(完整)空间向量__新高中数学教学教学教案
高中数学空间向量的教案
![高中数学空间向量的教案](https://img.taocdn.com/s3/m/1f314a4acd1755270722192e453610661fd95a4c.png)
高中数学空间向量的教案
教学目标:
1. 理解空间向量的概念和性质。
2. 掌握空间向量的加法、减法、数量积和向量积的计算方法。
3. 能够解决空间向量相关的实际问题。
教学重点:
1. 空间向量的概念和性质。
2. 空间向量的加法、减法、数量积和向量积的计算方法。
教学难点:
1. 空间向量的数量积和向量积的计算方法。
2. 解决空间向量相关的实际问题。
教学准备:
1. 讲义、PPT等教学材料。
2. 黑板、彩色粉笔。
3. 实物或图片展示空间向量的应用场景。
教学过程:
一、导入(5分钟)
通过展示实物或图片,引入空间向量的概念,提出问题:“在三维空间中,我们如何表示和计算向量呢?”
二、讲解(15分钟)
1. 空间向量的概念和性质。
2. 空间向量的加法、减法的计算方法。
3. 空间向量的数量积和向量积的定义和计算方法。
三、练习(20分钟)
1. 向学生提供一些简单的空间向量计算题目,让学生独立或分组完成。
2. 指导学生解决一些较难的空间向量实际问题,引导学生思考向量在现实生活中的应用。
四、总结(5分钟)
通过与学生讨论和解答疑问,总结本节课的重点和难点,强化学生对空间向量的理解和掌握。
五、作业布置(5分钟)
布置相关的空间向量的练习题目,鼓励学生在课后继续复习和巩固所学知识。
六、反馈评估(10分钟)
收集学生在课堂上的表现和作业答案,及时对学生的理解和掌握情况进行评估和反馈,为下一节课的教学做好准备。
高中数学空间向量教案设计
![高中数学空间向量教案设计](https://img.taocdn.com/s3/m/3d2e7f66a22d7375a417866fb84ae45c3b35c231.png)
高中数学空间向量教案设计
学科:数学
课题:空间向量
年级:高中
课时数:2课时
教学目标:
1. 理解空间向量及其表示方法;
2. 掌握空间向量的加法、减法和数量乘法运算;
3. 掌握向量共线、平行、垂直的判定方法;
4. 能够解决与空间向量相关的实际问题。
教学重点:
1. 空间向量的表示方法;
2. 空间向量的运算法则;
3. 向量共线、平行、垂直的判定方法;
教学难点:
1. 空间向量的几何意义;
2. 向量判定问题的解题方法。
教学准备:
1. 教师:熟悉空间向量的概念及运算法则;
2. 学生:准备好纸笔,能够积极参与课堂讨论。
教学过程:
第一课时:
1. 导入:通过一个实际生活中的例子引入向量的概念,让学生了解向量的基本含义。
2. 概念讲解:介绍空间向量的概念及表示方法,让学生理解向量的几何意义。
3. 运算法则:讲解空间向量的加法、减法和数量乘法运算法则,并进行简单练习。
4. 练习:让学生通过练习掌握向量的基本运算方法。
第二课时:
1. 复习:回顾空间向量的表示方法和运算法则。
2. 判定问题:讲解向量共线、平行、垂直的判定方法,让学生掌握判定问题的解题思路。
3. 实际问题:通过实际生活中的问题引导学生运用向量的知识解决问题。
4. 总结:对本节课的内容进行总结,强化学生对空间向量的理解。
教学反思:
通过本节课的教学,学生能够对空间向量有个初步的了解,并能够应用向量的运算法则解决简单的问题。
同时,学生还需要在后续的学习中不断深化对空间向量的理解,提高解题能力。
新版高中数学《1.1.2 空间向量的数量积运算》教学设计
![新版高中数学《1.1.2 空间向量的数量积运算》教学设计](https://img.taocdn.com/s3/m/bc3d58cf534de518964bcf84b9d528ea80c72f45.png)
