【人教版】2017年中考数学:题型(4)反比例函数与一次函数综合题(含答案)

合集下载

2017中考数学全国试题汇编------一次函数和反比例函数综合压轴题

2017中考数学全国试题汇编------一次函数和反比例函数综合压轴题

(2)∵ M 是直线 y=m 与直线 AB 的交点
∴ M(
, m)
同理, N( ,m)
∴ MN=|
- |=4

- =±4
解得 m=2 或- 6 或 6± ∵ m>0 ∴m=2 或 6+ (3)x<-1 或 5<x<6 考点: 1.求反比例函数解析式; 2.反比例函数与一次函数交点问题 .
25(2017 湖北黄石).如图,直线 l:y=kx+b(k<0)与函数 y= (x >0)的图象相交于 A、C两点,与 x 轴相交于 T 点,过 A、C 两点作 x 轴的垂线,垂足分别为 B、D,过 A、C两点作 y 轴的垂线,垂足分 别为 E、F;直线 AE与 CD相交于点 P,连接 DE,设 A、C 两点的坐标 分别为( a, )、( c, ),其中 a>c>0. (1)如图①,求证:∠ EDP=∠ACP; (2)如图②,若 A、D、E、C四点在同一圆上,求 k 的值; (3)如图③,已知 c=1,且点 P 在直线 BF 上,试问:在线段 AT 上 是否存在点 M ,使得 OM⊥AM?请求出点 M 的坐标;若不存在,请 说明理由.
x
( 2)由图像得: 1 x 0或 x 1
考点:一次函数与反比例函数的综合运用;数形结合
26(2017 贵州六盘水)
.已知函数
y = kx + b , y = k ,k、b 为整数且
x
bk
= 1.
(1)讨论 b,k 的取值 .
(2)分别画出两种函数的所有图象 .(不需列表 )
(3)求
y
=
kx + b 与
2017 中考数学全国试题汇编 ------
一次函数和反比例函数综合题

部编数学九年级下册专题03反比例函数与一次函数综合三类型(解析版)含答案

部编数学九年级下册专题03反比例函数与一次函数综合三类型(解析版)含答案

专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求V COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.2.如图,直线y=ax+b与x轴交于点A(4,0),与y轴交于点B(0,﹣2),与反比例函数y=k x(x>0)的图象交于点C(6,m).(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使S△POC=2S△AOC,请求出点P的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ¹)的图象与反比例函数2k y x=(2k 为常数,且20k ¹)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.4.一次函数y=﹣12x+3的图象与反比例函数y=mx的图象交于点A(4,1).(1)画出反比例函数y=mx的图象,并写出﹣12x+3>mx的x取值范围;(2)将y=﹣12x+3沿y轴平移n个单位后得到直线l,当l与反比例函数的图象只有一个交点时,求n的值.5.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.2x \<-或04x <<.【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键.6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.类型二 反比例函数与一次函数的交点问题7.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2m y x=分别交于点C ,D ,作CE x ^轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式;(2)在y 轴上存在一点P ,使ABP CEO S S =V V ,请求出P 的坐标.8.如图,在平面直角坐标系中,直线y= x与双曲线kyx=交于A,B两点,其中A的坐标为(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与⊙C相切,求m的值(3)求线段OQ长度的最大值.(3)9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=kx(x<0)的图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且△OCB与△OAB的面积比为1:2.(1)求k和b的值;(2)将△OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.k x (x> 0)的图象交于点A(m,4)和B(4,1)10.如图,一次函数y=-x+b与反比例函数y=(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的最大值和最小值.11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数m y x=.(1)当函数m y x=的图象经过点Q 时,求m 的值并画出直线y =-x -m .(2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x mì>ïíï<--î(m <0),求m 的取值范围.12.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(1,2),B(﹣2,n)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.类型三反比例函数与一次函数的实际应用13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?14.病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题.(1)求当02x ££时,y 与x 的函数关系式;(2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =15.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x ……时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?19055135\-=分钟,\服药后能持续135分钟.【点睛】考查了反比例函数与一次函数的实际应用,解题关键是根据已知点得出函数的解析式.16.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x £<和1020x £<时,图象是线段,当2045x ££时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.17.为了预防“流感”,某学校对教室采用药熏法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与药物点燃后的时间x (分)满足函数关系式y =2x ,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:药物点燃后的时间x (分)6121824空气中的含药量y (毫克/立方米)12643(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?18.小丽家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机时间x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ££时,求水温y (℃)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少℃?【答案】(1)820y x =+(010)x ££(2)50(3)50℃。

初中中考复习之一次函数和反比例函数的综合(精编含答案)

初中中考复习之一次函数和反比例函数的综合(精编含答案)

