〔1〕第一作EF∥AB,依据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.2〕第一作EF∥AB,即可判断出∠B=∠1;而后依据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再依据EF∥AB,可得AB∥CD,据此判断即可.3〕第一过E作EF∥AB,即可判断出∠BEF+∠B=180°,而后依据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.4〕第一依据AB∥CD,可得∠B=∠BFD;而后依据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.5〕第一作EM∥AB,FN∥AB,GP∥AB,依据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,因此∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;而后依据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.12【解答】解:〔1〕如图1,作EF∥AB,,AB∥CD,∴∠B=∠1,AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.〔2〕如图2,作EF∥AB,,EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,EF∥CD,又∵EF∥AB,AB∥CD.〔3〕如图3,过E作EF∥AB,,EF∥AB,∴∠BEF+∠B=180°,EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.〔4〕如图4,,13AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.〔5〕如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【评论】本题主要考察了平行线的性质和应用,要娴熟掌握,解答本题的重点是要明确:〔1〕定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.〔2〕定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.〔3〕定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14。

2020学年七年级下学期期中考试数学试题(含答案)

2020学年七年级下学期期中考试数学试题(含答案)

2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。

第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。

2020人教版数学七年级下册《期中考试试卷》(附答案)

2020人教版数学七年级下册《期中考试试卷》(附答案)

七 年 级 下 学 期 期 中 测 试数 学 试 卷一、选择题(每小题 3 分,共 30 分)1.81的算术平方根是( ) A. 9B. -9C. ±9D. 不存在2.在图中,∠1和∠2是对顶角的是( ) A.B.C.D.3.下列语句是命题的有( )①两点之间线段最短;②不平行的两条直线有一个交点;③x 与 y 的和等于 0 吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段 AB . A. 1B. 2C. 3D. 44.下列运动属于平移的是( )A. 冷水加热过程中小气泡上升成为大气泡B. 急刹车时汽车在地面上的滑动C. 投篮时的篮球运动D. 随风飘动的树叶在空中的运动5.如图所示,点P 到直线l 的距离是( )A. 线段PA 的长度B. 线段PB 的长度C. 线段PC 的长度D. 线段PD 的长度6.如图,∠3的同位角是( )A. ∠1B. ∠2C. ∠BD. ∠C7.估算312- 的值 ( )A. 在 1 和 2 之间B. 在 2 和 3 之间C. 在 3 和 4 之间D. 在 4 和 5 之间8.如图,已知AB ∥CD ,则∠1、∠2和∠3之间的关系为( )A. ∠2+∠1﹣∠3=180°B. ∠3+∠1=∠2C. ∠3+∠2+∠1=360°D. ∠3+∠2﹣2∠1=180°9.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论正确的有是( )(1)32C EF '∠=︒;(2)148AEC ∠=︒; (3)64BGE ∠=︒;(4)116BFD ∠=︒.A. 1个B. 2个C. 3个D. 4个10.如图,长方形 ABCD 中,AB =6,第一次平移长方形 ABCD 沿 AB 的方向向右平移 5 个单位长度,得到长方形 1111D C B A ,第 2次平移长方形1111D C B A 沿 11A B 的方向向右平移 5个单位长度,得到长方形2222A B C D ,…,第n 次平移长方形1111n n n n A B C D ----沿11n n A B --的方向向右平移 5 个单位长度,得到长方形n n n n A B C D (n >2),若 n AB 的长度为 2026,则 n 的值为( )A. 407B. 406C. 405D. 404二、填空题(每小题 3 分,共 15 分)11.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.12.估计512-与0.5的大小关系是:_____(填“>”、“<”或“=”). 13.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF,若平移距离为2,则四边形ABED 的面积等于_______.14.∠A 的两边与∠B 的两边分别平行,∠A=50°,则∠B 的度数为 ____________.15.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a°.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).三、解答题(共 8 题,共 75 分)16.计算:(1)20193|2|8(1)---;(2)2316272)9. 17.解方程:(1)(x -2)2=9 (2)x 3-3=3818.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)求△A′B′C′的面积.19.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.20.若a2=25,|b|=5,求a+b的值.F.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为(1) CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB度数.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.(1)问题发现:如图1,已知点F,G 分别在直线AB,CD 上,且AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF= .证明:过点E 作EH∥AB,∴∠FEH=∠BFE(),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(),∴∠HEG=180°-∠CGE(),∴∠FEG=∠HFG+∠FEH= .(3)深入探究:如图2,∠BFE 的平分线FQ 所在直线与∠CGE 的平分线相交于点P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.答案与解析一、选择题(每小题 3 分,共 30 分)1.81的算术平方根是()A. 9B. -9C. ±9D. 不存在【答案】A【解析】【分析】根据算术平方根的定义求解即可.【详解】∵92=81,∴81的算术平方根是9,故选A.【点睛】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在图中,∠1和∠2是对顶角的是()A. B. C. D.【答案】B【解析】∵成对顶角的两个角有公共端点,其中一个角的两边是另一个角两边的反向延长线,而A、B中的∠1和∠2没有公共端点,D中的∠1和∠2虽然有公共端点,但两边不是互为延长线,故不是对顶角,只有B中的∠1和∠2符合对顶角的特征,故选B.3.下列语句是命题的有()①两点之间线段最短;②不平行的两条直线有一个交点;③x 与y 的和等于0 吗?④对顶角不相等;⑤互补的两个角不相等;⑥作线段AB.A. 1B. 2C. 3D. 4【答案】D【解析】【分析】根据命题的概念判断即可.【详解】①两点之间线段最短是命题;②不平行的两条直线有一个交点是命题;③x与y的和等于0吗?不是命题;④对顶角不相等是命题;⑤互补的两个角不相等是命题;⑥作线段AB不是命题.故选:D.【点睛】本题考查了命题与定理.能够判断真假的陈述句叫做命题.4.下列运动属于平移的是()A. 冷水加热过程中小气泡上升成为大气泡B. 急刹车时汽车在地面上的滑动C. 投篮时的篮球运动D. 随风飘动的树叶在空中的运动【答案】B【解析】【分析】根据平移的定义:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.对选项进行一一判断,即可得出答案.【详解】解:A、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故错误;B、急刹车时汽车在地面上的滑动是平移,故正确;C、投篮时的篮球不沿直线运动,故错误;D、随风飘动的树叶在空中不沿直线运动,故错误.故选B.【点睛】本题考查了平移的定义.注意平移是图形整体沿某一直线方向移动是解题的关键.5.如图所示,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度【答案】B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.如图,∠3的同位角是()A. ∠1B. ∠2C. ∠BD. ∠C 【答案】D【解析】【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:观察图形可知:∠3的同位角是∠C.故选D.【点睛】本题主要考查同位角的概念,同位角的边构成“F“形.解题时需要分清截线与被截直线.7.估算312的值( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断31的范围,再估算312-的范围即可.【详解】解:∵5316<<∴33124<-<故选C.【点睛】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算31的整数部分和小数部分.8.如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A. ∠2+∠1﹣∠3=180°B. ∠3+∠1=∠2C. ∠3+∠2+∠1=360°D. ∠3+∠2﹣2∠1=180°【答案】A【解析】【分析】过E作EF∥AB∥CD,由平行线的质可得∠1+∠CEF=180°,∠FEA=∠3,由∠2=∠AEF+∠FEC即可得∠1、∠2、∠3之间的关系.【详解】如图过点E作EF∥AB,∴∠FEA=∠3(两直线平行,内错角相等),∵AB ∥CD (已知), ∴EF ∥CD ,∴∠1+∠CEF =180°(两直线平行,同旁内角互补), ∵∠2=∠AEF +∠FEC , ∴∠1+∠2-∠3=180°. 故选A.【点睛】本题考查了平行线的性质,解决本题的关键是要正确作出辅助线和熟练掌握平行线的性质.9.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论正确的有是( )(1)32C EF '∠=︒;(2)148AEC ∠=︒; (3)64BGE ∠=︒;(4)116BFD ∠=︒.A. 1个B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】利用平行线的性质,折叠的性质依次判断. 【详解】∵A C '∥B D ¢,∴∠C 'EF=32EFB ∠=︒,故(1)正确; 由翻折得到∠GEF=32C EF '∠=︒, ∴∠GE C '=64°,∴∠AEC=180°-∠GE C '=116°,故(2)错误; ∵A C '∥B D ¢,∴∠BGE=∠GE C '=64°,故(3)正确; ∵EC ∥FD∴∠BFD=∠BGC=180°-∠BGE=116°,故(4)正确,正确的有3个,故选:C.【点睛】此题考查平行线的性质,翻折的性质,熟记性质定理并熟练运用是解题的关键. 10.如图,长方形 ABCD 中,AB =6,第一次平移长方形 ABCD 沿 AB 的方向向右平移 5 个单位长度,得到长方形 1111D C B A ,第 2次平移长方形1111D C B A 沿 11A B 的方向向右平移 5个单位长度,得到长方形2222A B C D ,…,第n 次平移长方形1111n n n n A B C D ----沿11n n A B --的方向向右平移 5 个单位长度,得到长方形n n n n A B C D (n >2),若 n AB 的长度为 2026,则 n 的值为( )A . 407B. 406C. 405D. 404【答案】D【解析】【分析】根据平移的性质得出AA 1=5,A 1A 2=5,A 2B 1=A 1B 1−A 1A 2=6−5=1,进而求出AB 1和AB 2的长,然后根据所求得出数字变化规律,进而得出AB n =(n +1)×5+1求出n 即可.【详解】∵AB =6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形1111D C B A , 第2次平移将矩形1111D C B A 沿A 1B 1的方向向右平移5个单位,得到矩形2222A B C D …, ∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1−A 1A 2=6−5=1,∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11,∴AB 2的长为:5+5+6=16;∵AB 1=2×5+1=11,AB 2=3×5+1=16,∴AB n =(n +1)×5+1=2026,解得:n =404.故选:D .【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA 1=5,A1A2=5是解题关键.二、填空题(每小题 3 分,共 15 分)11.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.【答案】如果两个角是同一个角的余角,那么这两个角相等【解析】【分析】根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题.【详解】命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面解的部分是结论.12.与0.5的大小关系是:_____(填“>”、“<”或“=”).【答案】>【解析】【分析】>1,即可判断大小关系.2,>1,>12,故答案为:>.【点睛】此题考查实数比较大小,关键要懂得进行估算.13.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.【答案】8【解析】试题解析:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为8.点睛:平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.∠A的两边与∠B的两边分别平行,∠A=50°,则∠B的度数为____________.【答案】50°或130°【解析】【分析】根据角的两边分别平行得出∠A+∠B=180°或∠A=∠B,代入求出即可.【详解】∵∠A的两边与∠B的两边分别平行,∠A=50°,∴∠A+∠B=180°或∠A=∠B,∴∠B=130°或50°,故答案为50°或130°.【点睛】本题考查了平行线的性质的应用,注意:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补.注意:运用了分类思想.15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.有下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的结论是________(填序号).【答案】①②③【解析】【分析】根据垂直定义、角平分线的性质、直角三角形的性质求出∠POE、∠BOF、∠BOD、∠BOE、∠DOF等角的度数,即可对①②③④进行判断.【详解】①∵AB∥CD,∴∠BOD=∠ABO=a°,∴∠COB=180°﹣a°=(180﹣a)°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180﹣a)°.故①正确;②∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣12(180﹣a)°=12a°,∴∠BOF=12∠BOD,∴OF平分∠BOD所以②正确;③∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=12 a°,∴∠POE=∠BOF;所以③正确;∴∠POB=90°﹣a°,而∠DOF=12a°,所以④错误.故答案为①②③.【点睛】本题考查了平行线的性质:两直线平行,内错角相等;解答此题要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.三、解答题(共 8 题,共 75 分)16.计算:(1)2019|2|(1)--;(2)26. 【答案】(1)1(2)1【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据实数的性质进行化简即可求解.【详解】(1)2019|2|(1)--=2-2+1=1(2)2632+=2-3+2=1.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.解方程:(1)(x -2)2=9 (2)x 3-3=38【答案】(1)x=5或-1; (2)x=32.【解析】【分析】 (1)利用平方根的意义可得结果;(2)利用立方根的意义可得结果.【详解】(1)x ﹣2=,x ﹣2=±3,x =2±3,x =5或﹣1;(4)x3=278,x=3278,x=32.【点睛】本题考查了平方根和立方根的意义,熟练掌握平方根和立方根的意义是解答本题的关键.18.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)求△A′B′C′的面积.【答案】(1)见解析,(2)8【解析】【分析】(1)根据平移变换的定义作出变换后的对应点,再顺次连接即可得;(2)利用三角形的面积公式计算可得.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)△A′B′C′的面积为12×4×4=8.【点睛】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.19.如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.【答案】∠AOE=20°,∠FOG=20°【解析】试题分析:根据对顶角相等得到∠AOC=∠BOD=40°,然后再根据角平分线的定义即可求得∠AOE的度数,再根据同角的余角相等即可求得∠FOG的度数.试题解析:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=40°,∵OE平分∠AOC,∴∠AOE=12∠AOC=20°,∵OF⊥AB,OG⊥OE,∴∠AOF=∠EOG=90°,即∠AOG与∠FOG互余,∠AOG与∠AOE互余,∴∠FOG=∠AOE=20°.【点睛】本题考查了对顶角的性质、角平分线的定义、余角的性质等,在解题时根据对顶角的性质和角平分线,余角的性质进行解答是关键.20.若a2=25,|b|=5,求a+b的值.【答案】﹣10或0或10.【解析】【分析】依据有理数乘方和绝对值的性质求得a、b的值,然后代入求解即可.【详解】解:∵a2=25,|b|=5,∴a=±5 b=±5,当a=5时,b=5,∴a+b=10;当a=5时,b=﹣5.∴a+b=0;当a=﹣5时,b=5,∴a+b=0;当a=﹣5时,b=﹣5.∴a+b=﹣10;∴a+b的值是﹣10或0或10.【点睛】本题主要考查的是有理数乘方、绝对值的性质、有理数的加法法则及分类讨论的数学思想,熟练掌握相关性质是解题的关键.21.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1) CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【答案】(1)平行;(2)115°.【解析】【分析】(1)先根据垂直定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:Q CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2) 如图:Q EF∥CD,∴∠2=∠BCD又Q∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.【答案】(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152152=450>202又∵()2即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)问题发现:如图1,已知点F,G 分别在直线AB,CD 上,且AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF= .证明:过点E 作EH∥AB,∴∠FEH=∠BFE(),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(),∴∠HEG=180°-∠CGE(),∴∠FEG=∠HFG+∠FEH= .(3)深入探究:如图2,∠BFE 的平分线FQ 所在直线与∠CGE 的平分线相交于点P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE(3)∠GPQ+12∠GEF=90°【解析】【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40︒,∠HEG=50︒,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=12∠BFE,∠CGP=12∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+12∠GEF并结合②的结论可得结果.【详解】(1)如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;(2)∠GEF=∠BFE+180°−∠CGE,证明:过点E 作EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)∠GPQ+12∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=12∠BFE,∠CGP=12∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+12∠GEF=12∠CGE−12∠BFE+12∠GEF=12×180°=90°.即∠GPQ+12∠GEF=90°.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.。

