线性系统的频域分析报告

合集下载

线性系统的频域分析

线性系统的频域分析

第五章 线性系统的频域分析频域分析法是应用频率特性研究线性系统的一种经典方法。

它以控制系统的频率特性作为数学模型,以伯德图或其他图表作为分析工具,来研究、分析控制系统的动态性能与稳态性能。

频域分析法由于使用方便,对问题的分析明确,便于掌握,因此和时域分析法一样,在自动控制系统的分析与综合中,获得了广泛的应用。

本章研究频率特性的基本概念、典型环节和控制系统的频率特性曲线、奈奎斯特稳定判据以及开环频域性能分析等内容。

§5-1 频率特性的基本概念一、频率特性的基本概念频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性,对于线性系统,若其输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但其幅值和相位都不同与输入量。

下面以RC 电路为例,说明频率特性的基本概念。

图5-1所示的RC 电路,)(t u i 和)(0t u 分别为电路的输入电压和输出电压,电路的微分方程为:)()()(00t u t u dtt du Ti =+ 式中T=RC 为电路的时间常数。

RC 电路的传递函数为11)()(0+=Ts s U s U i (5-1) Rui )t图 5-1 RC 电路当输入电压为正弦函数t U t u i i ωsin )(=,则由式(5-1)可得22011)(11)(ωω+⋅+=+=s U Ts s U Ts s U i i 经拉氏反变换得电容两端的输出电压)sin(11)(122/220T tg t T U e T T U t u iT t i ωωωωω---+++=式中,第一项为输出电压的暂态分量,第二项为稳态分量,当∞→t 时,第一项趋于零,于是)sin(1|)(1220T tg t T U t u i t ωωω-∞→-+=)](sin[)(ωϕωω+=t A U i (5-2)式中:2211)(TA ωω+=,T tgωωϕ1)(--=,分别反映RC 网络在正弦信号作用下,输出稳态分量的幅值和相位的变化,二者皆是输入正弦信号频率ω的函数。

线性系统的频域分析实验心得

线性系统的频域分析实验心得

线性系统的频域分析实验心得
1·熟练掌握用 MATLA语句绘制频域曲线。

2·掌握控制系统频域范围内的分析校正方法。

3掌握用频率特性法进行串联校正设计的思路和步骤
某单位负反馈控制系统的开环传递函数4为,试设计一超前校正装置,G(s)1、' s(s 1)K. 20s 150使校正后系统的静态速度误差系数,相位裕量,增益裕量20lgK10dB
绘制伯德图程序,以及计算穿越频率,相位裕量ans =相位 Inf 9.0406频率Inf 3.1425>e=5; r=50; rO=9; >>[gm1,pm1,wcg1,wcp1]=marg in(num 0,de nO);phic=(r-rO+e)*pi/180;
[gm1,pm1,wcg1,wcp1]=margi n(num 0,de nO);>>alpha=(1+s in (phic))/(1-si n(phic))[gm1,pm1,wcg1,wcp1]=margin(num 0,de n0); alpha =6.1261 [gm1,pm1,wcg1,wcp1]=marg in(num 0,de n0);lgm1,pm1,wcg1,wcp1]
通过MATLAB寸系统进行校正,可以清晰明了的显示矫正过程,以及矫正结果,方便快捷。

这种基于MATLAB的方法对于系统的设计非常实用。

值得以后再学习过程中认真领悟学习!! ! ! !。

实验三线性系统的频域分析报告

实验三线性系统的频域分析报告

自动控制理论上机实验报告学院:机电工程学院班级:13 级电信一班姓名:学号:实验三 线性系统的频域分析一、实验目的1.掌握用 MATLAB 语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及 MATLAB 函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系 统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表 达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种 :Nyquist 图、 Bode 图和 Nichols 图。

1) Nyquist 图的绘制与分析MATLAB 中绘制系统 Nyquist 图的函数调用格式为 :nyquist(num,den) 频率响应 w 的范围由软件自动设定 nyquist(num,den,w) [Re,Im]= nyquist(num,den)量,不作图例 4-1: 已知系统的开环传递函数为 G(s) 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); pnyquist(num,den)极点的显示结果及绘制的 Nyquist 图如图 4-1 所示。