1.1.2空间向量的数量积运算 教学设计(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1.了解空间向量夹角的概念及表示方法,掌握空间向量数量积的计算方法、几何意义、性质及运算律2.通过学习空间向量的数量积运算,培养学生数学运算的核心素养;通过投影向量概念的学习培养学生直观想象和逻辑推理的核心素养二、教学重难点1.重点:空间向量的数量积的定义、性质、运算律及计算方法2.难点:空间向量的数量积的几何意义,运算律的证明三、教学过程1.类比平面向量,探究空间向量数量积的相关概念和性质1.1两个非零空间向量的夹角问题1:类比平面向量中所学,如何定义空间向量的夹角?【预设的答案】空间向量是自由向量,可以将两个向量平移到共起点的位置(动态演示空间向量平移过程)【定义】已知两个非零向量a ,b ,在空间任取一点O ,作OA→ = a ,OB → = b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉. 规定:〈a ,b 〉∈[0,π].特别地:当〈a ,b 〉= π2时,a ⊥b .【互动练习】(1)〈a ,b 〉=〈b ,a 〉成立吗?(2)〈a ,b 〉= ,则称a 与b 互相垂直,记作 .(3)〈a ,b 〉= 0时,a 与b 方向 ; 〈a ,b 〉= π时,a 与b 方向 .1.2 两个非零空间向量的数量积【定义】已知两个非零向量a ,b ,则|a| |b| cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b . 即 a ·b = |a| |b| cos 〈a ,b 〉.规定:零向量与任意向量的数量积都等于零.问题2:根据上述定义我们不难发现,空间向量数量积的定义和平面向量数量积定义一致,那么空间向量数量积的性质是否与平面向量中的一致呢?【预设的答案】一致【互动练习】(1)两个向量的数量积是数量还是向量?(数量,它的大小与两个向量的长度及其夹角有关.)(2)0 ·a = (选择0还是0). 零向量与任意向量的数量积为0.(3)对于两个非零向量a ,b ,a ⊥b ⟺ a ·b = (判断垂直关系)(4)a ·a =_____或|a |=a ·a (求模长)(5)若a ,b 同向,则 a ·b =_______;若反向,则a ·b =_______.(6)|a ·b | ____ |a |·|b |(7)若θ为a ,b 的夹角,则cos θ=_______.【设计意图】平面向量中关于数量积的性质可以直接类比到空间向量中来,从学生的口中叙述出来,一是为了巩固,也能让学生体会空间向量数量积定义与平面向量数量积定义的相通之处.【例1】如图所示,在棱长为1的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求值: (1)EF →·BA →;(2)EF →·BD →;(3)EF →·DC →.【解】(1)EF →·BA →=12BD →·BA →=12|BD →||BA →|cos 〈BD →,BA →〉=12cos 60°=14.(2)EF →·BD →=12BD →·BD →=12|BD →|2=12.(3)EF ·DC →=12BD →·DC →=-12DB →·DC →=-12×cos 60°=-14.1.3 空间向量的数量积的几何意义问题3:在平面向量的学习中,我们学习了向量的投影.类似地,在空间,向量a 向向量b 的投影有什么意义?【预设的答案】将两空间向量平移至同一平面,转化为平面向量问题,找出投影向量.在空间中,由于向量a 与向量b 是自由向量,将向量a 与向量b 平移到同一平面内α内,进而利用平面上向量的投影,得到与向量b 共线的向量:||cos ,b c a a b b=<>追问: 空间中,向量a 能否向一条直线l 作投影?向量a 能否向一个平面β作投影?图1动态演示向量a 向向量b 投影注:图3中向量a 与投影向量的夹角就是向量a 所在直线与平面β所成的角【设计意图】投影向量概念的提出是为了让学生体会空间向量数量积的几何意义;另外,空间向量向直线投影、向平面投影也为后续学生对空间向量与空间角间的关系形成初步认识.1.4 空间向量的数量积的运算律问题4: 类比平面向量数量积的运算律,空间向量数量积满足哪些运算律?【预设的答案】结合律;交换律;分配律数乘向量与向量数量积的结合律(λa )·b =λ(a ·b ), λ∈R 交换律a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·c追问:你能否证明上述运算律?