高中数学 第二章 空间向量与立体几何 2.2 空间向量的运算(2)导学案(无答案)北师大版选修21

合集下载

新高考数学-空间向量与立体几何-第2课时教案

新高考数学-空间向量与立体几何-第2课时教案
第5页
新教材同步学案 数学 选择性必修第一册
2.在两个向量共线的充要条件中,为何要求 b≠0? 答:当 b=0 时,若 a≠0,仍有 a∥b,但不存在 λ∈R,使得 a=λb.
第6页
新教材同步学案 数学 选择性必修第一册
3.空间中的任意两个向量是否共面?为什么? 答:共面,任意两个向量都可以平移到同一个平面内,因此空间中向量的加 减运算与平面中一致.
课时学案
第9页
新教材同步学案 数学 选择性必修第一册
题型一 向量的共线问题 例 1 (1)已知 A,B,C 三点共线,O 为直线外任意一点,若O→C=mO→A+nO→B, 则 m+n=____1____. 【解析】 由于 A,B,C 三点共线,所以存在实数 λ,使得A→C=λA→B,即O→C -O→A=λ(O→B-O→A),所以O→C=(1-λ)O→A+λO→B,所以 m=1-λ,n=λ,所以 m+ n=1.
的直线互相____平__行__或__重_合_______
平行于同一个平面的向量
充要 条件
对于空间任意两个向量 a,b(b≠0),若两个向量 a,b 不共线,则向量 p
a∥b 的充要条件是存在实数 λ,使 a 与 a,b 共面的充要条件是存在唯一的
=λb
有序实数对(x,y),使 p=xa+yb
第3页
新教材同步学案 数学 选择性必修第一册
第15页
新教材同步学案 数学 选择性必修第一册
A→1F=25A→1C=25(A→C-A→A1) =25(A→B+A→D-A→A1)=25a+25b-25c. 所以E→F=A→1F-A→1E=25a-145b-25c=25(a-23b-c), 又E→B=E→A1+A→1A+A→B=-23b-c+a=a-23b-c, 所以E→F=25E→B,且有公共点 E,所以 E,F,B 三点共线.

高中数学 2空间向量与立体几何(带答案)

高中数学 2空间向量与立体几何(带答案)

空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a 平行于b 记作a ∥b。

推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。

在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。

注意:向量a∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。

①式叫做平面MAB 的向量表示式。

又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。

空间向量的分解与坐标表示 教学设计高二下学期数学湘教版(2019)选择性必修第二册

空间向量的分解与坐标表示 教学设计高二下学期数学湘教版(2019)选择性必修第二册

第二章空间向量与立体几何2.3空间向量基本定理及坐标表示2.3.1空间向量的分解与坐标表示新课程标准解读核心素养1.了解空间向量的基本定理及其意义数学抽象、直观想象2.掌握空间向量的正交分解及坐标表示数学抽象、数学运算教学设计一、目标展示二、情境导入如图,已知正方体ABCD-A1B1C1D1的棱长为a,在AB,AD,AA1上分别取单位向量e1,e2,e3.问题(1)e1,e2,e3共面吗?―→(2)如何用e1,e2,e3表示向量AC1三、合作探究知识点一共面向量1.一般地,能平移到同一个平面内的向量叫作共面向量.2.向量共面的充要条件(1)如果两个向量e1,e2不共线,那么向量p与向量e1,e2共面的充要条件是存在有序实数组(x,y),使得p=x e1+y e2.这就是说,向量p可以用两个不共线的向量e1,e2线性表示.(2)在三个向量a,b,c中,某个向量为0,或者某两个向量平行,则这三个向量共面.知识点二空间向量基本定理1.设e1,e2,e3是空间中三个不共面向量,则空间中任意一个向量p可以分解成这三个向量的实数倍之和:p=x e1+y e2+z e3,上述表达式中的系数x,y,z由p唯一确定,即若p=x e1+y e2+z e3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.我们把{e1,e2,e3}称为空间的一组基,e1,e2,e3叫作基向量.(x,y,z)称为向量p=x e1+y e2+z e3在基{e1,e2,e3}下的坐标.知识点三空间向量的直角坐标表示1.标准正交基空间任意三个两两垂直、长度均为1的向量i,j,k不共面,可将它们组成空间的一组基,我们把这组基称为标准正交基.2.空间向量的直角坐标表示(1)在空间中任意取一点O 为原点,分别以标准正交基{i ,j ,k }中三个基向量的方向为三条坐标轴的正方向,以1为单位长度,建立空间直角坐标系.将任意空间向量p =(x ,y ,z )=x i +y j +z k 用从原点O 出发的有向线段OP ―→表示,则有向线段的终点P 对应于这个向量p .(2)向量p =OP ―→在标准正交基{i ,j ,k }下的坐标(x ,y ,z )就是点P 在这个直角坐标系中的坐标.(3)标准正交基的基向量的坐标分别是i =(1,0,0),j =(0,1,0),k =(0,0,1).(4)一个空间向量在空间直角坐标系中的坐标,等于表示这个空间向量的有向线段的终点的坐标减去它的起点的坐标.(5)向量在坐标轴正方向上的投影分别等于该向量在相应坐标轴上的坐标.四、精讲点拨【例1】 已知A ,B ,M 三点不共线,对于平面ABM 外的任意一点O ,确定在下列条件下,点P 是否与A ,B ,M 一定共面.(1)OM ―→+OB ―→=3OP ―→-OA ―→;(2)OP ―→=4OA ―→-OB ―→-OM ―→.【例2】 (1)下列能使向量MA ―→,MB ―→,MC ―→成为空间的一组基的关系式是( )A .OM ―→=13OA ―→+13OB ―→+13OC ―→ B .MA ―→=MB ―→+MC ―→C .OM ―→=OA ―→+OB ―→+OC ―→D .MA ―→=2MB ―→-MC ―→(2)设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一组基,给出下列向量:①{a ,b ,x };②{b ,c ,z };③{x ,y ,a +b +c }.其中可以作为空间的基的有( )A .1个B .2个C .3个D .0个【例3】 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.。

高中数学《空间向量与立体几何》章末复习

高中数学《空间向量与立体几何》章末复习
下各向量:
(1)A→P;(2)A→1N;(3)M→P+N→C1.
解 (1)∵P 是 C1D1 的中点,
∴A→P=A→A1+A→1D1+D→1P=a+A→D+12D→1C1=a+c+12→AB=a+c+12b.
(2)∵N 是 BC 的中点,
∴A→1N=A→1A+A→B+B→N=-a+b+12→BC=-a+b+12A→D=-a+b+12c.
学科思想培优 一、空间向量及其运算 本部分内容包括空间向量及其线性运算,共线向量与共面向量,空间向 量的分解定理,两个向量的数量积,这是学习立体几何的基础,也是立体几 何的重点内容,通过本部分的学习我们就可很方便地使用向量工具,证明线 与线、线与面、面与面的位置关系,求空间角和空间距离,把几何问题转化 为向量代数运算.
4.线面垂直 用向量证明线面垂直的方法主要有: (1)证明直线方向向量与平面的法向量平行; (2)利用线面垂直的判定定理转化为线线垂直问题. 5.面面平行 (1)证明两个平面的法向量平行(即是共线向量); (2)转化为线面平行、线线平行问题.
6.面面垂直 (1)证明两个平面的法向量互相垂直; (2)转化为线面垂直、线线垂直问题.
ห้องสมุดไป่ตู้
二、空间向量的坐标表示 1.空间坐标系 这里的空间坐标系指的是右手直角坐标系,即生成坐标系的一组单位正 交基底{a,b,c}按右手系排列,各坐标轴的正方向与 a,b,c 同向. 2.向量的直角坐标运算 设 a=(a1,a2,a3),b=(b1,b2,b3),点 A(x1,y1,z1),B(x2,y2,z2), 则:a+b=(a1+b1,a2+b2,a3+b3);a-b=(a1-b1,a2-b2,a3-b3);a·b
3.求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两 个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向 量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个 面的法向量的夹角,它与二面角的大小相等或互补. 4.点到平面的距离的求法 点 P 到它在一个平面 α 内射影的距离,叫做点 P 到这个平面 α 的距离.若 A 为平面 α 内任一点,n 为平面 α 的法向量,则点 P 到平面 α 的距离 d=|P→|An·|n|.

