2012-2013学年度下学期八年级数学测试题
2012-2013学年度下学期期末模拟考试八年级数学试题
2012-2013学年度下学期期末模拟考试八年级数学试题考试时间:120分钟 试卷满分:120分 编辑人:丁济亮一、选择题(36分): ( )1、分式121x +有意义的x 的取值范围是A.12x =B.12x ≠C.0x ≠D.12x ≠-( )2、下列各点,在函数y =13x -上的是A .(1,-2)B .(3,0)C .(2,-1 )D 、(3,3) ( )3、下列计算,正确的是A.523a a a =⋅ B.235()a a = C.326a a a =÷ D.22()bb aa=( )4.若分式242-+x x 的值为正,则x 需满足的条件是A .x >0B .x >2C .x ≠±2D .x ≠2( )5、随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 73(mm 2),这个数用科技记数法表示为A .7.3×10-6B .0.73×10-6C .7.3×10-7D .0.73×10-7( )6、若一个长方形的面积为62cm ,则它的长y (cm )与宽x (cm )之间的函数关系用图像表示大致为( )7.如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树断裂之前的高度为A.9米B.15米C.21米D.24米 ( )8、下列命题,错误的命题是A.对角线相等的四边形是矩形B.矩形的对角线相等C.平行四边形的两组对边分别相等D.两组对边分别相等的四边形是平行四边形 ( )9、右图是某班学生某次测验的成绩,则这次测验的平均成绩是 A.90 B.92 C.93 D.95_100_95_90_85_80第1第2第3第4…DBA ( )10、如图,第1个图有1个菱形,第2个图有5个菱形,第3个图有14个菱形,第4个图有30个菱形,则第6个图的菱形个数是A.55B.85C.91D.95( )11、如图,将矩形ABCD 沿EF 折叠后,点D 、C 分别 落在D ′、C ′的位置,若AB=6,BC=12,D ′到AB 、BC 的距离 分别为4、2,则CF 的长为A.2B.1.5C.1.8D.2.2( )12、如图,以正方形ABCD 的边向形内作等边△BCE , O 为BD 的中点,连AE 交BD 于M, 交CD 于F ,CE 交BD 于N , 则下列结论:①EM =DM ; ②FN ∥DE ; ③AE =3DM ;④∠AMD -3∠EBN=2∠FEC. 其中正确结论的个数是A .1B .2C .3D .4 二、填空题(12分)13、计算:15a 3b 2·2a 2c = ,2223a b c ⎛⎫- ⎪⎝⎭= ,xy x y -÷233xy y x -= . 14、一文具店老板购进一批不同价格的文具盒,它们的售价分别为10元,20元,30元,销售情况如图所示.这批文具盒售价的平均数是 .15、如图,BD 、CE 是△ABC 的中线,P 、Q 分别是BD 、CE 的中点,则PQ ︰BC 等于 . ;16、如图,正方形OABC ,矩形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数xk y =(x >0)的图象上,若点E 的纵坐标1,四边形OBFE 的面积为4,则k = . 三、解答题(72分): 17(6分)、解方程:32122x x =---x18(6分)、如图是反比例函数xm y 25-=的图象的一支. 根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)若点A (m -3,b 1)和点B (m -4,b 2)是该反比例函数图象上的两点,请你判断b 1与 b 2的大小关系,并说明理由.19(7分)、如图,在□ABCD 中,H 、G 分别是BD 上两点,ABCDHG1 2y第14题第15题且DH=BG .求证:∠1=∠2.20、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个.为了考察(1)该问题中的样本容量是多少?(2)计算所抽查的西瓜的平均质量、众数和中位数;(3)目前西瓜的批发价约为每500克0.3元,若瓜农按此价格卖出,请你估计这亩地所产西瓜大约能卖多少元钱?21(8分)、如图,在平面直角坐标系中,矩形ADBC 的四个顶点坐标分别为:A (-1,1),B (1,6),C (1,1), D (-1,6),.(1)请画出矩形ADBC 关于直线BC 对称的图形矩形A 1B 1C 1D 1,再将它向右平移3个单位到矩形A 2B 2C 2D 2.,写出A 2、B 2、C 2、D 2的坐标. (2)连接BA,B 2A 2,判断四边形AB B 2A 2的形状(无需说明理由).22(8分)某人看一本300页的书,第一天按原计划速度,从第二天开始速度提高到原来的2倍,结果比原计划提前2天看完,求原计划每天看多少页的书?23(8分)、如图,在等腰梯形ABFD 中,AD ∥BF ,AB ∥DE ,AF ∥DC ,E 、F 两点在边BC 上,且DE 平分AF .(1)AD 与BC 有何等量关系,请说明理由;(2)当∠B=2∠C 时,求证:四边形AEFD 是菱形. (3)在(2)的条件下,若AD=2,求AC 的长。
2012-2013学年度第二学期期终考试八年级数学试题
盐城市初级中学未找到引用源?学年度期终试题初未找到引用源?年级数学试题(考试时间:未找到引用源?分钟 卷面总[-=公Y 式乱码?/]未找到引用源?分)命题人:??????? 审核人:???????一、选“}}{L_PO-l[=o――po-o0056t0765o[;ghf4zx4x6D*/F-WEQ/G7TR*/EU*/YTz2+S*9+8A*S/*择题(本大题共8小题,每小题未找到引用[-=公Y 式乱码?/]源?分,共24分)1、一只因损坏而倾斜的椅子,从背后看到的形状如右图,其中两组对边的平行关系没有发生变化,未找到引用源?º,则未找到引用源?的大小是( ) A .75º B .115º[-=公Y 式乱码?/] C .65º D .105º2、下列四个函数:①未找到引用源?;②未找到引用源?;③未找到引用源?;④未找到引用源?未找到引用源?时,y 随x 的增大而减小的函数有( )A .1个B .2个C .3个D .4个 3、若分式未找到引用源?的值为零,则x 的值为() A .2 B .1 C .-1[-=公Y 式乱码?/] D .-24、如图右,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B 重合)以BD 、BF 为邻边作平行四边形BDEF ,又AP //BE (点P 、E 在直线AB 的同侧),如果未找到引用源?那么△PBC 的面积与△ABC 面积之比为( ) A.41 B.53 C.51 D.43 5、一个不透明的袋子中除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,则摸到红球的概率减摸到黄球的概率是( ) A.41 B.85 C.83 D.216、已知△ABC 如图,则下列4个三角形中,与△ABC 相似的是( )L,7、小亮从家步行到公交车站台,等公交车去学校.右上图中的折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是( ) A .他离家8km 共用了30min [-=公Y 式乱码?/] B .他等公交车时间为6minC .他步行的速度是100m/minD .公交车的速度是8、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数 和的图象于点P 和Q ,连接OP 和OQ . 则下列结论正确的是( ) A .∠POQ 不可能等于90° B .未找到引用源? 第1题图1 2DABPG EF C第4题图B AC 6 6 75° 55 75° 5 5 5 530° 40° 5 5 A. B. C. D. ;第6题图 第7题图.........................................................................................密.............................................封.............................................线.................................未找到引用源?........................................................ 班级:姓名:学号:考场号:C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是未找到引用源? 二、填空题(本大题共有8小题,每小题3分,共24分)9、若二次根式未找到引用源?有意义,则x 的取值范围是 .10、小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率I是 。
2012-2013学年度八(下)期末数学(11)
2012-2013学年度第二学期八年级数学试题(11)一、选择题1.若分式21xx-有意义的取值范围是()A.12x≠B.12x≤C.12x≥D.12x>2.计算22()abab的结果为()A.b B.a C.1 D.1b3.如图,下列三角形中是直角三角形的是()4.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB = CD B.AD = BC C.AB = BC D.AC = BD5.玉树地震后,某电视台法制频道组织发起“绿丝带行动”,号召市民为玉树受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形6.如图,若平行四边形ABCD与平行四边形EFCD关于CD所在的直线对称,∠F = 35°,则∠ADE的度数为()A.70°B.35°C.105°D.75°7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是()A.1 B.2 C.0 D.-18.已知点(x1,-2),(x2,2),(x3,3)都在反比例函数6yx=的图象上,则下列关系中正确的是A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x3<x19.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形10.农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走半小时后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为()A.1515132x x=+B.1511532x x-=C.1515132x x=-D.1515132x x=⨯11.近几年来,国民经济和社会发展取得了新的成绩,农村经济快速发展,农民收入不断提高.下图统计的是某地区2005年—2009年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2007年的人均年纯收入增加的数量高于2006年人均年纯收入增加的数量;②与上一年相比,2008年人均年纯收入的增长率为358732551003255-⨯;③若按2009年人均年纯收入的增长率计算,2010年人均年纯收入将达到414035874140(1)3587-⨯+元.其中正确的是()A.只有①②B.只有②③C.只有①③D.①②③12.如图,△ABC中,AB = AC,把△ABC绕C点顺时针旋转至△DEC位置,且点E在AB上,连接AD,AC交ED于点O,下列结论:①△ABC≌△DEC;②四边形ABCD是平行四边形;③四边形AECD是等腰梯形;④S△ABO·S△CDO= S△BOC·S△ADO其中正确的有()A.①②③④B.①②C.①③D.①②③二、填空题。
2012至2013学年下学期八年级期中学业水平检测数学试卷(含答案)
22012至2013学年下学期八年级期中学业水平考试C. v 80 vD.数学试卷13、数学课外兴趣小组的同学每人制作一个面积为 2200 cm的长方形学具进行展示。
设题号——一二三总分得分(全卷三个大题,共25小题,共4页;满分100分考试用时120分钟)、填空题(每小题2分,共20 分)长方形的宽为xcm,长为ycm,那么这些同学所作的长方形的长(cm )之间的函数关系的图象大致是y ( cm)(与宽x)1、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为________________ 米2、要使分式竺有意义,则X须满足的条件为x 33、若分式x2 1X 1的值为0,贝y X的值为__________________4、已知某函数的图象在二、四象限内,并且在每个象限内, y的值随x的增大而增大。