中考复习之一次函数和反比例函数的综合一、选择题1.已知直线y=ax (a≠0)与双曲线()ky=k 0x≠的一个交点坐标为(2,6),则它们的另一个交点坐标是【 】 A .(﹣2,6)B .(﹣6,﹣2)C .(﹣2,﹣6)D .(6,2)2.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是【 】A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)3.如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、 B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是【 】A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >1 4. 在同一直角坐标系下,直线y=x+1与双曲线1y=x的交点的个数为【 】 A .0个 B .1个 C .2个 D .不能确定 5.若反比例函数ky x=与一次函数y x 2=+的图像没有..交点,则k 的值可以是【 】 A. -2 B. -1C. 1D. 26.若双曲线ky=x与直线y=2x+1的一个交点的横坐标为﹣1,则k 的值为【 】 A .﹣1B .1C .﹣2D .27.在同一坐标系中,直线y =x +1与双曲线y = 1x 的交点个数为【 】A .0个B .1个C .2个D .不能确定 8.已知反比例函数by x=(b 为常数),当x 0>时,y 随x 的增大而增大,则一次函数y x b =+的图像不经过第几象限【 】A.一B. 二C. 三D. 四9.直线1y x 12=--与反比例函数k y x =的图象(x<0)交于点A ,与x 轴相交于点B ,过点B 作x 轴垂线交双曲线于点C ,若AB=AC ,则k 的值为【 】 A.-2 B.-4 C.-6 D.-810.当a≠0时,函数y=ax+1与函数y ax=在同一坐标系中的图象可能是【 】 A.B .C .D .11.如图,一次函数y 1=x+1的图象与反比例函数2y 2x=的图象交于A 、B 两点,过点作AC⊥x 轴于点C ,过点B 作BD⊥x 轴于点D ,连接AO 、BO ,下列说法正确的是【 】A .点A 和点B 关于原点对称 B .当x <1时,y 1>y 2C .AOC BOD S S ∆∆= D .当x >0时,y 1、y 2都随x 的增大而增大 12. 一次函数1y kx b(k 0)=+≠与反比例函数2my (m 0)x=≠,在同一直角坐标系中的图象如图所示,若y 1>y 2,则x 的取值范围是【 】A 、-2<x <0或x >1B 、x <-2或0<x <1C 、x >1D 、-2<x <1 13.在同一直角坐标系中,正比例函数y=2x 的图象与反比例函数4-2ky=x的图象没有交点,则实数k 的取值范围在数轴上表示为【 】。

2017年全国中考数学真题《函数与一次函数》分类汇编解析

2017年全国中考数学真题《函数与一次函数》分类汇编解析

函数与一次函数考点一、平面直角坐标系(3分)1平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点0 (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a, b)表示,其顺序是横坐标在前,纵坐标在后,中间有;’"分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当a严b时,(a, 3和(b, a)是两个不同点的坐标。

考点二、不同位置的点的坐标的特征(3分)1各象限内点的坐标的特征点P(x, y)在第一象限二x 0, y 0点P(x, y)在第二象限 u x ::: 0, y 0点P(x, y)在第三象限u x ::: 0, y ::: 0点P(x, y)在第四象限x 0, y ::: 02、坐标轴上的点的特征点P(x, y)在x轴上=y = 0 , x为任意实数点P(x, y)在y轴上=x = 0 , y为任意实数点P(x, y)既在x轴上,又在y轴上:=x, y同时为零,即点P坐标为(0, 0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x, y)在第一、三象限夹角平分线上=x与y相等点P(x, y)在第二、四象限夹角平分线上=x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p'关于x轴对称二横坐标相等,纵坐标互为相反数点P与点p'关于y轴对称=纵坐标相等,横坐标互为相反数点P与点p'关于原点对称=横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x, y)到坐标轴及原点的距离:(1 )点P(x, y)到x轴的距离等于y(2)点P(x, y)到y轴的距离等于|x(3)点P(x, y)到原点的距离等于x2 ' y2在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考数学专题训练《一次函数与反比例函数》含答案解析