2020年初一下册数学期中试卷及答案

2020年初一下册数学期中试卷及答案

2020年初一下册数学期中试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. √9答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:D4. 某数的平方根是3,则这个数是:A. 9B. 8C. 7D. 6答案:A5. 下列哪个数是正数:A. -2B. -1C. 0D. 1答案:D6. 下列哪个数是负数:A. 2B. -2C. 0D. 1答案:B7. 下列哪个数的立方根是3:A. 27B. 64C. 125D. 243答案:A8. 已知a=2,b=3,则a²+b²的值是:A. 13B. 11C. 9D. 7答案:A9. 下列哪个数是无理数:A. √9B. √16C. √25D. √36答案:B10. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:C二、填空题(每题4分,共40分)1. 2的平方是______。

答案:42. 3的立方是______。

答案:273. 5的平方根是______。

答案:√54. 16的平方根是______。

答案:±45. 0.333...的值是______。

答案:1/36. -2的立方是______。

答案:-87. 81的平方根是______。

答案:98. 125的立方根是______。

答案:59. 7²的值是______。

答案:4910. (-3)²的值是______。

答案:9三、解答题(共20分)1. 计算下列各数的平方根:(1) 64(2) 121(3) 256答案:(1) ±8(2) 11(3) ±162. 已知a=5,b=3,求a²+b²的值。

2020年最新七年级下册期中数学试卷及答案解析

2020年最新七年级下册期中数学试卷及答案解析

七年级(下)期中数学试卷一、选择题1.方程1﹣3x=0的解是()A.x=﹣B.x= C.x=﹣3 D.x=32.若是方程组的解,则a、b值为()A.B.C.D.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=65.下列不等式一定成立的是()A.x+2<x+3 B.5a>4a C.﹣a>﹣2a D.6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1 B.y=+C.y=+1 D.y=+7.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的是()A.2(x﹣10)=120 B.2[x+(x﹣10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=1208.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A. B.C. D.二、填空题9.若关于x的方程3x﹣5=x+2m的解为x=2,则m的值为.10.方程组的解是.11.不等式3x﹣2>x﹣6的最小整数解是.12.若方程组的解适合x+y=2,则k的值为.13.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为元.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为.三、解答题(本大题共10小题,共78分)15.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.16.解方程组:.17.解方程组:.18.解不等式1﹣,并把解集在数轴上表示出来.19.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?20.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.21.若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.22.某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).现有19张硬纸板,其中x张硬纸板用方法一裁剪,其余硬纸板用方法二裁剪.(1)分别求裁剪出的侧面和底面的个数.(用含x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?24.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?七年级(下)期中数学试卷参考答案与试题解析一、选择题1.方程1﹣3x=0的解是()A.x=﹣B.x= C.x=﹣3 D.x=3【考点】一元一次方程的解.【分析】方程移项,把x系数化为1,即可求出解.【解答】解:1﹣3x=0,方程移项得:﹣3x=﹣1,解得:x=.故选:B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.2.若是方程组的解,则a、b值为()A.B. C. D.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入方程组求出a与b的值即可.【解答】解:把代入方程组得:,解得:,故选A【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.不等式2x﹣3<1的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】数形结合.【分析】先解不等式得到x<2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D选项正确.【解答】解:2x<4,解得x<2,用数轴表示为:.故选D.【点评】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心;二是定方向,定方向的原则是:“小于向左,大于向右”.4.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1 B.3x﹣x﹣1=1 C.3x﹣x﹣1=6 D.3x﹣(x﹣1)=6【考点】解一元一次方程.【专题】计算题.【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.5.下列不等式一定成立的是()A.x+2<x+3 B.5a>4a C.﹣a>﹣2a D.【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;B、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a<0时,不等号方向改变,即<,故错误.故选A.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是()A.y=+1 B.y=+ C.y=+1 D.y=+【考点】解二元一次方程.【专题】计算题.【分析】把x看做已知数表示出y即可.【解答】解:方程4y+=1+x,去分母得:12y+x=3+3x,解得:y=+.故选B【点评】此题考查了解二元一次方程,将x看做已知数求出y是解本题的关键.7.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,下面列出的方程正确的是()A.2(x﹣10)=120 B.2[x+(x﹣10)]=120 C.2(x+10)=120 D.2[x+(x+10)]=120【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的一元一次方程,本题得以解决.【解答】解:由题意可得,2[x+(x+10)]=120,故选D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的一元一次方程.8.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意可得:,故选D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、填空题9.若关于x的方程3x﹣5=x+2m的解为x=2,则m的值为﹣.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:1=2+2m,解得:m=﹣,故答案为:﹣【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.方程组的解是.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=12,即x=4,把x=4代入①得:y=﹣2,则方程组的解为.故答案为:.【点评】此题考查了二元一次方程组的解,求出方程组的解是解本题的关键.11.不等式3x﹣2>x﹣6的最小整数解是﹣1 .【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,再找出其最小整数解即可.【解答】解:∵解不等式3x﹣2>x﹣6得,x>﹣2,∴不等式的最小整数解为:﹣1.故答案为:﹣1.【点评】本题考查的是一元一次不等式的整数解,熟知解一元一次不等式的基本步骤是解答此题的关键.12.若方程组的解适合x+y=2,则k的值为 3 .【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:5(x+y)=5k﹣5,即x+y=k﹣1,代入x+y=2得:k﹣1=2,解得:k=3,故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为28 元.【考点】分式方程的应用;一元一次方程的应用.【专题】销售问题.【分析】根据题意,设这种电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程即可求解.【解答】解:设这种电子产品的标价为x元,由题意得:0.9x﹣21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.【点评】本题考查了一元一次方程的应用题型,同学们需学会借助方程去解决应用题.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题加10分,答错(或不答)一题扣5分,小明参加本次竞赛得分要不低于140分.设他答对x道题,则根据题意,可列出关于x的不等式为10x﹣5(20﹣x)≥140 .【考点】由实际问题抽象出一元一次不等式.【分析】小明答对题的得分:10x;答错或不答题的得分:﹣5(20﹣x).根据不等关系:小明参加本次竞赛得分要不低于140分列出不等式即可.【解答】解:设他答对x道题,根据题意,得10x﹣5(20﹣x)≥140.故答案为10x﹣5(20﹣x)≥140.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.三、解答题(本大题共10小题,共78分)15.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:3x﹣3﹣2x﹣4=4x﹣1,移项得:x﹣4x=﹣1+7,合并得:﹣3x=6,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.16.解方程组:.【考点】解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.【解答】解:①×3得9x+12y=30③,②×2得10x﹣12y=84④.③+④得19x=114,解得x=6.把x=6代入①,得18+4y=10,解得y=﹣2.故方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.解方程组:.【考点】解三元一次方程组.【分析】根据解三元一次方程组的方法可以解答本题.【解答】解:把③代入①,得5y+z=2④把③代入②,得6y+4z=﹣6⑤④×4﹣⑤,得14y=14解得,y=1,把y=1代入④,得z=﹣3,把y=1代入③,得x=4,故原方程组的解是.【点评】本题考查解三元一次方程组,解题的关键是明确三元一次方程组的解法.18.解不等式1﹣,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可.【解答】解:去分母得,6﹣(x﹣3)>2x,去括号,6﹣x+3>2x,移项得,﹣x﹣2x>﹣3﹣6,合并同类项得,﹣3x>﹣9,把x的系数化为1得,x<3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?【考点】一元一次方程的应用.【分析】如果乙每小时加工x个零件,那么甲每小时加工(x+2)个零件,根据要加工200个零件,甲先单独加工5小时,然后又与乙一起加工4小时,完成了任务以及甲每小时比乙多加工2个,可列出方程q 求出即可.【解答】解:设乙每小时加工x个零件,那么甲每小时加工(x+2)个零件.根据题意,列方程,得5(x+2)+4(x+x+2)=200,解这个方程,得x=14,x+2=14+2=16,答:甲每小时加工16个零件,乙每小时加工14个零件.【点评】本题考查了一元一次方程的应用,关键是以甲比乙每小时多做的件数和完成200个做为等量关系列方程.20.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.【考点】二元一次方程组的应用.【分析】首先设A型号设备的单价为x万元,B型号设备的单价为y万元,利用购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型号设备比购买3台B型号设备少6万元,得出方程组求出即可.【解答】解:设A型号设备的单价为x万元,B型号设备的单价为y万元,根据题意,得,解这个方程组,得.答:A、B两种型号设备的单价分别为12万元、10万元.【点评】此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.若关于x、y的二元一次方程组的解满足x﹣y>﹣8.(1)用含m的代数式表示x﹣y.(2)求满足条件的m的所有正整数值.【考点】解一元一次不等式;二元一次方程组的解.【分析】(1)直接把两式相减即可得出结论;(2)根据(1)中x﹣y的表达式列出关于m的不等式,求出m的取值范围即可.【解答】解:(1),①﹣②得,x﹣y=﹣2m+3﹣4=﹣2m﹣1;(2)由题意,得﹣2m﹣1>﹣8,解得m<,∵m为正整数,∴m=1、2或3.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.22.某商场销售A、B两种型号计算器,A型号计算器的进货价格为每台30元,B型号计算器的进货价格为每台40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)分别求商场销售A、B两种型号计算器每台的销售价格.(2)商场准备用不多于2 500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【利润=销售价格﹣进货价格】【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.【解答】(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y元.根据题意,得解得(答:商场销售A、B两种型号计算器的销售价格分别为42元、56元.(2)设需要购进A型号的计算器a台.根据题意,得30a+40(70﹣a)≤2500.解得a≥30.答:最少需要购进A型号的计算器30台.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出总的进货费用是解题关键.23.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).现有19张硬纸板,其中x张硬纸板用方法一裁剪,其余硬纸板用方法二裁剪.(1)分别求裁剪出的侧面和底面的个数.(用含x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;展开图折叠成几何体.【分析】(1)由x张用方法一,就有(19﹣x)张用方法二,就可以分别表示出侧面个数和底面个数;(2)根据裁剪出的侧面和底面恰好全部用完得出方程,解方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)侧面个数:6x+4(19﹣x)=(2x+76)个.底面个数:5(19﹣x)=(95﹣5x)个.(2)由题意,得.解得:x=7.(个).答:若裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.24.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?【考点】二元一次方程组的应用.【分析】(1)根据甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,列式计算即可得出结论;(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球,结合甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,即可列出关于x、y的二元一次方程组,解方程组后比较大小即可得出结论;(3)设买m只羽毛球时到两家商店购买同样合算,根据甲商店“羽毛球拍和羽毛球都打9折优惠”以及乙商店“买一副羽毛球拍赠2只羽毛球”,即可列出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)甲商店:(25×2+2×20)×0.9=81(元);乙商店:25×2+2×(20﹣4)=82(元).答:在甲商店需要花81元,在乙商店需要花82元.(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球.由题意,得:,解得:,∵25>24,∴到甲商店购买更合算.(3)设买m只羽毛球时到两家商店购买同样合算.由题意,得:(25×2+2m)×0.9=25×2+2(m﹣4),解得m=15.答:当买15只羽毛球时到两家商店购买同样合算.【点评】本题考查了二元一次方程组以及一元一次方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出关于x、y的二元一次方程组;(3)根据数量关系列出关于m的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出算式(方程或方程组)是关键.。