x C请你写出满足以上条件的一个函数关系式_____________________________5、直角三角形的两边为3、4,则第三边长为___________ . _________k6、如图,A为反比例函数y 图象上一点,AB垂直X轴于点B,X若S^AO=5,贝U k= 14、由于台风的影响,一棵树在离地面6m处折断,树在折断前(不包括树根)长度是A:8m Ba15、下列各式中一5:10m C n 12m、2 、:16m D a b3树顶落在离树干底部8m处, 则这棵7、已知反比例函数的图象经过点(m 2)和(一2, 3),贝y m的值为________ A.2 B.3 C.4 D.58. 化简(ab b2) 专的结果为fF16、已知点M(-2 , 3 )在双曲线9. 的值为0,贝y x的值为10.反比例函数m 1的图象在第二、四象限,贝U mx3分,共24分)的取值范围是18m1 3—、z 3中分式有(zky —上,则下列各点一定在双曲x上的是A(3, -2 )B、(-2 , -3 )17、满足下列条件的厶ABC中,不能判定是A 、3, 4, 5B 、9, 12, 15)个.二、选择题(每小题11、小明在下面的计算中只作对了一道题,他做对的题目是2A:12、将80、 52这三个数按从小到大的顺序排列, 正确的排序结果是(A. 80 vB. 2 5v 80v)T6m( (3, J 8m(、5, 6, 718、货车行驶25千米与小车行驶35千米所用的时间相同,已知小车每小时比货车多行驶20米,求两车的速度各为多少?设货车的速度为确的是A冬壬x x 20三、解答题(本大题共C、(2, 3 )D 、直角三角形的是C 、5, 12, 13X千米/时,25 35、---- ----x 20 x 56分)25 35x 20依题意列方程正(25x 203519、(本大题共12分,每小题6分)(1)计算(2m2n 2)2 ?(3m 1n3) 3⑵计算/a 9 匸?aa 320、(6分)化简,再选择一个你喜欢且有意义的a值代入求值:2a (a 1) a2 1 a 1(6分)先化简,在求值3x -一1,其中x=-2.22、解下列分式方程(本大题12分,每小题6分)24、(6分)2011年3月10日12时58分,在云南盈江县发生 5.8级地震,此时急需大量赈灾帐篷,某帐篷生产企业接到任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,现在生产3000顶帐篷所用时间与原计划生产2000顶的时间相同,现在该企业每天能生产多少顶帐篷?25、(8分)已知A(- 4, n)、B(2, —4)是反比例函数y —图象和一次函数yx的图象的两个交点•(1 )求反比例函数和一次函数的解析式;(2 )求厶AOB的面积;(3)求不等式kx b —> 0的解集(请直接写出答案)xkx b1(1) x 2 (2) 2x3x 323.(6分)如图,已知ABC是等边三角形, 根号)AB 10cm .求ABC的面积.(结果保留2012-2013 学年度八年级下数学期中测试题参考答案:-、填空题(共10小题,每小题2分,共20分)1 > 5.2 X 10'82、 x 工3 3 、x=— 1 4、y=—(答案不唯一)5、5或6> - 107、一3 8> ab 22 10 > m < 19、二、选择题(共8小题,每小题3分,共24分)11.B 12.B13.A 14.C 15.C 16. A 17.D18.C三,解答题(共56分)19、(本题12分)(1 )--------------------------------- (6 分)(2) 2 ------------------------------------------ (6 分)20、(本题6分)化简为:2a ----------------------------------- (3分)答案不唯一 ------------------------ (3分)21 > (本题6分)化简为:2x + 4 --------------------------------- (4分)当x= - 2时,原式=0 ------------------------------ (2分)22、(1)(本题6分)解得:x=2 ------------------------------------ (5分)检验:x=2不是原方程的解 --------------- (1分)(2 )(本题6分)解得:x=- -(5 分)检验:x=— ----(1 分)6分)是原方 程的解 -23、 (本题设该企业每天能生产 x 顶帐篷(0.5 分)S^ABC =256分)解得: x=600 ------------------------- (1.5 分) 检验:x=600 是原方程的解 -------------- (0.5分)答:该企业每天能生产 600顶帐篷------- (0.5分)25、(本题8分)(1) 反比例函数的解析式为: y= -8/x------------ (2分) 一次函数的解析式为:y= — x —2--------- (2分)(2)据题意得:把 y=0代入y= - x - 2得0= — x — 2• x= -2令直线尸-x-2与x 轴的交点为C•••点C (-2, 0) •••00=2 y. A ( -4,2)B (2, -4)•••SMOB=S ZV \OC +SABOC=1/2 X2 X2+ 1/2 X2 X4=6(2 分)据题意得:2000/ (x-200 ) =3000/X (3分) (3)当x<—4或0 <x<2 时,kx + b — m/x > 0 (2分)。
2012-2013八年级下学期期末考试数学试卷(人教版)(含答案)
2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。
A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。
八年级数学期中试题2012-2013第二学期
2012—2013学年度第二学期期中考试八年级数学试题一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.已知△ABC≌△DEF,则下列结论正确的是A.AB=DE B.AC=DE C.∠A=∠E D.∠B=∠D2.用配方法解方程x2+10x=-8,下列变形中正确的是A.x2+10x+52=-8 B.x2+10x+52=-33C.x2+10x+52=33 D.x2+10x+52=173.对于方程x(x-2)+3(x-2)=0,下列解法中最适宜的是A.分解因式法B.公式法C.开平方法D.配方法4.若x=2是方程x2-4x+m2=0的解,则m的值是A.m=-2 B.m=2 C.m=±2 D.m=15.如图,D是△ABC的边BC的中点,DE⊥AB,DF⊥AC,垂足分别为于点E,F,且DE=DF,∠B=60°,对于△ABC,下列说法既正确又恰当的是A.△ABC是等腰三角形B.△ABC是等边三角形C.△ABC是直角三角形D.△ABC是锐角三角形6.已知方程x2+3x-5=0的两个根分别是x1,x2,那么x1·x2(x1+x2)的值等于A.-8 B.8 C.-15 D.15(第5题图)BACDE F7.如图,在△ABC 中,AB =AC ,BD ,CE 分别是△ABC 的 角平分线,则判定△BCD 与△CBE 全等的方法是 A .SSS B .AAS C .ASA D .HL 8.一元二次方程2x 2+2x +1=0根的情况是A .有两个相等的实数根B .只有一个实数根C .有两个不相等的实数根D .无实数根9.在一次同班同学聚会活动中,每两名同学都相互握了一次手,一共握了780次手. 设参加本次聚会活动的有x 名同学,那么x 满足的方程是 A .x (x -1)=780 B .x (x -1)=390 C .21x (x -1)=780 D .21x (x +1)=78010.如图,在矩形ABCD 中,AB =3,点E 在边CD 上,若沿BE 折叠,点C 恰好与边AD 的中点F 重合,则边AD 的长为 A .3 B .23 C .33 D .43二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.在Rt △ABC 中,∠A =30°,CD 是斜边AB 上的中线,且CD =6cm ,则BC = cm . 12.已知a ,b ,c 是Rt △ABC 的三条边,其中c 为斜边,若方程x 2-7x +12=0的两个实数根是a ,b ,则斜边c = .13.通过课题学习的探究,我们已经知道“黄金分割”在建筑、雕塑、乐器制作、舞台占位效果等方面有着广泛的应用,且黄金比是方程x 2+x -1=0的一个根.已知线段AB 长10 cm ,点C 是线段AB 的一个黄金分割点(AC >BC ),则线段AC 长 cm . 14.如图,在一块长60m 、宽40m 的矩形土地上, 要建造一个花园,并且要在花园内修一横两纵 三条小路,共占面积272m 2,三条小路的宽度 都相等.设小路的宽度是x m ,则x 所满足的 方程是 .A BCD E (第7题图)(第10题图)AB CD FE (第14题图)15.如图,在平面直角坐标系xO y 中,A (-2,0),B (0,4),D 是线段AB 的中点,过点D 的直线 CD 垂直于线段AB ,且与x 轴交于点C ,则点C 的坐标为 . 三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分4分)用配方法解方程: x 2-8x +7=0.17.(本题满分4分)用公式法解方程:x 2-2x -2=0.18.(本题满分4分)用因式分解法解方程:x (x -5)=-3(x -5).八年级数学试题 第3页(共8页)(第15题图)19.(本题满分4分)已知:如图,AB =BD ,BC =BE ,∠ABE =∠DBC . 求证:△ABC ≌△DBE .20.(本题满分5分)已知两个数的和等于5,积等于6,求这两个数.21.(本题满分5分)已知:如图,在△ABC 中,∠C =90°,∠B =30°,AB 的垂直平分线交AB 于点D ,交BC 于点E .求证:CE =DE .(第19题图)AC DE (第21题图)ABCED22.(本题满分6分)已知关于x的方程kx2+(2k+2)x+(k+1)=0,其中k是实数.(1)若方程有两个不相等的实数根,求k的值;(2)若方程有两个相等的实数根,求k的值;(3)若方程只有一个实数根,求k的值.八年级数学试题第5页(共8页)23.(本题满分7分)机动车尾气污染是导致城市空气质量恶化的重要原因. 为解决这一问题,某市出台政策控制纯燃油汽车的数量,逐步增加油电两用环保汽车的数量,该市计划由2012年年底的这种环保汽车300辆,到2014年年底增加到507辆.(1)求这种环保汽车平均每年增长的百分率;(2)按照这种环保汽车平均每年增长的百分率,该市在2014年应增加这种环保汽车多少辆?八年级数学试题第6页(共8页)24.(本题满分8分)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=63cm. 动点P从点A出发沿AB向终点B运动,动点P平均每秒运动2 cm;同时动点Q从点C出发沿CA向终点A运动,动点Q平均每秒运动1 cm.(1)求AC的长;(2)当动点P与Q运动t秒时,用含t的代数式直接表示AP与AQ的长(0<t<6);(3)当以A,P,Q三点为顶点的△APQ为等边三角形时,求动点运动的时间t(秒)的值.B(第24题图)25.(本题满分8分)(1)如图①,点A ,B ,D 在一条直线上,AB ⊥AC , BD ⊥DE ,BC ⊥BE ,BC =BE . 求证:AB =DE ;(2)如图②,分别以△ABC 的边AC ,BC 为一边,向外作正方形ACD 1E 1和正方形BCD 2E 2,过点C 作直线HK ,交AB 于点H ,使∠AHK =90°,过点D 1作D 1M ⊥HK 于点M ,过点D 2作D 2N ⊥HK 于点N . 线段D 1M 与线段D 2N 有怎样的数量关系?证明你的结论.八年级数学试题 第8页(共8页)ABCDE(第25题图①)(第25题图②)ABCD E HK 11E D 22M N2012—2013学年度第二学期期中考试八年级数学试题评分标准与参考答案一、选择题1.A 2.D 3.A 4.C 5.B 6.D 7.C 8.D 9.C 10.B二、填空题11.6 12.5 13. 55-5 14.60x +2x (40-x )=272 15.(3,0)注:第14题方程的列法有多种.三、解答题16.解:将原方程变为:x 2-8x +16=9. ………………… 1分 即 (x -4)2=32.………………………………………… 2分 开平方,得 x -4=±3.………………………………… 3分 所以 x 1=7, x 2=1.…………………………………… 4分17.解:∵ a =1,b =-2,c =-2.…………………………… 1分 ∴ b 2-4ac =(-2)2-4×1×(-2)=12>0. …………… 2分 ∴ x =12122⨯±=1±3.……………………………………… 3分∴ x 1=1+3, x 2=1-3.