高中数学新课 集合与简易逻辑 教案 (1)

合集下载

集合与简易逻辑教案jiaoan

集合与简易逻辑教案jiaoan

集合与简易逻辑教案一、教学目标1. 了解集合的概念,能够正确表示集合,并掌握集合的基本运算。

2. 学习简易逻辑的基本概念,能够运用简易逻辑解决问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 集合的概念和表示方法集合的定义集合的表示方法(列举法、描述法)集合的基本运算(并集、交集、补集)2. 简易逻辑的概念和应用简易逻辑的定义简易逻辑的规则(矛盾律、排中律、同一律)简易逻辑在解决问题中的应用三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握集合和简易逻辑的概念。

2. 使用案例分析和练习题,让学生通过实际应用来加深对集合和简易逻辑的理解。

3. 鼓励学生进行小组讨论和合作,培养学生的团队合作能力和交流表达能力。

四、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况,评估学生对集合和简易逻辑的理解程度。

2. 练习题完成情况:检查学生完成练习题的正确率和解题思路,评估学生对集合和简易逻辑的掌握程度。

3. 小组讨论报告:评估学生在小组讨论中的表现和合作能力,以及对集合和简易逻辑的理解和应用能力。

五、教学资源1. 教学PPT:提供集合和简易逻辑的概念、例题和练习题,方便学生理解和巩固知识点。

2. 练习题:提供相关的练习题,帮助学生巩固集合和简易逻辑的知识点。

3. 案例分析:提供相关的案例分析,让学生能够将集合和简易逻辑应用到实际问题中。

六、教学步骤1. 引入集合概念:通过现实生活中的实例,如班级学生、家庭成员等,引导学生理解集合的概念。

2. 表示集合:讲解列举法和描述法的区别和运用,让学生通过具体例子学会表示集合。

3. 集合运算:介绍并集、交集、补集的定义和运算方法,通过例题展示运算过程,让学生分组练习。

七、教学步骤(续)4. 简易逻辑概念:引入简易逻辑的概念,解释矛盾律、排中律、同一律的含义。

5. 逻辑推理:通过逻辑推理题目,让学生运用简易逻辑规则解决问题,增强逻辑思维能力。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的定义与表示方式集合的定义集合的表示方法:列举法、描述法1.2 集合之间的关系子集、真子集、非子集集合的包含关系1.3 集合的基本运算并集、交集、补集集合的运算规律第二章:逻辑推理与命题2.1 逻辑推理的基本概念推理、归纳推理、演绎推理2.2 命题与命题联结词命题的定义与分类命题联结词:且、或、非2.3 命题的真假判断命题的真假性质真值表与逻辑等价式第三章:简易逻辑3.1 简易逻辑的基本概念逻辑常数、逻辑运算符逻辑等价式与蕴含式3.2 简易逻辑的推理规则蕴含式与等价式的转换推理规则:德摩根定律、分配律、结合律3.3 简易逻辑的应用逻辑判断与推理的应用实例简易逻辑在数学证明中的应用第四章:不等式与不等式组4.1 不等式的定义与性质不等式的概念与表示方法不等式的基本性质:传递性、同向可加性4.2 不等式组的解法不等式组的表示方法解一元一次不等式组、二元一次不等式组4.3 不等式的应用不等式在实际问题中的应用不等式在几何问题中的应用第五章:函数的概念与性质5.1 函数的定义与表示方法函数的概念与要素函数的表示方法:解析法、表格法、图象法5.2 函数的性质函数的单调性、奇偶性、周期性函数的图像特点5.3 函数的应用函数在实际问题中的应用函数在几何问题中的应用第六章:集合的幂集与排列组合6.1 幂集的概念与性质幂集的定义幂集的性质与运算6.2 排列组合的基本概念排列、组合的定义排列数、组合数的计算公式6.3 排列组合的应用排列组合在实际问题中的应用排列组合在排列组合问题中的应用第七章:事件的概率与随机变量7.1 概率的基本概念概率的定义与性质古典概率、条件概率、独立事件的概率7.2 随机变量的概念与性质随机变量的定义与分类随机变量的分布函数与期望值7.3 概率分布的应用概率分布解决实际问题概率分布在不确定性决策中的应用第八章:数列的概念与性质8.1 数列的定义与表示方法数列的概念与要素数列的表示方法:通项公式、列表法、图象法8.2 数列的性质数列的单调性、周期性、收敛性数列的极限概念8.3 数列的应用数列在实际问题中的应用数列在数学分析中的应用第九章:函数的极限与连续性9.1 函数极限的概念与性质函数极限的定义与性质无穷小、无穷大的概念9.2 函数的连续性函数连续性的定义与性质连续函数的运算性质9.3 函数极限与连续性的应用函数极限与连续性在实际问题中的应用函数极限与连续性在数学分析中的应用第十章:集合与简易逻辑的综合应用10.1 集合与逻辑在数学问题中的应用集合与逻辑在数学证明中的应用集合与逻辑在数学分析中的应用10.2 集合与逻辑在其他学科中的应用集合与逻辑在物理学中的应用集合与逻辑在计算机科学中的应用10.3 集合与逻辑在生活中的应用集合与逻辑在日常生活中的应用集合与逻辑在思维训练中的应用重点和难点解析重点环节1:集合的表示方法与之间的关系集合的表示方法:列举法、描述法集合之间的关系:子集、真子集、非子集;集合的包含关系重点环节2:逻辑推理的基本概念与命题联结词推理、归纳推理、演绎推理命题联结词:且、或、非重点环节3:命题的真假判断与真值表命题的真假性质真值表与逻辑等价式重点环节4:简易逻辑的基本概念与推理规则逻辑常数、逻辑运算符推理规则:德摩根定律、分配律、结合律重点环节5:不等式与不等式组的解法与应用不等式的性质:传递性、同向可加性不等式组的解法:一元一次不等式组、二元一次不等式组重点环节6:幂集的概念与性质幂集的定义幂集的性质与运算重点环节7:事件的概率与随机变量的概念概率的定义与性质随机变量的定义与分类重点环节8:数列的性质与应用数列的单调性、周期性、收敛性数列的极限概念重点环节9:函数的极限与连续性函数极限的定义与性质函数的连续性重点环节10:集合与逻辑的综合应用集合与逻辑在数学问题中的应用集合与逻辑在其他学科中的应用全文总结和概括:本文主要分析了《集合与简易逻辑》数学教学教案中的重点环节,包括集合的表示方法与之间的关系、逻辑推理的基本概念与命题联结词、命题的真假判断与真值表、简易逻辑的基本概念与推理规则、不等式与不等式组的解法与应用等方面。

高三数学第一轮复习教案(第一章集合与简易逻辑7课时)

高三数学第一轮复习教案(第一章集合与简易逻辑7课时)

