教学重点全等三角形的概念

合集下载

全等三角形的概念、性质与判定

全等三角形的概念、性质与判定

1. 能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。

3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。

4. 常见的一个三角形经过变换得到另一个全等三角形。

(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。

注意:“边边角”不一定成立。

反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。

【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。

分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。

初中数学 全等三角形的定义是什么

初中数学 全等三角形的定义是什么

初中数学全等三角形的定义是什么
全等三角形是指具有相等的对应边长和对应角度的两个三角形。

当两个三角形的所有对应边长和对应角度都相等时,我们可以说这两个三角形是全等的。

全等三角形的定义可以更具体地描述为以下条件之一:
1. SSS准则(边边边):如果两个三角形的三条边分别相等,则这两个三角形是全等的。

2. SAS准则(边角边):如果两个三角形的两条边和夹角分别相等,则这两个三角形是全等的。

3. ASA准则(角边角):如果两个三角形的两个角和夹边分别相等,则这两个三角形是全等的。

4. AAS准则(角角边):如果两个三角形的两个角和非夹边分别相等,则这两个三角形是全等的。

5. RHS准则(直角边斜边):如果两个直角三角形的一个直角边和斜边分别相等,则这两个三角形是全等的。

全等三角形的定义给出了判断两个三角形是否全等的方法。

通过使用这些准则,我们可以确定两个给定的三角形是否全等,从而解决与全等三角形相关的几何问题。

在实际应用中,全等三角形的概念在建筑、工程、导航、图形设计等领域起着重要的作用。

通过了解全等三角形的定义和性质,我们可以在实际问题中应用几何知识,计算未知的边长和角度,进行测量和设计工作。

总结起来,全等三角形是指具有相等的对应边长和对应角度的两个三角形。

全等三角形的定义包括SSS准则、SAS准则、ASA准则、AAS准则和RHS准则。

了解全等三角形的定义和性质可以帮助我们解决与几何相关的问题,并在实际应用中进行测量、设计和计算工作。

全等三角形的重难点

全等三角形的重难点

全等三角形的重难点一、全等三角形的基本性质全等三角形是两个或两个以上的三角形,其所有元素都完全相同,且每对对应点到对称轴的距离相等。

全等三角形的性质是判定全等三角形的依据,也是解决全等三角形相关问题的关键。

二、全等三角形的判定方法1、边边边(SSS):三边完全相等的两个三角形全等。

2、边角边(SAS):两边及夹角相等的两个三角形全等。

3、角边角(ASA):两角及夹边相等的两个三角形全等。

4、角角边(AAS):两角及其中一角的对边相等的两个三角形全等。

5、斜边直角边(HL):斜边和一条直角边相等的两个直角三角形全等。

三、全等三角形的重难点1、对于全等三角形的性质和判定方法的理解和运用是全等三角形的重难点之一。

学生需要熟练掌握全等三角形的性质和判定方法,并能灵活运用到各种问题中。

2、对于全等三角形的证明方法,学生也需要掌握。

证明全等三角形需要按照一定的步骤进行,如归纳、演绎、推理等,这些步骤需要学生熟练掌握并运用。

3、全等三角形的应用也是全等三角形的重难点之一。

全等三角形的应用非常广泛,包括几何、代数、三角函数等领域。

学生需要学会如何将全等三角形应用到各种问题中,提高解题能力。

4、在解决实际问题时,如何根据问题的要求和已知条件选择合适的全等三角形也是学生需要掌握的技能。

学生需要具备分析问题和解决问题的能力,能够根据问题的特点选择合适的解决方法。

5、在解决全等三角形问题时,学生还需要注意细节问题。

全等三角形的证明需要严谨的逻辑和细致的观察力,学生需要注意证明过程中的细节问题,如符号、公式、定理的运用等。

四、如何突破全等三角形的重难点1、多做练习题:通过大量的练习题,让学生更好地理解和掌握全等三角形的性质和判定方法,提高解题能力。

2、培养逻辑思维能力:全等三角形的证明需要严谨的逻辑思维能力,因此,学生需要培养自己的逻辑思维能力,掌握演绎、推理等方法。

3、加强观察能力:全等三角形的证明需要细致的观察能力,学生需要注意证明过程中的细节问题,如符号、公式、定理的运用等。

全等三角形的概念

全等三角形的概念

有对顶角的,对顶角是对应角.
在找全等三角形的对应元素时一般有 什么规律?
A
A
B
CE
P
D
BF
C
D
一对最长的边是对应边,一对最短的边是对应边. 一对最大的角是对应角,一对最小的角是对应角.
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为 对应边;最大角与最大角(最小角与最小角)为对 应角; (5)对应角所对的边为对应边;对应边所对 的角为对应角; (6)根据书写规范,按照对应顶点找对应边 或对应角.