……………………………… 4分18.解:将原方程变为:x (x -5)+3(x -5)=0.………………… 1分即 (x -5)(x +3)=0.…………………………………………… 2分 ∴ x -5=0,或 x +3=0. …………………………………… 3分∴ x 1=5, x 2=-3.…………………………………………… 4分 19.证明:∵ ∠ABE =∠DBC ,∴ ∠ABE +∠EBC =∠DBC +∠EBC .∴ ∠ABC =∠DBE . …………………………………… 2分在△ABC 和△DBE 中,∵ AB =BD ,∠ABC =∠DBE ,BC =BE , ∴ △ABC ≌△DBE (SAS ).…………………………… 4分 20.(解法一)解:设这两个数为m ,n . 所以 m +n =5,mn =6.因此 m ,n 是方程x 2-5x +6=0的根.…………………………… 2分 解方程x 2-5x +6=0,得m =2,n =3. ………………………… 4分故 所求的两个数为2,3.…………………………………………… 5分 (解法二)解:设这两个数为x ,5-x .根据题意,得 x (5-x )=6. ……………………………………… 3分 解方程,得 x 1=2,x 2=3. …………………………………… 4分 故 所求的两个数为2,3.…………………………………………… 5分八年级数学试题答案 第1页(共3页)21.证明:(证法一)如图,在Rt △ABC 中, ∵ ∠C =90°,∠B =30°, ∴ ∠BAC =60°.…………………………………… 1分 ∵ DE 是AB 的垂直平分线, ∴ ∠ADE =90°,AE =BE . ……………………… 2分 ∴ ∠1=∠B =30°.∴ DE =21AE .……………………………………… 3分∵ ∠1+∠2=∠BAC =60°,∠1=30°, ∴ ∠2=30°.∴ CE =21AE .……………………………………… 4分∴ CE =DE .………………………………………… 5分 证明:(证法二)如图,在Rt △ABC 中, ∵ ∠C =90°,∠B =30°, ∴ ∠BAC =60°.……………………………… 1分 ∵ DE 是AB 的垂直平分线, ∴∠ADE =90°,AE =BE (线段垂直平分线上的点到线段两端点的距离相等). 2分 ∴ ∠1=∠B =30°.∵ ∠1+∠2=∠BAC =60°,∠1=30°, ∴ ∠2=60°-30°=30°=∠1.∴ AE 是∠BAC 的平分线.………………………………………………………… 4分 ∵ ∠C =90°,∠ADE =90°,∴ CE =DE (角平分线上的点到角的两边的距离相等).……………………… 5分 22.解:(1)∵ a =k ,b =2k +2,c =k +1,…………………………………… 1分∴ ⊿=(2k +2)2-4k (k +1) =(4k 2+8k +4)-(4k 2+4k ) =4k +4.… 2分 ∵ 方程有两个不相等的实数根, ∴ k >-1,且k ≠0.………………………… 3分(2)∵ 方程有两个相等的实数根,∴ k =-1.…………………………………… 4分(3)∵ 方程只有一个实数根, ∴ 方程是一元一次方程.………………… 5分∴ ⎩⎨⎧≠+=.022,0k k ∴ k =0.………………………………………………… 6分23. 解:(1)设这种环保汽车平均每年增长的百分率为x . ………… 1分根据题意,得 300(1+x )2=507. ……………………………… 2分 解上方程,得 x 1=0.3,x 2=-2.3. ………………………… 3分 因为 x =-2.3不合题意,故舍去.八年级数学试题答案 第2页(共3页)ABCED12(第21题解答图)∴ ⊿=4k +4=0.k ≠0,∴ ⊿=4k +4>0.k ≠0,因此 x =0.3=30%. ………………………………………………… 4分 答:这种环保汽车平均每年增长的百分率为30%. ………………… 5分(2)507―300(1+30%)=507―390=117. ……………………………………………………………… 6分 答:该市在2014年应增加这种环保汽车117辆. …………………… 7分24. 解:(1)在Rt △ABC 中,设 AC =x cm .∵ ∠B =30°, ∴ AB =2x cm . ………………………………… 1分 有勾股定理,得 AB 2-AC 2=BC 2.∴ (2x )2-x 2=(63)2. …………………………………………… 2分 解得x =6.故 AC 长6 cm . ………………………………………………………… 3分(2)AP =2t cm , AQ =(6-t )cm . ………………………………… 5分(3)∵ ∠C =90°,∠B =30°, ∴ ∠A =60°.∴ 当△APQ 为等边三角形时,必有AP =AQ . ……………………… 6分 ∴ 2t =6-t . …………………………………………………………… 7分 ∴ t =2.因此,当△APQ 为等边三角形时,动点运动的时间为2秒. ……… 8分25. 证明:(1)如图,∵ AB ⊥AC , BD ⊥DE ,BC ⊥BE , ∴ ∠A =∠D =∠CBE =90°. ∴ ∠C +∠1=90°,∠1+∠2=90°. ………… 1分∴ ∠C =∠2. …………………………………… 2分 在△ABC 和△DEB 中, ∵ ∠A =∠D ,∠C =∠2,BC =BE ,∴ △ABC ≌△DEB (AAS ). ……………… 3分 ∴ AB =DE . ……………………………… 4分 (2)D 1M =D 2N . ………………………… 5分 证明如下:如图, ∵ 四边形ACD 1E 1是正方形,∴ AC =CD 1,∠3=90°. ∴ ∠2+∠4=90°. ∵ ∠AHK =90°, ∴ ∠1+∠4=90°.∴ ∠2=∠1.∵ ∠CMD 1=∠AHC =90°,∴ △CMD 1≌△AHC (AAS ).∴ D 1M =CH . ……………………………… 6分同理:D 2N =CH . …………………………… 7分∴ D 1M =D 2N . ……………………………… 8分 注:解答题若有其他解法,请按步计分!八年级数学试题答案 第3页(共3页) A BC D E 12(第25题解答图) A B C D E H K 11E D 22M N 1234(第25题解答图)。
学1213学年下学期八年级期末考试数学(附答案)
车逻初中2012—2013学年第二学期期末考试八年级数学(考试时间120分钟 满分150分)一、选择题(本大题有8小题,共24分.把答案填入下表)1.若分式12x x -+的值为0,则 A. 2x =-B. x= 0C. x = 1或2x =-D. x = 12. 若n m <,则下列不等式不一定正确的是A.n m 22<B.0<-n mC.23-<-n mD.22n m <3. 若反比例函数的图象经过点(-1,2),则它的解析式是 A. y = -x 21 B. y = -x 2 C. y = x 2 D. y = x14. 下列计算正确的是A.336x x x += B.236m m m ⋅= C.3= 5. 对4000米长的大运河堤进行绿化时,为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是A.21040004000=+-x x B.24000104000=--x x C.24000104000=-+x x D.21040004000=--x x6.如图,点D 、E 分别在△ABC 的 AB 、AC 边上,下列条件不能使△ADE ∽△ACB 的是A. ∠ADE =∠CB. ∠AED =∠BC. AD :AC=DE :BCD. AD :AC=AE :ABCE DA第6题图第7题图第8题图7.如图,身高1.6m 的小玲想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,若AC=0.8m ,BC=3.2m ,则树的高度为A. 4.8mB. 6.4mC. 8mD. 10m 8.如图,两个反比例函数xy 1=和x y 3-=的图象分别是1l 和2l .设点A 在1l 上,xAB ⊥轴交2l 于点B ,y AC ⊥轴交2l 于点C ,则△ABC 的面积为A. 4cm 2B. 6cm 2C. 8cm 2D. 10cm 2 二、填空题(本大题有10小题,共30分.把答案填在对应题号的横线上)9. 当m ▲ 时,42-m 有意义.10. 化简的结果为 ▲ . 11.在比例尺为1:500000的地图上,若甲、乙两地的距离cm 4,则甲、乙的实际距离 是 ▲ km .12.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .13.学校举行中学生运动会,某班需要从3名男生和2名女生中随机抽取一名做志愿者,则女生被选中的概率是 ▲ . 14.关于x 的方程32=-+x ax 无解,则a 的值是 ▲ .15.如果将一张矩形的A4纸沿长边对折,得到两张全等的矩形纸片,恰好与原矩形相似,那么A4纸的长与宽的比为 ▲ . 16. 若点P (m , n )在反比例函数xy 4=的图象上,则243m n m -+的值为 ▲ . 17.已知△ABC 如图所示,A (5,0)、B (6,3) 、C (3,0),将△ABC 以坐标原点O 为位似中心、位似比3:1进行缩小,则缩小后的点B 所对应的点的坐标为 ▲ .18.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,21=CD DE ,若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ . 三、解答题(本大题有10小题,共96分) 19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧≤-->+51325x x x x ,并写出最大整数解.20.(本题满分8分)已知x 是绝对值不大于2的整数,先化简221112x x x x x---÷+,再选择一个合适的x 的值代入求值.第17题图第18题图CBE DA F21.(本题满分8分)计算:(1(2)1)(1-22.(本题满分8分)我市自2013年1月开始实行的《交通新规》规定:在十字路口,机动车应按所需行进方向驶入导向车道. 如图,在一个两车道的十字路口,向左转弯的必须进入第一车道,直行或者向右转弯的进入第二车道.假设每一辆车经过该路口时,左转、直行、右转的可能性的大小均相同.(1)机动车驶入第二条车道的概率是 .(2)如果在第二条车道共有三辆机动车,利用画树状图或列表求车辆可以通行时这三辆车全部直行的概率.23.(本题满分10分)如图,在下列五个关系:①AB∥CD,②AD=BC,③∠A =∠C,④∠B =∠D,⑤∠B +∠C=180°中,选出两个关系作为条件,可以推出四边形ABCD是平行四边形,并以平行四边形定义.......作为依据予以证明.(写出一种即可)已知:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.24.(本题满分10分)“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?25.(本题满分10分)在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D , EF 垂直平分AD 交AB 于点E .(1)证明:△DEF ∽△ADC ; (2)若AE=25 ,AC=32,求AD 的长.26.(本题满分10分)已知一次函数7+-=x y 与反比例函数()00>>=x k xky ,图象相交于A 、B 两点,其中A (1,a )、B (b ,1).(1)求k b a 、、的值; (2)观察图象,直接写出不等式07<-+x xk的解集; (3)若点M (3,0),连接AM 、BM ,探究∠AMB 是否为90°,并说明理由.27.(本题满分12分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价-进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.28.(本题满分12分)如图1,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 是BC 上一定点.动点P 从C 出发,以2cm /s 的速度沿C →A →B 方向运动,动点Q 从D 出发,以1cm /s 的速度沿D →B 方向运动.点P 出发5 s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止. 图2是当50≤≤t 时△BPQ 的面积S( cm 2)与点P 的运动时间t (s )的函数图象. (1)CD = ,=a ;(2)当点P 在边AB 上时,t 为何值时,使得△BPQ 与△ABC 为相似? (3)运动过程中,求出当△BPQ 是以BP 为腰的等腰三角形时的t 值.图1图2)。
