5线性系统的频域分析
第5章-线性系统的频域分析法
0.1 0.2
0.5
1
2
5
10
20
50
() -96.3 -102.5 -116.6 -140.7 -164.7 -195.3 -219.3 -240.6 -257.5
5-4 频率域稳定判据
一、奈氏判据的数学基础 1、幅角原理
设F(s)为复变函数,F(s)
在s平面上任一点 K*(s z1)(s z2) (s zm)
G( j) j L() 20lg () 90
L(dB) 40 20
0 0.01 0.1
1
20
20dB / dec
10
-40
( ) 90
0 0.01 0.1
1
90
10
4、一阶惯性环节
G(
j)
1
Tj
1
1
e arctgT
1 T 22
L() 20 lg 1 T 22
() arg tgT
5-1 引言
频率特性是研究自动控制系统的一种工程方法,它 反映正弦信号作用下系统性能。应用频率特性可以 间接地分析系统的动态性能与稳态性能。频率特性 法的突出优点是组成系统的元件及被控对象的数学 模型若不能直接从理论上推出和计算时,可以通过 实验直接求得频率特性来分析系统的品质。其次, 应用频率特性法分析系统可以得出定性和定量的结 论,并且有明显的物理意义。在应用频率特性法分 析系统时,可以利用曲线,图表及经验公式,因此, 用频率特性法分析系统是很方便的。
1
T
() 45
L(dB) 0
20
40
60 ( )
0
1 T
精确特性
45
90
渐进特性
20dB/ dec
线性系统的频域分析法
转折频率:
n 1 T
+20dB/dec
2 2
L( ) 20 lg 1 T
20 0 -20
1 T
• 低频段:T 1时,
G ( j ) j T 1 1 2T 2 e j arctanT
0
幅相曲线:
Im
∞
ω=0
1 Re
A( ) 1 T 幅频特性:
2
2
( ) arctanT 相频特性:
伯德图:
1)对数幅频图
A( ) 1 2T 2
L(ω)/dB
L( ) 20 lg
20dB/dec
ω
( )
90 0 0.1 1 10
2)对数相频图
( ) G( j ) 90
ω
微分环节的对数坐标图
(4)惯性环节
1 传递函数: G ( s ) Ts 1
频率特性: G ( j )
1 1 j T j T 1 1 2 T 2 1 e j arctanT 1 2T 2 1 幅频特性: A( ) 1 2T 2
1 G( s ) Ts 1
解: 将s=jω代入,求得频率特性为:
1 G( j ) G( s ) s j jT 1 1 T j 2 2 2 2 1 T 1 T
1 1 2T 2
11
e j arctanT
2 2T 22 1 1 T ( ) G( j ) arctan T 相频特性: T 虚频特性: Q( ) Im[ G ( j )] 1 2T 2
R(s) C(s)
G(s)
结论: 稳定的系统,在正弦信号作用下其稳态 输出也是同频率的正弦信号,但振幅和相 位不同。
自动控制原理-胡寿松-第五章-线性系统的频域分析法
第四象限
第三象限
Mr
注意: (特殊点与趋势) 1. A(0) 1, (0) 0; A() 0, () 180 2. 与虚轴的交点 (转折点,是阻尼比的减函数) 2 (0 ) 3.有谐振时, 2 r , M r 为 的减函数 。当 2 0.707 时,谐振峰值 M r 1 。 2
7.延迟环节和延迟系统
1.典型环节
2.最小相位环节的频率特性
(考试、考研重点,nyquist图与bode图必须会画,概率图)
考试的标准画法
L(dB)
20
10
20 lg k
0
10
1
10
100
1000
o
( )
10
0
1
10
100
1000
10
比例环节的nyquist图与bode图
本节目录 1.典型环节 2.最小相位环节的频率特性(Nyquist图与bode图) 3.非最小相位环节的频率特性(Nyquist图与bode图) 4.系统的开环幅相曲线(Nyquist图) 5.系统的开环对数频率特性曲线(bode图)
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。 6.传递函数的频域实验确定
考试的标准画法
o
注意考察几个特殊点: A(0), (0);
积分环节的nyquist图与bode 图
A(), ()
与横轴的交点。 注意横竖坐标交点处的的横坐标值(如果交点处没标横坐标值,则斜线不到头)
比较交点不标记的情况
0
0
纯微分环节的Bode图
半对数坐标系中的直线方程(重要,bode图解计算时经常用到)
自动控制原理的MATLAB仿真与实践第5章 线性系统的频域分析
函数模型,如:tf(), zpk(), ss()。 bode(num,den):num,den分别为传递函数的分子与