【教师分析】证明前两条运算律,可以将向量a 与向量b 平移至同一个平面当中,则证明过程与平面向量中的证明方法无异;证明分配律时则涉及到三个不共面的向量.分配律的证明:,,OA a OB b BC c ===令, 'OC OA OC 向投影,投影向量为,OC OA θ记与的夹角为()OA OB BC OA OC ∴=⋅+=⋅左边||||cos OA OC θ=|||'|OA OC ='OB OA OB 向投影,投影向量为,1OB OAθ记与的夹角为 ''BC OA B C 同理,向投影,投影向量为,2BC OAθ记与的夹角为 OA OB OA BC ∴=⋅+⋅右边12||||cos ||||cos OA OB OA BC θθ=+|||'||||''|OA OB OA B C =+ ||(|'||''|)OA OB B C =+|||'|OA OC ==左边图2动态演示向量a 向直线l 投影 图3 动态演示向量a 向平面β投影2. 对比思考,深入了解思考问题1: 对于三个均不为0的数a ,b ,c ,若ab=ac ,则b=c.对于非零向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?分析:由a ·b =a ·c ,有a·(b -c )=0. 从而有b =c 或a ⊥(b -c ).追问:能否从几何意义的角度举出反例?思考问题2: 向量有除法吗?分析:向量没有除法. 追问:ak 的结果唯一吗? 思考问题3: 向量数量积满足结合律吗?分析:两个向量的数量积为一个实数,(a ·b )c 和a (b ·c )分别表示与向量c 和向量a 共线的向量,它们不一定相等.向量的数量积运算没有结合律!【设计意图】通过三个问题的思考 ,与数字运算进行对比,深刻体会向量运算与数字运算的区别所在;学会用数形结合的思想解决问题,了解向量是与几何密切相关的工具.四、课堂小结(1)空间向量夹角的定义及范围;(2)空间向量数量积运算的定义、性质及几何意义;(3)空间向量数量积运算的运算律及简单计算.五、课后思考【变式训练1】例1条件不变,如何求AB →·CD →的值?【解】AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=|AB →||AD →|cos 〈AB →,AD →〉-|AB →||AC →|cos 〈AB →,AC →〉=cos 60°-cos 60°=0.【设计意图】感受向量数量积的逆用,数量积运算的结果可以推导出夹角及位置关系. 思考:(1)能否利用空间向量的数量积证明空间中两条直线垂直?(2)能否利用空间向量的数量积求出空间中异面直线所成角?(3)能否利用空间向量的数量积解决更多的立体几何中的问题?。
高三数学下册《空间向量》教案、教学设计
![高三数学下册《空间向量》教案、教学设计](https://img.taocdn.com/s3/m/dec0438832d4b14e852458fb770bf78a65293af3.png)
接着,展示一个地球仪,提出另一个问题:“地球上的物体受到的重力可以看作是一个向量,那么如何用空间向量表示这个重力呢?”让学生在思考中感受到空间向量的重要性。在此基础上,正式引入本节课的主题——空间向量。
三、教学重难点和教学设想
(一)教学重点
1.空间向量的基本概念及其坐标表示。
2.空间向量的线性运算、点积和叉积运算。
3.空间向量在解决空间几何问题中的应用。
4.培养学生的空间想象能力和逻辑思维能力。
(二)教学难点
1.空间向量与平面向量的区别和联系,帮助学生建立起空间向量的概念。
2.空间向量的坐标表示方法,特别是向量的线性运算在坐标形式下的表达。
3.学生对空间向量运算规律的掌握,尤其是点积和叉积的应用。
4.将空间向量应用于实际问题,提高学生学以致用的能力。
(三)教学设想
1.采用情境导入法,通过实际生活中的例子引入空间向量的概念,激发学生的兴趣和好奇心。
2.利用多媒体教学资源,如几何画板、实物模型等,帮助学生直观地理解空间向量的性质和运算。
3.设计具有梯度的问题和练习题,由浅入深地引导学生掌握空间向量的知识和方法,突破教学难点。
1.空间向量与平面向量的联系和区别是什么?
2.如何利用坐标表示空间向量,并进行线性运算?
3.点积和叉积在空间几何中有哪些应用?