第一章 集合与简易逻辑第1课时 集合的概念一.课题:集合的概念二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用. 四.教学过程: (一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n个,真子集有21n-,非空子集有21n-个,非空真子集有22n-个. (二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么; 2.弄清集合中元素的本质属性,能化简的要化简; 3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化. (三)例题分析:例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则( D )()A P F =()B Q E = ()C E F =()D Q G =解法要点:弄清集合中的元素是什么,能化简的集合要化简.例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .解:∵P Q =且0Q ∈,∴0P ∈.(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠; (2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠; 当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩ ②由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-.例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则( B )()A M N = ()B M N ⊂≠ ()C M N ⊇ ()D MN φ=解法一:通分; 解法二:从14开始,在数轴上表示. 例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意; (3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-.例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==, (1)求证:A B ⊆;(2)如果{1,3}A =-,求B .解答见《高考A 计划(教师用书)》第5页.(四)巩固练习:1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个.2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-. 3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 . 4.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是112.五.课后作业:《高考A 计划》考点1,智能训练4,5,6,7,8,9,11,12.第2课时 集合的运算一.课题:集合的运算二.教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴或文氏图进行集合的运算,进一步掌握集合问题的常规处理方法.三.教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 四.教学过程: (一)主要知识:1.交集、并集、全集、补集的概念;2.AB A A B =⇔⊆,A B A A B =⇔⊇;3.()U U U C A C B C A B =,()U U U C A C B C A B =.(二)主要方法:1.求交集、并集、补集,要充分发挥数轴或文氏图的作用;2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键.(三)例题分析:例1.设全集{}|010,U x x x N *=<<∈,若{}3AB =,{}1,5,7U AC B =,{}9U U C A C B =,则A ={}1,3,5,7,B ={}2,3,4,6,8. 解法要点:利用文氏图.例2.已知集合{}32|320A x x x x =++>,{}2|0B x x ax b =++≤,若{}|02A B x x =<≤,{}|2A B x x =>-,求实数a 、b 的值.解:由32320x x x ++>得(1)(2)0x x x ++>,∴21x -<<-或0x >,∴(2,1)(0,)A =--+∞,又∵{}|02A B x x =<≤,且{}|2A B x x =>-,∴[1,2]B =-,∴1-和2是方程20x ax b ++=的根, 由韦达定理得:{1212a b -+=--⨯=,∴{12a b =-=-. 说明:区间的交、并、补问题,要重视数轴的运用.例3.已知集合{(,)|20}A x y x y =-=,1{(,)|0}2y B x y x -==-,则A B =φ; A B ={(,)|(2)(1)0}x y x y y --=;(参见《高考A 计划》考点2“智能训练”第6题).解法要点:作图.注意:化简{(,)|1,2}B x y y x ==≠,(2,1)A ∈.例4.(《高考A 计划》考点2“智能训练”第15题)已知集合222{|(1)(1)0}A y y a a y a a =-++++>,215{|,03}22B y y x x x ==-+≤≤,若A B φ=,求实数a 的取值范围. 解答见教师用书第9页.例5.(《高考A 计划》考点2“智能训练”第16题)已知集合{}2(,)|20,A x y x mx y x R =+-+=∈,{}(,)|10,02B x y x y x =-+=≤≤,若A B φ≠,求实数m 的取值范围.分析:本题的几何背景是:抛物线22y x mx =++与线段1(02)y x x =+≤≤有公共点,求实数m 的取值范围.解法一:由{22010x mx y x y +-+=-+=得2(1)10x m x +-+= ①∵A B φ≠,∴方程①在区间[0,2]上至少有一个实数解,首先,由2(1)40m ∆=--≥,解得:3m ≥或1m ≤-. 设方程①的两个根为1x 、2x ,(1)当3m ≥时,由12(1)0x x m +=--<及121x x ⋅=知1x 、2x 都是负数,不合题意; (2)当1m ≤-时,由12(1)0x x m +=-->及1210x x ⋅=>知1x 、2x 是互为倒数的两个正数, 故1x 、2x 必有一个在区间[0,1]内,从而知方程①在区间[0,2]上至少有一个实数解, 综上所述,实数m 的取值范围为(,1]-∞-.解法二:问题等价于方程组{221y x mx y x =++=+在[0,2]上有解,即2(1)10x m x +-+=在[0,2]上有解,令2()(1)1f x x m x =+-+,则由(0)1f =知抛物线()y f x =过点(0,1),∴抛物线()y f x =在[0,2]上与x 轴有交点等价于2(2)22(1)10f m =+-+≤ ①或22(1)401022(2)22(1)10m mf m ∆=--≥⎧-⎪<<⎨⎪=+-+>⎩ ② 由①得32m ≤-,由②得312m -<≤,∴实数m 的取值范围为(,1]-∞-.(四)巩固练习:1.设全集为U ,在下列条件中,是B A ⊆的充要条件的有 ( D )①A B A =,②U C A B φ=,③U U C A C B ⊆,④U A C B U =,()A 1个 ()B 2个 ()C 3个 ()D 4个2.集合{(,)|||}A x y y a x ==,{(,)|}B x y y x a ==+,若A B 为单元素集,实数a 的取值范围为[1,1]- .五.课后作业:《高考A 计划》考点2,智能训练3,7, 10,11,12,13.第3课时 含绝对值的不等式的解法一.课题:含绝对值的不等式的解法二.教学目标:掌握一些简单的含绝对值的不等式的解法.三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.四.教学过程: (一)主要知识:1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离2.当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<; 当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. (二)主要方法:1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;2.去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.(三)例题分析:例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,)(,5]22--. (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤-时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53x >,此时2x ≥.综上可得:原不等式的解集为(,1)(1,)-∞-+∞.例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞.解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >.例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥.解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a bx -≥①或2()2a b x x a b+≤⇒≤+②, 当0a b >>时,由①得2x a b ≥-,∴此时,原不等式解为:2x a b ≥-或2x a b≤+; 当0a b =>时,由①得x φ∈,∴此时,原不等式解为:2x a b≤+;当0a b <<时,由①得2x a b ≤-,∴此时,原不等式解为:2x a b≤+.综上可得,当0a b >>时,原不等式解集为22(,][,)a b a b-∞+∞+-,当0a b <≤时,原不等式解集为2(,]a b-∞+. 例4.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围. 解:当0a ≤时,A φ=,此时满足题意;当0a >时,33|23|22a ax a x -+-<⇒<<,∵A B ⊂≠, ∴3102173102aa a -⎧≥-⎪⎪⇒≤⎨+⎪≤⎪⎩, 综上可得,a 的取值范围为(,17]-∞.例5.(《高考A 计划》考点3“智能训练第15题”)在一条公路上,每隔100km 有个仓库(如下图),共有5个仓库.一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行?解:以一号仓库为原点建立坐标轴,则五个点坐标分别为12345:0,:100,:200,:300,:400A A A A A , 设货物集中于点:B x ,则所花的运费5||10|100|20|200|y x x x =+-+-, 当0100x ≤≤时,259000y x =-+,此时,当100x =时,min 6500y =; 当100400x <<时,57000y x =-+,此时,50006500y <<; 当400x ≥时,359000y x =-,此时,当400x =时,min 5000y =.综上可得,当400x =时,min 5000y =,即将货物都运到五号仓库时,花费最少,为5000元.(四)巩固练习:1.||11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5-∞; 2.不等式||1||||a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞;4.不等式22|2log |2|log |x x x x -<+成立,则x ∈(1,)+∞ .五.课后作业:《高考A 计划》考点3,智能训练4,5,6,8,12,14.第4课时 一元二次不等式的解法一.课题:一元二次不等式的解法二.教学目标:掌握一元二次不等式的解法,能应用一元二次不等式、对应方程、函数三者之间的关系解决综合问题,会解简单的分式不等式及高次不等式.三.教学重点:利用二次函数图象研究对应不等式解集的方法. 四.教学过程:(一)主要知识:1.一元二次不等式、对应方程、函数之间的关系;2.分式不等式要注意大于等于或小于等于的情况中,分母要不为零; 3.高次不等式要注重对重因式的处理. (二)主要方法:1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)例题分析:例1.解下列不等式:(1)260x x --<;(2)23100x x -++<;(3)(1)(2)0(2)(1)x x x x x +-≥+-.解:(1)23x -<<;(2) 5 2x or x ><-; (3)原不等式可化为(1)(2)(2)(1)02 1 0 1 2(2)(1)0x x x x x x or x or x x x +-+-≥⎧⇒-<≤-≤<≥⎨+-≠⎩.例2.已知2{|320}A x x x =-+≤,2{|(1)0}B x x a x a =-++≤, (1)若A B ⊂≠,求a 的取值范围; (2)若B A ⊆,求a 的取值范围. 解:{|12}A x x =≤≤,当1a >时,{|1}B x x a =≤≤;当1a =时,{1}B =;当1a <时,{|1}B x a x =≤≤. (1)若A B ⊂≠,则122a a a >⎧⇒>⎨>⎩;(2)若B A ⊆,当1a =时,满足题意;当1a >时,2a ≤,此时12a <≤;当1a <时,不合题意. 