中考数学专题训练《一次函数与反比例函数》含答案解析

函数、一次函数与反比例函数一、选择题1.在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>2.下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y= C.y=x﹣3 D.y=3.如果反比例函数的图象经过点(﹣2,﹣3),那么k的值为()A.B.C.﹣6 D.64.点M (﹣2,3)在曲线y=上,则下列点一定在该曲线上的是()A.(2,3 B.(﹣2,﹣3)C.(3,﹣2)D.(3,2)5.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限6.已知点P(m,n)在某反比例函数的图象上,则此图象上还有点()A.(0,0)B.(﹣m,﹣n)C.(m,﹣n) D.(﹣m,n)7.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>08.如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P 应该位于()A.第一象限B.第二象限C.第三象限D.第四象限9.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.10.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.12.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.13.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8Ω B.不大于4.8Ω C.不小于14ΩD.不大于14Ω14.如图所示,反比例函数y1与正比例函数y2的图象的一个交点坐标是A(2,1),若y2>y1>0,则x的取值范围在数轴上表示为()A.B.C. D.15.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.16.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1二、解答题17.如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)直接写出k,m的值;(2)求梯形ABCD的面积.18.已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求直线AB的解析式.19.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.20.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.21.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求tan∠OCD的值;(3)求证:∠AOB=135°.22.宜昌市政府为了方便群众,促进地方经济发展,促进宜昌周边旅游资源的良性循环,特向宜昌城区137万人口推出了“一卡通”周边游便民服务卡,即城区常住居民只需花上100元,办理一张旅游卡,一年内持卡人可到周边二十个景点游玩,凭卡不需购买门票.假设下图表示活动推出后的市民办卡情况.(1)根据图象求出办卡人数y(万人)与时间x(天)的函数关系式;(2)按此进度发展,请你预测办卡第80天时总共办卡人数.23.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.24.如图,直线l1:y=3x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.函数、一次函数与反比例函数参考答案与试题解析一、选择题1.在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>【考点】E4:函数自变量的取值范围;62:分式有意义的条件.【专题】11 :计算题.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:3x﹣1≠0,解得:x≠.故选C.【点评】当函数表达式是分式时,要注意考虑分式的分母不能为0.2.下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y= C.y=x﹣3 D.y=【考点】E4:函数自变量的取值范围;62:分式有意义的条件;72:二次根式有意义的条件.【分析】分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.【解答】解:A、分式有意义,x﹣3≠0,解得:x≠3,故A选项错误;B、二次根式有意义,x﹣3>0,解得x>3,故B选项错误;C、函数式为整式,x是任意实数,故C选项错误;D、二次根式有意义,x﹣3≥0,解得x≥3,故D选项正确.故选:D.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.如果反比例函数的图象经过点(﹣2,﹣3),那么k的值为()A.B.C.﹣6 D.6【考点】G7:待定系数法求反比例函数解析式.【专题】11 :计算题;41 :待定系数法.【分析】因为函数经过一定点,所以将此点坐标代入函数解析式y=(k≠0)即可求得k的值.【解答】解:设反比例函数的解析式为y=(k≠0),由图象可知,函数经过点P(﹣2,﹣3),∴﹣3=,得k=6.故选D.【点评】用待定系数法确定反比例函数的比例系数k的值,比较简单.4.点M (﹣2,3)在曲线y=上,则下列点一定在该曲线上的是()A.(2,3 B.(﹣2,﹣3)C.(3,﹣2)D.(3,2)【考点】G6:反比例函数图象上点的坐标特征.【专题】2B :探究型.【分析】根据点M (﹣2,3)在曲线y=上求出k的值,再根据k=xy对各选项进行逐一判断即可.【解答】解:∵点M (﹣2,3)在曲线y=上,∴k=(﹣2)×3=﹣6,∴A、中2×3=6≠﹣6,故本选项错误;B、中(﹣2)×(﹣3)=6≠﹣6,故本选项错误;C、中3×(﹣2)=﹣6=k,故本选项正确;D、中3×2=6≠﹣6,故本选项错误.故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,即k=xy.5.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限【考点】G4:反比例函数的性质;G7:待定系数法求反比例函数解析式.【专题】41 :待定系数法.【分析】先把点代入函数解析式,求出k值,再根据反比例函数的性质求解即可.【解答】解:由题意得,k=﹣1×2=﹣2<0,∴函数的图象位于第二,四象限.故选:D.【点评】本题考查了反比例函数的图象的性质:k>0时,图象在第一、三象限,k<0时,图象在第二、四象限.6.已知点P(m,n)在某反比例函数的图象上,则此图象上还有点()A.(0,0)B.(﹣m,﹣n)C.(m,﹣n) D.(﹣m,n)【考点】G6:反比例函数图象上点的坐标特征.【分析】将(m,n)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:∵点P(m,n)在某反比例函数的图象上,∴反比例函数的比例系数k=mn,所有选项中只有B所给点的横纵坐标的积等于mn.