2012-2013学年度下学期八年级数学测试题
2012-2013 学年度下学期八年级数学测试题(全卷满分120 分 ,考试时间120 分钟)一、填空题(每小题 3 分,共 24 分)1、分解因式2x38x____________________。
2、分式x29A 当 x __________时分式的值为零。
x33、已知 ,如图 ,ED ∥BC, 且AE=1ED. AB,则=3BC4、不等式x2( x1) 0的解集为。
5、如果xy3,那么x=____________BCD x y2y6、已知 ,△ ABC ∽△ A′B′C′,S ABC: S A′B′C =1:9,其中△ABC的周长△△′为 18cm,那么△ A′B′C′的周长是cm.7、某同学的身高为 1.6 米,某一时刻他在阳光下的影长为 1.2 米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为米。
χ2m8、若关于 x 的分式方程χ-3- 2=χ -3无解,则 m的值为.二、选择题。
(本大题共 8 个小题,每小题只有一个正确选项,每小题 4 分,满分32 分)9、若 4x2+mxy+9y2是一个完全平方式,则m=()A 、 6B 、12C、±6D、±1210、下列各式:11 x ,4x, x2y 2,1x,5x2其中分式共有()个。
532x xA 、 2B 、3C、 4D、 511、甲、乙两班学生参加了同一次数学考试,班级的均分和方差如下:x甲80, x乙80,S甲2240,S乙2180, 则成绩较为整齐的是()A 、甲班B 、乙班C、两班一样D、无法确定12、如图 , 在 Rt △ ABC 中 , ∠ ACB=90°,CD ⊥ AB 于 D ,若 AD=1 ,BD=4 ,则 CD=()AA 、 2B 、 4C、 2D、 3CB D13、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40 本试卷,每本30 份,则这个问题中()A、个体是每个学生B、样本是抽取的1200 名学生的数学毕业成绩C、总体是40 本试卷的数学毕业成绩D、样本是30 名学生的数学毕业成绩14、如图所示,△ ABC 中,∠ ACD=115°,∠ B=75°,则∠ A 的度数为 ()A . 500 B. 450 C.400. D. 60 0x2y 2)15、化简y 的结果(xA. x- yB.x+yC.y- xD. - x- y16、直线 y = ax +b 与直线 y = cx + d(a 、 b 、c 、d 为字母已知数)在直角坐标系中的位置如图所示,以下结论:y ax b x 2 ①方程组的解是y cx dy 2②不等式 ax + b > 0 的解集是 x > 1③不等式 cx + d > 4 的解集是 x <0④不等式 ax + b < cx +d 的解集是 x < 2其中,正确的结论是(填写结论序号)三、解答题(本大题共 9 个小题, 64 分)17、(本小题 6 分)解不等式: 4x (1 2x) ≥ 1,并把解集在数轴上表示出来.18、(本小题 7 分)先化简,后求值 (1 1 ) x,其中 x3 2 .x1 x 1 2x2 219、(本小题 x 1 2x 7 分)解方程:2x2xx 120、(本小题 6 分)如图, CE 是△ ABC 的外角平分线, F 是 CA 延长线上一些点, FG ∥ EC 交 AB 于 G ,已知∠ DCE= 50°,∠ ABC =35°,求∠ FGA 的度数 .21、(本小题 7 分)某市为治理污水,需要铺设一条全长为通所造成的影响,实际施工时,每天的工效比原计划增加550 米的污水排放管道,为了尽量减少施工对城市交10% ,结果提前 5 天完成这一任务,原计划每天铺设多少米管道?22、(本小题 7 分)如图,矩形ABCD 中, E 为 BC 上一点, DF ⊥AE 于 F.(1)ABE 与 ADF 相似吗?请说明理由 .(2)若 AB=6, AD =12, BE=8,求 DF 的长 .23、(本小题 8 分)某房地产开发公司计划建 A 、 B 两种户型的住房共 80 套,该公司所筹资金不少于2090 万元,但不超过 2096 万元,且所筹资金全部用于建房,两种户型的建房的成本和售价如下表:A B成本(万元 /套)2528售价(万元 /套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?24、(本小题8 分)甲、乙两位同学本学期11 次考试的测试成绩如下:甲98100100909691899910010093乙9899969495929298969997( 1)他们的平均成绩和方差各是多少?( 2)分析他们的成绩各有什么特点?( 3)现要从两人中选一人参加比赛,历届比赛成绩表明,平时成绩达到98 分以上才可能进入决赛,你认为应选谁参加这次比赛?为什么?(参考资料: s21222 x1 x x2 x x n x )n25、(本小题度移动,点8 分)如图,在矩形ABCDQ 沿 DA 边从点 D 开始向点中 ,AB=12cm ,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速A 以 1cm/秒的速度移动,如果P、Q 同时出发,用t(秒)表示运动时间(0 ≤ t ≤ 6),那么当t 为何值时,以Q、 A 、 P 为顶点的三角形与△ABC相似?。
2012-2013学年八年级下学期期末数学练习卷(附答案)
2012-2013学年度第二学期期末学情分析样题(一)八年级数学一、选择题(每小题2分,共16分) 1.当b a >时,下列不等式中正确的是( )A .b a 22<B .33->-b aC .1212+<+b aD .b a ->- 2.若分式121+x 有意义,则( )B A .2-=x B. 21-≠x C.21≠x D. 2≠x 3.下列命题中,假命题是( ) A .三角形三个内角的和等于l80° B .两直线平行,同位角相等 C .矩形的对角线相等 D .相等的角是对顶角4.已知1112a b -=,则aba b -的值是 ( ) A .12 B .-12C .2D .-25.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC ABCD BC =;④ACAD AB AC =.其中单独能够判定ABC ACD △∽△的个数为 ( )A .1B .2C .3D .46. 小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5m B .0.55m C .0.6m D .2.2m 7.如果反比例函数y =1 –m x的图象在第一、三象限,那么下列选项中m 可能取的一个值为( )A .0B .1C .2D .3 8. 如图,把△ABC 纸片沿DE 折叠,使点A 落在图中的A '时,则与和的关系是( )A .212∠-∠=∠AB .)21(23∠-∠=∠AC .2123∠-∠=∠AD .21∠-∠=∠A(第5题图)32O二、填空题(每小题2分,共20分)9.如果 x 2 = y3 ≠0,那么xy x 32+= .10.在比例尺为1:5000000的中国地图上,量得盐城与南京相距6.4cm,那么盐城与南京两地的实际距离 为 km..11.分式112+-x x 的值为0,则x 的值为 .12.不等式组1021x x -≥⎧⎨-<⎩的整数解是___________.13.命题“平行四边形的对角相等”的逆命题是 .14.将4个红球若干个白球放入不透明的一个袋子内,摇匀后随机摸出一个球,若摸出的红球的概率为32,那么白球的个数为 . 15.两个相似三角形对应边长的比为1:2,则其面积比为 .16.如图,∠1=∠2,若使△ABC ∽△ADE .则要补充的一个条件是 .17.在反比例函数4y x=-的图象上有两点11()A x y ,、22()B x y ,,当120x x >>时,则1y 2y . (填“<”或“>”) 18.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格纸中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是 . 三、解答题(本大题共10小题,满分共64分) 19.(5分)解不等式223-x <21+x ,并把解集在数轴上表示出来..20.(5分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.21. (5分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,小方格地面的大小和形状完全相同.(1)一只自由飞行的小鸟,将随意落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任选2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?22.(5分) 如图,在正方形网格中,△OBC 的顶点分别为O (0,0), B (3,-1)、C (2,1). 以点O (0,0)为位似中心,按比例尺2:1在y 轴的左侧将△OBC 放大得△OB C '' . (1) 画出△OB C ''的图形,并写出点B ′、C ′的坐标:B '( , ),C '( , ). (2)若点M (x ,y )为线段BC 上任一点,写出变化后点M 的对应点M ′的坐标( , )23.(6分)如图,点B 、E 分别在AC 、DF 上,BD 、CE 与AF 相交于点H ,G ,∠1=∠2,∠C =∠D . 求证:∠A =∠F .24.(6分)如图,反比例函数1ky x=的图象与一次函数2y mx b =+的图象交于A (1,3),B (n ,-1)两点. (1)求反比例函数与一次函数的关系式. (2)根据图象回答:①当x <-3时,写出y 1的取值范围; ②当y 1≥y 2时,写出x 的取值范围.第23题图21H GF E D C BA25.(7分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会.该厂家请来了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.求顾客获得小奖和大奖的概率分别是多少?26.(8分)某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万元购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这笔生意中,商场共盈利多少元?27. (7分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分AC.经探究S四边形P1R1R2P2=13S△ABC,请说明结论的正确性.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.28.(10分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF =90°,固定△ABC,将△EFD绕点A顺时针旋转,当边DF与AB重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H两点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?2012-2013学年度第二学期期末学情分析样题(一)八年级数学评分标准二、填空题(每小题2分,共20分)9.21310.320 11.1 12. 1、2 13.对角相等的四边形是平行四边形 14.2个 15.1 :4 16 .答案不唯一:例如:∠B =∠D ,或∠ACB =∠AED 或AEACAD AB = 17 . > 18. (4,0), (3,2) 三、解答题 19.(5分)解:去分母,得23-x <12+x ………………………………………………………………2分移项,得x x 23-<21+…………………………………………………………………3分解得x <3……………………………………………………………………………………4分不等式解集在数轴上表示正确………………………………………………………… …5分 20.(5分 ) 解:原式=⎪⎭⎫⎝⎛+-++2122x x x ÷()()211+-+x x x …………………………………………2分 =21++x x ·()()112-++x x x =11-x …………………………………………………4分 当2x =时,原式1=.…………………………………………………………………5分21. (5分 )解:(1)P (小鸟落在草坪上)=96=32.…………………………………………………2分 (2)用树状图或利用表格列出所有可能的结果:所以编号为1、2的2个小方格空地种植草坪的概率为62=31.………………………………………5分 22. (5分) ⑴ 画图正确…………2分B’( -6 , 2 ),C’( -4 , -2 )…………4分⑵ M ′的坐标( -2x , -2y ) …………5分 23.