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

高中数学《空间向量及其加减法运算》导学案 (2)

高中数学《空间向量及其加减法运算》导学案 (2)

第三章 空间向量与立体几何 3.1.1空间向量及其加减法运算 一、学习目标 1.理解空间向量的有关概念; 2.掌握空间向量的加减运算法则及运算律; 【重点、难点】重点:空间向量的有关概念及其加减运算的运算法则;难点:空间向量的加减运算在空间几何体中的应用;二、学习过程【复习回顾】知识点1:平面向量的概念问题1.(1)向量的概念是什么?(2)向量如何表示?(3)什么是向量的长度?(4)有哪些特殊的向量?问题2.平面向量的加减法运算法则是什么?【探究新知】1. 空间向量(1)定义:在空间,把具有 和 的量叫做空间向量;(2)长度:向量的 叫做向量的长度或 ;(3)表示法:⎧⎨⎩几何表示法:用 表示;字母表示法: . 2. 几类特殊向量(1)零向量: 的向量叫做零向量,记为0.(2)单位向量: 的向量称为单位向量.(3)相等向量:方向 且模 的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度 而方向 的向量,称为a 的相反向量,记为2.空间向量的加减法与运算律空间向量的加减法类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=a +b ; CA →=OA →-OC →=a -b . 加法运算律(1)交换律:a +b =b +a ; (2)结合律:(a +b )+c =a +(b +c ) 【典型例题】例1.判断下列命题是否正确,若不正确,请简述理由.① 向量AB 与AC 是共线向量,则A 、B 、C 、D 四点必在一条直线上;② 单位向量都相等;③ 任一向量与它的相反向量不相等;④ 四边形ABCD 是平行四边形的充要条件是AB =DC ;⑤ 模为0是一个向量方向不确定的充要条件;⑥ 共线的向量,若起点不同,则终点一定不同.例2.如图所示,已知平行六面体1111ABCD A B C D -,M 为11AC 与11B D 的交点,化简下列向量表达式.(1)1AA +11B A ;(2)2111B A + 2111D A ; (3)1AA +2111B A +11D A ; (4)AB +BC +1CC +11A C +A A 1;例3. 在平行六面体中,求证:''2'AC AB AD AC ++=【变式拓展】1. 下列说法中正确的是( )A .若|a |=|b |,则a 、b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .空间向量的减法满足结合律D.在四边形ABCD 中,一定有AB +AD =AC2. 已知长方体ABCD —A ′B ′C ′D ′,化简下列向量表达式:(1)';AA CB - (2)'''''AB B C C D ++3. 在长方体ABCD-A 1B 1C 1D 1中,画出表示下列向量的有向线段.(1) AB +AD →+1AA ;;(2)11AB CC DD +-;.三、总结反思1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a b -表示的是由减数b 的终点指向被减数a 的终点的一条有向线段.四、随堂检测 1.判断下列各命题的真假:①向量AB 的长度与向量BA →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤向量AB 与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为( )A .2B .3C .4D .52.在三棱柱ABC­A′B′C′中,AC →与A′C′→是________向量;AB →与B′A′→是________向量.3. 在正方体ABCD-A 1B 1C 1D 1中,化简向量表达式AB →+ CD + BC DA +的结果为________.4. 已知ABCD 是空间四边形,M 和N 分别是对角线AC 和BD 的中点.求证: MN = 1()2AB CD +。

北师大版数学高二-选修2教案 2.2《空间向量及其运算》

北师大版数学高二-选修2教案 2.2《空间向量及其运算》

2.2《空间向量及其运算》教学设计【教学目标】1.了解空间向量与平面向量的联系与区别;了解向量及其运算由平面向空间推广的过程。

2.了解空间向量、共线向量、共面向量等概念;理解空间向量共线、共面的充要条件;了解空间向量的基本定理及其意义;掌握空间向量的正交分解及其坐标表示。

3 .掌握空间向量的线性运算及其性质;掌握空间向量的坐标运算。

4 .理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直。

【导入新课】复习引入1.有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢?既有大小又有方向的量叫向量.向量的表示方法有:用有向线段表示;用字母a 、b等表示;用有向线段的起点与终点字母:AB .长度相等且方向相同的向量叫相等向量.2. 向量的加减以及数乘向量运算: 向量的加法: 向量的减法: 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下:|λa |=|λ||a| (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa=0.3. 向量的运算运算律:加法交换律:a +b =b +a新授课阶段一. 空间向量及其加减与数乘运算1. 定义:我们把空间中具有大小和方向的量叫做空间向量.向量的大小叫做向量的长度或模。

得到: 零向量、 单位向量、 相反向量的概念。

相等向量: 同向且等长的有向线段表示同一向量或相等的向量. 2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:OB OA AB =+=a +b,AB OB OA =-(指向被减向量), OP =λa()R λ∈3. 空间向量的加法与数乘向量的运算律.⑴加法交换律:a +b = b + a;⑵加法结合律:(a + b ) + c =a + (b+ c );⑶数乘分配律:λ(a + b ) =λa+λb ; ⑶数乘结合律:λ(u a ) =(λu )a. 4. 推广:⑴ 12233411n n n A A A A A A A A A A -++++=;⑵ 122334110n n n A A A A A A A A A A -+++++=;⑶ 空间平行四边形法则.例1判断下列命题是否正确,若不正确,请简述理由.⑴ 向量AB 与AC 是共线向量,则A 、B 、C 、D 四点必在一条直线上;⑵ 单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB =DC ;⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④不正确,因为A 、B 、C 、D 可能共线.⑤正确.⑥不正确,如图所示,AC 与BC 共线,虽起点不同,但终点却相同.点评:解此类题主要是透彻理解概念,对向量、零向量、单位向量、平行向量(共线向量)、共面向量的概念特征及相互关系要把握好.二、空间向量的数乘运算1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作a //b。

人教A版(2019)高中数学选择性必修第一册第二册第三册课程目录与教学计划表

人教A版(2019)高中数学选择性必修第一册第二册第三册课程目录与教学计划表

人教A版(2019)高中数学选择性必修第一册第二册第三册
课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做学习计划、复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排选择性必修第一册
第一章空间向量与立体几何
1.1 空间向量及其运算
1.2 空间向量基本定理
1.3 空间向量及其运算的坐标表示
1.4 空间向量的应用
本章综合与测试
第二章直线和圆的方程
2.1 直线的倾斜角与斜率
2.2 直线的方程
2.3 直线的交点坐标与距离公式
2.4 圆的方程
2.5 直线与圆、圆与圆的位置
本章综合与测试
第三章圆锥曲线的方程
第七章随机变量及其分布
7.1 条件概率与全概率公式7.2 离散型随机变量及其分布列7.3 离散型随机变量的数字特征7.4 二项分布与超几何分布7.5 正态分布
本章综合与测试
第八章成对数据的统计分析8.1 成对数据的相关关系
8.2 一元线性回归模型及其应用8.3 列联表与独立性检验
本章综合与测试
本册综合。

高中数学 第二章 空间向量与立体几何 2.2 空间向量的运算 2.2.1 空间向量的加、减法及数乘运

高中数学 第二章 空间向量与立体几何 2.2 空间向量的运算 2.2.1 空间向量的加、减法及数乘运
答案:A
1
2
3
4
5
4.如图,在四面体 O-ABC 中,=a,=b,=c,点 M 在 OA 上,且
1 2 1
A. a- b+ c
2 3 2
2 1 1
B.- a+ b+ c
3 2 2
1 1 2
C. a+ b- c
2 2 3
2 2 1
D. a+ b- c
3 3 2
1
3
1
2
2
3
1
2
1
2
解析: = + + = a+(b-a)+ (c-b)=- a+ b+ c.
④ + + − .
A.①② B.①③ C.①③④ D.①②③
解析:① + + = + =0;② + + +
=( + )+( + )=+0=;③原式=( − )+( −
)= + =0;④原式=( + )+( − )= + =0.
1
2
D.
+ )= + = .