2020年春七年级下期中数学试卷9含答案

2020年春七年级下期中数学试卷9含答案

七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.等于()A.B.2C.D.﹣22.下列计算中,正确的是()A.2x2+3x3=5x5B.2x2•3x3=6x6C.2x3÷(﹣x2)=﹣2x D.(﹣2x2)3=﹣2x63.不等式3x+2>﹣1的解集是()A.x>﹣B.x<﹣C.x>﹣1D.x<﹣14.若多项式(x+1)(x﹣3)=x2+ax+b,则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣35.在等式a3•a2•()=a11中,括号里填入的代数式应当是()A.a7B.a8C.a6D.a36.(﹣8)2018+(﹣8)2017能被下列哪个数整除?()A.3B.5C.7D.97.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0B.x>2C.x<0D.x<28.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7B.18C.12D.99.已知n是大于1的自然数,则(﹣c)n﹣1•(﹣c)n+1等于()A.B.﹣2nc C.﹣c2n D.c2n10.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12C.D.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.肥皂泡的泡壁厚度大约是0.0007mm,将0.0007用科学记数法表示为.12.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有块.13.若代数式x2+ax+16是一个完全平方式,则a=.14.若a+b=5,ab=3,则a2+b2=.15.若二元一次方程组的解恰好是等腰△ABC的两边长,则△ABC的周长为.16.已知21﹣20=20,22﹣21=21,23﹣22=22…,则第n个等式为.17.若不等式组的最大正整数解是3,则a的取值范围是.18.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a+b)n(n═1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律,写出(x﹣2)2018展开式中含x2017项的系数是.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(12分)计算(1)3x3•x9﹣2x•x3•x8(2)﹣12+20160+()2017×(﹣4)2018(3)(x+4)(x﹣4)﹣(x﹣2)2(4)ab(a+b)﹣(a﹣b)(a2+b2)20.(9分)把下列各式分解因式:(1)16ab2﹣48a2b(2)2m3n+6m2n+4mn(3)(x2+4)2﹣16x221.(4分)先化简,再求值:(x+1)(x﹣2)﹣(x﹣3)2,其中x=﹣2.22.(8分)(1)解不等式组:,并把它的解集在数轴上表示出来.(2)解方程组:23.(4分)观察下列各式:62﹣42=4×5,112﹣92=4×10,172﹣152=4×16,…(1)试用你发现的规律填空:512﹣492=4×,752﹣732=4×;(2)请你用含一个字母的等式将上面各式呈现的规律表示出来:.24.(9分)若x,y满足x2+y2=,xy=﹣,求下列各式的值.(1)(x+y)2(2)x4+y4(3)x3+y325.(6分)若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.26.(8分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:A型B型进价(万元/台) 1.5 1.2售价(万元/台) 1.65 1.4该商场计划购进两种教学设备若干台,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进A,B两种品牌的教学设备各多少台?(2)通过市场调研,该商场决定在原计划的基础上,减少A型设备的购进数量,增加B型设备的购进数量,已知B型设备增加的数量是A型设备减少数量的1.5倍.若用于购进这两种型号教学设备的总资金不超过68.7万元,问A型设备购进数量至多减少多少台?27.(8分)你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1……由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=请你利用上面的结论,再完成下面两题的计算:(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1(2)若x3+x2+x+1=0,求x2019的值28.(8分)已知A=2a﹣7,B=a2﹣4a+3,C=a2+6a﹣28,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)比较A与C的大小,并说明你的理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.等于()A.B.2C.D.﹣2【分析】直接利用负指数幂的性质计算得出答案.【解答】解:()﹣1==2.故选:B.【点评】此题主要考查了负指数幂的性质,正确化简是解题关键.2.下列计算中,正确的是()A.2x2+3x3=5x5B.2x2•3x3=6x6C.2x3÷(﹣x2)=﹣2x D.(﹣2x2)3=﹣2x6【分析】根据合并同类项法则、单项式乘单项式、单项式除以单项式及单项式的乘方逐一计算可得.【解答】解:A、2x2、3x3不是同类项,不能合并,故A式子错误;B、2x2•3x3=6x5,故B式子错误;C、2x3÷(﹣x2)=﹣2x,故C式子正确;D、(﹣2x2)3=﹣8x6,故D式子错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、单项式乘单项式、单项式除以单项式及单项式的乘方.3.不等式3x+2>﹣1的解集是()A.x>﹣B.x<﹣C.x>﹣1D.x<﹣1【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x>﹣1﹣2,合并同类项得,3x>﹣3,把x的系数化为1得,x>﹣1.故选:C.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.4.若多项式(x+1)(x﹣3)=x2+ax+b,则a,b的值分别是()A.a=2,b=3B.a=﹣2,b=﹣3C.a=﹣2,b=3D.a=2,b=﹣3【分析】根据多项式乘以多项式法则展开,即可得出答案.【解答】解:(x+1)(x﹣3)=x2+ax+b,x2﹣2x﹣3=x2+ax+b,a=﹣2,b=﹣3,故选:B.【点评】本题考查了多项式乘以多项式法则,能灵活运用法则进行化简是解此题的关键.5.在等式a3•a2•()=a11中,括号里填入的代数式应当是()A.a7B.a8C.a6D.a3【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变指数相加的性质的逆用求解即可.【解答】解:a3+2+6=a3×a2×(a6)=a11.故括号里面的代数式应当是a6.故选:C.【点评】此题主要考查同底数幂的乘法的性质的逆用,熟练掌握性质并灵活运用是解题的关键.6.(﹣8)2018+(﹣8)2017能被下列哪个数整除?()A.3B.5C.7D.9【分析】首先提公因式(﹣8)2017,进而可得答案.【解答】解:(﹣8)2018+(﹣8)2017=(﹣8)2017×(﹣8+1)=7×82017;能被7乘除,故选:C.【点评】此题主要考查了因式分解,关键是正确确定公因式.7.从下列不等式中选择一个与x+1≥2组成不等式组,若要使该不等式组的解集为x≥1,则可以选择的不等式是()A.x>0B.x>2C.x<0D.x<2【分析】首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法;大大取大可确定另一个不等式的解集,进而选出答案.【解答】解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1,故选:A.【点评】此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.8.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7B.18C.12D.9【分析】观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.【解答】解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.9.已知n是大于1的自然数,则(﹣c)n﹣1•(﹣c)n+1等于()A.B.﹣2nc C.﹣c2n D.c2n【分析】根据同底数幂相乘,底数不变指数相加计算即可.【解答】解:(﹣c)n﹣1•(﹣c)n+1,=(﹣c)n﹣1+n+1,=(﹣c)2n,=c2n;故选:D.【点评】本题比较简单,考查的是同底数幂的乘法的性质,即底数不变,指数相加.10.若a m=2,a n=3,则a2m﹣n的值是()A.1B.12C.D.【分析】首先应用含a m、a n的代数式表示a2m﹣n,然后将a m、a n的值代入即可求解.【解答】解:∵a m=2,a n=3,∴a2m﹣n=a2m÷a n,=(a m)2÷3,=4÷3,=,故选:D.【点评】本题主要考查同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.肥皂泡的泡壁厚度大约是0.0007mm,将0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,这批电话手表至少有105块.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+500(x﹣60)>55000,解得x>104.故这批电话手表至少有105块,故答案为:105.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.13.若代数式x2+ax+16是一个完全平方式,则a=±8.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵x2+ax+16是一个完全平方式,∴a=±8.故答案为:±8.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.若a+b=5,ab=3,则a2+b2=19.【分析】首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.【解答】解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=19.故答案为19.【点评】本题主要考查完全平方公式,解题的关键在于把等式a+b=5的等号两边分别平方.15.若二元一次方程组的解恰好是等腰△ABC的两边长,则△ABC的周长为12.【分析】先解出方程组的解,根据三角形三边的关系得到等腰三角形的三边,最后计算它的周长.【解答】解:解方程组,可得:,而2+2=4<5,所以等腰三角形的三边为5、5、2,所以它的周长为5+5+2=12.故答案为:12【点评】本题考查了方程组的解.也考查了三角形三边的关系,关键是根据三角形三边的关系得到等腰三角形的三边.16.