故选B.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>0【考点】F7:一次函数图象与系数的关系.【专题】16 :压轴题.【分析】k>0时,y随x的增大而增大.【解答】解:若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则k>0.故选B.【点评】一次函数y=kx+b的图象是一条直线,该直线的位置和性质与系数k,b 的关系如下:①k>0时,y随x的增大而增大.这时,若b>0,则直线经过一、二、三象限;若b<0,则直线经过一、三、四象限;若b=0,直线经过一、三象限和原点(此为正比例函数的图象);②k<0时,y随x的增大而减小.这时,若b>0,则直线经过一、二、四象限;若b<0,则直线经过二、三、四象限;若b=0,直线经过二、四象限和原点(此为正比例函数的图象).8.如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P 应该位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】FF:两条直线相交或平行问题.【分析】根据a、b的取值,判断出一次函数所过的象限,再根据k的取值,判断出正比例函数所过的象限,二者所过的公共象限即为点P所在象限.【解答】解:∵函数y=ax+b(a<0,b<0)的图象经过第二、三、四象限,y=kx(k>0)的图象过原点、第一、三象限,∴点P应该位于第三象限.故选C.【点评】本题利用了一次函数和正比例函数的图象性质求解.(1)正比例函数y=kx(k≠0)的图象是过原点的一条直线:k<0,正比例函数的图象过原点、第二、四象限,k>0,正比例函数的图象过原点、第一、三象限;(2)一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.【考点】F3:一次函数的图象.【专题】16 :压轴题.【分析】根据图象与y轴的交点直接解答即可.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选C.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力.10.已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.【考点】F3:一次函数的图象.【专题】31 :数形结合.【分析】由图知,函数y=kx+b图象过点(0,1),即k>0,b=1,再根据一次函数的特点解答即可.【解答】解:∵由函数y=kx+b的图象可知,k>0,b=1,∴y=2kx+b=2kx+1,2k>0,∴2k>k,可见一次函数y=2kx+b图象与x轴的夹角,大于y=kx+b图象与x轴的夹角.∴函数y=2kx+1的图象过第一、二、三象限且与x轴的夹角大.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.12.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.【考点】FH:一次函数的应用;F3:一次函数的图象.【专题】16 :压轴题.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.【点评】解答一次函数的应用题时,必须考虑自变量的取值范围要使实际问题有意义.13.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8Ω B.不大于4.8Ω C.不小于14ΩD.不大于14Ω【考点】GA:反比例函数的应用.【专题】16 :压轴题;29 :跨学科.【分析】先由图象过点(8,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.【解答】解:由物理知识可知:I=,其中过点(8,6),故U=48,当I≤10时,由R≥4.8.故选A.【点评】本题考查反比例函数的图象特点:反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.14.如图所示,反比例函数y1与正比例函数y2的图象的一个交点坐标是A(2,1),若y2>y1>0,则x的取值范围在数轴上表示为()A.B.C. D.【考点】G8:反比例函数与一次函数的交点问题;C4:在数轴上表示不等式的解集.【专题】31 :数形结合;33 :函数思想.【分析】根据反比例函数的图象性质正比例函数的图象性质可知.当y2>y1>0时,在第一象限内,反比例函数y1在正比例函数y2的下方,从而求出x的取值范围.【解答】解:根据图象可知当y2>y1>0时,x>2.故选D.【点评】主要考查了反比例函数的图象性质正比例函数的图象性质,要掌握它们的性质才能灵活解题.15.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.【考点】E6:函数的图象.【专题】16 :压轴题.【分析】随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.【解答】解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.【点评】应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2 B.v=m2﹣1 C.v=3m﹣3 D.v=m+1【考点】E8:函数的表示方法.【专题】16 :压轴题;27 :图表型.【分析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.【解答】解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选:B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.二、解答题17.如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)直接写出k,m的值;(2)求梯形ABCD的面积.【考点】G8:反比例函数与一次函数的交点问题;LH:梯形.【分析】(1)直接把点P(6,2)代入解析式求解即可;(2)分别根据函数解析式求出点D,C的坐标,从而得到梯形的上底,下底和高,求出梯形的面积.【解答】解:(1)k=12,m=﹣4.(2分)(2)把x=2代入y=,得y=6.∴D(2,6).把x=2代入y=x﹣4,得y=﹣2.∴A(2,﹣2).∴DA=6﹣(﹣2)=8.把x=3代入y=,得y=4.∴C(3,4).把x=3代入y=x﹣4,得y=﹣1,∴B(3,﹣1).∴BC=4﹣(﹣1)=5.(6分)∴.(7分)【点评】主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.18.已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求该反比例函数的解析式;(2)求直线AB的解析式.【考点】G8:反比例函数与一次函数的交点问题.【专题】31 :数形结合;41 :待定系数法;46 :几何变换.