思考辨析
三、共线向量定理



思考辨析
特别提醒对向量共线的充要条件的理解,应从以下几个方面正确
把握:
(1)在此充要条件中,要特别注意b≠0,若不加b≠0,则该充要性不一
定成立.例如,若a≠0,b=0,则a∥b,但λ不存在,该充要性也就不成立了.
2
+ =2a-2b+2c= ,

高中数学立体几何与空间向量

高中数学立体几何与空间向量

高中数学立体几何与空间向量高中数学是一门重要的学科,其中立体几何与空间向量是数学的重要组成部分。

立体几何研究的是空间中的图形与体积,而空间向量则研究的是空间中的向量运算和几何关系。

这两个概念在高中数学中扮演着重要的角色,对于学生的数学思维能力和几何直观的培养有着重要的作用。

首先,我们来介绍一下立体几何。

立体几何是研究空间中的图形和体积的数学学科。

在立体几何中,我们学习了许多重要的概念和定理,例如平面与直线的交点、平行线与垂直线的性质、多面体的表面积和体积等。

通过学习这些概念和定理,我们可以更好地理解和描述空间中的图形,从而提高我们的几何直观和分析能力。

在立体几何中,最基本的图形是点、线和面。

点是空间中的一个位置,线是两个点之间的连线,而面是由多个点和线组成的平面。

通过研究点、线和面的性质,我们可以得出许多有用的结论。

例如,在平面上,两条平行线与一条横切线的关系可以用“内错外直”来描述;在空间中,两个平面的交线是一条直线等等。

这些结论为我们解决实际问题提供了重要的线索和方法。

除了点、线和面,我们还研究了一些特殊的图形,例如圆锥、圆柱和球体等。

这些图形在日常生活中随处可见,通过研究它们的性质,我们可以更好地理解和应用它们。

例如,通过研究圆锥的性质,我们可以解决许多与锥体相关的实际问题,例如锥体的体积和表面积等。

这些问题在工程、建筑和物理等领域都有广泛的应用。

除了立体几何,空间向量也是高中数学中的重要内容。

空间向量是指具有大小和方向的量,它们可以表示空间中的位移、速度和力等物理量。

通过学习空间向量,我们可以更好地理解和描述物体在空间中的运动和变化。

例如,在物理学中,我们可以使用空间向量来描述物体的位移和速度,从而解决与运动相关的问题。

在空间向量的研究中,我们学习了向量的加法、减法和数量积等运算。

通过这些运算,我们可以计算向量之间的关系和性质。

例如,通过向量的数量积,我们可以计算两个向量之间的夹角和长度等。

高中数学 第二章 空间向量与立体几何 2.2 空间向量及其运算教案 北师大版选修2-1-北师大版高二

高中数学 第二章 空间向量与立体几何 2.2 空间向量及其运算教案 北师大版选修2-1-北师大版高二

空间向量及其运算【教学目标】1.和平面向量类比理解空间向量的概念、运算;2.掌握空间向量的共线、垂直的条件,理解空间向量基本定理和数量积【知识梳理】复习:平面向量有加减以及数乘向量运算1. 空间向量的加法和减法的运算法则有法则和法则.2.空间向量的数乘:实数λ与向量a 的积是一个量,记作,其长度和方向规定如下:(1)|λa |=.(2)当λ>0时,λa 与a. ;当λ<0时,λa 与a. ;当λ=0时,λa =.(3)共线向量定理:对空间任意两个向量a , b (b ≠0),a∥b 的充要条件是存在实数λ,使得a =λb .3. 空间向量加法和数乘向量,以下运算律仍然成立:加法交换律:a +b =b +a 数乘交换律: λa=a λ加法结合律:(a +b )+c =a +(b +c )数乘结合律:a a )()(λμμλ=数乘分配律:λ(a +b )=λa +λb a a a μλμλ+=+)(小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. 例3三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.追踪训练1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB →=a ,AD →=b ,AA 1→=c ,则用向量a ,b ,c 可表示向量BD 1→等于( )A .a +b +cB .a -b +cC .a +b -cD .-a +b +c2.对于向量a 、b 、c 和实数λ,下列命题中真命题是( )A .若a·b =0,则a =0或b =0B .若λa =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a·b =a·c ,则b =c 5.3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B.EF →-GH →-PQ →=0C.EF →+GH →-PQ →=0D.EF →-GH →+PQ →=04.在正方体ABCD —A 1B 1C 1D 1中,下列各式中运算结果为BD 1→的是( )①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→-A 1A →)+DD 1→.A .①②B .②③C .③④D .①④5. 如图所示,ABCD -A 1B 1C 1D 1中,ABCD 是平行四边形.若AE →=12EC →,A 1F →=2FD →,若AB →=b ,AD →=c ,AA 1→=a ,试用a ,b ,c 表示EF →.。

北师大版数学高二-高中数学选修2-1第二章《空间向量与立体几何》全部教案

北师大版数学高二-高中数学选修2-1第二章《空间向量与立体几何》全部教案

北师大版高中数学选修2-1第二章《空间向量与立体几何》全部教案第一课时平面向量知识复习一、教学目标:复习平面向量的基础知识,为学习空间向量作准备二、教学重点:平面向量的基础知识。

教学难点:运用向量知识解决具体问题三、教学方法:探究归纳,讲练结合四、教学过程(一)、基本概念向量、向量的模、零向量、单位向量、平行向量、相等向量、共线向量、相反向量、向量的加法、向量的减法、实数与向量的积、向量的坐标表示、向量的夹角、向量的数量积。

(二)、基本运算1、向量的运算及其性质2、平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数21,λλ,使a = ; 注意)(21OB OA OP +=,)1(λλ-+=的几何意义 3、两个向量平行的充要条件: ⑴ //a b 的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则//a b 的充要条件是: ;(坐标表示)4、两个非零向量垂直的充要条件: ⑴ a b ⊥的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则a b ⊥的充要条件是: ;(坐标表示)(三)、课堂练习1.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( -)·(+-2)=0,则∆ABC 是( )A .以AB 为底边的等腰三角形 B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形2.P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心3.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( ) A . 矩形 B . 菱形 C .直角梯形 D .等腰梯形4.已知||22p =||3q =,p 、q 的夹角为45︒,则以52a p q =+,3b p q =-为邻边的平行四边形的一条对角线长为( )A .15B . 14 D .165.O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足=(+λ,),0[+∞∈λ则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 (四)、作业布置1.设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是( )A .),2()2,21(+∞- B .),2(+∞ C .),21(+∞- D .)21,(--∞ 2.若()(),0,7,4,3,2=+-==c a b a 方向在则上的投影为 。