同一张底片冲洗出来的两张照片

形状和大小有什么特征?
观察下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
能够完全重合的两个图形称为全等形.
及时反馈
观察下面两组图形,它们是不是全等形?
只有形状
(1)
相同
只有大小 相同
(2)
全等形的 形状和 大小 都相同
能够完全重合的两个三角形,叫做 全等三角形.
A
12
34 D
B
C
3.如图,若△ABC≌△CDA,对应边是 A__B_与__C_D__,__A__C_与__C__A_,___B_C_与__D__A__,对应角
是_∠__1_与__∠__2_,___∠__4_与__∠__3_,___∠__B_与___∠__D__.
A
D
13
2 4
B
C
4.已知△ABE≌△ACD,且∠1=∠2,∠B = ∠C,指出其他的对应边和对应角.

人教版八年级数学上册12.1《全等三角形》说课稿

人教版八年级数学上册12.1《全等三角形》说课稿

人教版八年级数学上册12.1《全等三角形》说课稿一. 教材分析《全等三角形》是人教版八年级数学上册第12.1节的内容,本节内容主要介绍全等三角形的概念、性质和判定方法。

全等三角形是几何中的重要概念,是研究几何图形性质的基础,也是解决实际问题的有力工具。

通过学习全等三角形,学生可以培养观察能力、思考能力和解决问题的能力。

二. 学情分析八年级的学生已经掌握了三角形的基本知识,如三角形的性质、分类等,具备一定的观察和思考能力。

但全等三角形的概念和性质较为抽象,学生可能难以理解和掌握。

因此,在教学过程中,我将以生动形象的讲解和丰富的实例,帮助学生理解和掌握全等三角形的知识。

三. 说教学目标1.知识与技能:理解全等三角形的概念,掌握全等三角形的性质和判定方法,能够运用全等三角形解决实际问题。

2.过程与方法:通过观察、思考、交流和归纳,培养学生的几何思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.教学重点:全等三角形的概念、性质和判定方法。

2.教学难点:全等三角形的判定方法,特别是SSS、SAS、ASA、AAS判定方法的运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动参与、积极思考。

2.教学手段:利用多媒体课件、几何画板等辅助教学,以直观形象的方式展示全等三角形的性质和判定过程。

六. 说教学过程1.导入新课:通过一个实际问题,引入全等三角形的概念,激发学生的兴趣。

2.讲解全等三角形的性质:通过几何画板演示,引导学生观察、思考,总结全等三角形的性质。

3.讲解全等三角形的判定方法:分别讲解SSS、SAS、ASA、AAS判定方法,并通过实例进行分析。

4.练习与拓展:布置一些练习题,让学生巩固所学知识,并进行拓展训练。

5.总结与反思:让学生总结本节课所学内容,反思自己的学习过程,提高自我认知。

七年级(下)数学 第11讲 全等三角形的概念和性质及判定

七年级(下)数学 第11讲 全等三角形的概念和性质及判定

本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。

全等三角形复习专题

全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。

全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。

如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。

二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。

2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。

3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。

4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。

5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。

三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。

如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。

四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。

2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。

3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。

4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。

5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。

全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。

全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。

动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。

将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。

第十二章全等三角形12.1全等三角形教案

第十二章全等三角形12.1全等三角形教案
其次,在讲解全等三角形的判定方法时,我尝试用了一些具体图形和实例来说明,但可能还不够充分。我打算在下一节课增加一些更具挑战性的题目,让学生们亲自动手操作,以加深对判定方法的理解。
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:

数学全等三角形教案8篇

数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。

全等三角形教案(5篇)

全等三角形教案(5篇)

全等三角形教案(5篇)全等三角形教案(5篇)全等三角形教案范文第1篇教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、力量目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析力量;(2)通过找出全等三角形的对应元素,培育同学的识图力量。