所以,a 的取值范围为[1,2).例3.已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围. 解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩,解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-.例4.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .解法一:∵(2)(4)0x x --<即2680x x -+->的解集为11{| }24x x or x ><,∴不妨假设1,6,8a b c =-==-,则20c x b x a ++<即为28610x x -+-<,解得11{|}42x x <<.解法二:由题意:00364188a cb b ac c a a c ⎧⎧<<⎪⎪⎪⎪⎪⎪-=⇒-=⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩,∴20cx bx a ++<可化为20b a x x c c ++>即231048x x -+>,解得11{| }24x x or x ><.例5.(《高考A 计划》考点4“智能训练第16题”)已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立? 解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ①又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立, ∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ②由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-,由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立,∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R , ∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩, ∴14a =,∴14c =,∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立.(四)巩固练习:1.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围是(2,2]-. 2.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a ∈(1,1)-.3.关于x 的方程2(3)3m x m x -+=的解为不大于2的实数,则m 的取值范围为3(,](0,1)(1,)2-∞-+∞.4.不等式2(1)(2)0(4)x x x x +-≥+的解集为(,4)(0,2] 1or x -∞-=-.五.课后作业:《高考A 计划》考点4,智能训练3,4,5,9,13,14,15.第5课时 简易逻辑一.课题:简易逻辑二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;反证法在证明过程中的应用.三.教学重点:复合命题的构成及其真假的判断,四种命题的关系. 四.教学过程: (一)主要知识: 1.理解由“或”“且”“非”将简单命题构成的复合命题; 2.由真值表判断复合命题的真假; 3.四种命题间的关系. (二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾. (三)例题分析:例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假: (1)菱形对角线相互垂直平分. (2)“23≤”解:(1)这个命题是“p 且q ”形式,:p 菱形的对角线相互垂直;:q 菱形的对角线相互平分, ∵p 为真命题,q 也是真命题 ∴p 且q 为真命题. (2)这个命题是“p 或q ”形式,:p 23<;:q 23=, ∵p 为真命题,q 是假命题 ∴p 或q 为真命题.注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假.例2.分别写出命题“若220x y +=,则,x y 全为零”的逆命题、否命题和逆否命题. 解:否命题为:若220x y +≠,则,x y 不全为零逆命题:若,x y 全为零,则220x y +=逆否命题:若,x y 不全为零,则220x y +≠ 注:写四种命题时应先分清题设和结论.例3.命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题吗?证明你的结论. 解:方法一:原命题是真命题, ∵0m >,∴140m ∆=+>,因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题; 又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题.方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若20x x m +-=无实根,则0m ≤”.∵20x x m +-=无实根∴140m ∆=+<即104m <-≤,故原命题的逆否命题是真命题. 例4.(考点6智能训练14题)已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程244(2)10x m x +-+=无实根;若p 或q 为真,p 且q 为假,求实数m 的取值范围. 分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论.解:由命题p 可以得到:240m m ⎧∆=->⎨>⎩ ∴2m >由命题q 可以得到:2[4(2)]160m ∆=--< ∴26m -<<∵p 或q 为真,p 且q 为假 ∴,p q 有且仅有一个为真当p 为真,q 为假时,262,6m m m orm >⎧⇒≥⎨≤-≥⎩当p 为假,q 为真时,22226m m m ≤⎧⇒-<≤⎨-<<⎩所以,m 的取值范围为{|6m m ≥或22}m -<≤.例5.(《高考A 计划》考点5智能训练第14题)已知函数()f x 对其定义域内的任意两个数,a b ,当a b <时,都有()()f a f b <,证明:()0f x =至多有一个实根. 解:假设()0f x =至少有两个不同的实数根12,x x ,不妨假设12x x <, 由方程的定义可知:12()0,()0f x f x == 即12()()f x f x =①由已知12x x <时,有12()()f x f x <这与式①矛盾 因此假设不能成立 故原命题成立.注:反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.例6.(《高考A 计划》考点5智能训练第5题)用反证法证明命题:若整数系数一元二次方程:20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数,下列假设中正确的是( ) A.假设,,a b c 都是偶数 B.假设,,a b c 都不是偶数 C.假设,,a b c 至多有一个是偶数 D.假设,,a b c 至多有两个是偶数(四)巩固练习:1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( ) A .若q 不正确,则p 不正确 B. 若q 不正确,则p 正确 C. 若p 正确,则q 不正确 D. 若p 正确,则q 正确2.“若240b ac -<,则20ax bx c ++=没有实根”,其否命题是 ( )A. 若240b ac ->,则20ax bx c ++=没有实根 B. 若240b ac ->,则20ax bx c ++=有实根C. 若240b ac -≥,则20ax bx c ++=有实根 D. 若240b ac -≥,则20ax bx c ++=没有实根五.课后作业:《高考A 计划》考点5,智能训练3,4,8,13,15,16.第6课时 充要条件一.课题:充要条件二.教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.三.教学重点:充要条件关系的判定.四.教学过程:(一)主要知识:1.充要条件的概念及关系的判定;2.充要条件关系的证明.(二)主要方法:1.判断充要关系的关键是分清条件和结论;2.判断p q ⇒是否正确的本质是判断命题“若p ,则q ”的真假;3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.指出下列各组命题中,p 是q 的什么条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一种作答)(1)在ABC ∆中,:p A B >,:sin sin q A B >(2)对于实数,x y ,:8p x y +≠,:2q x ≠或6y ≠(3)在ABC ∆中,:sin sin p A B >,:tan tan q A B >(4)已知,x y R ∈,22:(1)(2)0p x y -+-=,:(1)(2)0q x y --=解:(1)在ABC ∆中,有正弦定理知道:sin sin a b A B= ∴sin sin A B a b >⇔> 又由a b A B >⇔>所以,sin sin A B A B >⇔> 即p 是q 的的充要条件.(2)因为命题“若2x =且6y =,则8x y +=”是真命题,故p q ⇒,命题“若8x y +=,则2x =且6y =”是假命题,故q 不能推出p ,所以p 是q 的充分不必要条件. (3)取120,30A B ==,p 不能推导出q ;取30,120A B ==,q 不能推导出p所以,p 是q 的既不充分也不必要条件.(4)因为{(1,2)}P =,{(,)|1Q x y x ==或2}y =,P Q ≠⊂, 所以,p 是q 的充分非必要条件.例2.设,x y R ∈,则222x y +<是||||x y +≤ )、是||||2x y +<的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:由图形可以知道选择B ,D .(图略)例3.若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解:因为甲是乙的充分非必要条件,故甲能推出乙,乙不能推出甲,因为丙是乙的必要非充分条件,故乙能推出丙,丙不能推出乙,因为丁是丙的充要条件,故丁能推出丙,丙也能推出丁,由此可知,甲能推出丁,丁不能推出甲即丁是甲的必要不充分条件,选B .例4.设,x y R ∈,求证:||||||x y x y +=+成立的充要条件是0xy ≥.证明:充分性:如果0xy =,那么,①0,0x y =≠②0,0x y ≠= ③0,0x y ==于是||||||x y x y +=+ 如果0xy >即0,0x y >>或0,0x y <<,当0,0x y >>时,||||||x y x y x y +=+=+,当0,0x y <<时,||()()||||x y x y x y x y +=--=-+-=+,总之,当0xy ≥时,||||||x y x y +=+.必要性:由||||||x y x y +=+及,x y R ∈得22()(||||)x y x y +=+即222222||x xy y x xy y ++=++得||xy xy =所以0xy ≥故必要性成立,综上,原命题成立.例5.已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n N ∈恒成立的充要条件.解:∵11111111()()02425324262526n n a a n n n n n n n +-=+-=-+->+++++++, 则1221n n n a a a a a -->>>>>, 欲使得题设中的不等式对任意*n N ∈恒成立,只须{}n a 的最小项221(1)11log (1)log 20t t a t t ->--即可, 又因为11194520a =+=, 即只须11t -≠且22911log (1)log (1)02020t t t t ----<, 解得1log (1)(1)t t t t -<-<>,即101(2)t t t t<<-<≠,解得实数t 应满足的关系为t >2t ≠. 例6.(1)是否存在实数m ,使得20x m +<是2230x x -->的充分条件? (2)是否存在实数m ,使得20x m +<是2230x x -->的必要条件?解:欲使得20x m +<是2230x x -->的充分条件,则只要{|}{|12m x x x x <-⊆<-或3}x >,则只要12m -≤-即2m ≥, 故存在实数2m ≥时,使20x m +<是2230x x -->的充分条件. (2)欲使20x m +<是2230x x -->的必要条件,则只要{|}{|12m x x x x <-⊇<-或3}x >,则这是不可能的,故不存在实数m 时,使20x m +<是2230x x -->的必要条件.(四)巩固练习:1.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 条件. 2.05x <<是|2|3x -<的 条件.3.直线,a b 和平面,αβ,//a b 的一个充分条件是( )A.//,//a b ααB.//,//,//a b αβαβC. ,,//a b αβαβ⊥⊥D. ,,a b αβαβ⊥⊥⊥五.课后作业:《高考A 计划》考点6,智能训练2,7,8,15,16.。