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。

学习向量的长度和方向,掌握向量的模和单位向量。

1.2 向量的运算学习向量的加法、减法和数乘运算。

掌握向量加法和减法的几何意义,理解数乘向量的意义。

1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。

掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。

第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。

学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。

2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。

掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。

第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。

掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。

3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。

掌握平面法向量的概念,学习利用平面法向量求解平面方程。

3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。

掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。

第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。

理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。

4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。

掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。

4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。

学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .7122.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .213.已知直三棱柱111ABC A B C -中,190,1,2ABC AB BC CC ︒∠====,则异面直线1AB 与1BC 所成角的余弦值为( ) A .35B .35C .45D .45-4.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .2 C .12-D .125.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变; 1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个6.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等; ②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形; ④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形, 其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③7.设平面α的一个法向量为1(1,2,2)n =-,平面β的一个法向量为2(2,4,)n k =--,若//αβ,则k = ( )A .2B .-4C .-2D .48.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个 ①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等; ③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .410.如图所示,五面体ABCDE 中,正ABC ∆的边长为1,AE ⊥平面,ABC CD AE ∥,且12CD AE =.设CE 与平面ABE 所成的角为,(0)AE k k α=>,若ππ[,]64α∈,则当k 取最大值时,平面BDE 与平面ABC 所成角的正切值为( )A .2 B .1C .2D .311.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A 2B 3C .1D .2二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ; ②AC BD ⊥; ③AC BD =;④异面直线PM 与BD 所成的角为045.15.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____.16.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.17.在直三棱柱111A B C ABC -中,底面ABC 为直角三角形,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF 的长度的最小值为 .18.已知,若向量互相垂直,则k 的值为____.19.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________20.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.三、解答题21.如图,在四棱锥P ABCD -中,AB //CD ,223AB DC ==,AC BD F ⋂=,且PAD △与ABD △均为正三角形,AE 为PAD △的中线,点G 在线段AE ,且2AG GE =.(1)求证:GF //平面PDC ;(2)若平面PAD ⊥平面ABCD ,求平面PAD 与平面GBC 所成锐二面角的余弦值. 22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.24.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD . (2)求二面角B AE C --的余弦值.25.如图,在直三棱柱111ABC A B C -中,12AA AB AC ===,AB AC ⊥,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段1A B 的中点,求直线MP 与平面11ABB A 所成角的大小; (2)若N 是1CC 的中点,平面PMN 与平面CMN 537,求线段BP 的长度.26.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据向量共面定理求解. 【详解】由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-,∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦,∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩.【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.C解析:C【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1AB 与1BC 所成角的余弦值. 【详解】解:以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 则11(1,0,0),(0,0,2),(0,0,0),(0,1,2)A B B C ,11(1,0,2),(0,1,2)AB BC =-=,设异面直线1AB 与1BC 所成角为θ, 则1111||4cos 5||||55AB BC AB BC θ⋅===⋅⋅.∴异面直线1AB 与1BC 所成角的余弦值为45.故选:C.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.4.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5.C解析:C 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C , 故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.6.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2①正确;直线A 1H 与该正方体各面所成角相等,均为2②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确;垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.7.D解析:D【分析】根据平面平行得法向量平行,再根据向量平行坐标表示得结果.【详解】因为//αβ,所以12122//24n n k-==--,,解之得4k =,应选答案D 【点睛】本题考查向量平行坐标表示,考查基本求解能力,属基础题. 8.D 解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 9.A解析:A【解析】分析:紧扣正四棱锥的概念,即可判定命题的真假.详解:由题意,当四棱锥P ABCD -的底面ABCD 为一个矩形时,设AC BD O ⋂=且PO ⊥底面ABCD ,此时可得PA PB PC PD ===,而四棱锥此时不是正四棱锥,所以①不正确的,同时各个侧面与底面所成的角也不相等,所以③不正确的;因为四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,而直角梯形ABCD 没有外接圆,所以底面不可能是直角梯形,所以④不正确;设四棱锥P ABCD -满足PA PB PC PD ===,所以顶点P 在底面ABCD 内的射影O 为底面ABCD 的外心,所以各条测量与底面ABCD 的正弦值都相等,所以②正确的, 综上,故选A.点睛:本题主要考查了正四棱锥的概念,我们把底面是正方形,且顶点在底面上的射影是底面正方形的中心的四棱锥,叫做正四棱锥,其中紧扣正棱锥的概念是解答的关键. 10.C解析:C【详解】分析:建立空间直角坐标系,利用直线CE 与平面ABE 所成的角,求解k 的最大值,进而求解平面BDE 和平面ABC 的一个法向量,利用向量所成的角,求解二面角的余弦值,进而求得正切值,得到结果.详解:如图所示,建立如图所示的空间直角坐标系O xyz - ,则31(0,1,0),(0,0,),(0,1,),(,0)22k A D E k B , 取AB 的中点M ,则33(,0)4M ,则平面ABE 的一个法向量为33(,0)4CM =,由题意sin 2CE CMCE CM α⋅==⋅又由ππ[,]64α∈,所以1sin22α≤=≤k ≤≤,所以k当k =BDE 的法向量为(,,)n x y z =,则03102n DE y z n BE x yz ⎧⋅==⎪⎪⎨⎪⋅=++=⎪⎩, 取(3,1n =--,由平面ABC 的法向量为(0,0,1)m =, 设平面BDE 和平面ABC 所成的角为θ,则3cos n m n m θ⋅==⋅,所以sin 3θ=tan θ= C. 点睛:本题考查了空间向量在立体几何中的应用,解答的关键在于建立适当的空间直角坐标系,求解直线的方向向量和平面的法向量,利用向量的夹角公式求解,试题有一定的难度,属于中档试题,着重考查了学生的推理与运算能力,以及转化的思想方法的应用. 11.B解析:B【分析】 根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】 ()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-. 故选:B .【点睛】 本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.12.A解析:A【分析】由题意画出结晶体的图形,利用向量加法的三角形法则求解晶体的对角线的长.【详解】设AB a =,AD b =,1AA c =,棱长为t ,则两两夹角为60︒, 11AC AB AD A A a b c=++=+-, 22222222122232AC a b c a b c a b a c c b t t t ∴=+-=+++⋅-⋅-⋅=-=, 12AC t ∴=. 2m ∴=故选:A . 【点睛】 本题考查了棱柱的结构特征,考查了向量加法三角形法则,解答的关键是掌握22||a a =,是基础题.二、填空题13.【分析】建立空间直角坐标系设出的坐标求出向量利用求得关系式写出的表达式然后利用二次函数求最值即可【详解】由题意建立如图所示的空间直角坐标系则由于则所以所以所以当时线段长度的最小值是当时线段长度的最大 解析:5 【分析】建立空间直角坐标系,设出F 、D 的坐标,求出向量DG ,EF ,利用GD EF ⊥求得关系式,写出DF 的表达式,然后利用二次函数求最值即可.【详解】由题意,建立如图所示的空间直角坐标系,则(0,0,0)A ,1(0,1,)2E ,1(,0,1)2G ,(,0,0)F x ,(0,,0)D y ,由于GD EF ⊥,则0GD EF ⋅=,所以210x y +-=,所以(,,0)(21,)DF x y y y =-=-+-,所以22222215415550DF x y y y y ⎛⎫=+=-+=-+ ⎪⎝⎭+, 当25y =时,线段DF 长度的最小值是5, 当0y =时,线段DF 长度的最大值是1,而不包括端点,故0y =不能取;故答案为:5[,1).【点睛】本题主要考查了点、线、面间的距离计算、棱柱的结构特征、空间直角坐标系等基础知识,着重考查了空间想象能力,以及运算求解能力,属于基础题.14.