讨论过程中,教师巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每组选取一名代表汇报讨论成果,分享小组的智慧。
高中数学空间向量及其运算教案1 新人教A版选修2-1
![高中数学空间向量及其运算教案1 新人教A版选修2-1](https://img.taocdn.com/s3/m/cf5f9b70f01dc281e53af0ad.png)
第三章空间向量与立体几何教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:+==a +b ,OAOB AB -=(指向被减向量), =OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD—A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.课堂练习课本P92练习Ⅳ.课时小结平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P106 1、2、⒉预习课本P92~P96,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p与不共线向量a、b共面的充要条件是什么?⑺空间一点P在平面MAB内的充要条件是什么?教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用.四、教学过程:(一)复习:1.空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或a b.平行向量。
新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册
![新教材高中数学第1章空间向量及其线性运算教案新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/87dc479dddccda38366baff8.png)
新教材高中数学教案新人教A 版选择性必修第一册:第1章 空间向量与立体几何1.1 空间向量及其运算 1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。
空间向量高中数学教案
![空间向量高中数学教案](https://img.taocdn.com/s3/m/f5a5ba4d0640be1e650e52ea551810a6f524c8a5.png)
空间向量高中数学教案
一、教学目标:
1.认识空间向量的基本概念和性质;
2.掌握空间向量的表示方法和运算规律;
3.能够应用空间向量解决实际问题。
二、教学重点:
1.空间向量的定义和表示方法;
2.空间向量的加法和减法;
3.空间向量的数量积和夹角公式。
三、教学内容:
1.空间向量的概念和表示方法:
(1)空间向量的定义;
(2)空间向量的表示方法:坐标表示、分量表示;
2.空间向量的加法和减法:
(1)向量的加法和减法规律;
(2)向量相等的条件;
3.空间向量的数量积和夹角公式:
(1)向量的数量积定义和性质;
(2)向量夹角的余弦公式。
四、教学过程:
1.导入:通过一个实际问题引入空间向量的概念;
2.讲解:讲解空间向量的定义、表示方法、运算规律和性质;
3.练习:让学生进行一些空间向量的计算练习;
4.拓展:引导学生应用空间向量解决实际问题;
5.总结:对本节课所学内容进行总结回顾。
五、课后作业:
1.完成课上未完成的练习题;
2.阅读相关教材知识,做一些拓展练习;
3.思考并总结今天所学内容,准备下节课的复习。
六、教学反思:
通过本节课的教学设计,学生能够掌握空间向量的基本概念和运算方法,锻炼学生的空间思维能力,提高解决问题的能力。
在教学过程中要注重引导学生主动思考和探究,激发学生学习的兴趣和积极性。
新版高中数学《1.1.1空间向量及其线性运算》教学设计
![新版高中数学《1.1.1空间向量及其线性运算》教学设计](https://img.taocdn.com/s3/m/4f4ee41786c24028915f804d2b160b4e767f81a9.png)