已知21﹣20=20,22﹣21=21,23﹣22=22…,则第n个等式为2n﹣2n﹣1=2n﹣1.【分析】由已知等式知等式左右两边的幂的底数均为2,被减数的指数即为序数,减数和差的指数均比序数小1,据此可得.【解答】解:∵第1个等式为:21﹣20=20,第2个等式为:22﹣21=21,第3个等式为:23﹣22=22,…∴第n个等式为:2n﹣2n﹣1=2n﹣1,故答案为:2n﹣2n﹣1=2n﹣1.【点评】本题主要考查数字的变化,根据已知等式得出左右两边的幂的底数均为2,被减数的指数即为序数,减数和差的指数均比序数小1是解题的关键.17.若不等式组的最大正整数解是3,则a的取值范围是6<a≤8.【分析】首先求出不等式组的解集,利用含a的式子表示,然后根据最大正整数解是3得到关于a的不等式,从而求出a的范围.【解答】解:解不等式x+1>0,得x>﹣1,解不等式2x﹣a<0,得x<a,由题意,得﹣1<x<a.∵不等式组的最大正整数解是3,∴3<a≤4,解得6<a≤8.故答案是6<a≤8.【点评】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,正确确定a的范围,是解决本题的关键.解不等式时要用到不等式的基本性质.18.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a+b)n(n═1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):请依据上述规律,写出(x﹣2)2018展开式中含x2017项的系数是﹣4036.【分析】首先确定x2017是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(x﹣2)2018展开式中含x2017项的系数,由(x﹣2)2018=x2018﹣2018•x2017•2+ (22018)可知,展开式中第二项为﹣2018•x2017•2=﹣4036x2017,∴(x﹣2)2018展开式中含x2017项的系数是﹣4036.故答案为:﹣4036.【点评】本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(12分)计算(1)3x3•x9﹣2x•x3•x8(2)﹣12+20160+()2017×(﹣4)2018(3)(x+4)(x﹣4)﹣(x﹣2)2(4)ab(a+b)﹣(a﹣b)(a2+b2)【分析】(1)先计算乘法,再合并同类项可得;(2)根据实数的混合运算顺序和运算法则计算可得;(3)先计算平方差和完全平方式,再去括号、合并同类项可得;(4)先计算单项式乘单项式、多项式乘多项式,再去括号、合并同类项即可得.【解答】解:(1)原式=3x12﹣2x12=x12;(2)原式=﹣1+1+(﹣4×)2017×(﹣4)=(﹣1)2017×(﹣4)=﹣1×(﹣4)=4;(3)原式=x2﹣16﹣(x2﹣4x+4)=x2﹣16﹣x2+4x﹣4=4x﹣20;(4)原式=a2b+ab2﹣(a3+ab2﹣a2b﹣b3)=a2b+ab2﹣a3﹣ab2+a2b+b3=2a2b﹣a3+b3.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握实数和整式的混合运算顺序和运算法则.20.(9分)把下列各式分解因式:(1)16ab2﹣48a2b(2)2m3n+6m2n+4mn(3)(x2+4)2﹣16x2【分析】(1)直接提取公因式16ab,进而分解因式得出答案;(2)首先提取公因式2mn,再利用十字相乘法分解因式得出答案;(3)直接利用平方差公式以及完全平方公式分解因式得出答案.【解答】解:(1)16ab2﹣48a2b=16ab(b﹣3a);(2)2m3n+6m2n+4mn=2mn(m2+3m+2)=2mn(m+2)(m+1);(3)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.(4分)先化简,再求值:(x+1)(x﹣2)﹣(x﹣3)2,其中x=﹣2.【分析】原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,将x的值代入化简后的式子中计算,即可求出值.【解答】解:原式=x2﹣2x+x﹣2﹣(x2﹣6x+9)=x2﹣2x+x﹣2﹣x2+6x﹣9=5x﹣11,当x=﹣2时,原式=5×(﹣2)﹣11=﹣10﹣11=﹣21.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.22.(8分)(1)解不等式组:,并把它的解集在数轴上表示出来.(2)解方程组:【分析】(1)先求出每个不等式的解集,再找出不等式组的解集,(2)根据加减消元法解方程组即可.【解答】解:(1)由①得:x>﹣3;由②得:x≤2,所以不等式组的解集为:﹣3<x≤2,数轴表示为:(2),①+②得:2a=2c=6④,2×②+③得:6a+3c=12⑤,则,解得:,把a=1,c=2代入①得:b=﹣2,所以方程组的解为:.【点评】本题考查了解一元一次不等式(组),不等式组的整数解,在数轴上不是不等式的解集的应用,主要考查学生能否正确运用不等式的性质求出不等式的解集或能否根据不等式的解集找出不等式组的解集.23.(4分)观察下列各式:62﹣42=4×5,112﹣92=4×10,172﹣152=4×16,…(1)试用你发现的规律填空:512﹣492=4×50,752﹣732=4×74;(2)请你用含一个字母的等式将上面各式呈现的规律表示出来:(n+2)2﹣n2=4(n+1).【分析】(1)由62﹣42=4×5,5界于4和6之间的正整数,112﹣92=4×10,10界于11和9之间的正整数,172﹣152=4×16,16界于17和15之间的正整数,可得出512﹣492=4×50,752﹣732=4×65,(2)由(1)推出该规律为:(n+2)2﹣n2=4(n+1).【解答】解:(1)由62﹣42=4×5,5界于4和6之间的正整数,112﹣92=4×10,10界于11和9之间的正整数,172﹣152=4×16,16界于17和15之间的正整数,∴试着推出:512﹣492=4×50,50界于49和51之间的正整数,且左边=右边成立,752﹣73=2=4×74,74界于75和73之间的正整数,且左边=右边成立,故答案为50,74;(2)可以得出规律:(n+2)2﹣n2=4(n+1),故答案为:(n+2)2﹣n2=4(n+1).【点评】本题主要考查了由给出的各式推出一个规律:(n+2)2﹣n2=4(n+1),考查了学生的观察能力及由题意推出规律的能力,难度适中.24.(9分)若x,y满足x2+y2=,xy=﹣,求下列各式的值.(1)(x+y)2(2)x4+y4(3)x3+y3【分析】(1)根据完全平方公式即可求出答案.(2)根据完全平方公式即可求出答案.(3)根据立方和公式即可求出答案.【解答】解:(1)原式=x2+2xy+y2=﹣1=(2)∵(x2+y2)2=x4+2x2y2+y4,∴=x4+y4+∴x4+y4=(3)由(1)可知:x+y=±,∵原式=(x+y)(x2﹣xy+y2)当x+y=时,∴原式=×(+)=当x+y=时,原式=×(+)=【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.25.(6分)若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.【分析】首先分析题意,分析结论的使用条件即只须有a m=a n(a>0且a≠1,m,n是正整数),可知m=n,即指数相等,然后在解题中应用即可.【解答】解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22,解得,x=3;故答案为:3.(2)∵(27﹣x)2=3﹣6x=38,∴﹣6x=8,解得x=﹣;故答案为:﹣.【点评】本题是信息给予题,主要考查了同底数幂的乘法和幂的乘方的性质的运用,读懂题目信息并正确利用性质是解题的关键.26.(8分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:A型B型进价(万元/台) 1.5 1.2售价(万元/台) 1.65 1.4该商场计划购进两种教学设备若干台,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进A,B两种品牌的教学设备各多少台?(2)通过市场调研,该商场决定在原计划的基础上,减少A型设备的购进数量,增加B型设备的购进数量,已知B型设备增加的数量是A型设备减少数量的1.5倍.若用于购进这两种型号教学设备的总资金不超过68.7万元,问A型设备购进数量至多减少多少台?【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤68.7,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤68.7,解得:a≤9,a为9时,1.5a不是整数,故a=8答:A种设备购进数量至多减少8套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.27.(8分)你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1……由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1请你利用上面的结论,再完成下面两题的计算:(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1(2)若x3+x2+x+1=0,求x2019的值【分析】先根据规律计算:(x﹣1)(x99+x98+x97+…+x+1)的结果;(1)根据规律确定:x﹣1,就是﹣2﹣1,得原式=(﹣2﹣1)•,根据公式可得结论;(2)根据(x﹣1)(x3+x2+x+1)=x4﹣1,代入已知可得x的值,根据x3+x2+x+1=0,x2≥0,得x<0,可得x=﹣1,代入可得结论.【解答】解:由题意得:(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1,(2分)故答案为:x100﹣1;(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1,=(﹣2﹣1)•,=,=;(5分)(2)∵(x﹣1)(x3+x2+x+1)=x4﹣1,x3+x2+x+1=0,∴x4=1,则x=±1,∵x3+x2+x+1=0,∴x<0,∴x=﹣1,(6分)∴x2019=﹣1.(8分)【点评】此题考查多项式乘多项式、数字类的规律问题,同时也考查学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.28.(8分)已知A=2a﹣7,B=a2﹣4a+3,C=a2+6a﹣28,其中a>2.(1)求证:B﹣A>0,并指出A与B的大小关系;(2)比较A与C的大小,并说明你的理由.【分析】(1)由B﹣A=a2﹣4a+3﹣2 a+7=a2﹣6a+10=(a﹣3)2+1>0可得;(2)由C﹣A=a2+6a﹣28﹣2a+7=a2+4a﹣21=(a+7)(a﹣3).再分类讨论可得.【解答】解:(1)∵B﹣A=a2﹣4a+3﹣2 a+7=a2﹣6a+10=(a﹣3)2+1>0,∴B>A;(2)C﹣A=a2+6a﹣28﹣2a+7=a2+4a﹣21=(a+7)(a﹣3).因为a>2,所以a+7>0,从而当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.【点评】本题考查了用提公因式法和公式法、十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止,注意整体思想的运用是解题的关键.。