2019-2020年高中数学 第一章集合与简易逻辑教案1

2019-2020年高中数学 第一章集合与简易逻辑教案1

2019-2020年高中数学第一章集合与简易逻辑教案1教学目的:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点:1.有关集合的基本概念;2.逻辑联结词“或”、“且”、“非”与充要条件教学难点:1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系;2. 对一些代数命题真假的判断.授课类型:复习授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1、等价转化的数学思想;2、求补集的思想;3、分类思想;4、数形结合思想.【解题规律】1、如何解决与集合的运算有关的问题:1)对所给的集合进行尽可能的化简;2)有意识应用维恩图来寻找各集合之间的关系;3)有意识运用数轴或其它方法来直观显示各集合的元素.2.如何解决与简易逻辑有关的问题:1)力求寻找构成此复合命题的简单命题;2)利用子集与推出关系的联系将问题转化为集合问题二、基本知识点:集合:1、集合中的元素属性:(1)(2)(3)2、常用数集符号:N Z Q R3、子集:数学表达式4、补集:数学表达式5、交集:数学表达式6、并集:数学表达式7、空集:它的性质(1)(2)8、如果一个集合A有n个元素(CradA=n),那么它有个个子集,个非空真子集注意:(1)元素与集合间的关系用符号表示;(2)集合与集合间的关系用符号表示解不等式:1、绝对值不等式的解法:(1)公式法:|f(x)|>g(x) |f(x)|<g(x)(2)几何法(3)定义法(利用定义打开绝对值)(4)两边平方2、一元二次不等式或的求解原理:利用二次函数的图象通过二次函数与3、分式、高次不等式的解法:4、一元二次方程实根分布:简易逻辑:1、命题的定义:可以判断真假的语句叫做命题2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” )3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与P的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真 ②、原命题为真,它的否命题不一定为真 ③、原命题为真,它的逆否命题一定为真 6、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法7、如果已知pq 那么我们说,p 是q 的充分条件,q 是p 的必要条件 判断两条件间的关系技巧:(1) (2) 注意:(1)复合命题的三种形式与假言命题中的四种命题的区别(2)复合命题中的“p 或q ”与假言命题中的“若p 则q ”它们的“P ”的区别 三、巩固训练(一)、选择题:1、下列关系式中不正确的是( ) A 0 B 0 C 0 D 02、下列语句为命题是( )A 等腰三角形B 对顶角相等C ≥0 D0是自然数吗? 3、命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是( ) A 使用了逻辑联结词“或” B 使用了逻辑联结词“且” C 使用了逻辑联结词“非”D 没有使用逻辑联结词 4、不等式的解集为( ) A B C D5、不全为0的充要条件是( ) A 都不是0 B 最多有一个是0 C 只有一个是0 D 中至少有一个不是06、≥( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 即不充分也不必要条件7、如果命题的充分条件,是命题的必要条件,命题是命题q r q p 则 A 即不充分也不必要条件 B 必要而不充分条件 C 充分而不必要条件 D 充要条件8、至少有一个负的实根的充要条件是( ) A B C D (二)、填空题:9、不等式的解集是则= =10、分式不等式的解集为:_______________.11、命题“”的逆命题、否命题、逆否命题中,真命题有____个. 12、设A=,B=,若AB ,则的取值范围是________. (三)、解答题:13、解下列不等式 ① ②③|<| ④()14、利用反证法证明:15、已知一元二次不等式对一切实数都成立,求的取值范围16、已知集合A={}==++++R A x p x x ,若01)2(|2,求实数的取值范围(表示正实数集合)2019-2020年高中数学第一章集合与简易逻辑教案2一、选择题:(本大题共12小题,每小题4分,共48分)1.下列命题正确的是( )A. {实数集}B.C. D.2.在①1{0,1,2};②{1}∈{0,1,2};③{0,1,2}{0,1,2};④、{0}上述四个关系中,错误的个数是()A、1个B、2个C、3个D、4个3.已知全集,,,,则()A、B、C、D、4.已知集合,,若,则实数应该满足的条件是()A、B、C、D、5.下列说法正确的是()A、任一集合必有真子集;B、任一集合必有两个子集;C、若,则A、B之中至少有一个为空集;D、若,则6.已知集合P=,Q=,那么等于A、(0,2),(1,1)B、{(0,2 ),(1,1)}C、{1,2}D、7.若和同时成立,则的取值范围是()A、B、C、或 D8.不等式的解集是()A、{|<-2或>1}B、{|-2<<1}C、{|}D、R9.方程至少有一个负根,则()A、或B、C、D、10.“”是“或”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件11.当时,关于的不等式的解集是()A、{或}B、{或}C、{}D、{}12.不等式的解集为R ,则的取值范围是( ) A 、 B 、 C 、 D 、 二、填空题:(本大题共4小题,每小题4分,共16分) 13.已知集合A={,,2},B={2,,2}且,=,则= 14.已知全集U = R ,不等式的解集A ,则 15.不等式的解集是 16.有下列四个命题: ①、命题“若,则,互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题; ③、命题“若≤1,则有实根”的逆否命题; ④、命题“若∩=,则”的逆否命题其中是真命题的是 (填上你认为正确命题的序号)三、解答题:(本大题共4小题, 36分)17.(本题8分)若}06|{},065|{2=-==+-=ax x B x x x A ,且,求由实数a 组成的集合 18.(本题8分)用反证法证明:若、、,且,,,则、、中至少有一个不小于019.(本题10分,每小题5分)解下列关于的不等式: ① ②20.(本题10分) 已知集合,}0)1(|{2≤++-=a x a x x M ,,,且,求实数的取值范围附加题:我校高中部先后举行了数理化三科竞赛,学生中至少参加一科竞赛的有:数学807人,物理739人,化学437人,至少参加其中两科的有:数学与物理593人,数学与化学371人,物理与化学267人,三科都参加的有213人,试计算参加竞赛的学生总数集合与简易逻辑复习小结 基本训练题参考答案一、选择题:(本大题共12小题,每小题4分,共48分)二、填空题:(本大题共4小题,每小题4分,共16分) 13 0或 14 或 15 或 16 ①、②、③ 三、解答题:(本大题共4小题, 36分) 17.(本题8分)由实数a 组成的集合为{0,2,3} 18.(本题8分) 证明: 假设、、均小于0,即: ----① ; ----② ; ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x , 这与0)1()1()1(222≥-+-+-c b a 矛盾, 则假设不成立, ∴、、中至少有一个不小于0 19.(本题10分,每小题5分)解下列关于的不等式: ①、解:且 ②、解:原不等式化为:①、当时, 其解集为: ②、当时, 其解集为: ③、当时, 其解集为:或 ④、当时, 其解集为:或 ⑤、当时, 其解集为: 20.(本大题10分)解:依题意,集合,}0)1(|{2≤++-=a x a x x M ,,, 由知,∴实数的取值范围J 附加题:由公式或如图填数字计算Card(ABC)= Card(A)+ Card(B)+ Card(C)- Card(AB) - Card(AC) - Card(CB)+ Card(ABC)。

高中数学教案(一)

高中数学教案(一)

第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合0,1,2,3,……如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示:{ …} 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集)记作:N2.正整数集N*或N+3.整数集Z4.有理数集Q5.实数集R集合的三要素:1。

元素的确定性;2。

元素的互异性;3。

元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作a∈A ,相反,a不属于集A 记作a∉A (或a∈A)例:见P4—5中例四、练习P5略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例{不是直角三角形的三角形}再见P6例②数学式子描述法:例不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合七、用图形表示集合P6略八、练习P6小结:概念、符号、分类、表示法九、作业P7习题1.1第二教时教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

高中数学简易逻辑教案

高中数学简易逻辑教案

高中数学简易逻辑教案
一、教学目标
1. 了解逻辑的基本概念和符号表示方法;
2. 学会使用逻辑符号进行逻辑运算和推理;
3. 能够运用逻辑知识解决实际问题。

二、教学内容
1. 逻辑的基本概念:命题、逻辑联结词、命题的真值;
2. 逻辑符号:合取、析取、否定、蕴含、等价等符号的表示及意义;
3. 逻辑运算:与、或、非、蕴含、等价等逻辑运算规则;
4. 推理:假言推理、坏理论、排中律等推理方法。

三、教学过程
1. 导入:通过一个生活中的例子引发学生对逻辑的思考;
2. 讲解:介绍逻辑的基本概念和符号表示方法,讲解逻辑运算和推理规则;
3. 练习:让学生进行简单的逻辑运算和推理练习,加深对逻辑知识的理解;
4. 拓展:引导学生运用逻辑知识解决实际问题,拓展逻辑应用领域;
5. 总结:总结本节课的重点内容,强化学生对逻辑的理解。

四、教学评估
1. 日常表现:观察学生在课堂上的积极性和理解能力;
2. 练习成绩:根据学生的练习和作业成绩评估其对逻辑知识的掌握程度;
3. 案例分析:让学生分析和解决一些逻辑问题,评估其运用逻辑知识的能力。

五、教学反思
通过本节课的教学,希望学生能够初步掌握逻辑的基本概念和运用方法,提高逻辑思维能力,为以后更深入的数学学习奠定基础。

在教学中要注重激发学生的思维,引导他们主动思考和解决问题,培养其逻辑推理和分析能力。

同时要及时调整教学方法,根据学生的实际情况进行个性化教学,确保教学效果达到预期目标。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案第一章:集合的概念与表示方法1.1 集合的定义与性质引导学生理解集合的基本概念,如集合、元素、子集等。

介绍集合的性质,如确定性、互异性、无序性等。

1.2 集合的表示方法介绍集合的表示方法,如列举法、描述法等。

练习如何用不同的方法表示给定的集合。

第二章:集合的关系与运算2.1 集合的关系介绍集合之间的关系,如子集、真子集、并集、交集等。

练习判断给定的集合之间的关系。

2.2 集合的运算介绍集合的运算规则,如并集、交集、补集等。

练习运用集合的运算解决实际问题。

第三章:逻辑推理与命题3.1 逻辑推理的基本概念引导学生理解逻辑推理的基本概念,如前提、结论、推理等。

介绍演绎推理和归纳推理的定义和特点。

3.2 命题与命题公式介绍命题的概念,如简单命题、复合命题等。

练习判断给定的语句是否为命题,并分析命题之间的关系。

第四章:简易逻辑4.1 简易逻辑的基本规则介绍简易逻辑的基本规则,如蕴含式、逆否式、充要式等。

练习运用简易逻辑的规则进行推理。

4.2 逻辑推理的应用练习运用逻辑推理解决实际问题,如判断真假命题、解决逻辑谜题等。

巩固集合与逻辑的基本概念和运算规则。

5.2 提高解题能力提供一些提高解题能力的练习题,让学生进一步巩固所学知识。

分析解题思路,培养学生的逻辑思维和解题技巧。

第六章:不等式与不等式组6.1 不等式的概念与性质引导学生理解不等式的基本概念,如不等号、不等式等。

介绍不等式的性质,如同向相加、反向相减等。

6.2 不等式组的解法介绍不等式组的解法,如图形法、代数法等。

练习运用不同的方法解给定的不等式组。

第七章:函数的概念与性质7.1 函数的定义与表示方法引导学生理解函数的基本概念,如函数、自变量、因变量等。

介绍函数的表示方法,如解析式、图像等。

7.2 函数的性质介绍函数的性质,如单调性、奇偶性、周期性等。

练习判断给定的函数具有哪些性质。

第八章:指数函数与对数函数8.1 指数函数的概念与性质引导学生理解指数函数的基本概念,如指数函数、底数、指数等。

高中数学的简易逻辑教案

高中数学的简易逻辑教案

高中数学的简易逻辑教案
课程:高中数学
主题:基本逻辑
教学目标:
1. 了解逻辑的基本概念和符号表示方法
2. 掌握基本逻辑运算规则
3. 能够应用逻辑知识解决问题
教学内容:
1. 逻辑的基本概念
2. 逻辑符号及其表示方法
3. 逻辑运算规则
4. 逻辑问题的解决方法
教学步骤:
1. 导入:通过引入一个简单的逻辑问题引起学生的兴趣,如“如果今天下雨,那么明天就
会晴天吗?”引导学生思考逻辑的重要性。