【分析】(1)根据已知条件求出c点坐标,用待定系数法求出反比例的函数解析式;(2)根据已知条件求出A,B两点的坐标,用待定系数法求出一次函数的解析式.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E.tan∠ABO=.∴CE=3.(1分)∴点C的坐标为C(﹣2,3).(2分)设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.(3分)∴m=﹣6.∴该反比例函数的解析式为y=﹣.(5分)(2)∵OB=4,∴B(4,0).(6分)∵tan∠ABO=,∴OA=2,∴A(0,2).设直线AB的解析式为y=kx+b(k≠0),将点A、B的坐标分别代入,得.(8分)解得.(9分)∴直线AB的解析式为y=﹣x+2.(10分).【点评】本题是一次函数与反比例函数的综合题.主要考查待定系数法求函数解析式.求A、B、C点的坐标需用正切定义或相似三角形的性质,起点稍高,部分学生感觉较难.19.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【考点】GB:反比例函数综合题.【专题】15 :综合题;16 :压轴题.【分析】(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;(2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标;(3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积.【解答】解:(1)由题意,把A(m,2),B(﹣2,n)代入中,得,∴A(1,2),B(﹣2,﹣1)将A、B代入y=kx+b中得:,∴,∴一次函数解析式为:y=x+1;(2)由(1)可知:当x=0时,y=1,∴C(0,1);=×1×1=.(3)S△AOC【点评】本题考查了反比例函数的综合应用,重点是由交点坐标求得函数的解析式,题目较难,同学们要重点掌握.20.暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【考点】FH:一次函数的应用.【分析】先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.【解答】解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴,解得,(5分)∴y=x+45;(6分)(2)当x=400时,y=×400+45=5>3,∴他们能在汽车报警前回到家.(9分)【点评】解题思路:本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.21.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求tan∠OCD的值;(3)求证:∠AOB=135°.【考点】FI:一次函数综合题.【专题】153:代数几何综合题;16 :压轴题.【分析】(1)把A(﹣2,﹣1),B(1,3)两点坐标分别代入一次函数y=kx+b,即可求出k,b的值,从而求出其解析式;(2)由于C(﹣,0),D(0,).故Rt△OCD中,OD=,OC=,所以tan ∠OCD=;(3)取点A关于原点的对称点E(2,1),则问题转化为求证∠BOE=45度,由于OE=,BE=,OB=,即OB2=OE2+BE2,故△EOB是等腰直角三角形,所以∠BOE=45度.∠AOB=135度.【解答】(1)解:由,解得,所以y=x+;(2)解:C(﹣,0),D(0,).在Rt△OCD中,OD=,OC=,∴tan∠OCD=;(3)证明:取点A关于原点的对称点E(2,1),则问题转化为求证∠BOE=45度.由勾股定理可得,OE=,BE==,OB=,∵OB2=OE2+BE2,∴△EOB是等腰直角三角形.∴∠BOE=45度.∴∠AOB=135度.【点评】此题较复杂,解答此题的关键是延长AO,过B作BE⊥AE于E,构造出直角三角形,利用勾股定理即锐角三角函数的定义求解.22.宜昌市政府为了方便群众,促进地方经济发展,促进宜昌周边旅游资源的良性循环,特向宜昌城区137万人口推出了“一卡通”周边游便民服务卡,即城区常住居民只需花上100元,办理一张旅游卡,一年内持卡人可到周边二十个景点游玩,凭卡不需购买门票.假设下图表示活动推出后的市民办卡情况.(1)根据图象求出办卡人数y(万人)与时间x(天)的函数关系式;(2)按此进度发展,请你预测办卡第80天时总共办卡人数.【考点】FH:一次函数的应用.【专题】21 :阅读型;27 :图表型.【分析】(1)用待定系数法求函数关系式;(2)令x=80即可求得办卡总人数;【解答】解:(1)设直线解析式为y=kx +b ,,解得k=0.1,b=0,y=0.1x .(2)当x=80时,y=8万.所以预测办卡第80天时总共办卡人数为8万人.【点评】能够根据题意建立函数关系式;能够根据函数解析式求得对应的y 的值.23.如图,一次函数y=kx +b 的图象与反比例函数的图象交于A (﹣2,1),B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.【考点】FI :一次函数综合题;GB :反比例函数综合题.【专题】16 :压轴题;41 :待定系数法.【分析】(1)首先把A 的坐标代入反比例函数关系式中可以求出m ,再把B (1,n )代入反比例函数关系式中可以求出n 的值,然后利用待定系数法就可以求出一次函数的解析式;(2)△AOB 的面积不能直接求出,要求出一次函数与x 轴的交点坐标,然后利用面积的割补法球它的面积.S △AOB =S △AOC +S △BOC .【解答】解:(1)∵点A (﹣2,1)在反比例函数的图象上,∴m=(﹣2)×1=﹣2.∴反比例函数的表达式为.∵点B(1,n)也在反比例函数的图象上,∴n=﹣2,即B(1,﹣2).把点A(﹣2,1),点B(1,﹣2)代入一次函数y=kx+b中,得解得.∴一次函数的表达式为y=﹣x﹣1.(2)∵在y=﹣x﹣1中,当y=0时,得x=﹣1.∴直线y=﹣x﹣1与x轴的交点为C(﹣1,0).∵线段OC将△AOB分成△AOC和△BOC,=S△AOC+S△BOC=×1×1+×1×2=+1=.∴S△AOB【点评】此题考查了利用待定系数法确定函数的解析式,然后利用坐标来求三角形的面积.24.如图,直线l1:y=3x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.【考点】FF:两条直线相交或平行问题;F8:一次函数图象上点的坐标特征;FE:一次函数与二元一次方程(组).【专题】11 :计算题.【分析】(1)直接把P点坐标代入y=3x+1即求出b的值;(2)根据两直线相交的问题求解;(3)先把P(1,4)代入y=mx+n得m+n=4,而当x=1时,y=nx+m=m+n=4,根据一次函数图象上点的坐标特征即可判断直线l3经过点P.【解答】解:(1)把P(1,b)代入y=3x+1得b=3+1=4;(2)方程组的解为;(3)直线l3经过点P,理由如下:把P(1,4)代入直线l2:y=mx+n得m+n=4,当x=1时,y=nx+m=m+n=4,所以直线l3经过点P.【点评】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.。