由于系统的开环右根数 P=0,系统的 Nyquist 曲线没有逆时针包围 (-1 ,j0 )点,所 以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668频率响应 w 的范围由人工设定返回奈氏曲线的实部和虚部向2s 63 2,试绘制 Nyquist s 2s 5s 2图 4-1 开环极点的显示结果及 Nyquist 图若上例要求绘制(10 2,103 )间的Nyquist 图,则对应的MATLAB语句为: num=[2 6];den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100 个等距离的点nyquist(num,den,w)2) Bode图的绘制与分析系统的Bode 图又称为系统频率特性的对数坐标图。

自动控制原理课件:线性系统的频域分析

自动控制原理课件:线性系统的频域分析
曲线顺时针方向移动一周时,在 平面上的映射曲线按逆时针方向
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n

i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2

L3 ( )
L2 ( )
40dB / dec
( )
0
L( )

90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1

0


30

60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于

自动控制理论 线性系统的频域分析法

自动控制理论  线性系统的频域分析法
A() P2 () Q2 ()
() tg 1 Q() P( )
线性系统的频域分析法>>线性系统的频域特性
频率特性与传递函数的关系为:
G( j ) G(s) |s j
由于这种简单关系的存在,频率响应法和利用传递函数的时域 法在数学上是等价的。
[结论]:当传递函数中的复变量s用 j代替时,传递函数就转变
第六章 线性系统的频域分析法
1 线性系统的频率特性及图示 2 开环系统的典型环节 3 频率域稳定判据 4 稳定裕度 5 闭环系统的频域特性
线性系统的频域分析法>>线性系统的频域特性
6.1 频率特性的基本概念
考察一个系统的好坏,通常用阶跃输入下系统的阶跃响应 来分析系统的动态性能和稳态性能。
有时也用正弦波输入时系统的响应来分析,但这种响应并 不是单看某一个频率正弦波输入时的瞬态响应,而是考察频率 由低到高无数个正弦波输入下所对应的每个输出的稳态响应。 因此,这种响应也叫频率响应。
N (s)
Rm
(s p1)(s p2 )...(s pn ) (s p1)(s p2 )...(s pn ) (s j )(s j )
k1 k2 ... kn kc1 kc2
s p1 s p2
s pn s j s j
拉氏反变换为:
c(t) k1e p1t k2e p2t ... kne pnt kc1e jt kc2e jt
频率响应法的优点之二在于它可以用图来表示,这在控制 系统的分析和设计中有非常重要的作用。
由实验方法求频率特性
正弦信号 发生器
实验装置 (系统或元件)
双踪 示波器
图 求频率特性的实验方法
系统的幅频特性: | G( j) | Y