(6分)证明:因为∠1=∠2,又∠2=∠AGC所以∠1=∠AGC …………………………………………………………………………………1分 所以DB ∥EC ………………………………………………………………………………………2分 所以∠C =∠ABD ……………………………………………………………………………………3分 又因为∠C =∠D , 所以∠ABD =∠D ……………………………………………………………………………………4分 所以AC ∥DF …………………………………………………………………………………………5分 所以∠A =∠F …………………………………………………………………………………………6分 (其余证法参照上面给分) 24. (本题满分共6分) 解:⑴xy 31=…………1分,22+=x y …………3分 ⑵ ①1-<1y <0…………4分 ②3-≤x 或0<1≤x …………6分25.(本题满分共7分)解:该数学老师设计的抽奖方案符合厂家的设奖要求…………………………………………1分 分别用黄1、黄2、白1、白2、白3表示这5个球方法一:列表…………………………………………………………………………………………4分由列表可知共有20种等可能性结果…………………………………………………………………5分, 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分方法二:树状图正确…………………………………………………………………4分(白3,白2)(白3,白1)(白3,黄2)(白3,黄1)(白2,白3)(白2,白1)(白2,黄2)(白2,黄1)(白1,白3)(白1,白2)(白3,黄1)(黄2,白3)(黄2,白2)(黄2,白1)(白2,黄1)(白1,黄2)(白1,黄1)(白1,黄1)(黄2,黄1)(黄1,黄2)白3白2白1黄2黄1白3白2白1黄2黄1结果第2球第1球第2球白2白1黄2黄1白1黄2黄1白3黄1黄2白2白3白3白1白2黄1第1球开始白3白2白1黄2白3白2白1黄2黄1由树状图可知可知共有20种等可能性结果………………………………………………………………5分 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分26.(8分)解:设第一批购进x 件商品,第二批购进2x 件商品根据题意,得方程4800002176000=-xx …………………………………………3分 解这个方程得2000=x ………………………………………………………………5分经检验,2000=x 是所列方程的解且符合题意………………………………………6分则商场共盈利 176000800008.015058)1506000(58--⨯⨯+-⨯90260=(元)…………………………………………………………7分 答:商场共盈利90260元……………………………………………………8分27.(7分)28(本题满分共10分)【解】(1)△HGA及△HAB;…………………………………………………………2分(2)由(1)可知△AGC∽△HAB∴CG ACAB BH=,即99xy=,所以,81yx =…………………………………………………………4分(3)当CG<12BC时,∠GAC=∠H<∠HAC,∴AC<CH∵AG<AC,∴AG<GH又AH>AG,AH>GH此时,△AGH不可能是等腰三角形;…………………………………………………………6分当CG=12BC时,G为BC的中点,H与C重合,△AGH是等腰三角形;此时,GC x…………………………………………………………8分当CG>12BC时,由(1)可知△AGC∽△HGA所以,若△AGH必是等腰三角形,只可能存在AG=AH若AG=AH,则AC=CG,此时x=9综上,当x=9△AGH是等腰三角形.…………………………………………………10分(答本试卷时,正确的解法请参照评分细则给分)。
2012-2013第二学期八年级数学试卷
2012-2013学年度第二学期八年级阶段考数学试卷一、 选择题(每小题3分,共30分)1、在x 1、212+x 、πxy 3、yx +3、22x y x 、m a 1+中分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2、如果a >b ,那么下列结论中错误的是 ( )A 、a -3>b -3B 、3a >3bC 、33ba > D 、-a >-b3、下列从左到右的变形,是因式分解的是( )A 、()()9332-=-+a a aB 、)(2c b a a ac ab a +--=+--C 、()5152-+=-+x x x xD 、()22244+=++x x x4、不等式x x 228)2(5-≤+的非负整数解的个数是( )A 、1B 、2C 、3D 、无数个 5、在分式aba b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值 ( )A 、扩大为原来的2倍B 、缩小为原来的21C 、不变D 、不确定 6、身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是 ( ) A 、8米 B 、4.5米 C 、8厘米 D 、4.5厘米7、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A 、9448448=-++x x B 、9448448=-++x x C 、9448=+x D 、9496496=-++x x 学校: 班级: 座号: 姓名: …………密………………封………………线………………内………………不………………要………………答………………8、不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是( )A 、4≥mB 、4≤mC 、4<mD 、4=m 9、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( ) A 、1 B 、1.5 C 、2 D 、2.510、如图,在梯形ABCD 中,AB//CD,且AD ∶BC=1∶3 ,对角线AC,BD 相交于点O , 那么AOD s ∆∶BOC S ∆∶AOB S ∆ 等于( ) A 、1∶3∶1 B 、1∶9∶1 C 、1∶9∶3 D 、1∶3∶2二、填空题(每小题4分,共24分)11、在比例尺为1∶200的地图上,测得两地的图上距离为4.5cm,则A 、B 两地间的实际距离是 m ; 12、如果=+-==+22,7,0xy y x xy y x 则 ;13、已知线段AB,点C 是线段AB 的黄金分割点,且AC>BC,若AB=2cm,则BC=________ cm ; 14、若12a c eb d f ===,那么2323ac e bd f -+=-+ ;15、若方程5-x x = 4 -xm-5 有增根,则m =__ __ __ ; 16、关于x 的方程11=+ax 的解是负数,则a 的取值范围是_________ ;三、 解答题(每小题5分,共15分)17、解不等式1215312≤+--x x ; ODABC18、计算:2242+++-a a a ;19、解方程:xx x -=---21223 ;四、 解答题(每小题8分,共24分)20、先化简)4(24422x x xx x x -÷-+-,然后从 55≤≤-x 的范围内选取一个适合的整数作为x 的值代入求值。
2012-2013学年度八年级第二学期期末考试数学试卷
2012-2013学年度⼋年级第⼆学期期末考试数学试卷2012-2013学年度⼋年级第⼆学期期末考试数学试卷(考试时间90分钟满分120分)⼀、选择题(本题共24分,每⼩题3分)在每个⼩题给出的四个备选答案中,只有⼀个是符合题⽬要求的。
1. 下列各交通标志中,不是中⼼对称图形的是()2. 点(-1,2)关于原点对称的点的坐标为()A. (2,-1)B. (-1,-2)C. (1,-2)D. (1,2) 3. 由下列线段a ,b ,c 可以组成直⾓三⾓形的是( )A. 3,2,1===c b aB. 3,1===c b aC. 6,5,4===c b aD. 4,32,2===c b a4. 下列计算中,正确的是( ) A. 523=+ B. 327=÷3 C. 6)32(2= D. 0)3()3(22=+-5. 若实数x y 、2(5)y =-0,则y x 的值为( )A. 1B.±1C.5D. -1 6. 若的根,是⽅程012=-+x x a 则2222008a a ++的值为( )A. -1010B.±1010C. 1010D.1001 7. 菱形ABCD 的⼀条对⾓线长为6,边AB 的长是⽅程01272=+-x x 的⼀个根,则菱形ABCD 的⾯积为().A.7 B. 712 C. 78 D. 768. 如果关于x 的⼀元⼆次⽅程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( )A. B. C. D. 9. ( ) A.5 B.4 C.3 D.7.41- k .41- k .041≠-x k 且 .41-≥k 的值是则若221,51m m m m +=+10. 若最简⼆次根式b a +3与b a b 2+能合并成⼀个⼆次根式,则a 、b 是()A. B. C. D. ⼆、填空题(本题共18分,每⼩题3分)10. 函数2-=x y 的⾃变量x 的取值范围是__________。
2012~2013学年度第二学期八年级期末测试卷
2012~2013学年度第二学期八年级期末测试卷数 学一、选择题(每小题2分,共12分)1.函数1y x=-的图像位于( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 2.下列命题中,真命题是( ) A .内错角相等 B .面积相等的三角形全等 C .任何数的平方都大于0 D .两点之间线段最短3.一个不透明的盒子里装有1个白球,一个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是35,则盒子中黄球的个数是( )A .1B .2C .3D .44.从下列不等式中选择一个与12x +≥组成不等式组,若要使该不等式组的解集为1x ≥,则可以选择的不等式是( ) A .0x > B .2x > C .0x < D .2x < 5.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADE ⊿⊿的是( )A .AB AC AD AE = B .AB BC AD DE =C .BD ∠=∠ D .C AED ∠=∠21DAB CE6.某班四个小组进行辩论比赛,赛前甲、乙、丙三位同学预测比赛结果如下: 甲说:“第二组得第一,第四组得第三”; 乙说:“第一组得第四,第三组得第二”; 丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是( ) A .第一组 B .第二组 C .第三组 D .第四组 二、填空题(每小题2分,共20分)7.当x =__________时,分式23x x-+没有意义.8.已知23a b =,则3ba bα+=-___________.9.在比例尺为18000000∶的地图上,南京与徐州的图上距离是4.4cm ,则南京与徐州的实际距离是__________km .10.已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为__________米.11.ABC △的三条边之比为2∶5∶6,与其相似的三角形最大边长为12cm ,则最小边的长为__________cm .12.对于反比例函数2y x-=,下列说法:①点(-2,-1)在它的图象上;②它的图象在第一、三象限;③当0x >时,y 随x 的增大而增大;④当0x <时,y 随x 的增大而减小.上述说法中,正确的序....号.是__________.(填上所有你认为正确的序号)13.若关于x 的方程1011m xx x --=--有增根,则m 的值是__________. 14.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点()90C ACB ∠=︒在直尺的一边上,若130∠=︒,则2∠=__________.(第14题)15.如图,以数轴上的原点为位似中心,将边长为32的正方形ABCD 放大为原来的2倍,若A B 、两点均在数轴上,且A 点对应的实数是2,则B '点对应的实数是__________.(第15题)C '16.如图,矩形AOCB 的两边OC OA 、分别位于x 轴、y 轴上,点B 的坐标为2053B ⎛⎫- ⎪⎝⎭,,D 是AB 边上的一点.将ADO △沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的关系式是__________.(第16题)三、解答题:(本大题共12小题,共88分)17.