2017年度中考一次函数与反比例函数[含答案解析]

2017年度中考一次函数与反比例函数[含答案解析]

反比例函数与一次函数综合题针对演练1. 已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA +MB最小?若存在,请求出点M的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6. (1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx +b ≤n x的解集 .4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.第4题图5. 如图,直线y1=14x+1与x轴交于点A,与y轴交于点C,与反比例函数y2=mx(x>0)的图象交于点P,过点P作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B为双曲线y=kx(x>0)上一点,直线AB平行于y轴,交直线y=x于点A,交x轴于点D,双曲线y=kx与直线y=x交于点C,若OB2-AB2=4.(1)求k的值;(2)点B的横坐标为4时,求△ABC的面积;(3)双曲线上是否存在点P,使△APC∽△AOD?若存在,求出点P的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A 点的坐标为(x ,y ),则OP =x ,PA =y , ∵△OAP 的面积为1,∴12xy =1,∴xy =2,即k =2,∴反比例函数的解析式为2y x=;(2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2,∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点,∴22x x=, 解得x 1=1,x 2=-1(舍去).∴y =2,∴点A 的坐标为(1,2), ∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0; (3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤n x的解集,即是直线位于双曲线下方的部分所对应的自变量x的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x =-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求, ∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y =0,得x =-5, 则C 点坐标为(-5,0), ∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与y 轴交于点C ,∴A (-4,0),C (0,1),又∵AC =BC ,CO ⊥AB , ∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2, ∴点P 的坐标为(4,2),将点P (4,2)代入y 2=m x,得m =8,∴反比例函数的解析式为y2=8x ;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B (0,-4),∴OC =OB =4,∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OMOB =4OM,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA=2226=21313;第6题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2,∵OB =OC =4,∴BC =42+42=42,又∵∠OBC =∠OCB =45°,∴∠OBA =∠BCD =135°, ∴△OBA ∽△BCD 或△OBA ∽△DCB ,∴OB BC =BA CD 或OB DC =BABC ,即442=CD 或4DC =242,∴CD =2或CD =16,∵点C (4,0), ∴点D 的坐标是(6,0)或(20,0). 7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F .设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA=33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分)②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23),设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3,∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx经过点D (6,1),∴6k=1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +, ∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD .9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,ka),∴AB =a -k a ,BD =ka,在Rt △OBD中,OB 2=BD 2+OD 2=(ka)2+a 2,∵OB 2-AB 2=4,∴(ka)2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形, ∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a |,∵C 点坐标为(2,2),∴CM=|a-2|,∴|a-2|=12|a-2a|,∴(a-2)2=14×222(2)aa-,即(a-2)2=14×222((a aa+⨯-,∴4a2-(a+2)2=0,解得a=2或a=-23(舍去),∴P点坐标为(2,2),则此时点C与点P重合,所以不能构成三角形,故不存在.。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

中考数学 真题精选 专题试卷 一次函数和反比例函数(含答案解析) (含答案解析)

中考数学 真题精选 专题试卷  一次函数和反比例函数(含答案解析) (含答案解析)

一次函数和反比例函数一.选择题(共10小题)1.(•上海)下列y关于x的函数中,是正比例函数的为()2.(•甘孜州)函数y=x﹣2的图象不经过()3.(•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()4.(•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()5.(•牡丹江)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()B=6.(•柳州)下列图象中是反比例函数y=﹣图象的是().B..﹣7.(•兰州)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()B8.(•黑龙江)关于反比例函数y=﹣,下列说法正确的是()(9.(•天津)己知反比例函数y=,当1<x<3时,y的取值范围是()10.(•厦门)反比例函数y=的图象是()=二.填空题(共15小题)11.(•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣..故答案为:;﹣.12.(•连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式y=﹣x+2(写出一个即可).,13.(•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k 的一个值:2.14.(•菏泽)直线y=﹣3x+5不经过的象限为第三象限.15.(•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).16.(•柳州)直线y=2x+1经过点(0,a),则a=1.17.(•六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为(3,2).18.(•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣x+1.19.(•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x (s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.,解得:,20.(•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.,解得≤的取值范围为21.(•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.,解得:x解不等式﹣x22.(•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.代入得:,解得:23.(•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.)代入得:,解得:24.(•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为().=x﹣﹣时,﹣x,∴点()25.(•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.三.解答题(共5小题)26.(•孝感)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?由题意得:,解得:…≥27.(•新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A中T恤x件,且所购进的良好总T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)28.(•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.29.(•乌鲁木齐)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?,解得:,∴30.(•徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?,则解得,,解得﹣。

2017年全国中考数学真题分类 反比例函数图象、性质及其应用2017(填空题)

2017年全国中考数学真题分类 反比例函数图象、性质及其应用2017(填空题)