margin(G);[Gm,Pm,Wcg,Wcp]= margin(G): 直接求出系统G的幅值裕度和相角裕度。 其中:Gm幅值裕度;Pm相位裕度;Wcg幅值裕度 处对应的频率ωc;Wcp相位裕度处对应的频率ωg。
nichols(G);nichols(G,w):绘制单位反馈系统开环传 递尼科尔斯曲线。
20
>>clear; num=[2, 3];den=[1, 2, 5, 7]; %G(s)的分子分母 多项式系数向量
p=roots(den) 求根结果:
%求系统的极点
p=
-0.1981 + 2.0797i
-0.1981 - 2.0797i
-1.6038 可见全为负根,则s右半平面极点数P=0。 绘制Nyquist曲线: >> nyquist(num,den) %绘制Nyquist曲线
本节分别介绍利用MATLAB进行频域绘图和频 率分析的基本方法。
6
5.2.1 Nyquist曲线和Bode图
MATLAB频率特性包括幅频特性和相频特性。 当用极坐标图描述系统的幅相频特性时,通常称为 奈奎斯特(Nyquist)曲线;用半对数坐标描述系 统的幅频特性和相频特性时,称为伯德(Bode) 图;在对数幅值-相角坐标系上绘制等闭环参数( M和N)轨迹图,称为尼克尔斯(Nichols)图。
线性系统的频域分析法
5.1 频率特性
lg
1 0
2
0.301
3
0.477
4
0.602
5
0.699
6
0.778
7
0.845
8
0.903
9
0.954
10
1
※※
( )
40
20 0dB -20 -40
2、对数频率特性曲线 [ 伯德(Bode)图 ]
L ( ) 20 lg A( ) 20 lg G ( j ) ( dB )
L ( ) 20 lg (T ) 1 20 lg T
2
当 T 即 T 1 时
L(ω)dB 40 20 0dB -20 - 40
1
T
1 T
当
1 T
时 时
20 lg T 0
20 lg T 20
dB
dB
10 T
频 率 特 性 : G ( j ) 1 j T 1
( ) tg T
1
A ( )
1 T 1
2 2
ω 1/10T φ (ω )(度) -5.7 L(ω )(dB)
从到值 取 代入计算,得
对数幅频特性曲线 Bode图如右
1/5T -11.3
1/2T -26.6
2.频域法的基本思想:利用系统的开环频率特 性来分析闭环响应。对系统进行定性分析和定量 计算。
3.频率特性的性质 考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
线性系统的频域分析法
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
自动控制原理 第五章(第一次课)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
自动控制原理第五章线性系统的频域分析法
自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。
(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。
非最小相位环节的频率特性。
(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。
单环系统开环对数频率持性的求取与绘制。
最小相位系统开环对数幅频特性与相频特性间的对应关系。
(4)奈奎斯特稳定判据幅角定理。
S平面与F平面的映射关系。
根据开环频率特性判别闭环系统稳定性的奈氏判据。
奈氏判据在多环系统中的应用和推广。
系统的相对稳定性。
相角与增益稳定裕量。
(5)二阶和高阶系统的频率域性能指标与时域性指标。
系统频率域性能指标。
二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。
(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。
用等M圆线从开环频率特性求取闭环频率特性。
用尼氏图线从开环对数频率特性求取闭环频率特性。
2、重点(l)系统稳态频率响应和暂态时域响应的关系。
(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。
(3)奈奎斯特稳定判据和稳定裕量。
5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。
频域分析是控制理论的一个重要分析方法。
5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。
自动控制原理第5章
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
第五章 频域分析