2. 概念讲解:介绍逻辑的基本概念,如命题、联结词、逻辑符号等,让学生了解逻辑是研
究命题之间关系的学科。

3. 符号表示:教授逻辑符号及其表示方法,如“∧”表示“且”、“∨”表示“或”、“→”表示“蕴含”等,让学生熟练掌握逻辑符号的意义。

4. 运算规则:讲解逻辑的基本运算规则,包括合取、析取、蕴含和等价等四种逻辑运算规则,引导学生掌握逻辑运算的基本技巧。

5. 练习演练:设计一些逻辑练习题,让学生通过实际操作来巩固所学内容,提高逻辑推理
能力。

6. 拓展应用:引导学生将逻辑知识应用到实际问题中,如通过逻辑判断解决生活中的疑问
或困惑,促进学生在实践中灵活运用逻辑知识。

7. 总结复习:对本节课所学内容进行总结,并强调逻辑知识在日常生活和学习中的重要性,激发学生对数学学习的兴趣。

教学评估:
通过课堂练习、小组讨论等方式对学生的掌握程度进行评估,同时鼓励学生在课后自主学习和总结,提高逻辑推理能力。

教学反思:
根据学生的反馈和表现情况,及时调整教学内容和方法,帮助学生更好地理解和应用逻辑知识,进一步提升课堂效果。

第一章集合与简易逻辑(教案)

第一章集合与简易逻辑(教案)

高中数学第一册(上)第一章集合与简易逻辑◇教材分析【知识结构】本章知识主要分为集合、简单不等式得解法(可瞧做集合得化简)、简易逻辑三部分:【知识点与学习目标】【高考评析】集合知识作为整个数学知识得基础,在高考中重点考察得就是集合得化简,以及利用集合与简易逻辑得知识来指导我们思维,寻求解决其她问题得方法.◇学习指导【学法指导】本章得基本概念较多,要力求在理解得基础上进行记忆.【数学思想】1.等价转化得数学思想; 2.求补集得思想;3.分类思想;4.数形结合思想.【解题规律】1. 如何解决与集合得运算有关得问题?1) 对所给得集合进行尽可能得化简;2) 有意识应用维恩图来寻找各集合之间得关系;3) 有意识运用数轴或其它方法来直观显示各集合得元素.2. 如何解决与简易逻辑有关得问题?1) 力求寻找构成此复合命题得简单命题;2) 利用子集与推出关系得联系将问题转化为集合问题.引言通过一个实际问题,目得就是为了引出本章得内容。

1、分析这个问题,要用数学语言描述它,就就是把它数学化,这就需要集合与逻辑得知识;2、要解决问题,也需要集合与逻辑得知识.在教学时,主要就是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学得有关集合与逻辑得知识了.§1、1集合〖教学目得〗通过本小节得学习,使学生达到以下要求:(1)初步理解集合得概念,知道常用数集及其记法; (2)初步了解“属于”关系得意义;(3)初步了解有限集、无限集、空集得意义.〖教学重点与难点〗本小节得重点就是集合得基本概念与表示方法;难点就是运用集合得两种常用表示方法——列举法与描述法,正确表示一些简单得集合.〖教学过程〗☆本小节首先从初中代数与几何涉及得集合实例入手,引出集合与集合得元素得概念,并且结合实例对集合得概念作了说明.然后,介绍了集合得常用表示方法,包括列举法、描述法,还给出了画图表示集合得例子.1、集合得概念:在初中代数里学习数得分类时,就用到“正数得集合”,“负数得集合”等此外,对于一元一次不等式2x一1>3,所有大于2得实数都就是它得解.我们也可以说,这些数组成这个不等式得解得集合,简称为这个不等式得解集.在初中几何里学习圆时,说圆就是到定点得距离等于定长得点得集合.几何图形都可以瞧成点得集合.一般地,某些指定得对象集在一起就成为一个集合,也简称集.这句话,只就是对集合概念得描述性说明.集合则就是集合论中原始得、不定义得概念.在开始接触集合得概念时,主要还就是通过实例,对概念有一个初步认识. 例如, “我校篮球队得队员”组成一个集合; “太平洋、大西洋、印度洋、北冰洋”也组成一个集合.我们一般用大括号表示集合,上面得两个集合就可以分别表示成4我校篮球队得队员)与4太平洋。

【高中数学】高一数学《集合与简易逻辑》教案

【高中数学】高一数学《集合与简易逻辑》教案

【高中数学】高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:理解复合命题的含义,指出复合命题具有哪些简单命题和逻辑连接词,并从简单命题中形成包含逻辑连接词的复合命题。

过程:一、主题:简单逻辑,逻辑连接词二、命题的概念:例:12>5①3是12的约数②0.5是整数③定义:能够判断真假的陈述称为命题。

正确的命题称为真命题,错误的命题称为假命题。

如:①②是真命题,③是假命题反例:3是12的除数吗?x> 5.不是命题不涉及真假(问题)无法判断真假以上① ② ③ 这些都是简单的命题。

这种包含变量的语句称为开放语句(条件命题)。

三、复合命题:1.定义:一个由简单命题和一些逻辑连接词组成的命题称为复合命题。

2.例:(1)10可以被2或5整除④10可以被2整除或10可以被5整除(2)钻石的对角线相互垂直,呈菱形垂直且平分⑤对角线互相平分(3)0高二⑥ 不是整数0.5观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。

3.事实上,以前也遇到过一些概念如:或:不等式x2x6>0的解集{xx<2或x>3}和:不等式x2x6<0的解集{x2<x<3},即{XX>2和x<3}四、复合命题的构成形式如果P,Q,R,s。

用于表示一个命题,复合命题有三种形式:即:p或q(如④)记作pqP和Q(例如。

⑤) 记录为PQ非p(命题的否定)(如⑥)记作p总结:1。

提议2。

复合命题3。

复合命题的构成形式。

高一数学上册第一章集合与简易逻辑教案

高一数学上册第一章集合与简易逻辑教案

课 题:1.1集合-集合的概念(1) 教学过程:一、复习引入:1.集合论的创始人——康托尔(德国数学家)(见附录);2.“物以类聚”,“人以群分”;二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)。

(2)元素:集合中每个对象叫做这个集合的元素。

2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。

记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N +{}Λ,3,2,1*=N(3)整数集:全体整数的集合。

记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q(5)实数集:全体实数的集合。

记作R{}数轴上的点所对应的数=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作N *或N +Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

(2)互异性:集合中的元素没有重复。

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写。

第一章 集合与简易逻辑_高二数学教案

第一章 集合与简易逻辑_高二数学教案

第一章集合与简易逻辑_高二数学教案第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合0,1,2,3,……如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示:{ … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R集合的三要素:1。

元素的确定性;2。

元素的互异性;3。

元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作aÎA ,相反,a不属于集A 记作aÏA (或aÎA)例:见P4—5中例四、练习P5 略五、集合的表示方法:列举法与描述法列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}描述法:用确定的条件表示某些对象是否属于这个集合的方法。

1 语言描述法:例{不2 是直角三角形的三角形}再见P6例3 数学式子描述法:例不4 等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合 F七、用图形表示集合P6略八、练习P6小结:概念、符号、分类、表示法九、作业P7习题1.1执教:夏青峰(全国小学数学赛课一等奖获得者,江苏省特级教师,江苏省无锡市江阴华士实验学校小学部校长)记录/ 评析:张金龙(江苏省吴江市实验小学)一、课前交流——“引领” 师:同学们,下面老师要和大家要一起度过美好的40 分钟,大家欢迎吗?真欢迎还是假欢迎?那作为小主人你想说什么?(教师亲切的话语,顿时勾起学生学习的浓厚兴趣。