线性系统的频域分析法

线性系统的频域分析法

第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。

图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。

稳定系统的频率特性可通过实验的方法确定。

5-2 频率特性与传递函数的关系是什么?试证明之。

证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。

证明如下。

假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。

5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。

答频率特性的几何表示一般有3种方法。

⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。

它以频率为参变量,以复平面上的矢量来表示的一种方法。

由于与对称于实轴,所以一般仅画出的频率特性即可。

⑵对数频率特性曲线(伯德图)。

此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。

横坐标为,但常用对数分度。

对数幅频特性的纵坐标为,单位为dB。

对数相频特性的纵坐标为,单位为“。

”(度)。

和都是线性分度。

横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。

⑶对数幅相频率特性曲线(尼柯尔斯曲线)。

这种方法以为参变量,为横坐标,为纵坐标。

5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。

①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。

典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法

自动控制原理第五章线性系统的频域分析法1、基本内容和要点(l)频率特性系统的稳态频率响应,频率响应的物理概念及数学定义;求取频率特性的分析法和实验法。

(2)典型环节的频率特性比例、惯性、积分、微分、振荡、延迟环节的频率特性和对数频率特性。

非最小相位环节的频率特性。

(3)反馈控制系统的开环频率特性研究系统开环频率特性的意义。

单环系统开环对数频率持性的求取与绘制。

最小相位系统开环对数幅频特性与相频特性间的对应关系。

(4)奈奎斯特稳定判据幅角定理。

S平面与F平面的映射关系。

根据开环频率特性判别闭环系统稳定性的奈氏判据。

奈氏判据在多环系统中的应用和推广。

系统的相对稳定性。

相角与增益稳定裕量。

(5)二阶和高阶系统的频率域性能指标与时域性指标。

系统频率域性能指标。

二阶和高阶系统暂态响应性能指标与频率域性能指标间的解析关系及近似关系。

(6)系统的闭环频率特性开环频率特性与闭环频率特性间的解析关系。

用等M圆线从开环频率特性求取闭环频率特性。

用尼氏图线从开环对数频率特性求取闭环频率特性。

2、重点(l)系统稳态频率响应和暂态时域响应的关系。

(2)系统开环频率特性的绘制,最小相位系统开环频率特性的特点。

(3)奈奎斯特稳定判据和稳定裕量。

5-1引言第三章,时域分析,分析系统零、极点与系统时域指标的关系;典型二阶系统极点或和n与时域指标tp、和t、tr及稳态误差等的关系,及高阶系统的近似指标计算;第四章,根轨迹分析,研究系统某一个参数变化对系统闭环极点的影响;本章讨论系统零、极点对系统频率域指标的关系,频域指标又分开环频域指标和闭环频域指标,它们都是在频域上评价系统性能的参数。

频域分析是控制理论的一个重要分析方法。

5-2频率特性1.频率特性的基本概念理论依据定理:设线性定常系统G()的输入信号是正弦信号某(t)某int,在过度过程结束后,系统的稳态输出是与输入同频率的正弦信号,其幅值和相角都是频率的函数,即为c(t)Y()in[t()]。

实验四 线性系统的频域分析

实验四 线性系统的频域分析

实验四线性系统的频域分析
线性系统的频域分析是一种利用线性系统的响应特性来提高系统性能的有效手段,它
在系统设计中起着重要的作用。

其主要思想是将系统的响应特性根据其与频率之间的关系
进行分割,从而更好地理解该响应的物理规律。

本文的目的是介绍线性系统的频域分析方法。

线性系统的频域分析分为时域分析和频域分析两种技术。

时域分析是检测一个系统在
其他变量没有变化时,系统输出信号形状及其随时间变化趋势的一种分析方法。

时域分析中,将系统的输入和输出逐样本放入示波器进行分析及测试。

频域分析是通过将系统的输
入和输出信号进行频谱分析,将它们映射到频率轴上进行分析的一种方法。

在频域分析中,我们可以通过频谱分析仪、傅里叶变换、系统增益、阶跃响应等技术来检测系统响应的特性,得出系统的频率响应函数,从而研究系统是否属于线性系统。

线性系统的频域分析一般步骤如下:
1、定义时域函数并将其傅里叶变换,从而得到其频域函数;
2、计算系统的增益及其全频响应曲线,以便了解频率和增益之间的关系;
3、根据阶跃响应的拟合结果,利用积分和微分的技巧,确定系统的阶跃函数;
4、选择优化算法,进行系统参数优化调整,使系统达到所需要的设计目标。