第五章 线性系统的频域分析法单元测试题(A )一、填空题:1、用频域法分析控制系统时,最常用的典型输入信号是_ __。
2、控制系统中的频率特性反映了 信号作用下系统响应的性能。
3、已知传递函数ss G 10)(=,其对应的幅频特性A(ω)=_ _,相频特性φ(ω)=___ ___。
4、常用的频率特性图示方法有极坐标图示法和_ _图示法。
5、对数频率特性曲线由对数 曲线和对数 曲线组成,是工程中广泛使用的一组曲线。
6、0型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
7、I 型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
8、Ⅱ型系统Bode 图幅频特性的低频段是一条斜率为 的直线。
9、除了比例环节外,非最小相位环节和与之相对应的最小相位环节的区别在于 。
10、传递函数互为倒数的典型环节,对数幅频曲线关于 0dB 线对称,对数相频曲线关于 线对称。
11、惯性环节的对数幅频渐进特性曲线在交接频率处误差最大,约为 。
12、开环幅相曲线的起点,取决于 和系统积分或微分环节的个数。
13、开环幅相曲线的终点,取决于开环传递函数分子、分母多项式中 和 的阶次和。
14、当系统的多个环节具有相同交接频率时,该交接频率点处斜率的变化应为各个环节对应的斜率变化值的 。
15、复变函数F(s)的零点为闭环传递函数的 ,F(s)的极点为开环传递函数的 。
16、系统开环频率特性上幅值为1时所对应的角频率称为 。
17、系统开环频率特性上相位等于-1800时所对应的角频率称为 。
18、延时环节的奈氏曲线为一个 。
19、ω从0变化到+∞时,惯性环节的频率特性极坐标图在__ _象限,形状为___ ___。
20、比例环节的对数幅频特性L(ω)= dB二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
)1、用频域法分析控制系统时,最常用的典型输入信号是( )。
A.脉冲函数B.斜坡函数C.阶跃函数D.正弦函数2、比例环节的频率特性相位移θ(ω)=( )。
线性系统的频域分析_自动控制原理
X G(-j )X d 1 G(s) 2 (s j ) S -j 2 2j s X G(j )X d 2 G(s) 2 (s - j ) S j 2 2j s G(j ) | G(j ) | e j G(-j ) | G(-j ) | e - j | G(j ) || G(-j ) |
第五章 线性系统的频域分析 §1 频率响应及其描述
一.频率特性 1.频率特性的基本概念 a.RC网络
右图所示的RC 网络的微分方程为
0 T dU dt U 0 U i
R UI C U0
式中
T RC 则
U 0 (S) U i (S)
1 TS 1
设 U i Asin t U 0 (S)
说明: 1.在稳态求出的输出信号 与输入信号的幅值比是 的非 线性函数, 称为幅频特性 Y/X | j ) | 2.输出信号与输入信号的 相位差是的非线性函数 ,称 为相频特性 .它描述在稳态情况下 ,当系统输入不同频率 的谐波信号时 , 其相位产生超前 ( 0 )或滞后( 0 )的 特性. 3.幅频特性和相频特性总 称为频率特性 , 记为 G(j ) G(j ) e jG(j ) 4.频率特性的求取 G(j ) G(s) s j
X(t) xsint Y(S)
B( s ) x ( s s1 )( s s2 ) ( s sn ) (s j )(s - j ) d1 d2 c1 cn s j s j s s1 s sn
y(t) d1e - jt d 2e jt c1e s1t c n e sn t 对于稳定系统 ,由于极点S1 , S2 , , Sn都有负实部 , 所以当t 时 y ss ( t ) d1e jt d 2e jt
第五章频率特性分析法
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
自动控制原理 第五章-2
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
第5章线性系统的频域分析方法
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
自动控制原理第五章 线性系统的频域分析法-5-6
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
自动控制,线性系统的频域分析法习题
,
试确定系统稳定时的 值范围。
解:计算临界点, , ;
, ;
使闭环系统稳定的 值范围: 。
5-18设单位反馈系统的传递函数为
,
试确定闭环系统稳定时的 值范围。
解:计算临界点, , ;
, , 。
使闭环系统稳定时的 值范围: 。