(7分)解不等式组()2322122x x x x +≥+⎧⎪⎨-⎪⎩,<,并写出不等式组的整数解.18.(6分)先化简,再求值:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭,其中2a =.19.(6分)解分式方程:11222x x x-+=--. 20.(6分)下表反映了x 与y 之间存在某种函数关系,现给出了几种可能的函数关系式:61751y x y x y y x =+=-=-=-,,,(2)请说明你选择这个函数表达式的理由.21.(7分)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图).小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.(第21题)22.(8分)如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P表示照明灯的位置.(第22题)P(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为__________________;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离 4.2mOB=时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离6mOD=时,小亮的影长是多少m?23.(4分)阅读材料,解答问题:观察下列方程:①23xx+=;②65xx+=;③127xx+=;…;(1)按此规律写出关于x的第4个方程为____________________,第n个方程为____________________;(2)直接写出第n个方程的解,并检验此解是否正确.24.(6分)如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,求这条道路的占地面积.(第24题)D C25.(9分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工作量(以百米为单位)的方案有几种?请你帮助设计出来.26.(8分)如图,在直角坐标系中,O 为坐标原点.已知反比例函数()0ky k x=>的图像经过点()4A m ,,过点A 作AB x ⊥轴于点B ,AOB △的面积是2. (1)求k 和m 的值;(2)过原点O 的直线y nx =(n 为常数,且0n ≠)与反比例函数ky x=的图像交于P Q 、两点,当线段PQ 长度取最小值时,求点P 和点Q 的坐标;(3)请你直接根据图像写出使得knx x>成立x 的取值范围.27.(9分)【问题提出】规定:四条边对应相等,四个角对应相等的两个四边形全等.我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究. 【初步思考】在两个四边形中,我们把“一条边对应相等或一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件. 【深入探究】(1)小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型,小莉写出其中的两种类型,请你写出剩下的两种类型: Ⅰ一条边和四个角对应相等; Ⅱ______________________; Ⅲ______________________; Ⅳ四条边和一个角对应相等.(2)现对Ⅰ、Ⅳ两种类型进行深入研究,请你用“八下证明(一)”全等三角形知识解决以下问题: ①小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.②小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明(不需要写出每一步推导的理由).已知:如图,______________. .求证: ______________. . 证明:(第27题)DACA 1B 1C 1D 1【联想迁移】(3)类比以上小红判断两个四边形全等的方法,你能得出“要使得两个四边形相似,需要满足的条件是________________________________________”. 28.(12分)我们曾“利用一张不等边三角形纸片折出一个矩形”(如图①),矩形的四个顶点在三角形的三边上,那么称这个矩形叫做三角形的内接矩形.(第28题)D GACE F图③图②图①【画法初探】 (1)如图②,在ABC △内任作一矩形DEFG ,点D 在边AB 上,点E F 、在边BC 上,借助矩形DEFG ,利用位似作图,画出ABC △内接矩形(画图工具不限,保留画图痕迹或有必要的说明);(2)按照以上作图方法,你觉得一个三角形存在__________个内接矩形,要使得作出的内接矩形为正方形,四边形DEFG 的形状是__________形; 【特例探究】(3)若ABC △为锐角三角形,则存在__________个内接正方形, 若ABC △为直角三角形,则存在__________个内接正方形, 若ABC △为钝角三角形,则存在__________个内接正方形;(4)如图③,若用一个不等边锐角ABC △(a b c >>)纸板制造面积尽可能大的正方形,则正方形两个顶点应都在__________条边上. 【拓展应用】(5)如图④,ABC △的高AD 为3,BC 为4,过AD 上任一点G 作ABC △的内接矩形EPQF ,以EF 为斜边作等腰直角三角形HEF (点H 与点A 在直线EF 的异侧),设EF 为x ,EFH △与四边形EPQF 重合部分的面积为y . ①求线段AG (用x 表示);②求y 与x 的函数关系式,并求x 的取值范围.第28题④D GAB CE FPQ。
2012-2013年八年级下学期期中考试数学试卷
2012-2013学年第二学期期中考试八年级数学试卷一、精心选一选。
(每题3分,共24分)1.函数21-=xy的自变量x的取值范围是() A.x>-2 B.x<2 C.x≠2 D.x≠-22.以a、b、c为边的三角形不是直角三角形的是()A . 1.5,2,3a b c=== B. 7,24,25a b c===C . 6,8,10a b c=== D. 3,4,5a b c===3.函数)(≠=kxky的图象经过点(2-,3),则它还经过点()A. (6,-1)B. (-1,-6)C. (3,2)D.(2,3)4.在平面直角坐标系中,点P(-2,3)到原点的距离是()A.5B.13C.11 D.25.在同一坐标系中,函数y kx k=-与函数2kyx=的大致图像是()A B C D6.若关于x的方程2667=----xkxx无解,则k的值是()A.-1 B.0 C.6 D.17.如图:数轴上点A所表示的数为a,则a的值是()A.学校班姓学8.如图:点P (3a ,a )是函数xky =(k >0)与圆(圆心为O )的一个交点, 图中阴影部分的面积为10π,则函数的解析式为 ( )A . y 3=B .y 5= C .y 10=12二、细心填一填:(每题3分,共24分) 9.用科学记数法表示:0.000 00209记为 。
10. 若函数xy m31-=的图象在二、四象限,则m 的取值范围是 。
11.如图:由于台风的影响,一棵树在离地面m 6处折断,树梢落在离树 干底部m 8处,则这棵树在折断前(不包括树根)高度是 m 12. 如图:点P 是某支双曲线上任意一点,过点P 作PD 垂直x 轴于点D ,若2=∆POD s ,则反比例函数表达式为 。
13.计算:=⎪⎭⎫ ⎝⎛-+-+--2231)7(2π 。
14.已知114a b +=,则3227a ab ba b ab-+=+- 。
15.直角三角形的两边长为3和4,则第三边的长为 。
2012—2013学年第二学期期末数学试卷(初二)
2012—2013学年第二学期期末试卷一、选择题:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上)1.下列不等式中,一定成立的是 【 】 A. 54a a > B . 23x x +<+ C .2a a ->- D . 42a a> 2.若分式122--x x 的值为0,则x 的值为 【 】 A. 1B. -1C. ±1D.23.一项工程,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合做此项工程所需时间为 【 】 A. 11()a b -天 B . 1ab 天 C . ab a b +天 D . 1a b-天 4. 若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定 经过点 【 】 A .(1,2) B .(2,1) C .(-1,-2) D .(-1,2)5.如图,DE ∥FG ∥BC ,AE=EG=BG ,则S 1:S 2:S 3= 【 】A.1:1:1 B .1:2:3 C . 1:3:5 D . 1:4:96.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 【 】7.一只猫在如图所示的方砖上走来走去,最终停留在黑色方砖上的概率为A.29 B . 18 C . 716 D . 798.对于句子:①延长线段AB 到点C;②两点之间线段最短;③轴对称图形是等腰三角形; ④直角都相等;⑤同角的余角相等;⑥如果│a │=│b │,那么a=b.其中是命题的有【 】 A.6个 B .5个 C .4个 D . 3个二、填空题:(本大题共10小题.每小题2分,共20分.把答案直接填在相对应的位置上) 9.在比例尺为1:20的图纸上画出的某个零件的长是32cm ,这个零件的实际长是 cm . 10.一次函数y=(2m-6)x+5中,y 随x 的增大而减小,则m 的取值范围是________. 11.已知3x+4≤6+2(x-2),则| x+1|的最小值等于________.A .B .C .D . A B C12.请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是 . 13.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m.紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶______________m.14.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是 . 15.把命题“全等三角形的对应边相等”改写成“如果……那么……”的形式.. 16.如图,D,E 两点分别在△ABC 的边AB,AC 上,DE 与BC 不平行,当满足_______________条件(写出一个即可)时,△ADE ∽△ACB.17.如图, 点A 的坐标为(3,4), 点B 的坐标为(4,0), 以O 为位似中心,按比例尺1:2将 △AOB 放大后得△A 1O 1B 1,则A 1坐标为______________.18.两个反比例函数k y x =(k>1)和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上).三、解答题 (本大题共9小题,共64分.把解答过程写在相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用铅笔并描黑.)19. (本小题5分)解分式方程:231x x =+.20. (本小题5分)解不等式组255432 x xx x-<⎧⎨-+⎩≥,.21. (本小题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.22. (本小题7分)将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上,随机地抽取一张作为十位上的数字,放回后再抽取一张作为个位上的数字,试利用树状图探究能组成哪些两位数?恰好是“偶数”的可能性为多少?23. (本小题7分)如图,在正方形ABCD中,点M、N分别在AB、BC上,且AB=4AM,BC=163BN.(1)△ADM和△BMN相似吗? 并说明理由.(2) 求∠DMN的度数.24. (本小题7分)某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定质量,那么需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数.根据图象回答下列问题:(1)求旅客最多可免费携带行李的质量;(2)求y与x之间的函数关系式;(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量的范围.25.(本小题9分)已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?26.