高三数学第一章 集合与简易逻辑教案

高三数学第一章 集合与简易逻辑教案

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉.例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示.集合分有限集和无限集两种.集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法.例如{有理数},}0{>x x 分别表示有理数集和正实数集.定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆.规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等.如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集.定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集. 定义6 差集,},{\B x A x x B A ∉∈=且.定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成.(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ∉或B x ∉,所以)(B A x ∉,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ⊆,反之也有.)(111B C A C B A C ⊆定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法.定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ⋅⋅⋅= 21种不同的方法.二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合.例1 设},,{22Z y x y x a a M ∈-==,求证:(1))(,12Z k M k ∈∈-;(2))(,24Z k M k ∈∈-;(3)若M q M p ∈∈,,则.M pq ∈[证明](1)因为Z k k ∈-1,,且22)1(12--=-k k k ,所以.12M k ∈-(2)假设)(24Z k M k ∈∈-,则存在Z y x ∈,,使2224y x k -=-,由于y x -和y x +有相同的奇偶性,所以))((22y x y x y x +-=-是奇数或4的倍数,不可能等于24-k ,假设不成立,所以.24M k ∉-(3)设Z b a y x b a q y x p ∈-=-=,,,,,2222,则))((2222b a y x pq --= 22222222a y b x b y a a --+=M ya xb yb xa ∈---=22)()((因为Z ya xb Z ya xa ∈-∈-,).2.利用子集的定义证明集合相等,先证B A ⊆,再证A B ⊆,则A =B .例2 设A ,B 是两个集合,又设集合M 满足B A M B A B A M B M A ===,,求集合M (用A ,B 表示). 【解】先证M B A ⊆)( ,若)(B A x ∈,因为B A M A =,所以M x M A x ∈∈, ,所以M B A ⊆)( ;再证)(B A M ⊆,若M x ∈,则.B A M B A x =∈1)若A x ∈,则B A M A x =∈;2)若B x ∈,则B A M B x =∈.所以).(B A M ⊆ 综上,.B A M =3.分类讨论思想的应用.例3 }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若C C A A B A == ,,求.,m a【解】依题设,}2,1{=A ,再由012=-+-a ax x 解得1-=a x 或1=x ,因为A B A = ,所以A B ⊆,所以A a ∈-1,所以11=-a 或2,所以2=a 或3.因为C C A = ,所以A C ⊆,若∅=C ,则082<-=∆m ,即2222<<-m ,若∅≠C ,则C ∈1或C ∈2,解得.3=m综上所述,2=a 或3=a ;3=m 或2222<<-m .4.计数原理的应用.例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数.【解】(1)集合I 可划分为三个不相交的子集;A \B ,B \A ,I B A , 中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个.(2)I 的子集分三类:空集,非空真子集,集合I 本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有1024210=个,非空真子集有1022个.5.配对方法. 例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值.【解】将I 的子集作如下配对:每个子集和它的补集为一对,共得12-n 对,每一对不能同在这k 个子集中,因此,12-≤n k ;其次,每一对中必有一个在这k 个子集中出现,否则,若有一对子集未出现,设为C 1A 与A ,并设∅=1A A ,则A C A 11⊆,从而可以在k 个子集中再添加A C 1,与已知矛盾,所以12-≥n k .综上,12-=n k .6.竞赛常用方法与例问题. 定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=C B A C B C A B A C B A C B A +---++=,需要xy 此结论可以推广到n 个集合的情况,即∑∑∑∑=≠≤<<≤=+-=n i k j i j i n k j i j i i n i i A A A A A A A111 .)1(11 n i i n A =--+-定义8 集合的划分:若I A A A n = 21,且),,1(j i n j i A A j i ≠≤≤∅= ,则这些子集的全集叫I 的一个n -划分.定理5 最小数原理:自然数集的任何非空子集必有最小数.定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素.例6 求1,2,3,…,100中不能被2,3,5整除的数的个数.【解】 记})2(2,1001{},100,,3,2,1{x x x x A I 记为整除能被且≤≤== ,}5,1001{},3,1001{x x x C x x x B ≤≤=≤≤=,由容斥原理,+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+---++=31002100C B A A C C B B A C B A C B A 7430100151001010061005100=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡,所以不能被2,3,5整除的数有26=-C B A I 个.例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最多含有多少个元素?【解】将任意连续的11个整数排成一圈如右图所示.由题目条件可知每相邻两个数至多有一个属于S ,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S 含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S 至多含有其中5个数.又因为2004=182×11+2,所以S 一共至多含有182×5+2=912个元素,另一方面,当},2004,10,7,4,2,1,11{N k r t t k r r S ∈≤=+==时,恰有912=S ,且S 满足题目条件,所以最少含有912个元素.例8 求所有自然数)2(≥n n ,使得存在实数n a a a ,,,21 满足:}.2)1(,,2,1{}1}{-=≤<≤-n n n j i a a j i 【解】 当2=n 时,1,021==a a ;当3=n 时,3,1,0321===a a a ;当4=n 时, 1,5,2,04321====a a a a .下证当5≥n 时,不存在n a a a ,,,21 满足条件.令n a a a <<<= 210,则.2)1(-=n n a n 所以必存在某两个下标j i <,使得1-=-n j i a a a ,所以1111--=-=-n n n a a a a 或21a a a n n -=-,即12=a ,所以1,2)1(1-=-=-n n n a a n n a 或2)1(-=n n a n ,12=a . (ⅰ)若1,2)1(1-=-=-n n n a a n n a ,考虑2-n a ,有22-=-n n a a 或22a a a n n -=-,即22=a ,设22-=-n n a a ,则121----=-n n n n a a a a ,导致矛盾,故只有.22=a 考虑3-n a ,有23-=-n n a a 或33a a a n n -=-,即33=a ,设23-=-n n a a ,则02212a a a a n n -==---,推出矛盾,设33=a ,则2311a a a a n n -==--,又推出矛盾,所以4,22==-n a a n 故当5≥n 时,不存在满足条件的实数. (ⅱ)若1,2)1(2=-=a n n a n ,考虑2-n a ,有12-=-n n a a 或32a a a n n -=-,即23=a ,这时1223a a a a -=-,推出矛盾,故21-=-n n a a .考虑3-n a ,有23-=-n n a a 或-=-n n a a 33a ,即3a =3,于是123--=-n n a a a a ,矛盾.因此32-=-n n a a ,所以12211a a a a n n -==---,这又矛盾,所以只有22a a n =-,所以4=n .故当5≥n 时,不存在满足条件的实数.例9 设A ={1,2,3,4,5,6},B ={7,8,9,……,n },在A 中取三个数,B 中取两个数组成五个元素的集合i A ,.201,2,20,,2,1≤<≤≤=j i A A i j i 求n 的最小值.【解】 .16min =n设B 中每个数在所有i A 中最多重复出现k 次,则必有4≤k .若不然,数m 出现k 次(4>k ),则.123>k 在m 出现的所有i A 中,至少有一个A 中的数出现3次,不妨设它是1,就有集合{1,121,,,b m a a }},,,,1{},,,,,1{365243b m a a b m a a ,其中61,≤≤∈i A a i ,为满足题意的集合.i a 必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以.4≤k 20个i A 中,B 中的数有40个,因此至少是10个不同的,所以16≥n .当16=n 时,如下20个集合满足要求:{1,2,3,7,8}, {1,2,4,12,14}, {1,2,5,15,16}, {1,2,6,9,10}, {1,3,4,10,11}, {1,3,5,13,14}, {1,3,6,12,15}, {1,4,5,7,9}, {1,4,6,13,16}, {1,5,6,8,11}, {2,3,4,13,15}, {2,3,5,9,11}, {2,3,6,14,16}, {2,4,5,8,10}, {2,4,6,7,11}, {2,5,6,12,13}, {3,4,5,12,16}, {3,4,6,8,9}, {3,5,6,7,10}, {4,5,6,14,15}. 例10 集合{1,2,…,3n }可以划分成n 个互不相交的三元集合},,{z y x ,其中z y x 3=+,求满足条件的最小正整数.n【解】 设其中第i 个三元集为,,,2,1},,,{n i z y x i i =则1+2+…+∑==n i i zn 1,43 所以∑==+n i i z n n 142)13(3.当n 为偶数时,有n 38,所以8≥n ,当n 为奇数时,有138+n ,所以5≥n ,当5=n 时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以n 的最小值为5.三、基础训练题1.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________.2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________.3.集合}3,2,1{=B 的非空真子集有___________个.4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ⊆,则由满足条件的实数a 组成的集合P =___________.5.已知}{},2{a x x B x x A ≤=<=,且B A ⊆,则常数a 的取值范围是___________.6.若非空集合S 满足}5,4,3,2,1{⊆S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个.7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________.8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________.9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ⊆,则满足条件的m 值构成的集合为___________.10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则=B A ___________.11.已知S 是由实数构成的集合,且满足1)2;1S ∉)若S a ∈,则S a∈-11.如果∅≠S ,S 中至少含有多少个元素?说明理由.12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围. 四、高考水平训练题1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________.2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==⊆⊆=B C A C B A I B I A I}8,6,4{)(1=B A C ,则=)(1B C A ___________.3.已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当∅=B A 时,实数m 的取值范围是___________.4.若实数a 为常数,且=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+-=∈a x ax x A a 则,1112___________. 5.集合}1,12,3{},3,1,{22+--=-+=m m m N m m M ,若}3{-=N M ,则=m ___________.6.集合},27{},,35{++∈+==∈+==N y y b b B N x x a a A ,则B A 中的最小元素是___________.7.集合}0,,{},,,{2222y x y x B xy y x y x A -+=+-=,且A =B ,则=+y x ___________.8.已知集合}04{},021{<+=<-+=px x B xx xA ,且AB ⊆,则p 的取值范围是___________.9.设集合},05224),{(},01),{(22=+-+==--=y x x y x B x y y x A }),{(b kx y y x C +==,问:是否存在N b k ∈,,使得∅=C B A )(,并证明你的结论.10.集合A 和B 各含有12个元素,B A 含有4个元素,试求同时满足下列条件的集合C 的个数:1)B A C ⊆且C 中含有3个元素;2)∅≠A C .11.判断以下命题是否正确:设A ,B 是平面上两个点集,}),{(222r y x y x C r ≤+=,若对任何0≥r ,都有B C A C r r ⊆,则必有B A ⊆,证明你的结论. 五、联赛一试水平训练题1.已知集合A B B x mx x m z z B x x A ⊆∅≠>+-==<=且,},2,11{},0{2,则实数m 的取值范围是___________.2.集合}12,2,,3,2,1{+=n n A 的子集B 满足:对任意的B y x B y x ∉+∈,,,则集合B 中元素个数的最大值是___________.3.已知集合}2,,{},,,{2d a d a a Q aq aq a P ++==,其中0≠a ,且R a ∈,若P =Q ,则实数=q ___________.4.已知集合}1),{(},0,),{(y x xy y x B a a y x y x A +=+=>=+=,若B A 是平面上正八边形的顶点所构成的集合,则=a ___________.5.集合},,,4812{Z n l m l n m u u M ∈++==,集合},,,121620{Z r q p r q p u u N ∈++==,则集合M 与N 的关系是___________.6.设集合}1995,,3,2,1{ =M ,集合A 满足:M A ⊆,且当A x ∈时,A x ∉15,则A 中元素最多有___________个.7.非空集合}223{},5312{≤≤=-≤≤+=x x B a x a x A ,≤则使B A A ⊆成立的所有a 的集合是___________.8.已知集合A ,B ,aC (不必相异)的并集},,2,1{n C B A =, 则满足条件的有序三元组(A ,B ,C )个数是___________.9.已知集合}1),{(},1),{(},1),{(22=+==+==+=y x y x C ay x y x B y ax y x A ,问:当a 取何值时,C B A )(为恰有2个元素的集合?说明理由,若改为3个元素集合,结论如何?10.求集合B 和C ,使得}10,,2,1{ =C B ,并且C 的元素乘积等于B 的元素和.11.S 是Q 的子集且满足:若Q r ∈,则0,,=∈-∈r S r S r 恰有一个成立,并且若S b S a ∈∈,,则S b a S ab ∈+∈,,试确定集合S .12.集合S={1,2,3,4,5,6,7,8,9,0}的若干个五元子集满足:S 中的任何两个元素至多出现在两个不同的五元子集中,问:至多有多少个五元子集?六、联赛二试水平训练题1.321,,S S S 是三个非空整数集,已知对于1,2,3的任意一个排列k j i ,,,如果i S x ∈,j S y ∈,则i S y x ∈-.求证:321,,S S S 中必有两个相等.2.求证:集合{1,2,…,1989}可以划分为117个互不相交的子集)117,,2,1( =i A i ,使得(1)每个i A 恰有17个元素;(2)每个i A 中各元素之和相同.3.某人写了n 封信,同时写了n 个信封,然后将信任意装入信封,问:每封信都装错的情况有多少种?4.设2021,,,a a a 是20个两两不同的整数,且整合{120}i j a a i j +≤≤≤中有201个不同的元素,求集合{120}i j a a i j -<≤≤中不同元素个数的最小可能值.5.设S 是由n 2个人组成的集合.求证:其中必定有两个人,他们的公共朋友的个数为偶数.6.对于整数4≥n ,求出最小的整数)(n f ,使得对于任何正整数m ,集合}1,,1,{-++n m m m 的任一个)(n f 元子集中,均有至少3个两两互质的元素.7.设集合S={1,2,…,50},求最小自然数k ,使S 的任意一个s 元子集中都存在两个不同的数a 和b ,满足ab b a )(+.8.集合+∈=N k k X },6,,2,1{ ,试作出X 的三元子集族&,满足:(1)X 的任意一个二元子集至少被族&中的一个三元子集包含;(2))k 的元素个数表示&&(6&2=. 9.设集合}21{,m ,,A =,求最小的正整数m ,使得对A 的任意一个14-分划1421,,,A A A ,一定存在某个集合)141(≤≤i A i ,在i A 中有两个元素a 和b 满足43b a b <≤.。