5-19设单位反馈系统的传递函数为
,
试确定相角裕度为45o时参数a的值。
环系统稳定。
采用稳定裕度判断,
;
, ;
;
,解得, ,
; ;
最小相位系统, 且 ,闭环系统稳定。
5-16 已知两个最小相位系统开环对数相频特性曲线如图所示。试分别确定系统的稳定性。鉴于改变系统开环增益可使系统剪切频率变化,试确定闭环系统稳定时,剪切频率 的范围。
解:右图:闭环系统稳定; , ;左图:闭环系统不稳定; 。
,
试分别绘制 时的概略开环幅相曲线。
解: , ; , ;
和 都是递减函数。所有幅相曲线的终止相角均小于起始相角180o,以 趋于原点。
当 时,有 , ,与负实轴有交点 。
5-5已知系统开环传递函数
,
试分别计算 和 时,开环频率特性的幅值 和相位 。
解: ,
, ;
,
, 。
5-6已知系统开环传递函数
5-7 ,
第五章 线性系统的频域分析法
5-1若系统的单位阶跃响应
,
试确定系统的频率特性。
解: , , ;
, 。
或: ; ;
5-2 设系统如下图所示,试确定输入信号
作用下,系统的稳态误差 。
解: ;
, ;
, ;
答案: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1 频率特性的概念 5-2 典型环节频率特性的绘制 5-3 系统开环频率特性的绘制 5-4 奈奎斯特稳定判据 5-5 控制系统的相对稳定性 5-6 闭环频率特性
1
5.1
频域特性的概念
线性定常系统的传递函数为
Y(s) =G s) ( X(s)
输入信号为
x(t) = X si ω n t
10
0
−10
20log K
1
10
2 l G jω) =2 l K 0g ( 0g
相频特性为
100
1000
ω
度 φ( ) ω
100
∠ ( jω) =0 G 如图所示,是一条与角频率ω无关且与 ω轴重合的直线。
0
00
10
−900 −1800
100
1000
ω
图 5-7 放大环节的Bode图
16
2. 积分环节 积分环节的频率特性是
返回
7
5.2 典型环节频率特性的绘制
5.2.1 典型环节的幅相特性曲线(极坐标图) 以角频率ω为参变量, 以角频率ω为参变量,根据系统的幅频特性 G jω) 和相频特 ( 性 ∠ ( jω) 在复平面 [G( jω)] 上绘制出的频率特性叫做幅相特性曲 G 线或频率特性的极坐标图。它是当角频率ω 线或频率特性的极坐标图。它是当角频率ω从0到无穷变化时, 到无穷变化时, 矢量 G jω)H( jω) ejφ 的矢端在 [G ] 平面上描绘出的曲线。 ( H 平面上描绘出的曲线。 曲线是关于实轴对称的。 曲线是关于实轴对称的。
二阶微分环节与振荡节的Bode 图关于ω轴对称,渐近线的转 折频率为 1 ,相角变化范围是00 至+1800。
精 特 确 性
+4 d d 0 B/ ec
1
φ(ω)
τ
10
1
τ
ω
渐 特 近 性
1 0 8
0
τ
9 0 0
00
ω
图5-12 二阶微分环节的Bode图
21
5.3 系统开环频率特性的绘制
5.3.1 绘制系统开环频率特性极坐标图的步骤 1. 2. 3. 4. 将系统开环传递函数分解成若干典型环节的串联形式; 典型环节幅频特性相乘得到系统开环幅频特性, 典型环节幅频特性相乘得到系统开环幅频特性, 典型环节相频特性相加得到系统开环相频特性; 如幅频特性有渐近线, 如幅频特性有渐近线,则根据开环频率特性表达式的实 部和虚部, 部和虚部,求出渐近线; 最后在G 最后在 G(jω)H(jω) 平面上绘制出系统开环频率特性的极 坐标图。 坐标图。
−45
1
ω =1/T
图5-3
惯性环节的频率响应
11
4. 振荡环节 振荡环节的传递函数是
其频率特性是
1 G s) = 2 2 ( T s +2 T +1 ξs
(5-15) 15)
1 1 G jω) = ( = 2 2 −T ω + j2 Tω +1 (1−T2ω2 ) + j2 Tω ς ς
幅频特性和相频特性分别为
振荡环节的频率响应
13
5. 一阶微分环节
典型一阶微分环节的频率特性为
G jω) = jτω+1 (
其中τ为微分时间常数。 其中τ为微分时间常数。 幅频特性和相频特性分别为
Im
∞
τω
G
ω
∠ G
G jω) = τ ω +1 (
2 2
0
图5-5
ω =0
1
∠ ( jω) = arctg G τω
R e
一阶微分环节的频率响应
17
3. 惯性环节 惯性环节的频率特性是
G jω) = ( 1 jT +1 ω
db L(ω)
10
11 0 20 T 11 10 T
11 5T
1 1 2 T T
1 10 T
1 20 T
ω
−10
−20
精确 特性
渐近特 性 −20dB/ dec
其对数幅频特性是
φ(ω)
20l G jω) = 20l g ( g = − lg 1+T2ω2 20
22
5.