(本小题9分)某工厂计划支援西部某学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该校,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出....用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.27.(本小题9分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)请直接..写出..图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR的值.AB C DEPQ R初二数学参考答案一、选择题:BDCD CBAB 二、填空题9.640 10.m<3 11.1 12.212x =-- 13.0.5 14. 2315. 如果两个三角形是全等三角形, 那么这两个三角形的对应边相等 16. ∠AED=∠ABC 或∠ADE=∠ACB 或AE ADAB AC=17.(6,8) 18. ①②④ 三、解答题19.解:化简得2(x+1)=3x ……………………2分 解得2x =, ……………………4分 检验知,2x =是原方程的解. ……………………5分20.解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5 ……………………2分由不等式(2)得:x ≥3 ……………………4分 所以: 3≤x<5 ……………………5分 21.解:设该文具厂原来每天加工这种文具x 套. 根据题意,列方程得25001000250010005 1.5x x x--=+,…………………………………2分 解得100x = …………………………………4分经检验,100x =是原方程的根. …………………………………5分 答:该文具厂原来每天加工这种文具100套. …………………………………6分 22.解:树状图略,………………………………………………………………3分 能组成11,12,13,21,22,23,31,32,33九个两位数,……………5分 恰好是偶数的概率为13.………………………………………………………7分 23.(1)∵在正方形ABCD 中, 且AB=4AM,BC=163BN ∴AB=AD=BC,∠DAM=∠MBN=90o∴4AD AM =,AB=43BM, ∴BM BN =4, 4AD BMAM BN== …………………………………2分 又∵∠DAM=∠MBN=90o∴△ADM ∽△BMN …………………………………4分 (2) 由(1) 得∠ADM=∠BMN …………………………………5分 又∵在Rt △ADM 中, ∠ADM+∠AMD=90o∴∠BMN+∠AMD=90o ……………………………6分 ∴∠DMN=90o . ……………………………7分 24. (1)10; …………………………………2分 (2)y=15x-2; …………………………………4分(3)124512155x x ⎧-≥⎪⎪⎨⎪-≤⎪⎩ …………………………………5分解得30≤x ≤85. …………………………………6分答: 旅客所带行李的质量的范围为30 kg 到85kg. …………………………………7分 25. 解:(1)设一次函数的关系式为y=kx+b , 反比例函数的关系式为ny x=, 反比例函数的图象经过点(23)Q -,, 362nn ∴-==-,.∴所求反比例函数的关系式为6y x=-.…………2分将点(3)P m -,的坐标代入上式得2m =,∴点P 的坐标为(32)-,. 由于一次函数y kx b =+的图象过(32)P -,和(23)Q -,,322 3.k b k b -+=⎧∴⎨+=-⎩,解得11.k b =-⎧⎨=-⎩,∴所求一次函数的关系式为y= -x-1. …………………………………4分(2)两个函数的大致图象如图. …………………………………6分(3)由两个函数的图象可以看出.当3x <-和02x <<时,一次函数的值大于反比例函数的值.……………………8分 当30x -<<和2x >时,一次函数的值小于反比例函数的值.……………………9分 26. 解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500-x)套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥…………………………………2分 解得240≤x ≤250 …………………………………3分 因为x 是整数,所以有11种生产方案. …………………………………4分 (2)y=(100+2)x+(120+4)×(500-x)=-22X+62000 …………………………5分 ∵-22<0,y 随x 的增大而减少.∴当x=250时,y 有最小值. ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时y min =-22×250+62000=56500(元) …………………………………7分 (3)有剩余木料 …………………………8分 最多还可以解决8名同学的桌椅问题. …………………………9分x27. [解](1)△BCP ∽△BER, △PCQ ∽△PAB, △PCQ ∽△RDQ, △PAB ∽△RDQ ……4分 (2) 四边形ABCD 和四边形ACED 都是平行四边形, BC AD CE ∴==,AC DE ∥,PB PR ∴=,12PC RE =.………………………5分 又PC DR ∥,PCQ RDQ ∴△∽△. ∵点R 是DE 中点,DR RE ∴=.12PQ PC PC QR DR RE ∴===.2QR PQ ∴=. ………………………7分又3BP PR PQ QR PQ ==+= ,::3:1:2BP PQ QR ∴=. ………………………9分A BCD EP Q R。
2012-2013学期2期末答案
2012—2013学年度第二学期终结性检测八年级数学参考答案及评分标准一、选择题(每题3分,共30分)二、填空题(每题3分) 11、5312、 613、(1)43(2) 7 (3)220y t =- 15、8 16、 96 1922n三、解答题17、∵四边形ABCD 是正方形,∴AD=AB , 90DAB ∠= …………………………………………1分 ∴90DAF DAB ∠=∠=……………………………………… 2分 ∵E 是AD 的中点,∴12AE AD =∵AF =21AB ∴AE =AF ………………………………………………………3分 ∴DAF BAE △≌△ ………………………………………… 5分 ∴BE =DF ………………………………………………………6分18、(1)(31)(03)A B ,,,-…………………………………………2分设一次函数的表达式为y kx b =+,依题意得13,3k b b =+⎧⎨-=⎩ ∴4,33k b ⎧=⎪⎨⎪=-⎩所求一次函数的表达式为433y x =-(2)设(0,)P p ∵12ABP AOB S S ∆∆=∴12BP OB = ………………………………………………………4分∵(03)B ,- ∴32BP =∴39(0,)(0,)22P --或…………………………………………………6分 19、∵∠ACD =∠B ,∠A =∠A ,∴△ACD ∽△ABC ………………………………………………1分 ∴AC ADAB AC=…………………………………………………2分 ∴2AC AD AB =⋅ ………………………………………3分 又∵AB =4,D 为AB 中点 ∴AD =2∴2248AC AD AB =⋅=⨯= ……………………………4分 ∴AC =……………………………………………5分20、过点A 作AE DC ∥ …………………………………………1分 又∵AD ∥BC , ∴AECD 是平行四边形∴AD =EC ,AE =DC ………………………………………………… 2分 ∵AD =3,BC =7∴BE =4 ……………………………………………3分∵AB =DC , AE =DC ∴AB =AE 又∵∠ABC =60°∴△ABE 是等边三角形…………………………………………… 4分 ∴4AB = ………………………………………………………5分21、(1)400 , 0.31 …………………………………2分(2)略 …………………………………4分 (3) 500 ………………………………………………5分22、(1)5 ………………………………………………2分(2)(0,0),(4,2),(4,4),(3,3),(3,2),(0,1)………………………………………………6分注:(2)题写对2个给1分,写对3个给2分,写对4个给3分, 写对6个给4分23、取BE 中点H ,连结FH …………………………………1分 ∵ F 是AE 的中点∴ FH 为△EAB 的中位线∴11=22FH AB FH AB ∥, ………………………………2分EA BD CA 又∵ABCD∴ ,DC AB DC AB =∥∴ FH ∥EC∴ ∠CEG =∠FHG ,∠ECG =∠HFG 又∵ E 为DC 中点∴ 1122EC DC AB FH === …………………………3分∴ △ECG ≌△HFG …………………………4分 ∴ GF =GC ……………………………………5分24.(1)作CF ⊥AD 交AD 的延长线于F . ……………………1分 ∵ ∠ADC =120°, ∴ ∠CDF=60°.在Rt △CDF 中,3.FC CD === …………………………3分 即点C 到直线AD 的距离为3. (2)∵ ∠BED=135°,BE = ∴ ∠AEB =45°. ∵ 90A ∠=︒, ∴ ∠ABE =45°.∴ 2.AB AE == ……………………………………………4分 作BG ⊥CF 于G .可证四边形ABGF 是矩形. ∴ FG =AB =2,CG =CF -FG =1.H∵ 12DF CD ==∴ 22 4.BG AF AE ED DF ==++=+= ………………5分∴ BC === ………………………………6分 25.(1) 不是; 是. ………………………………2分 (2)如图所示:∵点P (a ,3)在y =-x +b 上 ∴3=-a +b ∴a =b -3则P (b -3,3) …………………………………………………3分 ∴OA =PB =3,PA =OB =|b -3| ∵和谐点P 在y =-x +b 上 ∴2OA +2PA =OA ·PA即2×3+2·|b -3|=3 ·|b -3| ∴|b -3|=6解得:b =9或-3 ∴a =6或-6∴a =6,b =9或a =-6,b =-3…………………………4分(3)如图所示∵点Q 在直线y =x +4上,∴设点Q 坐标为(x ,x +4) ∴OA =|x |,QA =|x +4| 由题意得2|x |+2|x +4|=|x |·|x +4|① 当x >0时,2x +2(x +4)=x整理得,x 2=8解得,x =(舍负)此时,和谐点Q 坐标为(+4) ……………………6分○2当-4<x <0时,-2x+2(x+4)=-x ·(x+4) 整理得,x 2+4x+8=0, 此方程无解○3当x <-4时,-2x -2(x+4)=(-x )·[-(x+4)] 整理得,x 2+8x+8=0解得,x =-4-4+此时,和谐点Q 坐标为(-4-8分 综上:点Q 坐标为()或(-4-,-。
2012—2013八年级数学
2012——2013学年度下学期期末考试八年级数学试题卷首语:亲爱的同学们,你已顺利的完成了本学期学习任务,现在是检测你学习效果的时候,希望你带着轻松.带着自信来解答下面的题目,同时尽情展示自己的才能。
答题时,请记住细心.精心和耐心。