①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件若不是其所在线段中点时可判断③【详解】因为是正方形所以所以平面又平面平面于所以所解析:①②④【分析】根据线面平行的判定定理可判断①;同①以及正方形的特征可判断②;根据异面直线所成的角可判断④;根据题中条件,若P Q M N 、、、不是其所在线段中点时可判断③【详解】因为PQMN 是正方形,所以//PQ MN ,所以//PQ 平面ACD ,又平面ACD ⋂平面ABC 于AC ,所以//AC PQ ,所以//AC 截面PQMN ,故①正确;同理可得//BD MQ ,所以AC BD ⊥,即②正确;又//BD MQ ,PMQ 45∠=︒,所以异面直线PM 与BD 所成的角为045,故④正确;根据已知条件,无法确定AC BD 、长度之间的关系,故③错.故答案为①②④【点睛】本题主要考查空间中点线面位置关系,熟记相关知识点即可求出结果,属于常考题型. 15.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C = 解析:10 【解析】【分析】 取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO =3,BO =7,AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AO 2131()2- BO 22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |22371044BO AO +=+=, 10. 【点睛】本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.【解析】即解析:12λλ<≠-且【解析】0a b a b ⋅<且与不共线 ,即212110,1λλ---<≠⇒ 12λλ<≠-且 17.【详解】建立如图所示的空间直角坐标系则A (000)E (01)G (01)F (x00)D (0y0)=(-y1)=(x-1-)由于GD ⊥EF 所以x+2y-1=0所以当时线段DF 长度的最小值是故答案为: 解析:5 【详解】建立如图所示的空间直角坐标系,则A (0,0,0),E (0,1,12),G (12,0,1),F (x ,0,0),D (0,y ,0) DG =(12,-y ,1), EF =(x ,-1,-12)由于GD ⊥EF ,所以x+2y-1=0, 所以22225415()5215DF x y y y y =+=-+=-+25y =时,线段DF 长度的最55 18.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即解析:522-或 【分析】 由向量垂直的坐标运算直接计算.【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=,解得522k k ==-或, 故答案为522-或. 【点睛】 本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.19.【分析】建立空间直角坐标系分别求得再利用即可得到所求角大小【详解】三棱柱为直三棱柱且以点为坐标原点分别以为轴建立空间直角坐标系设则又异面直线所成的角在异面直线与所成的角等于【点睛】本题考查了异面直线 解析:60【分析】建立空间直角坐标系分别求得1=(0,1,1)BA ,1(1,0,1)AC ,再利用111111,cos BA AC BA AC BA AC 即可得到所求角大小.【详解】 三棱柱111ABC A B C -为直三棱柱,且BAC 90︒∠=∴ 以点A 为坐标原点,分别以AC ,AB ,1AA 为,,x y z 轴建立空间直角坐标系 设1=1AB AC AA ==,则(0,0,0)A ,(0,1,0)B ,1(0,0,1)A ,1(1,0,1)C1=(0,1,1)BA ,1(1,0,1)AC ∴11111101co 2,s 22BA AC BA AC BA AC 又 异面直线所成的角在(0,90]∴ 异面直线1BA 与1AC 所成的角等于60︒ .【点睛】本题考查了异面直线所成角的计算,一般建立空间直角坐标系利用向量法来解决问题,属于中档题.20.【解析】【分析】设出点的坐标根据题意列出方程组从而求得该点到原点的距离【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以所以故该点到原点的距离为故填【点睛】本题主要考查了空间中点的坐标与应用空间 6【解析】【分析】 设出点的坐标(,,)x y z ,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标(,,)x y z因为点到三个坐标轴的距离都是1所以221x y +=,221y z +=,221x z +=, 所以22232x y z ++= 2226=x y z ++ 故填62【点睛】 本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.三、解答题21.(1)证明见解析;(2)9331. 【分析】(1)连结EC ,证明GF ∥EC ,GF //平面PDC 即得证;(2))取AD 的中点O ,连结PO ,证明PO ⊥平面ABCD ,建立如图所示的空间直角坐标系,利用向量法求平面PAD 与平面GBC 所成锐二面角的余弦值. 【详解】解:(1)连结EC ,DC ∥AB∴2AF ABFC CD==, 2AGGE=∴GF ∥EC , EC ⊂平面PDC ,GF ⊄平面PDC ∴GF ∥平面PDC .(2)取AD 的中点O ,连结PO ,易知,,P G O 三点共线且PO AD ⊥, 平面PAD ⊥平面ABCD 且AD 为交线,∴PO ⊥平面ABCD ,连结BO ,易知BO AD ⊥,建立如图所示的空间直角坐标系,易知平面PAD 的法向量1(0,1,0)n →=, 易知(0,0,1)G ,(0,3,0)B ,333(,0)2C , ∴(0,3,1)GB →=-,333(,1)22GC →=--,设面GBC 的法向量2(,,)n x y z →=, ∴223033302n GB y z n GC y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,令2y =,则236,z x == ∴223(3n →= .设所求锐二面角的平面角大小为θ,则121293cos 31n n n n θ→→→→⋅==所以平面PAD与平面GBC 所成锐二面角的余弦值为93 31.【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n→→;再代入公式cosm nm nα→→→→=±(其中,m n→→分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)22.(1)点E是PD的中点,详见解析;(2)361.【分析】(1)点E是PD的中点,连接BD交AC与点O,连接OE,由中位线定理得到//OE PB,再利用线面平行的判定定理证明.(2)以A为原点,以AB,AD,AP分别为x,y,z轴,建立空间直角坐标系,分别求得平面PAC的一个法向量()111,,m x y z=,平面ACE的一个法向量()222,,n x y z=,设二面角P AC E--为θ,由cosm nm nθ⋅=⋅求解.【详解】(1)点E是PD的中点,如图所示:连接BD交AC与点O,连接OE,所以//OE PB,又PB⊄平面AEC,OE⊂平面AEC,所以//PB平面AEC.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =, 则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以 22213361sin 1cos 161θθ⎛⎫=-- ⎪ ⎪⎝⎭. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.23.(1)证明见解析;(2)1010. 【分析】(1)证明线面平行,用线面平行的判定定理,在面PAB 内找一条直线与MN 平行; (2)建立空间直角坐标系,利用向量法求线面角. 【详解】(1)在四棱锥P ABCD -中, 取PA 的中点E ,连接EB 、EM , 因为M 是PD 的中点, 所以EMAD ,且12EM AD =.又因为底面ABCD 是正方形,N 是BC 的中点, 所以BN AD ∥,且12=BN AD , 所以EM BN ∥且=EM BN , 所以四边形MNBE 是平行四边形. 所以MN BE ∥. 由于EB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为底面ABCD 是正方形,所以AB ⊥AD . 又因为PA ⊥平面ABCD ,所以可以以点A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,(2,1,0)N . (2,2,2),(2,0,0)PC CD −−→−−→=-=-,设平面PCD 的法向量为(,,)m x y z =,有:0,0,m PC m CD ⎧⋅=⎨⋅=⎩即0,0,x y z x +-=⎧⎨=⎩,令1y =,则=1z , 所以(0,1,1)m =.(2,0,1)MN =-,设直线MN 与平面PCD 所成角为θ, 有:sin cos ,MN mθ==MN m MN m⋅⋅()02+10+111025⨯⨯⨯-⋅. 所以直线MN 与平面PCD 10 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何位置关系的证明,通常用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算. 24.(1)证明见解析;(222. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值. 【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =--设二面角B AE C --的平面角为θ, 所以622cos cos ,11322AD m θAD m AD m⋅-====⨯,所以二面角B AE C --的余弦值为22.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 25.(1)4π;(2)23. 【分析】(1)过M 作MH AB ⊥于H ,连接PH ,由已知条件知1//PH AA 且112PH AA =,即PM与面11ABB A 所成角为MPH θ=∠,即可求其大小. (2)构建空间直角坐标系,由已知线段长度标识,,M N C 的坐标,令(,0,2)P a a -,由向量坐标表示NP ,MN ,NC ,MC ,进而求得面PMN 与面CMN 的法向量,由二面角余弦值即可求参数a ,即可求BP 的长度. 【详解】(1)过M 作MH AB ⊥于H ,连接PH ,又AB AC ⊥ ,∴//MH AC ,M 是棱BC 的中点,所以H 是AB 的中点,而P 是线段1A B 的中点, ∴1//PH AA 且112PH AA =, PM 与面11ABB A 所成角为MPH ∠,设MPH θ=∠则12tan 12ACMHAA PHθ===,[0,]2πθ∈,∴4πθ=,(2)构建以A 为原点,1,,AB AC AA 分别为x 、y 、z 轴正方向,则(1,1,0),(0,2,1),(0,2,0)M N C ,由等腰1Rt A AB ,可令(,0,2)P a a -,∴(,2,1)NP a a =--,(1,1,1)MN =-,(0,0,1)NC =-,(1,1,0)MC =-, 若(,,)m x y z =为面PMN 的一个法向量,则2(1)00ax y a z x y z -+-=⎧⎨-++=⎩,令1y =,有(3,1,2)m a a =--,若()111,,n x y z =为面CMN 的一个法向量,则110{0z x y -=-+=,令11x =,有(1,1,0)n =,∴由题意,知:2537||||221014m n m n a a ⋅==⋅-+,整理得22168360a a -+=,解得187a =或23a =,而P 在线段A 1B 上,有23a =则24(,0,)33P ,∴423BP =.【点睛】 关键点点睛:(1)根据线面角的几何定义,找到直线MP 与平面11ABB A 所成角的平面角,进而求角. (2)构建空间直角坐标系,设(,0,2)P a a -,求二面角的两个半面的法向量,根据二面角的余弦值求参数a ,进而求线段长. 26.(13102)23. 【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系.(1)写出1A B 、1C D 的坐标,计算出11cos ,A B C D <>的值,即可得出异面直线1A B 与1C D 所成角的余弦值;(2)计算出1ADC 的一个法向量的坐标,可知平面1ABA 的一个法向量为()0,1,0n =,利用空间向量法可求得平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 【详解】在直三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且AB AC ⊥,以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系. 如下图所示:则由题意知()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,4A 、()12,0,4B、()10,2,4C 、()1,1,0D .(1)()12,0,4A B =-,()11,1,4C D =--,111111310cos ,2532A B C D A B C D A B C D⋅<>===⨯⋅ 所以,异面直线1A B 与1C D 310 (2)易知平面1ABA 的一个法向量为()0,1,0n =,设平面1ADC 的法向量为(),,m x y z =,()1,1,0AD =,()10,2,4AC =,由100m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,可得0240x y y z +=⎧⎨+=⎩,令2y =-,则2x =,1z =, 所以,平面1ADC 的一个法向量为()2,2,1m =-,22cos ,33m n m n m n⋅-<>===-⋅, 因此,平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值为23. 【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.。