七年级下册期中数学试卷及答案-2020年春

七年级下册期中数学试卷及答案-2020年春

七年级(下)期中数学试卷一、精心选一选(本大题共7小题,每题3分,共21分.在每题所给出的四个选项中,只有一项是符合题意的.相信你一定会选对!)1.下列各式中是一元一次方程的是()A.x+y=3 B.2x﹣4=6 C.2x2﹣x=2 D.x+22.方程3﹣,去分母得()A.3﹣2(3x+5)=﹣(x+7)B.12﹣2(3x+5)=﹣x+7C.12﹣2(3x+5)=﹣(x+7) D.12﹣6x+10=﹣(x+7)3.在数轴上表示不等式2x﹣4>0的解集,正确的是()A. B.C.D.4.不等式组的解集是()A.0<x<1 B.x>0 C.x<1 D.无解5.若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.6.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0 B.a>1 C.a<0 D.a<17.某年的某个月份中有5个星期三,它们的日期之和为80(把日期作为一个数,例如把22日看作22),那么这个月的3号是星期()A.日 B.一C.二D.四二、细心填一填(本大题共有10小题,每题2分,共20分.请把结果填在答题卡中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)8.在方程x﹣2y=5中,用含x的代数式表示y,则y= .9.已知方程mx﹣2=3x的解为x=﹣1,则m= .10.若a>b,则3﹣2a 3﹣2b(用“>”、“=”或“<”填空).11.不等式组的整数解是.12.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.13.写出一个解为的二元一次方程组是.14.三元一次方程组的解是.15.已知关于x的方程3k﹣5x=9的解是非负数,则k的取值范围为.16.我们规定一种运算:,例如: =2×5﹣3×4=10﹣12=﹣2.按照这种运算的规定,请解答下列问题:当x= 时, =.17.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需元.三、认真答一答(本大题共5小题,满分31分.只要你认真思考,仔细运算,一定会解答正确的!)18.解方程(组)(1)4x+1=2(3﹣x)(2).19.解不等式(组)(1)1+>;(2),并把解集在数轴上表示出来.20.在等式y=kx+b中,当x=1时,y=﹣2;当x=﹣1时,y=﹣4.(1)求出k,b的值;(2)当x=﹣2016时,求y的值.21.已知方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为;若按正确的a、b计算,求原方程组的解.22.方程组的解x、y适合x<0,y>0,求a的取值范围.四、动脑想一想(本大题共有4小题,共28分.只要你认真探索,仔细思考,你一定会获得成功的!)23.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区,这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?24.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.25.班委会决定,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,送给结对的山区学校的同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元.(1)若他们购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了多少支?(2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案.26.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?七年级(下)期中数学试卷参考答案与试题解析一、精心选一选(本大题共7小题,每题3分,共21分.在每题所给出的四个选项中,只有一项是符合题意的.相信你一定会选对!)1.下列各式中是一元一次方程的是()A.x+y=3 B.2x﹣4=6 C.2x2﹣x=2 D.x+2【考点】一元一次方程的定义.【分析】根据一元一次方程的定义,可得答案.【解答】解:A、x+7=3是二元一次方程,故A错误;B、2x﹣4=6是一元一次方程,故B正确;C、2x2﹣x=2是一元二次方程,故C错误;D、x+2是整式,故D错误;故选:B.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.2.方程3﹣,去分母得()A.3﹣2(3x+5)=﹣(x+7)B.12﹣2(3x+5)=﹣x+7C.12﹣2(3x+5)=﹣(x+7) D.12﹣6x+10=﹣(x+7)【考点】解一元一次方程.【分析】首先确定分母的公分母为4,然后方程的两边同乘以4,即可.【解答】解:∵3﹣,方程两边同乘以4得:12﹣2(3x+5)=﹣(x+7).故选择C.【点评】本题主要考查怎样去分母简化一元一次方程,关键在于找到分母的公分母,方程两边同乘以公分母即可.3.在数轴上表示不等式2x﹣4>0的解集,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】将不等式的解集在数轴上表示出来就可判定答案了.【解答】解:不等式的解集为:x>2,故选A【点评】此题考查一元一次不等式问题,注意空心和实心的不同表示.不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.不等式组的解集是()A.0<x<1 B.x>0 C.x<1 D.无解【考点】不等式的解集.【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可解答.【解答】解:不等式组的解集是:0<x<1,故选:A.【点评】本题考查了不等式的解集,解决本题的关键是熟记求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.5.若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.【考点】同类项;解二元一次方程组.【分析】根据同类项的定义,即所含字母相同,且相同字母的指数也相同,相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得.故选:B.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.6.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0 B.a>1 C.a<0 D.a<1【考点】解一元一次不等式.【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1﹣a<0,所以可解得a的取值范围.【解答】解:∵不等式(1﹣a)x>2的解集为x<,又∵不等号方向改变了,∴1﹣a<0,∴a>1;故本题选B.【点评】解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.某年的某个月份中有5个星期三,它们的日期之和为80(把日期作为一个数,例如把22日看作22),那么这个月的3号是星期()A.日 B.一C.二D.四【考点】一元一次方程的应用.【专题】数字问题;压轴题.【分析】做此题首先要明白每两个相邻的星期天相隔几天,即7天,然后设求知数,根据它们的日期之和为80,列方程计算.【解答】解:设第一个星期三为x号,依题意得:x+x+7+x+14+x+21+x+28=80解得x=2,即这个月第一个星期三是2号,因此3号是星期四.选择D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、细心填一填(本大题共有10小题,每题2分,共20分.请把结果填在答题卡中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)8.在方程x﹣2y=5中,用含x的代数式表示y,则y= (x﹣5).【考点】解二元一次方程.【分析】先移项,再把y的系数化为1即可.【解答】解:移项得,﹣2y=5﹣x,y的系数化为1得,y=(x﹣5).故答案为:(x﹣5).【点评】本题考查的是解二元一次方程,熟知等式的基本性质是解答此题的关键.9.已知方程mx﹣2=3x的解为x=﹣1,则m= 1 .【考点】一元一次方程的解.【专题】计算题.【分析】此题可将x=﹣1代入方程,得出关于m的一元一次方程,解方程即可得出m的值.【解答】解:将x=﹣1代入方程mx﹣2=3x中:得:﹣m﹣2=﹣3∴m=1故填:1.【点评】本题主要考查的是已知原方程的解,求原方程中未知系数.只需把原方程的解代入原方程,把未知系数当成新方程的未知数求解即可.10.若a>b,则3﹣2a <3﹣2b(用“>”、“=”或“<”填空).【考点】不等式的性质.【分析】根据不等式的性质,不等式两边都乘以﹣2,再加上3即可得解.【解答】解:不等式两边都乘以﹣2得,﹣2a<﹣2b,不等式两边都加上3得,3﹣2a<3﹣2b.故答案为:<.【点评】本题考查了不等式的性质,理解不等式的变形过程是解题的关键.11.不等式组的整数解是2,3 .【考点】一元一次不等式组的整数解.【分析】分别求出每一个不等式的解集,根据口诀大小小大中间找,确定不等式组的解集,再不等式组解集内找到整数解即可.【解答】解:解不等式2x≥4,得:x≥2,解不等式10﹣3x≥0,得:x≤,∴不等式组的解集为:2≤x≤,则该不等式组的整数解为2,3;故答案为:2,3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是 3 .【考点】解一元一次方程;相反数.【分析】根据相反数的定义,结合方程计算.【解答】解:设第一个□为x,则第二个□为﹣x.依题意得3x﹣2×(﹣x)=15,解得x=3.故第一个方格内的数是3.故答案为:3.【点评】学会分析,学会总结,学会举一反三是解决此类问题的关键.13.写出一个解为的二元一次方程组是.【考点】二元一次方程组的解.【专题】计算题.【分析】由2+3=5,2﹣3=﹣1列出方程组即可.【解答】解:根据题意得:.故答案为:【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.三元一次方程组的解是.【考点】解三元一次方程组.【分析】①+②得出x﹣z=﹣2④,由③和④组成一个二元一次方程组,求出x、z的值,把x=1代入①求出y即可.【解答】解:①+②得:x﹣z=﹣2④,由③和④组成一个二元一次方程组:解得:x=1,z=3,把x=1代入①得:1﹣y=﹣1,解得:y=2,所以原方程组的解是:,故答案为:.【点评】本题考查了解三元一次方程组的应用,解此题的关键是能把三元一次方程组转化成二元一次方程组,难度适中.15.已知关于x的方程3k﹣5x=9的解是非负数,则k的取值范围为k≥3 .【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把k看作已知数表示出方程的解,根据解为非负数,确定出k的范围即可.【解答】解:方程3k﹣5x=9,解得:x=,由题意得:≥0,解得:k≥3.故答案为:k≥3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.我们规定一种运算:,例如: =2×5﹣3×4=10﹣12=﹣2.按照这种运算的规定,请解答下列问题:当x= 时, =.【考点】解一元一次方程.【专题】计算题;新定义;一次方程(组)及应用.【分析】利用题中的新定义化简已知等式得到一元一次方程,求出解即可.【解答】解:根据题意得:x+x=,解得:x=,故答案为:【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.17.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需105 元.【考点】三元一次方程组的应用.【专题】应用题.【分析】设购买甲、乙、丙各一件分别需要x,y,z元,列出方程组,消去z后,得到x+3y 的值,再代入①,即可求得x+y+z的值,也即购买甲、乙、丙各一件的共需钱数.【解答】解:设购买甲、乙、丙各一件分别需要x,y,z元,由题意得,②﹣①得x+3y=105,代入①得x+y+2(x+3y)+z=315,即x+y+z+2×105=315,∴x+y+z=315﹣210=105.故答案为:105.【点评】本题考查了三元一次方程组的实际应用,解答此题的关键是首先根据题意列出方程组,再整体求解.三、认真答一答(本大题共5小题,满分31分.只要你认真思考,仔细运算,一定会解答正确的!)18.解方程(组)(1)4x+1=2(3﹣x)(2).【考点】解二元一次方程组;解一元一次方程.【专题】计算题.【分析】(1)先去括号,再移项合并得到6x=5,然后把x的系数化为1即可;(2)利用代入消元法解方程组.【解答】解:(1)去括号得4x+1=6﹣2x,移项得4x+2x=6﹣1,合并得6x=5,系数化为1得x=;(2)解:由②得x=﹣15﹣4y③,把③代入①得:3(﹣15﹣4y)﹣5y=6,解得y=﹣3,把y=﹣3带入③得:x=﹣15﹣4×(﹣3)=﹣3,∴方程组的解为.【点评】本题考查了解二元一次方程组:利用代入消元法或加减消元法解二元一次方程组.19.解不等式(组)(1)1+>;(2),并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先去分母,再移项、合并同类项即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可;【解答】解:(1)去分母得,4+2x>x﹣2,移项得,2x﹣x>﹣4﹣2,合并同类项得,x>﹣6.(2),由①得:x≥﹣2,由②得:x<3.故不等式组的解集为:﹣2≤x<3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.在等式y=kx+b中,当x=1时,y=﹣2;当x=﹣1时,y=﹣4.(1)求出k,b的值;(2)当x=﹣2016时,求y的值.【考点】解二元一次方程组.【分析】(1)将x与y的两对值代入已知等式求出k与b的值即可;(2)由k与b的值确定出解析式,把x=﹣2016代入计算求出y的值即可.【解答】解:(1)依题意得:,解得:k=1,b=﹣3,(2)当x=﹣2016时,y=x﹣3=﹣2016﹣3=﹣2019.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的思想的方法有:代入消元法与加减消元法.21.已知方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为;若按正确的a、b计算,求原方程组的解.【考点】二元一次方程组的解.【分析】由于甲看错了方程①中的a,故可将代入②,求出b的值;由于乙看错了方程组②中的b,故可将代入①,求出a的值,然后得到方程组,解方程组即可.【解答】解:将代入②得,﹣12+b=﹣2,b=10;将代入①得,5a+20=15,a=﹣1.故原方程组为,解得.【点评】此题考查了方程组解的理解:方程组的解符合方程组中的每个方程,将解代入方程即可求出未知系数.22.方程组的解x、y适合x<0,y>0,求a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【分析】先用含a的代数式表示x、y,根据x<0,y>0列出方程组,求出a的取值范围即可.【解答】解:①+②得,2x=3a+1,x=,①﹣②得,2y=﹣a﹣1,y=﹣,因为x<0,y>0,所以,解得:a<﹣1.【点评】本题考查的是二元一次方程和不等式的综合问题,通过把x,y的值用a代替,再根据x、y的取值判断a的值.四、动脑想一想(本大题共有4小题,共28分.只要你认真探索,仔细思考,你一定会获得成功的!)23.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区,这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?【考点】一元一次方程的应用.【分析】设应从第一组调x人到第二组去,根据第一组26人打扫教室,第二组22人打扫包干区,要使第二组人数是第一组人数的2倍,从而可列方程求解.【解答】解:设应从第一组调x人到第二组去,2(26﹣x)=22+x,52﹣2x=22+x,x=10.故第一组调10人到第二组去.【点评】本题考查的是调配问题,关键知道调配后的数量关系从而可列方程求解.24.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【考点】一元一次方程的应用.【专题】计算题;经济问题.【分析】每套利润×套数=总利润,在本题中有两种方案,虽然单价不同,但是总利润相等,可依此列方程解应用题.【解答】解:设每套课桌椅的成本x元.则:60×(100﹣x)=72×(100﹣3﹣x).解之得:x=82.答:每套课桌椅成本82元.【点评】列方程解应用题,重点在于准确地找出相等关系,这是列方程的依据.此题主要考查了一元一次方程的解法.25.班委会决定,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,送给结对的山区学校的同学,他们去了商场,看到圆珠笔每支5元,钢笔每支6元.(1)若他们购买圆珠笔、钢笔刚好用去120元,问圆珠笔、钢笔各买了多少支?(2)若购圆珠笔可9折优惠,钢笔可8折优惠,在所需费用不超过100元的前提下,请你写出一种选购方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】压轴题.【分析】(1)若设买了x支圆珠笔,那么买了(22﹣x)支钢笔,由题意可列出方程式,5x+6(22﹣x)=120,求出即可;(2)由题意可列出关系式,0.9×5x+0.8×6(22﹣x)≤100,进而得出选购方案.【解答】解:(1)设买了x支圆珠笔,那么买了(22﹣x)支钢笔.根据题意得:5x+6(22﹣x)=120,解得:x=12,∴22﹣x=10.故圆珠笔买了12支,钢笔买了10支.(2)设买了x支圆珠笔,那么买了(22﹣x)支钢笔.根据题意得:0.9×5x+0.8×6(22﹣x)≤100,解得x≥.又x应是整数且小于22,∴不妨取如圆珠笔19支,钢笔3支等.【点评】此题主要考查了不等式的应用,注意题目中如果给的是不等关系,可列不等式进行解决.对于方案题的解决,首先要根据条件求出未知数的取值范围,然后确定可选方案.26.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入.∴2x+3y=12的正整数解为问题:(1)请你写出方程2x+y=5的一组正整数解:;(2)若为自然数,则满足条件的x值有个;A、2B、3C、4D、5(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【考点】二元一次方程组的应用;一元一次不等式的应用.【专题】阅读型.【分析】根据题意可知,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解.【解答】解:(1)由2x+y=5,得y=5﹣2x(x、y为正整数).所以,即0<x<∴当x=1时,y=3;当x=2时,y=1.即方程的正整数解是或.(只要写出其中的一组即可)(2)同样,若为自然数,则有:0<x﹣2≤6,即2<x≤8.当x=3时,;当x=4时,;当x=5时,;当x=8时,.即满足条件x的值有4个,故选C.(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=35,其中m、n均为自然数.于是有:,解得:,所以0<m<.由于n=7﹣m为正整数,则为正整数,可知m为5的倍数.∴当m=5时,n=4;当m=10时,n=1.答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.【点评】解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.。