祝你成功! 一.精心选一选(每小题3分,共36分,每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1.如果把分式yx yx -+中的x 和y 都扩大到原来的3倍,那么分式的值( ) A .扩大到原来的3倍 B.不变 C.缩小到原来的13 D.缩小到原来的162.纳米是一种长度单位,1纳米=910-米.已知某种花粉的直径为35000纳米,则用科学计数法表示该花粉的直径为 ( )A. m 6105.3-⨯ B. m 5105.3-⨯ C. m 41035-⨯ D. m 4105.3⨯ 3.某八年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数 B.众数 C.极差 D.平均数 4.下列计算中,正确的是( )A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=0CM5.正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角 6.已知三点),(111y x P ),(222y x P )2,1(3-P都在反比例函数xky =的图象上,0,021><x x ,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC.BD 相交于点O ,OE⊥BD 交AD于E ,则△ABE 的周长为( )A .4cm B.6cm C.8cm D.10cm8.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点, MN ⊥AB 于点N ,则MN 等于( )A.56 B.59 C.512 D.5169.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a .其中能判断△ABC 是直角三角形的个数有( )个A .1个B .2个C .3个D .410.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,若四边形EFGH 为菱形,则四边形ABCD 必须满足条件( )A.四边形ABCD 是平行四边形B.四边形ABCD 是矩形C.四边形ABCD 是菱形D.AC=BD11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 312.如图,关于x 的函数)1(-=x k y 和xky -= (k ≠0), 它们在同一坐标系内的图象大致是ABCDOE二.细心填一填(每题3分,共15分)13.当x =1时,分式nx mx -+2无意义,当x =4分式的值为零, 则n m +=________. 14.过函数my x=图像上一点A 作AB ⊥x 轴于B,△AOB 的面积为3,则m=______. 第14题图 第15题图 第16题图 第17题图 15.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB 、AD 的中点,若EF =2,则菱形ABCD 的边长是 .16.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm , 则EC=___________cm 。
2012-2013学年度下学期期中考试八年级数学试题
2012-2013学年度下学期期中考试八年级数学试题一、 选择题(本题共10小题,每小题3分,共30分) 1、在分式12x x --中,x 的取值范围为( ) A. 2x > B. 1x ≠ C. 2x ≠ D. 1x >2、下列式子:,其中是分式的32111,,,,4434x b x y x x y a x +-+共有( )个 A.1个 B.2个 C.3个 D.4个3、把分式2aa b-中的a 和b 都扩大原来的2倍,那么该分式的值( ) A.扩大原来的2倍 B.扩大4倍 C.不变 D.缩小为原来的124、下列各组数据不能做为直角三角形的三边长的是( )A.3、4、5B.6、8、10C.5、12、13D.13、16、185、下列各式从左到右的变形正确的有( )个①;a a mb b m +=+ ②22(1);(1)a a x b b x +=+ ③3223;x y x x y y= ④ 0.22.0.77x y x y x y x y ++=-- A.1个 B.2个 C.3个 D.4个6、一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( ) A. 56.510-⨯ B. 66.510-⨯ C. 76.510-⨯ D. 66510-⨯ 7、在反比例函数2y x =-的图象上有两点121(1,),(,)4y y --,则12y y 和的大小是( ) A. 12y y > B. 12y y < C. 12y y ≤ D. 12y y ≥ 8、反比例函数ky x=与正比例函数y kx k =+在同一坐标系中的图象大致是( )9、如图,一次函数122y x =-的图象分别交x 轴,y 轴于A B 、,P 为AB 的中心,且PC x ⊥轴于点C ,PC 的延长线交反比例函数(0)k y k x =>的图象于点Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为( )3.3;(,2)2A 3.3;(2,)B - 3.3;(2,)2C 3.3;(,2)2D -第10题图10、如图,在Rt △ABC 中,AC = BC ,∠ACB = 90°,D 、E 为AB 上两点,∠DCE = 45°,F 为△ABC 外一点,且FB ⊥AB ,FC ⊥CD ,则下列结论:①CD = CF ;②CE垂直平分DF ;③AD 2 + BD 2 = 2DC 2;④DE 2 – BE 2 = AD 2.其中正确的是( )A .①③④B .①②③C .②④D .①②③④ 二、 填空题(本大题共6小题,每小题3分,共18分)11、若分式211x x -+的值为0,则x 的值等于 ;12、计算:226289m n n m⋅= ; 13、命题“直角三角形的两个锐角互余”的逆命题是 ,这个逆命题是 命题;14、如图,正比例函数y kx =与反比例函数1y x=的图象相交于A C 、两点,AB x ⊥轴于B ,CD x ⊥轴于D ,则四边形ABCD 的面积为 ;第14题图 第15题图15、如图,在ABC ∆中,290AC BC ACB ︒==∠=,,D 是BC 边的中点,E 是AB 边上的一动点,则EC ED +的最小值是 ;16、如图,直角梯形OABC 中,90OAB B ︒∠=∠=, A 点在x 轴负半轴上,双曲线k y x=过点C 和AB 上一点D ,若12AD AB =,且5OABC S =梯形,则此反比例函数解析式为 。
2012——2013学年下学期八年级教学质量检测数学试卷及评分标准2013.6
2012—2013学年下学期八年级教学质量检测数学测试卷(全卷三个大题,共24个小题,考试时间为120一、 选择题(共8题,每小题3分,共24分)1. 当分式 有意义时,字母x 应满足( ) A. x=1 B. x ≠1 C. x=0 D. x ≠02. 下列式子一定成立的是( )A .B .C .D .326a a a =÷ 3.如图,这是下列四个函数中哪一个函数的图象( )4. 某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是15 5.下列说法正确的是 ( )A. 对角线互相平分且相等的四边形是矩形B. 一组对边平行,一组对边相等的四边形是平行四边形C. 一组对边平行且相等,一个角是直角的四边形是正方形D.对角线相等且互相垂直的的四边形是菱形6.一直角三角形的两条边长分别为3cm 、4cm ,则它的斜边长为( )cmA.4 cm B.5 cm C.4 cm 或5cm D. 7cm 7. 由下列线段a ,b ,c 可以组成直角三角形的是 ( )A.a=3、b =4、c =6 B. a=2、b =13、c =3 C.a=9、b =8、c =10 C. a=5、b =3、c =1 8. 将一张矩形纸片ABCD 如图那样折叠,使顶点C 落在C'处,其中AB 痕ED 的长为( A.8 B. C. D.412-x 11++=b a b a b a b a b a b a 3253.02.05.0-+=-+63201)(m m m -=-+x y 3-=a B二、真空题(共8题,每小 题3分,共21分)9. 若分式 的值等于0,则x 的值为 .10.手足口病病毒直径为0.00000003m ,用科学记数法表示为 m.11. 若点P(m ,-3)、点O(n ,2)在函数 的图象上,则m 与n 的大小关系为 . 12. 如图:AB ∥DC ,AD∠D= 度 13.一水坝的横截面是等腰梯形,其上底长为,腰长为10 cm ,高为8 cm ,则其面积为 cm 2.14. 如图,A ,B 两点被池塘隔开,某同学在A ,B 外选一点C,连接AC和BC,再确定出AC和BC的中点E、F,量得EF长为14.3米,则池塘A15,观察式子: , , ,……根据你发现的规律知,第100三、解答题(共8题,55分)16.计算(5分)17.解方程(5分)3121=-+-x x x18.先化简11112-÷⎪⎭⎫ ⎝⎛+x xx -,再请你选择一个你喜欢的合适的数作为x 值代入求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年度下学期八年级数学测试题
(全卷满分120分,考试时间120分钟)
一、填空题(每小题3分,共24分)
1、分解因式=-x x 823
____________________。
2、分式3
9
2--x x 当x __________时分式的值为零。
3、已知,如图,ED ∥BC,且
AB AE =31,则BC
ED
= . 4、不等式2(1)0x x -->的解集为 。
5、如果
23=-+y x y x ,那么y
x
=____________ 6、已知,△ABC ∽△A´B´C´,S △ABC:S △A´B´C´
=1:9,其中△ABC 的周长 为18cm, 那么△A´B´C´的周长是 cm.
7、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米。
8、若关于x 的分式方程χχ-3 -2= 2m
χ-3
无解,则m 的值为 .
二、选择题。
(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 9、若4x ²+m xy +9y ²是一个完全平方式,则m=( ) A 、6 B 、12 C 、±6 D 、±12
10、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2
B 、3
C 、4
D 、5
11、甲、乙两班学生参加了同一次数学考试,班级的均分和方差如下:,180,240,80,8022====乙甲乙甲S S x x 则成绩较为整齐的是( )
A 、甲班
B 、乙班
C 、两班一样
D 、无法确定 12、如图, 在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4, 则CD=( )
A 、2
B 、4
C 、 2
D 、3
13、某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取
40本试卷,每本30份,则这个问题中( )
A、个体是每个学生 B、样本是抽取的1200名学生的数学毕业成绩 C、总体是40本试卷的数学毕业成绩 D、样本是30名学生的数学毕业成绩 14、如图所示,△ABC 中,∠ACD=115°,∠B=75°,则∠A 的度数为( )
A .500 B. 450 C.400. D. 600
A
D C
B
15、化简y
x y x --2
2的结果( )
A. x- y
B.x+y
C.y- x
D.- x- y 16、直线y =ax +b 与直线y =cx +d (a 、b 、c 、d 为字母已知数)
在直角坐标系中的位置如图所示,以下结论:
①方程组y ax b
y cx d =+⎧⎨=+⎩的解是⎩
⎨⎧==22y x
②不等式ax +b >0的解集是x >1 ③不等式cx +d >4的解集是x <0 ④不等式ax +b <cx +d 的解集是x <2
其中,正确的结论是 (填写结论序号)
三、解答题(本大题共9个小题,64分) 17、(本小题6分)解不等式:)21(4x x --≥1,并把解集在数轴上表示出来.
18、(本小题7分)先化简,后求值211()1122
x
x x x -÷-+-,其中23-=x .
19、(本小题7分)解方程:
12212
+=++-x x
x
x x
20、(本小题6分)如图,CE 是△ABC 的外角平分线,F 是CA 延长线上一些点,FG ∥EC 交AB 于G ,已知∠DCE =50°,∠ABC =35°,求∠FGA 的度数.
21、(本小题7分)某市为治理污水,需要铺设一条全长为550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?
22、(本小题7分)如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.
(1)ΔABE与ΔADF相似吗?请说明理由.
(2)若AB=6,AD=12,BE=8,求DF的长.
23、(本小题8分)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房的成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案?
(2)该公司如何建房获得利润最大?
(1)他们的平均成绩和方差各是多少?(2)分析他们的成绩各有什么特点?
(3)现要从两人中选一人参加比赛,历届比赛成绩表明,平时成绩达到98分以上才可能进入决赛,你认为应选谁
参加这次比赛?为什么?
(参考资料: (
)()(
)[]2
22212
1
x x x x x x n
s n -+⋯+-+-=)
25、(本小题8分)如图,在矩形ABCD 中,AB=12cm ,BC=6cm, 点P 沿AB 边从点A 开始向点B 以2cm/秒的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示运动时间(0≤t≤6), 那么当t 为何值时,以Q 、A 、P 为顶点的三角形与△ABC 相似?。