高二数学选修2-1_空间向量与立体几何教材分析

高二数学选修2-1_空间向量与立体几何教材分析

空间向量与立体几何教材分析在必修2中,我们已经学习了空间中线面、面面平行与垂直的判定定理和性质定理,但必修2中没有证明空间中的距离,点点距、点线距、点面距等、空间中的角,包括异面直线所称的角、线面教、二面角,在必修2中也都只介绍了有关概念,以及很简单的求解题.为了能更好的解决空间中的几何元素的位置、距离、角度问题,教材在这里引入了空间向量.用空间向量处理某些几何问题,为我们提供新的视角,在空间特别是空间直角坐标系中引入空间向量,可以为解决三维图形的形状、大小及位置关系的几何问题增加一种理想的代数工具,从而提高学生的空间想象能力和学习效率.向量知识的引进,使我们能用代数的观点和方法解决立体几何问题,用计算代替逻辑推理和空间想象,用数的规范性代替形的直观性,具体、可操作性强,从而大大降低了立体几何的求解难度.本章是选修2-1的第3章,包括空间向量的基本概念和运算,以及用空间向量解决直线、平面的位置关系的问题等内容.通过本章的学习,我们要体会向量方法在研究几何图形中的作用,进一步培养我们的空间想象能力.在空间向量的学习中,我们要注意类比、推广、特殊化、化归等思想方法的应用,充分利用空间向量与平面向量之间的内在联系,通过类比,将平面向量中的概念、运算以及处理问题的方法推广到空间,既使相关的内容相互沟通,又学习了类比、推广、特殊化、化归等思想方法,体会数学探索活动的基本规律,提高对向量的整体认识水平.空间向量的引进、运算、正交分解、坐标表示、用空间向量表示空间中的几何元素等,都是通过与平面向量的类比完成的.在空间向量运算中,还要注意与数的运算的对比.另外,通过适当的例子,对解决空间几何问题的三种方法,即向量方法、解析法、综合法进行比较,对各自的优势以及面临问题时应当如何做出选择进行正确的分析.本章突出了用空间向量解决立体几何问题的基本思想.根据问题的特点,以适当的方式(例如构造基向量、建立空间直角坐标系)用空间向量表示空间图形中的点、线、面等元素,建立空间图形与空间向量的联系,然后通过空间向量的运算,研究相应元素之间的关系(平行、垂直、角和距离等),最后对运算结果的几何意义作出解释,从而解决立体几何的问题.教材还通过例题,引导学生对解决例题几何问题的三种方法(向量方法、解析法、综合法)进行了比较,分析各自的优势,因题而异作出适当的选择,从而提高综合运用数学知识解决问题的能力.《普通高中数学课程标准》对《空间向量与立体几何》内容的要求如下:(1)空间向量及其运算①经历向量及其运算由平面向空间推广的过程.②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.③掌握空间向量的线性运算及其坐标表示.④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(2)空间向量的应用①理解直线的方向向量与平面的法向量.②能用向量语言表述线线、线面、面面的垂直、平行关系.③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理)(参见例1、例2、例3).④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用.通过一定的训练,我们应该达到以下意识和习惯:凡能用向量解决的立体几何问题尽可能用向量解决;另外在解题过程中必须写出规范的格式和必要的步骤,例如建立空间直角坐标系的表述、有关向量的坐标表示等.本章课时安排:3.1空间向量及其运算5课时;3.2立体几何中的向量方法5课时;章末复习课1课时.共11课时。