3、情感目标:(1)通过感受全等三角形的对应美激发同学喜爱科学勇于探究的精神;(2)通过自主学习的进展体验猎取数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么奇妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

(2)同学自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学协作,把两个三角形放在一起重合。

(3)猎取概念让同学用自己的语言叙述:全等三角形、对应顶点、对应角以及有关数学符号。

2、全等三角形性质的发觉:(1)电脑动画显示:问题:对应边、对应角有何关系?由同学观看动画发觉,两个三角形的三组对应边相等、三组对应角相等。

3、找对应边、对应角以及全等三角形性质的应用(1)投影显示题目:D、AD∥BC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。

至于D,由于AD 和BC是对应边,因此AD=BC。

C符合题意。

说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是简单找错对应角。

分析:对应边和对应角只能从两个三角形中找,所以需将从简单的图形中分别出来说明:依据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

全等三角形教案【7篇】

全等三角形教案【7篇】

全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。

数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,形状和大小都相同。

你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

全等三角形复习-教案

全等三角形复习-教案

**教育个性化辅导教案授课老师学生姓名课型一对一学科数学年级初二上课时间10:00-12:00 课题名称全等三角形知识点教学目标1.了解全等形及全等三角形的概念。

2.理解全等三角形的性质。

3.掌握全等三角形的判定。

4.灵活运用全等三角形的判定定理和性质定理,5证明简单的全等三角形问题。

6.掌握角平分线的性质与判定以及综合运用。

教学重点全等三角形的性质和条件以及所学知识的综合应用教学难点加强应用型与探究型题型训练课前检查作业完成情况:优□良□中□差□建议:第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直0,吗,角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).例题评析例1 已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.例2 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.AAB CD EDCBAO 1 234 例3已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①△BEC ≌△DEA ;②DF ⊥BC .(2)达标检测1、如图,∠DCE=90o,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.2 、如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO =DO .BC DEFA3、如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1) △ABC≌△AED;(2) OB=OE .4、已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.5、已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD于F.求证:CF=CD.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙特别满意⊙满意⊙一般⊙差学生签字:课后小结教师签字:审阅签字: 时间:教学主管签字: 时间:出门测:一、选择题1.如图,已知△ACB≌△A'CB',若∠BCB'=30°,则∠ACA'的度数为( ) A.20°B.30°C.35°D.40°2.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取点M,N,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由做法得△MOC≌△NOC的依据是( )A.AAS B.SAS C.ASA D.SSS3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.在如图所示的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为( )A.330°B.315°C.310°D.320°课后作业:一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.。

三角形全等的判定教案

三角形全等的判定教案

三角形全等的判定教案教学目标:1.了解三角形全等的概念。

2.学会运用全等的基本性质判断三角形是否全等。

3.能够列举三角形全等的六对条件。

4.能够在实际问题中应用三角形全等的判定。

教学重难点:重点:掌握三角形全等的概念和判定方法。

难点:如何理解三角形全等的六对条件。

教学过程:1.导入(5分钟)谈论一下三角形的重要性以及它们在我们日常生活中的作用,引出三角形全等的概念。

2.讲授(20分钟)1)引入三角形全等的基本概念。

建议给学生展示两组完全相同的三角形模型来作为例子,让学生研究它们是否具有什么不同之处,以及它们是否完全相同。

然后引导学生得出三角形全等的概念:当两个三角形的三边对应相等时,它们是全等的。

2)讲述三角形的证明方法。

教师可以使用PPT等帮助学生理解所学,说明当两个三角形是全等的时候,它们的一个角与一个边是相等的,它们的两边和一个角都是相等的,或者说当两个三角形满足HSR、SSS和SAS三个条件中的任意一组时,它们就是全等的。

3)解释三角形全等的六对条件。

在第二步中,我们提到了三个三角形全等的条件(HSR,SSS和SAS)。

但实际上,我们还可以列举其他三角形全等的条件。

学生可以跟随老师的示范,一起列举出来。

这些条件包括:1. ASA(两个角和一边相等)2. SAA(两个边和一个角相等)3. AAS(两个角和一个相对的边相等)4. RHS(直角和斜边相等)然后教师应该对提出的条件进行解释和说明,让学生理解为什么会有这些条件。