空间向量及其线性运算教学设计(人教A版普通高中教科书数学选修第一册第一章)一、教学目标1.复习空间向量的相关概念2.能够熟练应用空间向量的线性运算及运算律3.理解并掌握共线、共面定理的推论,会用共线、共面定理及其推论解决问题二、教学重难点重点:空间向量的线性运算及运算律难点:共线、共面定理的推论三、教学过程1.复习回顾知识点一:空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:(1)几何表示法:空间向量用有向线段表示.(2)字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB,其模记为a或AB.|知识点二:空间向量的线性运算知识点三:共线定理与共面定理2.空间向量概念的应用【设计意图】通过简单的习题,加深学生对于空间向量概念的理解,纠正易错点.3.空间向量的加减运算【设计意图】选自课本中本节习题,旨在让学生体会表示未知向量时,可将未知向量放入三角形中,通过向量加减的三角形法将其表示出来.4.空间向量的数乘运算【设计意图】与例2对比,此题在加减运算的基础上加入数乘运算,是一道线性运算的综合题型,通过此题可以使学生加深对空间向量线性运算的认识,提高计算能力.5.空间向量共线、共面定理【设计意图】通过将共线、共面定理的推论以思考题的形式给出,使学生在证明的过程中加深对共线、共面定理的理解与记忆,同时引出推论.【设计意图】将推论引出后通过两个较为简单的练习题,让学生初步感受共线、共面定理推论的应用.【设计意图】用共线定理及其推论两种解法解此题目,让学生再次感受共线定理及推论在证明三点共线时的应用.,,.ABCD .AC O OA,OB,OC,ODOE OF OG OHE,F,G,H ====k,OA OB OC ODE,F,G,H 例5.如图,已知平行四边形过平面外一点作射线在四条射线上分别取点使求证:四点共面1111,,,,,,.OE OF OG OH====k OA OB OC ODOA OE OB OF OC OG OD OHOA OD OB OC OE OB OC OD ∴====∴-=-∴=-+∴k k k kABCD E F G H 四边形为平行四边形四点共面【设计意图】此题是第一课时例题,用共面定理的推论给出此题目的第二种解法,让学生再次感受共面定理及推论在证明四点共面问题时的应用,以达到开拓学生的思路的目的.6.归纳小结(1).用好已有的定理及推论:如共线向量定理、共面向量定理及推论等, 并能运用它们证明空间向量的共线和共面的问题.(2).在解决空间向量问题时,结合图形,将未知向量放入三角形中,再运用向量加减的三角形法则解决问题。
高中数学空间向量教案模板
![高中数学空间向量教案模板](https://img.taocdn.com/s3/m/d9155050e97101f69e3143323968011ca300f7f9.png)
课时安排:2课时教学目标:1. 知识与技能:(1)理解空间向量的概念及其几何意义;(2)掌握空间向量运算的基本法则,包括加法、减法、数乘等;(3)了解共线向量、共面向量的性质及运算。
2. 过程与方法:(1)通过实际问题引入空间向量的概念,培养学生抽象思维能力;(2)通过实例讲解和练习,使学生掌握空间向量运算的方法;(3)引导学生运用空间向量解决实际问题,提高学生解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学习的兴趣和自信心;(2)使学生认识到空间向量在解决实际问题中的重要性;(3)培养学生的合作意识和团队精神。
教学重点:1. 空间向量的概念及其几何意义;2. 空间向量运算的基本法则。
教学难点:1. 空间向量运算的灵活运用;2. 空间向量在解决实际问题中的应用。
教学准备:1. 多媒体课件;2. 教学实物(如直尺、三角板等);3. 练习题。
教学过程:第一课时一、导入1. 提出问题:在现实生活中,我们如何描述物体的运动和位置?2. 引入空间向量的概念,解释其几何意义。
二、新课讲授1. 空间向量的定义:具有大小和方向的量叫做空间向量。
2. 空间向量的表示方法:用有向线段表示。
3. 空间向量的运算:(1)加法:将两个空间向量首尾相接,形成平行四边形,对角线即为它们的和。
(2)减法:将减数向量的方向相反,与被减向量进行加法运算。
(3)数乘:将向量与实数相乘,改变向量的大小。
三、实例讲解1. 讲解空间向量运算的基本法则;2. 通过实例演示空间向量运算的应用。
四、课堂练习1. 学生独立完成课堂练习题,巩固所学知识;2. 教师巡视指导,解答学生疑问。
第二课时一、复习导入1. 回顾空间向量的概念和运算;2. 提出问题:如何判断两个向量是否共线?二、新课讲授1. 共线向量的定义:共线向量是指空间中具有相同方向或相反方向的向量。
2. 共线向量的性质:(1)共线向量与数乘向量;(2)共线向量与平面向量;(3)共线向量与空间向量。
新人教版高中数学《1.1.1空间向量及其线性运算》教学设计