2020春七年级下册期中数学试卷含答案解析

2020春七年级下册期中数学试卷含答案解析

七年级(下)期中数学试卷一、选择题(四选一)(每题3分,共30分)1.(3分)25的算术平方根是()A.5 B.C.﹣5 D.±52.(3分)下列说法中正确的是()A.带根号的数都是无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数是开方开不尽的数3.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.4.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°5.(3分)下列选项中∠1与∠2不是同位角的是()A.B.C.D.6.(3分)已知点P(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点Q,则点Q的坐标是()A.(7,1)B.(﹣1.﹣5)C.(﹣1,1)D.(﹣1,﹣2)7.(3分)如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0C.y大于或等于0 D.y小于或等于08.(3分)下列说法错误的是()A.=0B.若=0,则m=1C.实数与数轴上的点一一对应D.a的立方根是9.(3分)若P为直线l外一定点,A为直线l上一点,且PA=3,d为点P到直线l的距离,则d的取值范围为()A.0<d<3 B.0≤d<3 C.0<d≤3 D.0≤d≤3 10.(3分)如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠CBE+∠D=90°;④∠DEB=2∠ABC,其中结论正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)11.(3分)计算:①=;②|3.14﹣π|=;③=.12.(3分)命题“互补的两个角是邻补角”是命题,(填真或假),把它改写成“如果…,那么…”的形式为.13.(3分)已知是方程2x+2my=﹣1的一组解,则m的值为.14.(3分)已知AB∥y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.15.(3分)一个小区大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,那么∠ABC+∠BCD=度.16.(3分)如图,第一象限内有两点P(m﹣3,n),Q(m,n﹣2),将线段PQ平移使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.三、解答题(共72分)17.(8分)(1)求x的值:(x﹣1)3=64(2)计算:18.(8分)如图,直线DE经过点A.(1)写出∠B的内错角是,同旁内角是.(2)若∠EAC=∠C,AC平分∠BAE,∠B=44°,求∠C的度数.19.(8分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD()∴∠ABD=2∠α()∵DE平分∠BDC(已知)∵∠BDC=()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=()∴AB∥CD()20.(8分)如图,点P是∠AOB外一点,(1)根据下列语句画图,①过点P,作线段PC⊥OB,垂足为C.②过点P,向右上方作射线PD∥OA,交OB于点D.(2)结合所作图形,若∠O=50°,求∠P的度数为多少度?21.(8分)在平面直角坐标系中,三角形ABC的位置如图所示,把三角形ABC平移后,三角形ABC内任意点P(x,y)对应点为P′(x+3,y﹣4).(1)画出平移后的图形;(2)三角形ABC是经过怎样平移后得到三角形A′B′C′?(3)在三角形ABC平移到三角形A′B′C′的过程中,线段AB扫过的面积为.22.(10分)如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.(10分)已知,如图,AB与CD交于点O(1)如图1,若∠A=∠B,求证:∠A+∠C=∠B+∠D(2)如图2,若∠A≠∠B,(1)中的结论是否仍然成立?请判断并证明你的结论(注:不能用三角形内角和定理)(3)如图3,若∠B=65°,∠C=25°,AP平分∠BAC,DP平分∠BDC,请你(2)中结论求出∠P的度数,请直接写出结果∠P=.24.(12分)平面直角坐标系中,A(m,n+2),B(m+4,n).(1)当m=2,n=2时,①如图1,连接AO、BO,求三角形ABO的面积;②如图2,在y轴上是否存在点P,使三角形PAB的面积等于8,若存在,求P点坐标;若不存在,请说明理由;(2)如图3,过A、B两点作直线AB,当直线AB过y轴上点Q(0,3)时,试求出m,n的关系式.【温情提示:(a+b)×(c+d)=ac+ad+bc+bd】七年级(下)期中数学试卷参考答案与试题解析一、选择题(四选一)(每题3分,共30分)1.(3分)25的算术平方根是()A.5 B.C.﹣5 D.±5【解答】解:∵5的平方是25,∴25的算术平方根是5.故选:A.2.(3分)下列说法中正确的是()A.带根号的数都是无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数是开方开不尽的数【解答】解:A、如=2,是整数,是有理数,选项错误;B、无限循环小数是有理数,选项错误;C、正确;D、π是无理数,不是开方开不进得到的数,选项错误.故选:C.3.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.【解答】解:A中的第二个方程不是整式方程,B中共含有三个未知数,D中第一个方程是二次的,它们都不符合二元一次方程组的定义,故选项A、B、C都不是二元一次方程组;C符合二元一次方程组的定义,故选项C是二元一次方程组;故选:C.4.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.5.(3分)下列选项中∠1与∠2不是同位角的是()A.B.C.D.【解答】解:A、∠1和∠2是同位角;B、∠1和∠2是同位角;C、∠1和∠2不是同位角;D、∠1和∠2是同位角;故选:C.6.(3分)已知点P(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点Q,则点Q的坐标是()A.(7,1)B.(﹣1.﹣5)C.(﹣1,1)D.(﹣1,﹣2)【解答】解:把点P(3,﹣2)先向左平移4个单位,再向上平移3个单位后得到点Q,则点Q的坐标(﹣1,1).故选:C.7.(3分)如果点P(5,y)在第四象限,则y的取值范围是()A.y<0 B.y>0C.y大于或等于0 D.y小于或等于0【解答】解:∵点P(5,y)在第四象限,∴y<0.故选:A.8.(3分)下列说法错误的是()A.=0B.若=0,则m=1C.实数与数轴上的点一一对应D.a的立方根是【解答】解:A、a+(﹣a)=0,∴+=0,故A正确;B、=0,得m﹣1≥0且1﹣m≥0,解得m=1,故B正确;C、实数与数轴上的点一一对应,故C正确;D、a的立方根是,故D错误;故选:D.9.(3分)若P为直线l外一定点,A为直线l上一点,且PA=3,d为点P到直线l的距离,则d的取值范围为()A.0<d<3 B.0≤d<3 C.0<d≤3 D.0≤d≤3【解答】解:由垂线段最短可知:0<d≤3,当d=3时此时PA⊥l故选:C.10.(3分)如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠CBE+∠D=90°;④∠DEB=2∠ABC,其中结论正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵AF∥CD,∴∠ABC=∠ECB,∠EDB=∠DBF,∠DEB=∠EBA,∵CB平分∠ACD,BD平分∠EBF,∴∠ECB=∠BCA,∠EBD=∠DBF,∵BC⊥BD,∴∠EDB+∠ECB=90°,∠DBE+∠EBC=90°,∴∠EDB=∠DBE,∴∠ECB=∠EBC=∠ABC=∠BCA,∴①BC平分∠ABE,正确;∴∠EBC=∠BCA,∴②AC∥BE,正确;∴③∠CBE+∠D=90°,正确;∵∠DEB=∠EBA=2∠ABC,故④正确;故选:D.二、填空题(每题3分,共18分)11.(3分)计算:①=﹣;②|3.14﹣π|=π﹣3.14 ;③=﹣.【解答】解:①=﹣;②|3.14﹣π|=π﹣3.14;③=﹣,故答案为:﹣,π﹣3.14,﹣.12.(3分)命题“互补的两个角是邻补角”是假命题,(填真或假),把它改写成“如果…,那么…”的形式为如果两个角互补,那么这两个角是邻补角.【解答】解:互补的两个角不一定是邻补角,故命题“互补的两个角是邻补角”是假命题,如果两个角互补,那么这两个角是邻补角,故答案为:假;如果两个角互补,那么这两个角是邻补角.13.(3分)已知是方程2x+2my=﹣1的一组解,则m的值为.【解答】解:将代入2x+2my=﹣1,得:2﹣4m=﹣1,解得:m=,故答案为:.14.(3分)已知AB∥y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(3,7)或(3,﹣3).【解答】解:∵AB∥y轴,点A的坐标为(3,2),∴点B的横坐标为3,∵AB=5,∴点B在点A的上边时,点B的纵坐标为2+5=7,点B在点A的下边时,点B的纵坐标为2﹣5=﹣3,∴点B的坐标为:(3,7)或(3,﹣3).故答案为:(3,7)或(3,﹣3).15.(3分)一个小区大门的栏杆如图所示,BA垂直地面AE于A,CD平行于地面AE,那么∠ABC+∠BCD=270 度.【解答】解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270.16.(3分)如图,第一象限内有两点P(m﹣3,n),Q(m,n﹣2),将线段PQ平移使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是(0,2)或(﹣3,0).【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣2)=﹣n+2,∴n﹣n+2=2,∴点P平移后的对应点的坐标是(0,2);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣3﹣m=﹣3,∴点P平移后的对应点的坐标是(﹣3,0);综上可知,点P平移后的对应点的坐标是(0,2)或(﹣3,0).故答案为(0,2)或(﹣3,0).三、解答题(共72分)17.(8分)(1)求x的值:(x﹣1)3=64(2)计算:【解答】解:(1)∵(x﹣1)3=64,∴x﹣1=4,解得:x=5;(2)原式=3+1=4.18.(8分)如图,直线DE经过点A.(1)写出∠B的内错角是∠BAD,同旁内角是∠BAC,∠EAB和∠C.(2)若∠EAC=∠C,AC平分∠BAE,∠B=44°,求∠C的度数.【解答】解:(1)∠B的内错角是∠BAD,∠B的同旁内角是∠BAC,∠EAB和∠C;(2)∵∠EAC=∠C,∴DE∥BC,∴∠BAE=180°﹣44°=136°,∵AC平分∠BAE,∴∠EAC=68°,∴∠C=∠EAC=68°,故答案为:∠BAD;∠BAC,∠EAB和∠C19.(8分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知)∴∠ABD=2∠α(角平分线的定义)∵DE平分∠BDC(已知)∵∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=(等量代换)∴AB∥CD(同旁内角互补两直线平行)【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.20.(8分)如图,点P是∠AOB外一点,(1)根据下列语句画图,①过点P,作线段PC⊥OB,垂足为C.②过点P,向右上方作射线PD∥OA,交OB于点D.(2)结合所作图形,若∠O=50°,求∠P的度数为多少度?【解答】解:(1)如图,(2)∵AO∥PD,∴∠O=∠CDO=50°,∵PC⊥OB,∴∠PCD=90°,∴∠P=90°﹣50°=40°.21.(8分)在平面直角坐标系中,三角形ABC的位置如图所示,把三角形ABC平移后,三角形ABC内任意点P(x,y)对应点为P′(x+3,y﹣4).(1)画出平移后的图形;(2)三角形ABC是经过怎样平移后得到三角形A′B′C′?(3)在三角形ABC平移到三角形A′B′C′的过程中,线段AB扫过的面积为27 .【解答】解:(1)如图所示,△A′B′C′即为所求;(2)由题意知,△ABC先向右平移3个单位、再向下平移4个单位可以得到△A′B′C;(3)线段AB扫过的面积为S▱ABED +S▱DEB′A′=3×5+3×4=27,故答案为:27.22.(10分)如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆<C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?【解答】(1)解:由已知AB2=1,则AB=1,由勾股定理,AC=;故答案为:(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12∴解得x=∴长方形长边为3>4∴他不能裁出.23.(10分)已知,如图,AB与CD交于点O(1)如图1,若∠A=∠B,求证:∠A+∠C=∠B+∠D(2)如图2,若∠A≠∠B,(1)中的结论是否仍然成立?请判断并证明你的结论(注:不能用三角形内角和定理)(3)如图3,若∠B=65°,∠C=25°,AP平分∠BAC,DP平分∠BDC,请你(2)中结论求出∠P的度数,请直接写出结果∠P=45°.【解答】解:(1)∵∠A=∠B,∴AC∥BD,∴∠C=∠D,∴∠A+∠C=∠B+∠D;(2)如图,过A作AE∥BD,则∠OAE=∠B,∠OEA=∠D,∴∠D+∠B=∠OAE+∠OEA,又∵∠AEO是△ACE的外角,∴∠AEO=∠C+∠CAE,∴∠D+∠B=∠OAE+∠C+∠CAE,即∠CAO+∠C=∠B+∠D;(3)由(2)中结论可得,∠CAP+∠C=∠CDP+∠P,∠BDP+∠B=∠BAP+∠P,两式相加,可得∠CAP+∠C+∠BDP+∠B=∠CDP+∠P+∠BAP+∠P,∵AP平分∠BAC,DP平分∠BDC,∴∠CAP=∠BAP,∠CDP=∠BDP,∴∠C+∠B=∠P+∠P,∴∠P=(∠C+∠B)=×90°=45°.故答案为:45°.24.(12分)平面直角坐标系中,A (m ,n +2),B (m +4,n ).(1)当m =2,n =2时,①如图1,连接AO 、BO ,求三角形ABO 的面积;②如图2,在y 轴上是否存在点P ,使三角形PAB 的面积等于8,若存在,求P 点坐标;若不存在,请说明理由;(2)如图3,过A 、B 两点作直线AB ,当直线AB 过y 轴上点Q (0,3)时,试求出m ,n 的关系式.【温情提示:(a +b )×(c +d )=ac +ad +bc +bd 】【解答】解:(1)①当m =2,n =2时,A (2,4),B (6,2),∴S △AOB =4×6﹣×4×2﹣×6×2﹣×4×2=10.②设P (0,m ).∵直线AB 的解析式为y =﹣x +5,设直线AB 交y 轴于C (0,5),由题意:S △PBC ﹣S △APC =S △PAB , ∴•|m ﹣5|×6﹣•|m ﹣5|•2=8,解得m =9或1,∴P (0,9)或(0,1);(2)设直线AB的解析式为y=kx+b,则有:,解得,∴直线AB的解析式为y=﹣x+m+n+2,∵直线AB经过点Q(0,3),∴m+n+2=3,∴m=﹣2n+2.。