2017年全国中考数学真题分类 反比例函数图象、性质及其应用填空题二、填空题1. (2017山东枣庄17,4分)如图,反比例函数2y x=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的的面积为 _________.xyCB A O FD答案:4,解析:设D (x ,y ),∵反比例函数2y x=的图象经过点D , ∴xy =2,∵D 为AB 的中点,∴B (x ,2y ),∴OA =x ,OC =2y , ∴OABC S 矩形 C =OA •OC =x •2y =2xy =2×2=4,故答案为:4.2. .(2017浙江金华,15,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数y =xk的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .答案:(―1,―6),解析:如图,过点A 作AH ⊥AB 交x 轴于点H ,过点D 分别作DE ⊥AB ,DF⊥AH,垂足分别为E,H.设AB的解析式为y=kx+b,把点A(2,3)和点B(0,2)分别代入,得⎩⎨⎧==+.2,32bbk解得⎪⎩⎪⎨⎧==.2,21bk∴y=21x+2.令y=0,则21x+2=0,得x=-4.∴G(-4,0).∴OG=4,OB=2.∵点A(2,3),OG=4,可得AG=35.∵∠BGO=∠BGA,∠GOB=∠GAH=90°,∴△BOG∽△HAG,∴AGOGAHOB=,即5342=AH,∴AH=253.由△AGH的面积,可得21×3GH=21AG·AH,即3GH=35×253,得GH=215.∴OH=GH-OG=27.∵AH⊥AB,∠GAC=45°,∴AD平分∠GAH.∵DE⊥AB,DF⊥AH,∴DE=DF=AF.由△AGH的面积,可得21DE·AG+21DF·AH=21AG·AH,即21(35+253) DF =21×35×253,∴DF=5.∴AF=5,FH=253-5=25.∴DH=22)25()5(+=25.∴OD =OH -DH =27-25=1. ∴D (1,0).设直线AD 的解析式为y =mx +n ,把点A (2,3),D (1,0)代入,得⎩⎨⎧=+=+.0,32n m n m 解得⎩⎨⎧-==.3,3n m∴y =3x -3. 把点A (2,3)代入y =x k ,得y =x6. 由⎪⎩⎪⎨⎧-==33,6x y xy 得⎩⎨⎧-=-=6,1y x 或⎩⎨⎧==.3,2y x ∴点C 的坐标为(―1,―6).3. (2017山东济宁,12,3分)请写出一个过(1,1),且与x 轴无交点的函数表达式:. 答案:1y x =(答案不唯一),解析:一个与x 轴无交点的函数有很多,例如反比例函数k y x=(k ≠0),且经过(1,1),由此可得k =1.4. (2017山东菏泽,13,3分)直线y =kx (k>0)与双曲线y=6x交于A (x 1,y 1)和B (x 2,y 2)两点,则122139x y x y -的值为 .答案:36,解析:由图象可知点A (x 1,y 1),B (x 2,y 2)关于原点对称,∴x 1=-x 2, y 1=-y 2,把A (x 1,y 1)代入双曲线y=6x,得x 1y 1=6,所以3x 1y 2-9x 2y 1=-3x 1y 1+9x 1y 1=-18+54=36.5. (2017江苏连云港,15,4分)设函数3yx与26y x 的图象的交点坐标为,a b ,则12a b的值是 .答案:-2,解析:根据函数的交点,a b ,可代入两个函数的解析式得ab =3,b =-2a-6,即b +2a=-6,然后通分236211-=-=+=+ab a b b a .6. 12.(2017四川德阳,12,3分)当221≤≤x 时,函数b x y +-=2的图象上至少有一点在函数xy 1=的图象的下方,则B 的取值范围为A .B >22 B . B <29C .B <3D .22<B < 29答案:,解析:考查学生数形结合的能力。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。

最新【人教版】中考数学:题型(4)反比例函数与一次函数综合题(含答案)

最新【人教版】中考数学:题型(4)反比例函数与一次函数综合题(含答案)

题型四 反比例函数与一次函数综合题针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242,∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得 ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

2017中考一次函数与反比例函数[含答案]

2017中考一次函数与反比例函数[含答案]