集合与简易逻辑教案

集合与简易逻辑教案

集合与简易逻辑教案教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 学会运用集合的基本运算。

3. 理解简易逻辑的定义和性质。

4. 学会运用简易逻辑解决问题。

教学内容:第一章:集合的概念与表示方法1.1 集合的概念1.2 集合的表示方法1.3 集合的性质第二章:集合的基本运算2.1 集合的并集2.2 集合的交集2.3 集合的补集2.4 集合的幂集第三章:简易逻辑的基本概念3.1 简易逻辑的定义3.2 简易逻辑的性质3.3 简易逻辑的判定方法第四章:简易逻辑的应用4.1 简易逻辑在几何中的应用4.2 简易逻辑在代数中的应用4.3 简易逻辑在概率中的应用第五章:集合与简易逻辑的综合应用5.1 集合与简易逻辑的结合5.2 集合与简易逻辑在实际问题中的应用教学方法:1. 采用讲授法,讲解集合与简易逻辑的基本概念、性质和应用。

2. 利用案例分析,让学生通过具体例子理解集合的基本运算和简易逻辑的判定方法。

3. 引导学生运用集合与简易逻辑解决实际问题,培养学生的逻辑思维能力。

教学评估:1. 课堂练习:每章结束后,安排课堂练习,巩固所学知识。

2. 小组讨论:组织学生进行小组讨论,分享学习心得和解决问题的方法。

3. 课后作业:布置课后作业,检验学生对知识的掌握程度。

4. 期中期末考试:评估学生对整个课程的学习效果。

教学资源:1. 教材:《集合与简易逻辑》2. 课件:教师自制课件3. 案例分析:相关实际问题案例4. 练习题库:相关习题和解答教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:3课时5. 第五章:2课时集合与简易逻辑教案教学目标:1. 理解集合的概念,掌握集合的表示方法。

2. 学会运用集合的基本运算。

3. 理解简易逻辑的定义和性质。

4. 学会运用简易逻辑解决问题。

教学内容:第六章:集合的分类6.1 集合的分类标准6.2 有序集合与无序集合6.3 集合的划分与覆盖第七章:集合与函数7.1 函数的定义与性质7.2 函数的图像与特征7.3 函数与集合的关系第八章:集合与数系8.1 自然数系8.2 整数系8.3 有理数系8.4 实数系第九章:集合与逻辑推理9.1 逻辑推理的基本形式9.2 集合与逻辑推理的关系9.3 集合逻辑推理的应用第十章:集合与简易逻辑的综合应用10.1 集合与简易逻辑在科学研究中的应用10.2 集合与简易逻辑在日常生活中的应用10.3 集合与简易逻辑在其它学科中的应用教学方法:1. 采用讲授法,讲解集合与简易逻辑的基本概念、性质和应用。

高一数学《集合与简易逻辑》教案

高一数学《集合与简易逻辑》教案

高一数学《集合与简易逻辑》教案教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:12 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题反例:3是12的约数吗?5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。

这种含有变量的语句叫开语句(条件命题)。

三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤ 对角线互相平分(3)0.5非整数⑥ 非“0.5是整数”观察:形成概念:简单命题在加上“或”“且”“非”这些逻辑联结词成复合命题。

3.其实,有些概念前面已遇到过如:或:不等式 x2x60的解集 { x | x2或x3 }且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }四、复合命题的构成形式如果用p, q, r, s……表示命题,则复合命题的形式接触过的有以下三种:即: p或q (如④) 记作 pqp且q (如⑤) 记作 pq非p (命题的否定) (如⑥) 记作 p其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案