2020年春季七年级(下)期中数学试卷(含参考答案与评分标准)

2020年春季七年级(下)期中数学试卷(含参考答案与评分标准)

2020 年春季七年级(下)期中数学试卷时间: 100分钟 总分: 150 分班级 号数 姓名、选择题(每小题 4 分,共 40 分)1.下列方程是二元一次方程的是( )A .B . 3y 2﹣ x = 4C . xy+1=5D .2x+y =93.关于 x 的方程 2(x ﹣1) a =0的根是 3,则 a的值为(A . 4B .﹣ 4 4.下列不等式变形正确的是( )A .由 a> b ,得 ac> bcC .由 a> b ,得﹣ a>﹣ b5.下列方程的变形中,正确的是( )A .方程( x+2)﹣ 2(x ﹣ 1)= 0 去括号,得B .方程 =1 去分母,得 3x+2x =1C .方程﹣ 7x =4 系数化为 1,得 x =﹣D .方程 2x ﹣1=x+5 移项,得 2x ﹣x =5﹣12.二元一次方程 2x+y =5 的正整数解有( A .一组 B .2组 C .3 组 D .无数组当 0<x<1 时, x , ,x 2 的大小顺序是( 6. 7. B .x<x< D . 2 <x 2<x 小明所在城市的 阶梯水价”收费办法是:每户用水不超过 5 吨,每吨水费 x 吨加收2 元,小明家今年 5 月份用水 9 吨,共交水费为 44 元,根据题意列出关于 元;超过 5吨,每 x 的方程正确的是C .5D .﹣ 5B .由 a>b ,得﹣ 2a>﹣ 2b D .由 a>b ,得 a ﹣2> b ﹣2x+2﹣2x ﹣2=0()A.5x+4(x+2)=44 B .5x+4(x-2)=44C.9(x+2)=44 D . 9(x+ 2)-4× 2= 448.如果关于 x 的方程的解不是负值,那么 a 与 b 的关系是()A. a> b B . b≥ aC. 5a≥3b D .5a=3b9.已知方程组的解满足 x+y<0,则 m 的取值范围是()A .m>﹣ 1B .m>1 C.m<﹣ 1 D.m<110.宜宾市某化工厂,现有A种原料 52 千克,B种原料 64 千克,现用这些原料生产甲、乙两种产品共 20件.已知生产 1件甲种产品需要A种原料 3千克,B种原料 2千克;生产 1件乙种产品需要A种原料 2千克,B种原料 4千克,则生产方案的种数为()A.4 B .5 C . 6 D . 7二、填空题(每小题 4分,共 24 分)11.已知( 3m﹣ 1)x2n+1+9= 0是关于 x的一元一次方程,则 m、n应满足的条件为 m ,n=12.中国 CBA 篮球赛中,八一队某主力队员在一场比赛中 22投 14中,得了 28分,除了 3 个三分球全中外,他还投中了个 2 分球和个罚球.13.若 5|x+y﹣ 4|+(x﹣y)2=0,则 x=,y=.a+2b-11 5a-2b- 314.如果 4x -2y =8 是关于x,y 的二元一次方程,那么a-b=.的整数解共有 3 个,则 a 的取值范围是.16.书店举行购书优惠活动,活动规则如下:①一次性购书不超过 100 元,不享受打折优惠;②一次性购书超过 100元但不超过 200 元一律打九折;③一次性购书 200 元以上一律打七折.小丽在这次活动中,两次购书总共付款 229.4 元,第二次购书原价是第一次购书原价的 3 倍,那么小丽这两次购书原价的总和是元.三、解答题(共 86 分) 17.( 13 分)解方程或方程组:3x- 2 4x+ 2(1) 3x2-2=4x3+2-1;122x+3y=3(2)3 29x-4y=-1215.关于 x 的不等式组5 分)8 分)22.(13 分)客车和货车分别在两条平行的铁轨上行驶,客车长 450 米,货车长 600 米. 两车相向而行,从两车车头相距 2000 米到客车车头与货车车尾相距 1000 米,共需 32 秒. 客车从后面追货车, 从客车的车头追上货车的车尾到两车头相距 1000 米,共需 160 秒. 求两车的速度 .23.(15 分)某公司购买产品 A 、B 若干件,并且每买一件 A 或 B 产品必须要买 10个产品 C 配套使 用,产品 C 的单价为 2元/个,若购买 20件 A 和15件B 花费 9000元;购买 10件B 比购买 5件 A 多花费 1600 元.(1)求产品 A 、B 每件各多少元;(2)若该公司购买 A 、B 两种产品共 40件,其中 A 产品的数量不低于总数量的 70%,且 A 产品的数量不多于 B 产品数量的 3 倍,请你给出一种费用最少的方案,并求出该方案所需费用.18. 10 分)解不等式: ,并把解集在数轴上表示出来.19. 10 分)求不等式组1 的所有整数解的和. (注意第二个不等式左边系数是- 3 ) 20. 12 分)甲、乙两位同学在解方程组看错了第二个方程,解得 .求 a 、b 的值.时,甲看错了第一个方程,解得 ,乙 21.( 13分)已知关于 x 、y 的方程组的解满足﹣ 2< x+y< 5,求 k 的取值范围.2020 年春季七年级(下)期中数学试卷参考答案与解析、选择题(每小题 4 分,共 40 分)2B . 3y ﹣ x = 4C . xy+1= 5D .2x+y =9故选: D . 的值,从而确定二元一次方程的正整数解.解】 当 x = 1,则 2+y =5,解得 y =3, 当 x = 2,则 4+y = 5,解得 y =1, 当 x =3,则 6+y = 5,解得 y =﹣ 1, 所以原二元一次方程的 正整数解为 故选: B .关于 x 的方程 2(x ﹣1)﹣a =0的根是 3,则 a 的值为(分析】 虽然是关于 x 的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未 知数的值.【解】 把 x =3 代入 2(x ﹣1)﹣ a = 0中: 得:2(3﹣1)﹣ a =01. 列方程是二元 次方程的是( 分析】 二元 次方程:含有 2 个未知数,未知数的项的次数是 1 的整式方程.A 、未知数 y 在分母上,不是整式方程,故本选项错误; B 、y 的次数是 2 次,不是一次方程,故本选项错误; C 、 未知项 xy 的次数是 2 次,不是一次方程,故本选项错误;D 、 2x+y = 9 是二元一次方程,故本选项正确.A . 2. 元一次方程 2x+y =5 的正整数解有(A .一组B .2组C .3组D .无数组分析】 由于要求二元一次方程的正整数解,可分别把 x = 1、2、 3 分别代入方程,求出对应的 y A .4 B .﹣4 C .5 D .﹣5解得: a=4故选: A.4.下列不等式变形正确的是()A .由 a> b,得 ac> bc B.由 a>b,得﹣ 2a>﹣ 2bC.由 a> b,得﹣ a>﹣ b D.由 a>b,得 a﹣2> b﹣2【分析】分别利用不等式的基本性质判断得出即可.【解】 A、由 a>b,当 c<0 时,得 ac< bc,错误;B、由 a>b,得﹣ 2a<﹣ 2b,错误;C、由 a> b,得﹣ a<﹣ b,错误;D 、由 a>b,得 a﹣2>b﹣ 2,正确;故选: D .5.下列方程的变形中,正确的是()A.方程( x+2)﹣ 2(x﹣ 1)= 0 去括号,得 x+2﹣2x﹣2=0B.方程= 1 去分母,得 3x+2x=1C.方程﹣ 7x=4 系数化为 1,得 x=﹣D .方程 2x﹣1=x+5 移项,得 2x﹣x=5﹣1【分析】 A、方程( x+2)﹣ 2(x﹣1)= 0 去括号,得 x+2﹣ 2x+2= 0;B、方程= 1 去分母,得 3x+2x= 6;C、方程﹣ 7x=4 系数化为 1,得 x=﹣;D 、方程 2x﹣1=x+5 移项,得 2x﹣x=5+1,故选: C.26.当 0<x<1时,x,,x2的大小顺序是(22A . <x< x2B . x<x2<【分析】采取取特殊值法,取 x=,求出 x2和的值,再比较即可.【解】∵0< x< 1,∴取 x=,< x2< x C. x2< x< D.故选: C .7.小明所在城市的“阶梯水价”收费办法是:每户用水不超过 5 吨,每吨水费 x 元;超过 5 吨,每吨加收 2元,小明家今年 5月份用水 9吨,共交水费为 44元,根据题意列出关于 x 的方程正确的是 ( )A .5x +4(x +2) =44B .5x +4(x -2) =44C .9( x +2) = 44D . 9( x +2) - 4× 2= 44【解析】 5 月份用水 9 吨,分两部分计费,第一部分为其中的 5 吨水费为 5x 元,第二部分为超出5 吨部分为 9-5=4(吨),每吨加收 2 元,即每吨收( x+2)元,共收 4( x+2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.32.的算术平方根是()A.±4 B.4 C.±2 D.23.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=6.下列图形中,由∠1=∠2能得到AB∥CD的是()A. B.C.D.7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式: . 12.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 .13.如果5x 3m ﹣2n ﹣2y n ﹣m +11=0是二元一次方程,则2m ﹣n= .14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是 .15.如果若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则﹣|a ﹣b|= .16.如果=1.732, =5.477,那么0.0003的平方根是 . 17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 .18.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( , ),B n ( , ).三、计算:(满分6分,每小题6分) 19.计算: (1)﹣+(2).四、解方程组(满分8分) 20.解方程组 (1)(2).五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.22.如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=5∠COE,求∠AOD的度数.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元?24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3【考点】对顶角、邻补角.