![新人教版高中数学《1.1.1空间向量及其线性运算》教学设计](https://img.taocdn.com/s3/m/04a9425e03768e9951e79b89680203d8ce2f6a80.png)
1.1.1空间向量及其线性运算教学设计一、教学目标(1)理解空间向量的概念,掌握空间向量的表示方法;会用图形说明空间向量加法,减法,数乘向量及它们的运算律;(2)会用向量共线和向量共面充要条件;(3)会用空间向量的运算及运算律解决简单的立体几何问题;形成事物与事物之间普遍联系及其相互转化的辨证观点;(4)通过探究、练习,提高学生对事物个性与共性之间联系的认识水平,提升学生的直观想象、数学运算、逻辑推理等数学学科核心素养.二、教学重难点教学重点:空间向量的概念和线性运算及其应用教学难点:空间向量的线性运算及其应用三、教学过程(一)创设情境,导入新课师生活动:阅读章前引言,章头图展示的是一个做滑翔伞运动的场景,可以想象在滑翔过程中,飞行员会受到来自不同方向大小各异的力,你能用图示法表示这些力吗?设计意图:图1中的引入情境于学生而言,非常熟悉。
课堂上追问学生,飞行员收到来自不同方向的力又该如何表示,用图示法表示这些力吗?既贴近学生生活实际又自然将平面向量拓展到空间向量,既揭示了学习空间向量的必要性,又激发了学生的学习兴趣,也为后续空间向量的加法运算做了铺垫(尤其是在验证空间向量的加法结合律).(二)类比归纳,形成概念问题 1 我们已经学习过平面向量的概念和线性运算,你能类比平面向量,给出空间向量的概念和线性运算吗?追问(1):平面向量是什么的?你能类比平面向量给出空间向量的概念吗?追问(2):如何表示平面向量??你能类比平面向量的表示,给出空间向量的表示吗?追问(3):从平面向量的概念出发,我们又学习了不少新的概念. 你还记得吗?有哪些?你能把这些概念推广到空间向量中吗?与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模.与平面向量一样,空间向量也用有向线段来表示,有向线段的长度表示空间向量的模。
空间向量可以用字母a,b,c,…表示.如图,若向量a的起点是A,终点是B,则向量a也可以记作向量AB,其模记为向量a的模或向量AB的模.如图所示,对于任意一个空间向量,我们都可以将其放在一个平面内研究,这时,这个空间向量就是我们熟悉的平面向量了.几何表示:字母表示:,向量的大小:,方向相同且长度相等问题2 在学习完平面向量的相关概念以后,我们研究了平面向量的线性运算.你能类比平面向量的线性运算,得出空间向量的线性运算及运算律吗?追问(1):平面向量的线性运算有哪些?我们如何研究这些运算?答:平面向量有加法、减法和数乘运算. 先研究它们的定义及运算法则,再研究它们的运算律;追问(2):平面向量的加法、减法和数乘运算的定义或法则分别是什么?你能类比它们得出空间向量的加、减和数乘运算的定义或法则吗?追问(3):平面向量线性运算的运算律有哪些?你能类比它们得出空间线性运算的运算律吗?由于任意两个空间向量都可以通过平移,转化为同一平面内的向量,因此,我们猜想,空间向量的线性运算也具有和平面向量线性运算相同的运算律.数学结论是需要严格证明的, 由合情推理、猜想得到的结论不一定正确,需要严格证明.追问(4):空间向量线性运算运算律的证明,和平面向量有哪些异同?除空间向量加法的结合律以外,其他运算律都可以转化为平面向量线性运算的运算律进行证明.结合律涉及三个向量,它们可能不在同一个平面内.追问(5)如何证明空间向量的加法结合律呢?如图,可将空间中任意三个不共面的向量,通过平移使它们起点重合,分别平移表示表示这三个向量的线段,构成一个平行六面体. 我们借助这个平行六面体来证明加法的结合律.一般地,对于三个不共面的向量a ,b , c ,以任意点O 为起点, a ,b , c 为邻边作平行六面体,则a ,b , c 的和等于以O 为起点的平行六面体对角线所表示的向量.问题 3 平面向量的线性运算可以解决平面中的很多问题,空间向量的线性运算是否可以解决空间中相应的问题呢?由平面向量的线性运算,我们研究了平面向量的共线及线性表示等问题.追问(1):你还记得两个向量共线的充要条件吗?这个充要条件对于空间向量也成立吗? 追问(2):任意两个空间向量都可以通过平移,移到同一平面内,三个向量呢?答:任意两个空间向量总是共面的,但三个空间向量既可能共面,也可能不共面.追问(3):你还记得平面向量基本定理的内容吗?它和三个空间向量共面有什么关系?问题4 如右图,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,使OE OF OG OH k OA OB OC OD====. 求证: E ,F ,G ,H 四点共面.