以上就是线性系统的频域分析方法介绍,从分析输入输出信号,到频域拟合分析,再
到进行参数优化调整,这一系列的步骤可以帮助我们更好的理解系统的物理机理,实现系
统的最佳设计性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1γ=50 20-=sK0原系统的伯德图:num/den =1.2347 s + 1 ------------- 0.20154 s + 1校正之后的系统开环传递函数为:num/den =6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 salpha =6.1261;P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec)-20020406080M a g n i t u d e (d B )[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc)disp('УÕýÖ®ºóµÄϵͳ¿ª»·´«µÝº¯ÊýΪ:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.');grid; ylabel('·ùÖµ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2);semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('Ïàλ(0)'); xlabel('ƵÂÊ(rad/sec)');title(['УÕýÇ°£º·ùÖµÔ£Á¿=',num2str(20*log10(gm1)),'db','ÏàλԣÁ¿=',num2str(pm1),'0';'УÕýºó£º·ùÖµÔ£Á¿=',num2str(20*log10(gm)),'db','ÏàλԣÁ¿=',num2s tr(pm),'0']);10-110101102-60-40-2002040幅值(d b )--Go,-Gc,GoGc10-110101102-300-200-1000100相位(0)频率(rad/sec)矫正后系统的伯德图矫正之前系统单位阶跃响应矫正之后系统的单位阶跃响应:比较矫正前后系统的响应情况:可以看出超前矫正使系统的调节时间变短,响应更加迅速,但是超调量偏大,对改善系统的动态性能起到了巨大的作用。

2.某单位负反馈控制系统的开环传递函数为3)1()(+=s ks G ,试设计一个合适的滞后校正网络,使系统阶跃响应的稳态误差约为0.04,相角裕量约为045。

原系统的伯德图: ans =0.3200 -30.0045 1.7322 2.7477num0=25; den0=conv([1,1],conv([1,1],[1,1])); w=logspace(-1,1.2);[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]margin(num0,den0) grid;由此可以看出,相位裕量小于0,系统不稳定。

-40-202040M a g n i t u d e (d B )101010-270-180-90P h a s e (d e g )Bode DiagramGm = -9.9 dB (at 1.73 rad/sec) , P m = -30 deg (at 2.75 rad/sec)Frequency (rad/sec)num0=25; den0=conv([1,0],conv([1,0],[1,0])); w=logspace(-1,1.2); [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]margin(num0,den0) grid;e=10; r=45; r0=pm1; phi=(-180+r+e);[il,ii]=min(abs(phase1-phi));wc=w( ii); beit=mag1(ii); T=10/wc; numc=[ T,1]; denc=[ beit*T,1]; [num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wcp]=margin(num,den);printsys(numc,denc)disp('УÕýÖ®ºóµÄϵͳ¿ª»·´«µÝº¯ÊýΪ:'printsys(num,den) [mag2,phase2]=bode(numc,denc,w);[mag,phase]=bode(num,den,w);),'-.');grid; ylabel('·ùÖµ(db)'); title('--Go,-Gc,GoGc');subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('Ïàλ(0)'); xlabel('ƵÂÊ(rad/sec)');title(['УÕýÇ°£º·ùÖµÔ£Á¿=',num2str(20*log10(gm1)),'db','ÏàλԣÁ¿=',num2str(pm 1),'0';'УÕýºó£º·ùÖµÔ£Á¿=',num2str(20*log10(gm)),'db','ÏàλԣÁ¿=',num2str(pm),'0']);101010102-150-100-50050100幅值(d b )--Go,-Gc,GoGc101010102-200-100100相位(0)频率(rad/sec)矫正后系的伯德图统矫正前系统的单位阶跃响应矫正后系统的单位阶跃响应由矫正前后系统的单位阶跃响应比较可以看出,系统进过矫正之后由不稳定变为稳定。

3.某单位负反馈控制系统的开环传递函数为)2)(1()(++=s s s Ks G ,试设计一滞后-超前校正装置,使校正后系统的静态速度误差系数110-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20≥。

原系统伯德图及程序:-150-100-5050M a g n i t u d e (d B )10101010-270-225-180-135-90P h a s e (d e g )Bode DiagramGm = 1.58 dB (at 1.41 rad/sec) , P m = 5.02 deg (at 1.29 rad/sec)Frequency (rad/sec)程序:num0=5; den0=conv([1,0],conv([1,1],[1,2]));w=logspace(-1,1.2);[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]margin(num0,den0) grid; ans =1.2000 5.0239 1.4142 1.2885系统稳定裕量过小,临界稳定。

相关文档
最新文档