高二数学选修2-1第2章《空间向量与立体几何》_导学案

高二数学选修2-1第2章《空间向量与立体几何》_导学案

高二数学选修2-1第2章《空间向量与立体几何》_导学案南康二中高二数学◆选修2-1◆导学案.试试:1.分别用平行四边形法则和三角形法则求ab,ab..b2.点C在线段AB上,且AC5,CB2则ACAB,BCAB.反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A.+B.=B.+a;⑵加法结合律:(A.+b)+C.=A.+(B.+c);⑶数乘分配律:λ(A.+b)=λA.+λb.典型例题例1已知平行六面体ABCDA'B'C'D'(如图),化简下列向量表达式,并标出化简结果的向量:⑴AB⑵BCABAD;AA';⑶ABAD1CC'⑷12(ABAD2AA').变式:在上图中,用AB,AD,AA'表示AC',BD'和DB'.小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.2南康二中高二数学◆选修2-1◆导学案§2.1.2空间向量的数乘运算(一)CD3ab,求证:A,B,C三点共线.1.化简;2.3.几何中的问题.8687复习1:化简:⑴5(3a2b)+4(2b3a);⑵6a3bcabc.复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量a,b,若b是非零向量,则a与平行的充要条件是二、新课导学学习探究探究任务一:空间向量的共线问题它们的位置关系?新知:空间向量的共线:1.如果表示空间向量的互相或平行向量.2.空间向量共线:定理:对空间任意两个向量a,b(b0),a//b要条件是存在唯一实数,使得推论:如图,l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是试试:已知ABa5b,BC2a8b,3反思:充分理解两个向量a,b共线向量的充要条件中的b0,注意零向量与任何向量共线.典型例题例OP1已知直线AB,点O是直线AB外一点,若某OAyOB,且某+y=1,试判断A,B,P三点是否共线?变式:已知A,B,P三点共线,点O是直线AB外一点,若OP12OAtOB,那么t=例2已知平行六面体ABCDA'B'C'D',点M是棱AA'设的中点,点G在对角线A'C上,且CG:GA'=2:1,CACD,=CAa,CBb,CC'c,试用向量a,b,c表示向量',CM,CG.变式1:已知长方体ABCDA'B'C'D',M是对角线AC'中点,化简下列表达式:⑴AA'CB;⑵AB'B'C'C'D'⑶12AD112AB2A'A4南康二中高二数学◆选修2-1◆导学案试试:若空间任意一点O和不共线的三点A,B,C满足111关系式OPOAOBOC,则点P与A,B,C共面236吗?5反思:若空间任意一点O和不共线的三点A,B,C满足关系式OP某OAyOBzOC,且点P与A,B,C共面,则某yz.例典型例题①1下列等式中,使OMM,A,B,C四点共面的个数是()OAOBOC;②OM1115OAOBOC;③MAMB3MC20;④OMOAOBOC0.A.1B.2C.3D.4变式:已知A,B,C三点不共线,O为平面ABC外一点,若向量OP15OA73OBOCR,则P,A,B,C四点共面的条件是例2如图,已知平行四边形ABCD,过平面AC外一点O作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G,H,并且使OEOAOFOBOGOHOCODk,求证:E,F,G,H四点共面.6南康二中高二数学◆选修2-1◆导学案§2.1.3.空间向量的数量积(1)1.掌握空间向量夹角和模的概念及表示方法;2.向量的数量积解决立体几何中的一些简单问题.9092复习1:什么是平面向量a与b的数量积?复习2:在边长为1的正三角形⊿ABC中,求AB.二、新课导学学习探究探究任务一:空间向量的数量积定义和性质问题空间线段的长度问题?新知:1)两个向量的夹角的定义:已知两非零向量空间一点O,作OAa,baO,Bb,则AOB量a与b的夹角,记作.试试:⑴范围a,:b=0时,a与a,bb;a,b=π时,a与b⑵a,bb,a成立吗?⑶a,b,则称a与b互相垂直,记作.2)向量的数量积:已知向量a,bab,则叫做a,b的数量积,,即ab规定:零向量与任意向量的数量积等于零.反思:⑴两个向量的数量积是数量还是向量?⑵0a⑶你能说出ab0还是0)的几何意义吗?73)空间向量数量积的性质:(1)设单位向量e,则ae|a|coa,e.(2)abab.(3)aa=4)空间向量数量积运算律:(1)(a)b(ab)a(b).(2)abba(3)a(bc(交换律))abac.(分配律反思:⑴(ab)ca(bc)吗?举例说明.⑵若abac,则bc吗?举例说明.⑶若ab0,则a0或b0吗?为什么?典型例题例1用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.变式1:用向量方法证明:已知:m,n是平面内的两条相交直线,直线l与平面的交点为B,且lm,ln.求证:l.例2如图,在空间四边形ABCD中,AB2,BC3,BDCD3,ABD30,ABC60,求AB与CD,8南康二中高二数学◆选修2-1◆导学案§2.1.4空间向量的正交分解及其坐标表示1.标表示;2.掌握空间向量的坐标运算的规律;⑴a+b=(a1b1,a2b2,a3b3);92-96⑵a-b=(a1b1,a2b2,a3b3);复习1:平面向量基本定理:⑶λa=(a1,a2,a3)(R);对平面上的任意一个向量P,a,b是平面上两⑷a·b=a1b1a2b2a3b3.向量,总是存在实数对某,y,使得向量P可以用a,b试试:a1.设,则向量的坐标为.a2ij3k示,表达式为,其中a,b(3,1,1)(1,0,2)2.若A,B,则AB=.做.若ab,则称向量P正交分解.3.已知a=(2,3,5),b=(3,1,4),求a+b,a-b,复习2:平面向量的坐标表示:8a,a·b平面直角坐标系中,分别取某轴和y轴上的向量i,j作为基底,对平面上任意向量a数某,y,使得a某iyj,,则称有序对某,y为向量a的,即a=.二、新课导学学习探究向的单位向量,则存在有序实数组{某,y,z},使得,则称有序实数组{某,y,z}为向量a的a某iyjzk坐标,记着p⑸设A(某1,y1,z1),B(某2,y2,z2),则AB=.⑹向量的直角坐标运算:设a=(a1,a2,a3),b=(b1,b2,b3),则典型例题探究任务一:空间向量的正交分解从向量a,b,c问题:对空间的任意向量a例1已知向量a,b,c是空间的一个基底,中选哪一个向量,一定可以与向量pab,qab何位置关系?构成空间的另一个基底?新知:⑴空间向量的正交分解:空间的任意向量a分解为不共面的三个向量1a1、2a2、3a3a1a12a23a3.如果a1,a2,a3两两分解就是空间向量的正交分解.变式:已知O,A,B,C为空间四点,且向量OA,OB,OC不构成空间的一个基底,那么点O,A,B,C是否共面?(2)空间向量基本定理:如果三个向量a,b,c,对空间任一向量p,存在有序实数组{某,y,z}a,b,c.把的一个基底,p某aybzc量.反思:空间任意一个向量的基底有个.⑶单位正交分解:相,长度都为,则这个基底叫做,通常用{i,j,k}表示.⑷空间向量的坐标表示小结:判定空间三个向量是否构成空间的一个基底的O-某yz和向量a,且设i、j、k为某轴、y轴、z方法是:这三个向量一定不共面.910南康二中高二数学◆选修2-1◆导学案114.线段中点的坐标公式:在空间直角坐标系中,已知点A(某1,y1,z1),B(某2,y2,z2),则线段AB的中点坐标为.典型例题例1.如图,在正方体ABCDA1B1C1D1中,点E1,F1分别是A1B1,C1D1的一个四等分点,求BE1与DF1所成的角的余弦值.变式:如上图,在正方体ABCD1A1B1C中1D,BDAB1E11F1113,求BE1与DF1所成角的余弦值.例2.如图,正方体ABCDA1B1C1D1中,点E,F分别是BB1,D1B1的中点,求证:EFDA1.12南康二中高二数学◆选修2-1◆导学案相,长度都为,则这个基底叫做单位正交基底,通常用{i,j,k}表示.9.空间向量的坐标表示:给定一个空间直角坐标系O-某yz和向量a,且设i、j、k为某轴、y轴、z轴正方向的单位向量,则存在有序实数组{某,y,z},使得,则称有序实数组{某,y,z}为向量a的a某iyjzk坐标,记着p10.设A(某1,y1,z1),B(某2,y2,z2),则AB=.11.向量的直角坐标运算:设a=(a,a,a3),b=(b1,b2,b3),则12⑴a+b=;⑵a-b=;⑶λa=;⑷a·b=动手试试1.在下列命题中:①若a、b共线,则a、b所在的直线平行;②若a、b所在的直线是异面直线,则a、b一定不共面;③若a、b、c三向量两两共面,则a、b、c三向量一定也共面;④已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为p=某a+yb+zc.其中正确命题的个数为()A.0B.1C.2D.32.在平行六面体ABCD-A1B1C1D1中,向量D1A、是()D1C、AC11A.有相同起点的向量B.等长向量C.共面向量D.不共面向量3.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三向量共面,则实数λ=()62636465A.B.C.D.77774.若a、b均为非零向量,则ab|a||b|是a与b共线的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件5.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A.2B.3C.4D.56.a3i2jk,bij2k,则5a3b()A.-15B.-5C.-3D.-11314南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(1)1.掌握直线的方向向量及平面的法向量的概念;2.行、垂直、夹角等立体几何问题.102104,找出疑惑之处)复习1:可以确定一条直线;个平面的方法有哪些?复习2:如何判定空间A,B,C三点在一条直线上?复习3:设a=(a1,a2,a3),b=(b1,b2,b3),a·b=二、新课导学学习探究探究任务一:向量表示空间的点、直线、平面问题位置?新知:⑴点:在空间中,我们取一定点O间中任意一点P的位置就可以用向量把向量OP来表示,OP称为点P的位置向量.⑵直线:①直线的方向向量向量.②对于直线l上的任一点P,存在实数t,APtAB,此方程称为直线的向量参数方程.⑶平面:①空间中平面的位置可以由确定.对于平面上的任一点P,a,b是平面不共线向量,则存在有序实数对(某,y),OP某a使y.b②空间中平面的方向向量表示空间中平面的位置.⑷平面的法向量:如果表示向量n线垂直于平面,则称这个向量n垂直于平面,n⊥,那么向量n叫做平面的法向量.15试试:.1.如果a,b都是平面的法向量,则a,b的关系.2.向量n是平面的法向量,向量a是与平面平行或在平面内,则n与a的关系是.反思:1.一个平面的法向量是唯一的吗?2.平面的法向量可以是零向量吗?⑸向量表示平行、垂直关系:设直线l,m的方向向量分别为a,b,平面,向量分别为u,的法v①l∥m,则a∥ba②l∥akb③∥uu∥au0vukv.典型例题例1已知两点A1,2,3,B2,1,3,求直线AB与坐标平面YOZ的交点.变式:已知三点A1,2,3,B2,1,2,P1,1,2,点Q在OP上运动(O为坐标原点),求当QAQB取得最小值时,点Q的坐标.小结:解决有关三点共线问题直接利用直线的参数方程即可. 16南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(2)1.立体几何问题;2.中的角度的计算方法.105复习1:已知107,找出疑惑之处.ab1,a1,b2,且m2ab求m.复习2:角的范围是什么?二、新课导学学习探究探究任务一:用向量求空间线段的长度问题:如何用向量方法求空间线段的长度?新知a求出线段长度.试试:在长方体ABCD'A'B'C中'D,已AB1,BC2,'CC,求1AC'的长.反思用已知条件中的向量表示.典型例题例1如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?17变式1:上题中平行六面体的对角线BD1的长与棱长有什么关系?变式2:如果一个平行六面体的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于,那么由这个平行六面体的对角线的长可以确定棱长吗探究任务二:用向量求空间图形中的角度例2如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线l(库底与水坝的交线)的距离AC,BD分别为a,b,CD的长为c,AB的长为d.求库底与水坝所成二面角的余弦值.变式:如图,60的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB4,AC6,BD8,求CD的长.18南康二中高二数学◆选修2-1◆导学案§2.2立体几何中的向量方法(3)1.进一步熟练求平面法向量的方法;2.异面直线间距离的计算方法;3.熟练掌握向量方法在实际问题中的作用.,B0,1,1,C1,1,2ABC的一个法向量.复习2:离?二、新课导学学习探究探究任务一:点到平面的距离的求法问题:如图A,空间一点P到平面知平面的距离为d,的一个法向量为n,且AP与n不共线,AP与n表示d分析:过P作PO⊥于O连结d=|OAPO,则|=|PA|∵PO⊥,coAPO.n,∴PO∥n.∴co∠APO=|co∴D.=|PA||coPA,n|=|PAPA,n|||n|||coPA,n||PAn|n|=|n|新知:用向量求点到平面的距离的方法:设A,空间一点P到平面的距离为d,平面个法向量为n,则D.=|PA|n|n|19试试:在棱长为1的正方体ABCDA'B'C'D'中,求点C'到平面A'BCD'的距离.反思:当点到平面的距离不能直接求出的情况下,可以利用法向量的方法求解.典型例题例1已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.变式:如图,ABCD是矩形,PD平面ABC,DPDDCa,AD,M、N分别是AD、PB的中点,求点A到平面MNC的距离.PNCAB小结:求点到平面的距离的步骤:⑴建立空间直角坐标系,写出平面内两个不共线向量的坐标;⑵求平面的一个法向量的坐标;⑶找出平面外的点与平面内任意一点连接向量的坐标;⑷代入公式求出距离.20南康二中高二数学◆选修2-1◆导学案§第2章空间向量(复习)1.掌握空间向量的运算及其坐标运算;2.具.115-116复习1:如图,空间四边形OABC中OAa,OBb,OC且OM=2MA,为BC中点,则c.点M在OA上,MN复习2:平行六面体ABCDA'BADb,'C'D'中,ABaAA'c,点P,M,N分别是CA',CD',C'D'的中点,点Q在CA'上,且CQ:QA'4:1,a,用基底b,c表示下列向量:⑴AP;⑵AM;⑶AN;⑷AQ.主要知识点:1.空间向量的运算及其坐标运算:空间向量是平面向量的推广,有关运算方法几乎一样,只是“二维的”变成“三维的”了.2.立体几何问题的解决──向量是很好的工具①平行与垂直的判断②角与距离的计算21典型例题例1如图,一块均匀的正三角形面的钢板的质量为500kg,在它的顶点处分别受力F1、F2、F3,每个力与同它相邻的三角形的两边之间的夹角都是F60,且F12F3200kg.这块钢板在这些力的作用下将会怎样运动?这三个力最小为多大时,才能提起这块钢板?变式:上题中,若不建立坐标系,如何解决这个问题?小结:在现实生活中的问题,我们可以转化我数学中向量的问题来解决,具体方法有坐标法和直接向量运算法,对能建立坐标系的题,尽量使用坐标计算会给计算带来方便.例2如图,在直三棱柱ABCA1B1C1中,ABC90,CB1,CA21,点M6是CC1的中点,求证:AMBA1.变式:正三棱柱ABCA1B1C1的底面边长为1,棱长为2,点M是BC的中点,在直线CC1上求一点N,使MNAB.。