反比例函数与一次函数综合题针对演练1. 已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA+MB 最小?若存在,请求出点M的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.4. 如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.第4题图5. 如图,直线y1=14x+1与x轴交于点A,与y轴交于点C,与反比例函数y2=mx(x>0)的图象交于点P,过点P作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似?若存在求出D 点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B为双曲线y=kx(x>0)上一点,直线AB平行于y轴,交直线y=x于点A,交x轴于点D,双曲线y=kx与直线y=x交于点C,若OB2-AB2=4.(1)求k的值;(2)点B的横坐标为4时,求△ABC的面积;(3)双曲线上是否存在点P,使△APC∽△AOD?若存在,求出点P的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A 点的坐标为(x ,y ),则OP =x ,PA =y , ∵△OAP 的面积为1,∴12xy =1,∴xy =2,即k =2,∴反比例函数的解析式为2y x=;(2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2,∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点,∴22x x=, 解得x 1=1,x 2=-1(舍去).∴y =2,∴点A 的坐标为(1,2), ∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值围是-2<x <0; (3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x<0或x≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤n x的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x =-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求, ∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与y 轴交于点C ,∴A (-4,0),C (0,1),又∵AC =BC ,CO ⊥AB , ∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=m x,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E , ∵四边形BCPD 为菱形,∴CE =DE =4,∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x=,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时D 点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B(0,-4),∴OC=OB=4,∴△OCB是等腰直角三角形,∴∠OBC=∠OCB=45°,∴在△OMB中,sin45°=OMOB=4OM,∴OM=22,∵AO=12+52=26,∴在△AOM中,sin∠OAB=OMOA=2226=21313;第6题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1,∴AB =12+12=2,∵OB =OC =4,∴BC =42+42=42,又∵∠OBC =∠OCB =45°,∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB ,∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16,∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).7.解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0); ……………………………………(2分)(2)①如解图,过点C 作CF ⊥x 轴于点F .设AE =AC =t , 点E 的坐标是(3,t ).在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°. 在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =k x的图象上, ∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分)②点E 与点D 关于原点O 成中心对称,理由如下:由①知,点E 的坐标为(3,23),设点D 的坐标是(x ,33x -3), ∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =k x 经过点D (6,1),∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4, ∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x(x >0)上一点, ∴A 点坐标为(a ,a ),B 点坐标为(a ,k a), ∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2, ∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去), ∴C 点坐标为(2,2), 第9题解图 ∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724; (3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222(2)(2)a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

2017年全国中考数学真题汇编:函数与一次函数

2017年全国中考数学真题汇编:函数与一次函数

B . x≥﹣ 2
中自变量 x 的取值范围为(

C. x≥2
D. x≤﹣ 2
考点 :函 数自变量的取值范围. 专题 :压 轴题;函数思想.
分析: 本 题主要考查自变量的取值范围, 函数关系中主要有二次根式. 根据二次根式的意义,
被开方数是非负数即可求解.
解答: 解 :根据题意,得 x﹣ 2≥0,
解得 x≥2.
故选 C.
点评: 考 查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:
( 1)当函数表达式是整式时,自变量可取全体实数;
( 2)当函数表达式是分式时,考虑分式的分母不能为
0;
( 3)当函数表达式是二次根式时,被开方数为非负数.
12.( ?娄底 10.( 3 分))一次函数 y=kx ﹣ k(k< 0)的图象大致是(
反比例函数 y= 图象所在的象限. 解答: 解 :如图所示,∵一次函数 y=kx+b 的图象经过第一、三、四象限,∴ k> 0, b< 0.
∴正比例函数 y=kx 的图象经过第一、三象限, 反比例函数 y= 的图象经过第二、四象限. 综上所述,符合条件的图象是 C 选项. 故选: C.
点评: 本 题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才 能灵活解题.
得到.当 b> 0 时,向上平移; b<0 时,向下平移.
13. ( 年湖北咸宁 8.( 3 分) )如图,双曲线 y=与直线 y=kx+b 交于点 M 、N,并且点 M 的坐
标为( 1,3),点 N 的纵坐标为﹣ 1.根据图象信息可得关于 x 的方程 =kx+b 的解为(

A. 1, 3
﹣ 3, 1
解集是 x<﹣ 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型四 反比例函数与一次函数综合题针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx(m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =n x(n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤n x的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx(x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC=BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx(x <0)交于点A (-1,n ).(1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =k x经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =k x(x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =m x的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x =23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103,又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,PA =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分)将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分)(3)-2≤x <0或x ≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与y 轴交于点C ,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4, ∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx(x <0),得m =5,∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4, ∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=2CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).8.解:(1)当y=0时,得0=33x-3,解得x=3.∴点A的坐标为(3,0);……………………………………(2分)(2)①如解图,过点C作CF⊥x轴于点F.设AE=AC=t, 点E的坐标是(3,t).在Rt△AOB中, tan∠OAB=OBOA=33,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=12t,AF=AC·cos30°=32t,∴点C的坐标是(3+32t,12t).∵点C、E在y=kx的图象上,∴(3+32t)×12t=3t,解得t1=0(舍去),t2=23,∴k=3t=63;…………………………………………… (5分)②点E与点D关于原点O成中心对称,理由如下:由①知,点E的坐标为(3,23),设点D的坐标是(x,33x-3),∴x(33x-3)=63,解得x1=6(舍去),x2=-3,∴点D的坐标是(-3,-23),∴点E与点D关于原点O成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12, 解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a), ∴AB =a -k a ,BD =k a, 在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2,∵OB 2-AB 2=4, ∴(k a )2+a 2-(a -k a)2=4, ∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得 ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a-2)2=14×222(2)aa-,即(a-2)2=14×222((a aa+⨯-,∴4a2-(a+2)2=0,解得a=2或a=-23(舍去),∴P点坐标为(2,2),则此时点C与点P重合,所以不能构成三角形,故不存在.。

相关文档
最新文档