《集合与简易逻辑》数学教学教案章节一:集合的概念与表示方法教学目标:1. 了解集合的概念,理解集合中元素的特点。

2. 学习集合的表示方法,包括列举法和不完全列举法。

3. 能够正确运用集合的表示方法表示给定的集合。

教学内容:1. 集合的概念:集合是由一些确定的、互不相同的对象组成的整体。

2. 集合的表示方法:列举法:将集合中的所有元素按照一定的顺序列举出来,用大括号括起来,如{1, 2, 3}。

不完全列举法:列举集合中的一部分元素,并用省略号表示还有其他元素,如{1, 2, 3, }。

教学活动:1. 引入集合的概念,通过实际例子讲解集合的定义。

2. 讲解集合的表示方法,包括列举法和不完全列举法。

3. 练习题:让学生运用所学的表示方法表示给定的集合。

章节二:集合的运算教学目标:1. 学习集合的运算,包括并集、交集和补集。

2. 理解并集、交集和补集的定义和性质。

3. 能够正确计算给定集合的并集、交集和补集。

教学内容:1. 并集:由两个或多个集合中所有的元素组成的集合。

2. 交集:属于两个或多个集合的元素组成的集合。

3. 补集:在全集之外的部分组成的集合。

教学活动:1. 引入集合的运算,通过实际例子讲解并集、交集和补集的定义。

2. 讲解并集、交集和补集的性质,如交换律、结合律等。

3. 练习题:让学生运用所学的运算方法计算给定集合的并集、交集和补集。

章节三:简易逻辑教学目标:1. 学习简易逻辑的基本概念和定理。

2. 理解简易逻辑中的推理和证明方法。

3. 能够运用简易逻辑解决实际问题。

教学内容:1. 简易逻辑的基本概念:包括命题、定理、公理等。

2. 推理和证明方法:包括直接证明、反证法、归纳法等。

3. 常用逻辑符号:包括且、或、非、蕴含等。

教学活动:1. 引入简易逻辑的基本概念,通过实际例子讲解命题、定理、公理等。

2. 讲解推理和证明方法,通过实际例子演示直接证明、反证法、归纳法等。

3. 练习题:让学生运用所学的逻辑推理和证明方法解决实际问题。

高一数学集合与简单逻辑 人教版 教案

高一数学集合与简单逻辑 人教版 教案

高一数学集合与简单逻辑第一节集合·课程难点与解析·1.集合(1)集合概念.和几何中的点、线、面一样,集合是数学中最原始的概念之一,不能用其他基本概念来定义,它们也叫做不定义的概念或原始概念.课本通过几个具体例子对集合进行描述性的说明,这也表明集合概念和其他数学概念一样,是从现实世界中由具体事物抽象出来的,而不是数学家凭空臆造出来的.(2)集合中元素的特性.确定性,对于一个给定的集合,集合中的元素必须是确定的,也就说,对于任何一个作为具体研究对象的元素,都能确定这个元素是这个集合的元素或不是这个集合的元素,两种情况必有且只有一种为真.因此,诸如“高一(1)班个子高的同学”,“比较大的角”,就不能构成集合,因为“个子高”和“比较大”没有一个确定的标准.互异性,对于给定集合中的任意两个元素,它们必定不相同,即集合中的元素是没有重复现象的,因此,一个元素在同一集合中只能出现一次.这个特性在解某些问题时非常重要.无序性,由于集体是指一组对象的全体,而不论这些对象的先后顺序,因此在表示集合时,元素排列的先后顺序不影响集合的表示.(3)集合的表示法表示一个集合常用下列两种方法:列举法:把集合中的元素一一列举出来,并写在大括号内表示集合的方法叫列举法.当元素个数较多,或集合有无限多个元素,在用列举法表集合时,可以采用省略号,但应很容易按常规看出该集合中元素的规律.如:“小于100的正奇数”集合可以表示为{1,3,5,7,9,…,99};“负整数”集合可以表示为{-1,-2,-3,-4,…}.描述法:把集合中元素的公共属性描述出来,用确定的条件表示某些对象是否属于这个集合的方法叫描述法.描述法中,竖线前面是这个集合的“代表元素”的一般形式,竖线后面是这个集合元素的公共属性.如:{x|x+3=3x-1}表示元素x是方程x+3=3x-1的解,即x=2,亦即{x|x+3=3x-1}={x|x=2}={2}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章“集合与简易逻辑”教材分析
本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合的初步知识是现行高中数学教科书中原来就有的内容,这部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识则是新增加的内容,这部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识
集合概念及其基本理论,称为集合论,是近代数学的一个重要的基础.一方面,许多重要的学科,如数学中的数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.
逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.
在高中数学中,集合的初步知识与简易逻辑知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,这就是把它们安排在高中数学起始章的出发点.
本章共编排了8小节,教学时间约需22课时:
11 集合约2课时
12 子集、全集、补集约2课时
13 交集、并集约2课时
14 绝对值不等式的解法约2课时
15 一元二次不等式的解法约4课时
16 逻辑联结词约2课时
17 四种命题约2课时
18 充分条件与必要条件约2课时
小结与复习约4课时
说明:本章是高中数学的起始章,课时安排得相对宽松一些,像小结与复习部分安排4课时,其中考虑到了对初中内容进行适当复习、巩固的因素.
一内容与要求
大体上按照集合与逻辑这两个基本内容,第一章编排成两大节.第一大节是“集合”.学生在小学和初中数学中,已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(圆)等,都有了一定的感性认识.在此基础上,这一大节首先结合实例引出集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出子集的概念,此外,还给出了与子集相联系的全集与补集的概念.接着,又讲述了属于集合运算的交集、并集的初步知识.鉴于不等式的内容目前初中数学只讲述一元一次不等式与一元一次不等式组,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,第一大节最后安排的是绝对值不等式与一元二次不等式的解法.此外,在这一大节之后,还附了一篇关于有限集合元素个数的阅读材料.
这一大节的重点是有关集合的基本概念.学习集合的初步知识,可以使学生更好地理解数学中出现的集合语言,可以使学生更好地使用集合语言表述数
学问题,并且可以使学生运用集合的观点研究、处理数学问题,这里,起重要作用的就是有关集合的基本概念.
这一大节的难点是有关集合的各个概念的含义以及这些概念相互之间的区别与联系.学生是从本章才正式开始学习集合知识的,这部分包含了比较多的新概念,还有相应的新符号,有些概念、符号还容易混淆,这些因素都可能造成学生学习的障碍.
第二大节是“简易逻辑”.学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.
这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.
这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.
根据《全日制普通高级中学数学教学大纲(试验修订版)》的规定,本章的教学要求是:
⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.
⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.
二本章的特点
⒈注意初中与高中的衔接
近年来,在与本章有关的内容上,按照教学大纲,初中的教学要求有哪些变化呢?
先看有关集合的部分.初中适当渗透一些集合思想,这一点基本没有变化.此外,初中去掉了一元二次不等式与绝对值不等式的内容.
再看有关逻辑的部分.1996年以前的初中毕业生,应该达到以下要求:⑴了解命题的概念;⑵初步掌握逆命题和逆定理的概念,能正确叙述题设与结论都是简单命题的命题的逆命题,了解正确命题的逆命题的逆命题不一定正确;
⑶了解四种命题及其相互关系;⑷理解用反证法证明命题的思路,能用反证法证明一些比较简单的几何题.从1996年起,对于高一新生,初中的要求又有进一步调整.上述⑵改为:了解逆命题和逆定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题.⑶删去.⑷改为:了解反证法.
基于以上情况,考虑到学习高中数学的需要,新教材一方面补充了一些必要的知识点,例如关于一元二次不等式与绝对值不等式的解法;另一方面对一些初中相对薄弱的内容,适当予以加强,例如关于反证法等.
例如,关于交集、并集的概念,教科书先从图形表示入手,让学生有一个直观的认识,然后给出定义,再用实例加以说明,并且,引出概念的图形也只是采用了一种简明的形式,而没有画出全部可能出现的情况.
又如,本章是对比初中学过的一元一次不等式,并且借助二次函数的图象,讲述一元二次不等式解法的.
⒉重视集合与逻辑在中学数学学习中的应用
本章是高中数学的基础,学习本章,主要目的是为了理解后续章节出现的集合与逻辑语言,会用集合与逻辑语言描述学习中遇到的数学问题,进而解决这些问题.像对一些性质、定理的理解,对函数的定义域、值域的描述,对推理方法的掌握,等等.
本章在集合与逻辑内容的编排上,既考虑到知识的系统性,又照顾到学生的可接受性,并且始终围绕着集合与逻辑在中学数学学习中的应用这一基本出发点.
在集合这部分,有关集合运算的内容,就注意在解方程和不等式方面的应用,在数学概念的分类方面的应用.
在逻辑这部分,有关命题的内容,突出的是对逻辑联结词“或”、“且”、“非”的理解和对复合命题真值的认识,而不过多地涉及对一个语句是不是命
题的判断.此外,像关于复合命题的否定,对近期学习影响不大,学生学习又比较困难,本章基本未涉及.
为了帮助学生理解逻辑联结词“或”、“且”、“非”,教科书中介绍了“或门电路”、“与门电路”,这是两个应用的实例.实际上,计算机的“智能”装置就是以数学逻辑为基础进行设计的
三教学中应注意的问题
⒈教学要求的把握要适时、适度
本章是高中数学的起始章,适当地把握本章的教学要求是教学中应该重视的问题.
集合与逻辑的初步知识是高中数学的基础知识,学习这些内容,主要是为今后进一步学习其他知识作基本语言、基本方法的准备,相应地,对知识系统性、严谨性的要求一定要适度.
学习有关集合的初步知识,其目的主要在于应用.具体说,就是在学习其他知识时,能读懂其中的简单的集合概念和符号;在处理简单的实际问题时,能根据需要,运用集合语言进行表述.在安排训练时,要把握一定的分寸,不要搞偏题、怪题.集合有关性质的证明,一般不要求学生掌握.有些可能混淆但在实际问题中并不多见的关系,就不必故意编排在一起,让学生去一一进行辨析.
本章安排的是集合与逻辑的初步知识,这些知识的讲述,是以初中数学的内容为基础的.从引出有关知识的实例,到具体应用的问题,基本都属于初中数学的范围,这种局限自然会对有关知识的理解和掌握造成一定影响.随着后
续章节的学习,对集合与逻辑知识的应用将越来越广泛和深入,相应地,对集合与逻辑知识理解和掌握的水平也就越来越高了.因此,本章的教学要求,应该避免一步到位.
关于含有“或”、“且”、“非”的复合命题的真值表,在开始时,教学重点还是借助三个真值表,加深对含有“或”、“且”、“非”的复合命题的了解,而不必急于让学生掌握对一般复合命题的真假的判断.
关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.
⒉提高集合与逻辑的教学效益
目前高中数学教学的一个突出问题是教学效益不高.具体表现在:一方面,学生用在数学上的时间比较多,像与美国比,是美国学生的好几倍;另一方面,学生在考试中表现良好,但创造性能力和应用能力有一定欠缺,个性发展也存在着不足之处.
为了后续章节的学习,在本章必须给学生打下适当的集合与逻辑基础,限于学生的预备知识与接受能力,在本章又不能过多地追求理论的完整,只有处理好这个关系,才能提高教学效益.因此,在实际教学时,一定要抓住重点.怎样把握本章的教学重点呢?一是要有助于对初中数学的理解,二是要能为高中数学的学习扫除障碍.换句话说,学习集合与逻辑,要着眼于用集合与逻辑的知识解决数学学习中的问题,而不要在概念的严谨性、知识的系统性上花过多的时间与精力.像逻辑中有不少问题,在学术界内部都有争论,在高一数学课上,就完全没有必要去涉及了.
⒊使用数学符号要规范
本章教材有不少集合与逻辑的数学符号,这些符号的采用,依据的是新的国家标准,其中有些符号与原教科书不同,在教学时应该注意.。

相关文档
最新文档