3.练习(30分钟)1)用全等的方法证明三角形教师应该根据学生们的能力水平,设计一些容易理解的单元构造,供他们使用全等来证明三角形。

2)判断三角形是否全等通过给予不同的显示材料,让学生能够在课堂上判断两个三角形是否全等。

教师应该让学生再次回顾所有列举出的条件,并强调重点。

4.反思(5分钟)课堂结束前,教师应该花一些时间让学生回答以下问题:1)三角形全等的概念是什么?2)三角形全等的证明条件有哪些?3)如何使用全等来解决三角形问题?4)如何判定两个三角形是否全等?5.作业(无时间限制)1)完成课堂上未完成的练习。

数学全等三角形教学设计教案

数学全等三角形教学设计教案

数学全等三角形教学设计教案经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形是几何中全等之一。

下面是整理的数学全等三角形教学设计教案【最新3篇】,倘若对您有一些参考与帮忙,请共享给最好的伙伴。

数学全等三角形教案篇一一、教学目标【学问与技能】把握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。

能运用全等三角形的条件,解决简单的推理证明问题。

【过程与方法】经过探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

【情感、态度与价值观】在探究归纳论证的过程中,体会数学的严谨性,体验成功的欢乐。

二、教学重难点【教学重点】“角角边”三角形全等的探究。

【教学难点】将三角形“角边角”全等条件转化成“角角边”全等条件。

三、教学过程(一)引入新课利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)(四)小结作业提问:今日有什么收获?还有什么疑问?课后作业:书后相关练习题。

数学全等三角形教案篇二全等三角形课题:全等三角形教学目标:1、学问目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能娴熟找出两个全等三角形的对应角、对应边。

2、本领目标:(1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析本领;(2)通过找出全等三角形的对应元素,培育同学的识图本领。

3、情感目标:(1)通过感受全等三角形的对应美激发同学酷爱科学勇于探究的精神;(2)通过自主学习的进展体验取得数学学问的感受,培育同学勇于创新,多方位端详问题的制造技巧。

教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发觉这两个三角形有什么巧妙的关系吗?一般同学都能发觉这两个三角形是完全重合的。

《全等三角形的判定》教学设计

《全等三角形的判定》教学设计

《全等三角形的判定》教学设计教学设计:全等三角形的判定一、教学目标1.知识目标:学生理解全等三角形的定义和判定条件。

2.技能目标:学生能够根据给定条件判定两个三角形是否全等。

3.情感目标:培养学生对数学的兴趣,提高他们的逻辑思维和推理能力。

二、教学内容全等三角形的判定:根据三个条件进行判定。

三、教学重点1.全等三角形的定义;2.全等三角形的判定条件。

四、教学过程1.导入新知识引入新知识,让学生回忆三角形的基本概念和性质。

通过提问,引导学生回忆和复习已学的内容,例如:什么是三角形?你能说说三角形有哪些性质?2.引入全等三角形的概念和判定条件通过引入全等三角形的概念和判定条件,让学生了解全等三角形的特点和判定方法。

首先,教师给学生展示两个全等三角形的图形,让他们观察并比较两个图形的特点,引导学生发现它们有哪些相同的地方。

接下来,教师告诉学生全等三角形的定义:如果两个三角形的对应的三边和对应的三个角相等,那么这两个三角形是全等的。

然后,教师向学生介绍全等三角形的判定条件:全等三角形的判定条件有三个,分别是SSS、SAS和ASA。

SSS判定条件表示三边对三边全等,即如果两个三角形的三条边对应相等,则这两个三角形全等。

SAS判定条件表示两边夹角对两边夹角全等,即如果两个三角形的一对边和夹角分别相等,则这两个三角形全等。

ASA判定条件表示两角夹边对两角夹边全等,即如果两个三角形的一对角和连着它们的两边分别相等,则这两个三角形全等。

3.判定全等三角形的练习将学生分成小组,进行判定全等三角形的练习。

教师提供一些三角形的边长和角度大小,让学生通过观察和比较,运用判定条件判断是否为全等三角形。

同时,教师要引导学生进行合理的推理和思考,让学生能够用自己的语言解释判定的过程和结果。

4.巩固与拓展教师出示一些全等三角形的图形,让学生运用判定条件判断是否为全等三角形,并解释自己的判断过程。

然后,教师提问学生:如果两个三角形有两边分别相等,这两个三角形一定全等吗?为什么?学生根据之前学到的知识,用语言和推理回答这个问题。

五讲 全等三角形的复习

五讲  全等三角形的复习

广州市培贤教育学校升初二数学 (新课)班讲义第五讲 全等三角形的复习[教学过程]一、全等三角形的概念及其性质1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形性质:①对应边相等 ②对应角相等 ③周长相等 ④面积相等 例1.已知如图(1),∆ABC ≅∆DCB ,其中的对应边: 与 , 与 , 与 ,对应角: 与 , 与 , 与 。