【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:B.2.的算术平方根是()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【考点】实数的性质;立方根.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、都是﹣2,故B错误;C、只有符号不同的两个数互为相反数,故C错误;D、都是2,故D错误;故选:A.4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数【考点】无理数;实数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、无限循环小数是有理数,故A错误;B、是有理数,故B错误;C、无理数是无限不循环小数,故C正确;D、实数包括正实数、零、负实数,故D错误;故选:C.5.方程2x﹣3y=7,用含x的代数式表示y为()A.y= B.y= C.x= D.x=【考点】解二元一次方程.【分析】本题是将二元一次方程变形,先移项、再系数化为1即可.【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.故选:B.6.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C. D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的坐标,即可得解.【解答】解:∵点P到x轴距离为3,到y轴的距离为2,∴点P的横坐标为±2,纵坐标为±3,∴点P的坐标为(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3).故选B.8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】先表示出颠倒前后的两位数,然后根据十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.【解答】解:由题意得,.故选D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据平行线的性质由EG∥BC得∠BFE=∠1,∠2=∠3,由DC∥EF得∠BFE=∠2,则∠BFE=∠1=∠2=∠3,再利用DH∥EG得∠4=∠5,∠3=∠4,所以∠BFE=∠1=∠2=∠3=∠4=∠5.【解答】解:∵EG∥BC,∴∠BFE=∠1,∠2=∠3,∵DC∥EF,∴∠BFE=∠2,∴∠BFE=∠1=∠2=∠3,∵DH∥EG,∴∠4=∠5,∠3=∠4,∴∠BFE=∠1=∠2=∠3=∠4=∠5.故选D.10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等可得∠1=∠EFB,再根据翻折变换的性质可得∠2=∠1,然后根据平角等于180°列式计算即可得解.【解答】解:如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选C.二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【考点】命题与定理.【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.13.如果5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则2m﹣n= 2 .【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断求出m与n的值,即可求出原式的值.【解答】解:∵5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,∴,①+②得:2m﹣n=2,故答案为:2.14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.15.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则﹣|a﹣b|= ﹣a .【考点】实数与数轴.【分析】根据题意判断出a与b的正负,以及a﹣b的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.【解答】解:根据题意得:a>0,b<0,即a﹣b>0,则原式=|b|﹣|a﹣b|=﹣b﹣a+b=﹣a.故答案为:﹣a.16.如果=1.732, =5.477,那么0.0003的平方根是 =±0.01732 . 【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根. 【解答】解:∵0.0003=, ∴±=±=±=±0.01732.17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 81 . 【考点】平方根.【分析】利用平方根定义判断求出a 的值,即可确定出这个数. 【解答】解:根据题意得:a+6+2a ﹣15=0, 移项合并得:3a=9,即a=3, 则这个数为(3+6)2=81; 故答案为:8118.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( 2n , 3 ),B n ( 2n+1 , 0 ).【考点】坐标与图形性质.【分析】观察不难发现,点A 系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B 系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可. 【解答】解:∵A (1,3),A 1(2,3),A 2(4,3),A 3(8,3), 2=21、4=22、8=23, ∴A n (2n ,3), ∵B (2,0),B 1(4,0),B 2(8,0),B 3(16,0), 2=21、4=22、8=23,16=24, ∴B n (2n+1,0).故答案为:2n,3;2n+1,0.三、计算:(满分6分,每小题6分) 19.计算: (1)﹣+ (2).【考点】实数的运算. 【分析】(1)计算算术平方根、立方根,再加减可得;(2)化简二次根式、去绝对值符号、去括号,再合并即可. 【解答】解:(1)原式=5﹣3+=2; (2)原式=2+﹣1﹣﹣1=0.四、解方程组(满分8分) 20.解方程组 (1) (2).【考点】解二元一次方程组. 【分析】(1)方程组利用加减消元法求出解即可; (2)方程组整理后,利用加减消元法求出解即可. 【解答】解:(1), ②×2﹣①得:y=﹣1, 把y=﹣1代入②得:x=, 则方程组的解为;(2)方程组整理得:,①+②得:4x=8,即x=2, 把x=2代入①得:y=﹣, 则方程组的解为.五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.【考点】坐标与图形性质;坐标与图形变化-平移. 【分析】(1)根据S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF 计算即可.(2)把四边形ABCD 的各个顶点向下平移3个单位长度,再向左平移2个单位长度即可,写出平移后各个顶点的坐标即可,新四边形面积和原来四边形面积相等,由此即可解决问题. 【解答】解:(1)如图,作AE ⊥CD 于E ,BF ⊥CD 于F , ∵A (﹣2,8),B (﹣11,6),C (﹣14,0),D (0,0), ∴S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF , =•2•8+(6+8)•9+•3•6 =80. (2)把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,图象如图所示:A 1(﹣4,5)、B 2(﹣13,3)、C 3(﹣16,﹣3)、D 4(﹣2,﹣3), ∵四边形A 1B 2C 3D 4是由四边形ABCD 平移所得, ∴新四边形面积等于原来四边形面积=80.22.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE=5∠COE ,求∠AOD 的度数.【考点】垂线;对顶角、邻补角.【分析】由OE ⊥AB 可得∠EOB=90°,设∠COE=x ,则∠DOE=5x ,而∠COE+∠EOD=180°,即x+5x=180°,得到x=30°,则∠BOC=30°+90°=120°,利用对顶角相等即可得到∠AOD 的度数. 【解答】解:∵OE ⊥AB , ∴∠EOB=90°,设∠COE=x ,则∠DOE=5x , ∵∠COE+∠EOD=180°, ∴x+5x=180°, ∴x=30°,∴∠BOC=∠COE+∠BOE=30°+90°=120°, ∴∠AOD=∠BOC=120°.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元? 【考点】二元一次方程组的应用. 【分析】本题的等量关系是:去年的收入﹣去年的支出=500万元.今年的收入﹣今年的支出=960万元.然后根据这两个等量关系来列方程组,求出未知数的解. 【解答】解:设去年收入是x 万元,支出是y 万元. 根据题意有: 解得:答:去年收入2040万元,支出1540万元.24.如图1,MN ∥EF ,C 为两直线之间一点.(1)如图1,若∠MAC 与∠EBC 的平分线相交于点D ,若∠ACB=100°,求∠ADB 的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°﹣ACB .【考点】平行线的性质.【分析】(1)如图1,根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,即可得到结论;(2)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据平行线的定义得到∠1=MAC,∠2=∠CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)==,∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣﹣∠ACB=360°﹣∠MAC﹣﹣∠ACB=360°﹣﹣=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.2016年8月11日。

相关文档
最新文档