5.3.2 绘制系统开环频率特性伯德图的步骤 1. 将系统的开环传递函数写成典型环节乘积(即串联) 将系统的开环传递函数写成典型环节乘积(即串联)的形 式; 如果存在转折频率, 如果存在转折频率,在ω轴上标出转折频率的坐标位置; 由各串联环节的对数幅频特性叠加后得到系统开环对数幅 频特性的渐近线; 修正误差, 修正误差,画出比较精确的对数幅频特性; 画出各串联典型环节相频特性, 画出各串联典型环节相频特性,将它们相加后得到系统开 环相频特性。 环相频特性。
3
系统的输出为
y(t) = b − jωt +b jωt + a es1t + e e 1 +a2es2t ⋯ anesnt +
(5(5-1)
对稳定系统,s 对稳定系统,s1,s2,….sn都具有负实部,当时间t趋于无穷大 都具有负实部,当时间t 时,上式的暂态分量将衰减至零。因此系统的稳态响应为
G jω) = ( 1 jω
Im
ω =∞
−900
[G ]
R e
幅频特性和相频特性分别为
1 1 ( = G jω) = jω ω
频率特性如图所示。
∠ ( jω) = −arctg = −900 G 0
ω
ω →0
图5-2 积分环节的频率响应
积分环节对正弦输入信号有900的滞后作用;其幅频 1 特性等于 ω ,是ω的函数,
G jω) = ( 1 ( −T2ω2)2 +4 2T2ω2 1 ξ
2T ξ ω ∠ ( jω) = − r tg G ac 1−T2ω2
12
振荡环节的幅频特性和相频特性均与阻尼比ξ有关, 不同阻尼比的频率特性曲线如图所示。
Im
ω =∞
φr
[G]
1
R e
0
ωn ωn ωn
ωn
ω =0
M r
ωr
图5-4
20
6. 二阶微分环节
二阶微分环节的频率特性是
返回
G jω) =( −τ 2ω2) + j2 ( 1 ξτω
其对数幅频特性为
20lg G jω) =20lg ( −τ 2ω2)2 +4 2τ 2ω2 ( 1 ξ
d B
相频特性为
4 0 2 0
011
10 τ
2 ξτω ∠ ( jω) = arctg G 1−τ 2ω2
(5-9)
式中 Y = G jω) X 为稳态输出信号的幅值。 为稳态输出信号的幅值。 ( 上式表明, 上式表明,线性定常系统对正弦输入信号的稳态响应仍然 是与正弦输入信号同频率的正弦信号;输出信号的振幅是输入 信 号 振 幅 的 G jω) 倍 ; 输 出 信 号 相 对 输 入 信 号 的 相 移 ( G 为 φ =∠ ( jω);输出信号的振幅及相移都是角频率 ω的函数。 的函数。
1 1+T2ω2
00
−450
ω
−900
图5-9 惯性环节的Bode图
4. 一阶微分环节 一阶微分环节频率特性为
db L(ω) 20
10
精 特 确 性
+20dB/ dec
G jω) = jτω+1 (
其对数幅频特性是
0
度
0
+90
φ(ω)
1 1 100 τ
11 10 τ
1
τ渐 特 τ 近 性
10
1
100
G G jω) = G jω) ej∠ ( jω) ( (
(5-10) 10)
称为系统的频率特性,它反映了在正弦输入信号作用下, 称为系统的频率特性,它反映了在正弦输入信号作用下,系统 的稳态响应与输入正弦信号的关系。 的稳态响应与输入正弦信号的关系。
6
其中
Y G jω) = ( ) ( ω X
(5(5-11)
dB L(ω)
0
−20
11 10 T 1 T
低频渐近线
db L(ω)
1 10 T
−40dB/ dec
−40
高频渐近线
ω
20
ζ = 0.05
ζ =0.5
0
11 10 T
1 T
1 10 T
ω
ζ =1.0
40db/ dec
−40
图5-11(a) 振荡环节渐近线对数幅频特性
图5-11(b) 振荡环节对数幅频率特性图
8
1. 放大环节(比例环节) 放大环节的传递函数为 G s) = K ( 其对应的频率特性是 G jω) = K ( (5-13)
Im
(5-14)
其幅频特性和相频特性分别为
G jω) = K (
∠ ( jω) = 0° G
0
ω =0→∞
.
K
R e
图5-1 放大环节的频率响应
9
2. 积分环节 积分环节的频率特性
0
τ [G]
1
R e
2 ξτω ∠ ( jω) = a G rctg 1−τ 2ω2
二阶微分环节频率特性曲线如图所示
ω =0
图5-6 二阶微分环节频率特性图
15
5.2.2 典型环节频率特性的伯德图 1. 放大环节(比例环节) 放大环节的频率特性为 对数幅频特性为
dB L(ω)
G jω = K(K 大 零 常 20 ) ( ) 为 于 的 数
1
τ
ω
20lg G jω) =20lg τ 2ω2 +1 (