(图2)例2: 如图(2),∆ABC ≅∆ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠ACB =∠AED =105O ,∠CAD =10O ,∠B =∠D =25O ,求∠DFB 、∠DGB 的度数。

二、全等三角形的判定方法1、三边对应相等的两个三角形全等(SSS )例1、如图,在∆ABC 中,M 在BC 上,D 在AM 上,AB=AC ,DB=DC 。

求证:MB=MC A EDD DM名师点睛DA(图1)D2、两边和夹角对应相等的两个三角形全等(SAS )例2:如图,AD 与BC 相交于O ,OC=OD ,OA=OB ,求证:∠CAB =∠DBAB 3、两角和夹边对应相等的两个三角形全等(ASA )例3、如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F 。

求证:∆ABE ≅∆FCE4、两条和夹边对应相等的两个三角形全等(AAS )例4、如图,在∆ABC 中,D 、E 分别在BC 、AC 边上。

且∠ADE =∠B =∠C ,AD =DE 。

求证:∆ADB ≅∆DEC5、一条直角边和斜边对应相等的两个直角三角形全等。

(HL )例5:如图,在∆ABC 中,∠C =90o ,沿过点B 的一条直线BE 折叠∆ABC ,使点C 恰好落在AB 边的中点D 处,则∠A 的度数= 。

三、角平分线角平分线性质定理:角平分线上的点到这个角两边的距离相等。

逆定理:到一个角两边的距离相等的点在这个角的平分线上。

全等三角形教案

全等三角形教案

《全等三角形》教案教学内容:《全等三角形》的复习课程目标:1、回顾全等三角形的定义、性质和判定2、会按照规定书写全等三角形的证明过程3、了解中考中全等三角形的相关例题,并学会用辅助线合理构造全等三角形。