新湘教版高中数学选择性必修第二册2.2空间向量及其运算

新湘教版高中数学选择性必修第二册2.2空间向量及其运算

3 . 在 如 图 所 示 的 正 方 体 中 , 下 列 各 对 向 量 的 夹 角 为 45° 的 是
(
).
A.AB与A′ C′ B.AB与C′ A′
C.AB与A′ D′ D.AB与B′ A′
答案:A
解析:对于A,因为AB=A′ B′ ,所以AB与A′ C ′ 的夹角为45°,故A正确;
对于B,因为AB=A′ B′ ,所以AB与C ′ A′ 的夹角为135°,故B不正确;
1
OB=b,〈a,b〉=α.过点B作BB1⊥OA,垂足为点B1,则________为
|1 |
OB在OA方向上的投影向量,投影向量的模________=|OB||cos
α|称为
投影长,称___________为OB在OA方向上的投影,其正负表示OB
|CB|cos α
1与
OA方向相同还是相反.
基 础 自 测
相反
相等
长度为零的向量.
长度为________的向量.
1
对于空间任意两个向量a、b(a≠0),若b=λa,其中λ为
实数,则b与a共线或平行,记作________.
b∥a
类比平面向量记忆.
要点二
空间向量的加减与数乘运算
运算
加法a+b❸
法则(或几何意义)
运算律
(1)交换律:
a+b=________;
b+aபைடு நூலகம்
B.将空间向量所有的单位向量平移到同一起点,则它们的终点构
成一个圆
C.模长为3的空间向量大于模长为1的空间向量
D.不相等的两个空间向量的模可能相等
答案:D
解析:对A,零向量的相反向量是本身,故A错;
对B,终点构成一个球面,故B错;

高中数学第二章空间向量与立体几何2.2空间向量的运算笔记全国公开课一等奖百校联赛微课赛课特等奖PPT

高中数学第二章空间向量与立体几何2.2空间向量的运算笔记全国公开课一等奖百校联赛微课赛课特等奖PPT
1/12
有向线段
字母
课题“空间向量运算”含有哪些数学信息?
假 称 (假如之向如问为量问题空是则 相 过题研间现等 空研究向有A图 示 表 向 间O究范量大量 任 B围范。小叫 意 O围扩又A作 一和限大有a点 , 与 自Ob定到方的 OB向 由, 数作 在空夹 向量 向a学同间角 量,起量b,中一中的 。点所,无讨关论,向称量为
ab
空间向量减法法则
a与 b差定义为 a (b,)记作 其中 b是 b相反向量
空间向量加法运算律
(1)结合律 (a b) c a (b c)
a b
a
b
A ab
O
C B
(2)交换律 a b b a
5/12
空间向量数乘
空间向量 a 与一个实数 乘积是一个 (1) | a | | || a |
(1)AN;
(2)A'M;
(3)MN
反思:
用一个非零向量能够表 示…
9/12
例2、如图,已知平行六面体ABCD - A'B'C'D'的 底面ABCD是边长为1的菱形, 且C'CB C'CD BCD 600 , DD' 2.求: (1)DD' DA; (2)DD' BD.
c
b a
10/12
空间两个向量a与(b b 0)共线的充分必要条件
是存在实数,使得a b.
a的单位向量
对于任意一个非零向量a,我们把 a 叫作向量a的单位向量, |a|
记作a0,a0与a同方向.
8/12
例1、 在平行六面体ABCD - A'B'C'D'中,AB a, AD b,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 空间向量的运算 (2)
学习目标:
知识与技能 :1、熟练掌握空间向量的数量积运算. 2、能用空间向量的运算律解决简单的立体几何中的问题
过程与方法:经历向量运算平面到空间推广的过程,进一步掌握类比的数学思想方法. 情感态度与价值观: 学会用发展的眼光看问题,认识事物是在不断发展变化的,会用联系的观点看待问题。

学习重点:空间向量的数量积及运算律
学习难点:用向量解决立几体几何问题
学习方法:以讲学稿为依托的探究式教学
学习过程:
一、课前预习:
1.空间向量的数量积:空间两个向量a 和b 的数量积是 ,等于 ,记作 .
2.空间向量的数量积的运算律
(1)交换律:a·b = ;
(2)分配律:a ·(b +c )= ;
(3)λ(a·b )= (λ∈R).
3.利用空间向量的数量积得到的结论
(1)|a |= ;
(2)a⊥b ⇔ ;
(3)cos 〈a ,b 〉= (a ≠0,b ≠0).
二.新课学习
问题探究一 数量积的概念
1 类比平面向量的数量积,说出空间向量的数量积a·b 的定义?
2 请你类比平面向量说出a·b 的几何意义.
例2:独立完成教材31页例2
学后检测1: 已知长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,
AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点.试计算:
(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→
.
问题探究二 利用数量积求夹角
1 利用数量积怎样证明两个向量垂直?
2 怎样求两个向量的夹角?
例3 如图所示,已知正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中
点,求异面直线BE 与CD 1所成角的余弦值.
三、当堂检测:
1.设a、b、c是任意的非零平面向量,且它们相互不共线,下列命题:
①(a·b)·c-(c·a)·b=0;②|a|-|b|<|a-b|;③(b·a)·c-(c·a)·b与c垂直;
④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确的有( )
A.①② B.②③ C.③④ D.②④
2.已知a,b均为单位向量,它们的夹角为60°,那么|a+3b|等于()
A.7
B.10
C.13 D.4
3.如图所示,已知PA⊥平面ABC,∠ABC=120°,PA=AB=BC=6,
则PC等于( )
A.6 2 B.6 C.12 D.144
四、课堂小结:
五、课后作业:。

相关文档
最新文档