教学重点:全等三角形证明的书写格式,合理构造全等三角形。

教学难点:通过条件寻找全等关系,或构造全等关系。

教学准备:ppt课件学情分析:该部分内容为初三中考前的复习,学生对内容已经比较了解,只需要加强记忆和巩固复习。

同时也需要学生把握中考动态,了解全等三角形在中考中的出题类型。

教学过程:前面我们已经对三角形的性质和特点进行了专门的复习,则今天我们要对两个三角形的关系——三角形的全等关系进行复习。

我们都知道两个三角形能都完全重合我们就说这两个三角形全等,而在实际应用中全等的三角形往往是通过平移或旋转得到。

既然能够重合,则我们也就得到三角形的性质是对应边相等,对应角也相等。

而在这六个关系中我们只需要得到指定的三种等量关系就可以判定两个三角形全等。

那我们一起来看看书上57页,一起完成知识梳理的内容。

一、知识梳理:(该部分内容设计由全班同学一起回忆并口答,教师在课件上板书。

时间为3分钟)1、全等三角形: 能够完全重合 的三角形叫全等三角形。

2、三角形全等的判定方法: SSS 、 SAS 、 ASA 、 AAS 。

直角三角形全等的判定除以上的方法还有 HL 。

3、全等三角形的性质:全等三角形 对应边相等 、 对应角也相等 。

4、全等三角形的面积 相等 、周长 相等 、对应高、 对应边的中线 、 对应角的角平分线 相等。

二、预习自测:(该部分内容由学生自行完成,时间为2分钟)1、如图下列条件中,不能证明△ABD △ACD 的是( D )A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C, ∠BAD=∠CADD. ∠B=∠C,BD=DC2、两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=21AC;③△ABD ≌△CBD ,其中正确的结论有( D )A.0个B.1个C.2个D.3个三、典例分析:例1、(该题比较容易,由教师引导解题思路学生自行解答,不在课堂安排ABDCODCBA时间)已知:在四边形ABCD 中AB ∥CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F.求证:AB=CF. 分析:求证△CFE ≌△BAE例2、(该题将作为本节课一道证明三角形全等的典型例题进行分析,主要要求学生在证明题过程书写时符合规范,时间设计为3分钟) 如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多媒体
五、教学过程
1.情境导入
(一)操作引入
1、观察信封上盖的两个纪念邮戳是两个能重合的三角形吗?
2、请同学们剪两个能重合的三角形.
3、我们把能完全重合的图形叫全等图形.
(二)引入概念
两个能重合的三角形叫全等的三角形.
当两个全等三角形重合时
互相重合的顶点叫对应顶点.
你的选择是做或不做,但不做就永远不会有机会。
11.2 全等三角形(一)
一、教学目标
知识目标: 知道全等三角形的有关概念
会用符号语言表示两个三角形全等
会在全等三角形中正确地找出对应顶点、对应边、对应角.
能力目标: 经历操作、观察、分析、概括等过程
培养学生探索创新的精神.
情感目标: 1. 学生在图形的相对运动中发生兴趣
九、教学反思
在引入新知识时
让学生联想盖章的过程
进而想象出生活中全等三角形的实例.以全等形引入全等三角形
实现知识迁移. 在举例过程中通过学生自主探究发现规律、验证规律
提高学生的学习能力. 让学生通过练习加深对全等三角形的认识.
(1)下面是两个全等的三角形
按下列图形的位置摆放
指出它们的对应顶点、对应边、对应角
(2)将沿直线BC平移
得到
说出你得到的结论
说明理由?
(3)如图
AB与AC
AD与AE是对应边
已知:
求的大小
六、课堂总结
1、 全等三角形的表示
在图形运动中首先获取感性认识.
2. 通过演绎变换两个重合的三角形
呈现出它们之间的各种不同位置的活动
从中了解并体会图形变换的思想
逐步培养动态研究几何的意识
增强学生思维的敏捷性.
二、教学重点和难点
教学重点 全等三角形的概念
教学难点 确认全等三角形的对应元素
三、教学方Байду номын сангаас
引导探究
四、教学手段
如果上面两个三角形全等就不能写成△ABC≌△EFD
因为点A对应的点为点D
而不是点E.所以由全等三角形的记法
△ABC≌△DEF
则其对应元素如下
对应顶点:A D
B E
C F
对应边 AB DE
BC EF
CA FD
对应角∠A ∠D
(二)做一做:
1、把你剪得的两个三角形摆放成图1、图2、图3所示位置.
图1 图2 图3
2、动手操作并填空:
把图1中的△ABC沿BC所在直线平行移动到△DEF的位置
两个三角形重合
表示为 ≌ ;
把图2中的△ABC沿BC所在直线翻折180°到△DBC(即△DEF)的位置
两个三角形重合
表示为 ≌ ;
把图3中的△ABC绕顶点C旋转180°到△DEC(即△DEF)的位置
两个三角形重合
表示为 ≌ ;
3. 练习巩固
∠B ∠E
∠C ∠F
若△ABC≌△MNP
说说这两个三角形的对应边和对应角
由于全等三角形能完全重合

全等三角形的对应边相等
对应角相等.
由学生回答
并加以引导纠正:
如果△ADC≌△DEF
则有AB=DE
BC=EF
CA=FD
∠A=∠D
∠B=∠E
∠C=∠F.那么上面对应的两个三角形
对应元素的确定方法.
2、 探索出全等三角形的对应角、对应边相等的性质.
3、 3、合作交流、大胆猜想、勇于探索.
七、作业
P135 1、2、3、4
八、板书设计
11.2 全等三角形(一)
全等三角形
及相关概念 举例练习 小结
若△ABC的周长为
AB=
BC=
则CA=
DE=
EF=
若∠A=°
∠B=°
则∠F=
由这两条基本性质还可以推出:
(1)全等三角形的周长相等;全等三角形的面积相等;
(2)全等三角形的对应高相等;全等三角形的对应中线相等;
(3)全等三角形的对应角平分线相等.
当两个全等三角形重合时
互相重合的边叫对应边.
当两个全等三角形重合时
互相重合的角叫对应角.
2.探索体验
"全等"用符号"≌"表示
读作"全等于"
例如△ABC与△DEF全等
记作"△ABC≌△DEF"
读作"△ABC全等于△DEF".
强调:在表示两个三角形全等时
要把对应顶点的字母写在对应的位置上.
相关文档
最新文档