追问(1):如何证明E ,F ,G ,H 四点共面?答:可以通过证明E ,F ,G ,H 这四点构成的三个向量,如EF EH EG ,,共面,来证明这四点共面.追问(2):如何证明这三个向量共面?答:根据向量共面的充要条件,用EF EH ,表示EG 即可. 追问(3):如何实现上述表示?答:可以根据三角形法则,把EF EH EG ,,分别用,,,OE OF OG OH 等向量来表示;再利用已知条件,将它们转化用,,,OA OB OC OC 表示的形式.而由已知平行四边形ABCD ,得到=+AC AD AB ,从而可以得到,,,OA OB OC OC 的关系,进一步得到,,,OE OF OG OH 的关系,最终用用EF EH ,表示EG .思路小结:选择恰当的向量表示问题中的几何元素,通过向量运算得出几何元素的关系是解决立体几何问题的常用方法.问题5 回顾本节课的探究过程,你都学到了什么?1. 从知识层面,我们学习了空间向量的有关概念和线性运算.包括空间向量的概念,表示法以及零向量、单位向量、共线向量等相关概念;我们把平面向量的线性运算推广空间向量,研究了空间向量的加法、减法、数乘运算的定义、运算法则以及运算律;通过空间向量的线性运算,我们有了直线的方向向量,以及空间中证明向量或点共面的方法.2. 从本节课的研究方法上来看,我们始终类比平面向量的相关内容,在空间中进行推广,同时比较它与平面向量的共性和差异,并对差异之处进行了严格的证明,最终,在平面向量的相关内容推广过程中,既保持了原结论的延续性,又保证了新结论的严谨性.原有内容的融入到新内容中,这种兼容性是数学的特点, 是数学中常用的研究方法.今后继续研究空间向量的过程中,还会不断使用这样的方法.希望同学们在今后的学习中,继续大胆发现,勇于探索,严谨推理,体会数学的逻辑之美,严谨之美和广泛的应用.四、课外作业布置作业:教科书练P9复习巩固1,2,3,41.如图,E,F 分别是长方体''''D C B A ABCD -的棱CD AB ,的中点,化简下列表达式,并在图中标出化简结果的向量:(1)CB AA -' (2)'''C B AB AA ++(3)''D B AD AB +- (4)CF AB +2.如图,用',,AA AD AB 表示''',DB BD C A 及.3.如图,已知正方体''''D C B A ABCD -,F E ,分别是上底面''C A 和侧面'CD 的中心,求下列各式中x,y 的值:(1))(''CC BC AB x AC ++=(2)AD y AB x AA AE ++='设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、数学建模的核心素养.。
(完整)空间向量__新高中数学教学教学教案
![(完整)空间向量__新高中数学教学教学教案](https://img.taocdn.com/s3/m/0fdbe444a9956bec0975f46527d3240c8447a178.png)
欢迎阅读空间向量考纲导读1.理解空间向量的观点;掌握空间向量的加法、减法和数乘.2.认识空间向量的基本定理;理解空间向量坐标的观点;掌握空间向量的坐标运算.3.掌握空间向量的数目积的定义及其性质;掌握用直角坐标计算空间向量数目积的公式;掌握空间两点间的距离公式.定义、加法、减法、数乘运算空间向量数目积坐标表示:夹角和距离公式证明平行与垂直求空间角求距离高考导航理解空间向量的夹角的观点;掌握空间向量的数目积的观点、性质和运算律;认识空间向量的数目积的几何意义;掌握空间向量的数目积的坐标形式;能用向量的数目积判断向量的共线与垂直.第 1 课时空间向量及其运算基础过关空间向量是平面向量的推行.在空间,随意两个向量都能够经过平移转变为平面向量.所以,空间向量的加减、数乘向量运算也是平面向量对应运算的推行.本节知识点是:1.空间向量的观点,空间向量的加法、减法、数乘运算和数目积;(1)向量:拥有和的量.(2)2.线性运算律向量相等:方向且长度..(3)(1) 加法互换律: a+ b=向量加法法例:.加法联合律: (a+ b)+ c=.(4)(2)向量减法法例:.数乘分派律:(a+ b)=.(5)(3)数乘向量法例:.3.共线向量(1)共线向量:表示空间向量的有向线段所在的直线相互或.(2)共线向量定理:对空间随意两个向量a、 b(b 0), a∥ b 等价于存在实数,使.(3)直线的向量参数方程:设直线l 过定点 A 且平行于非零向量a,则关于空间中随意一点O,点 P 在 l 上等价于存在t R,使.4.共面向量(1)共面向量:平行于的向量.欢迎阅读(2) 共面向量定理:两个向量a、 b 不共线,则向量P 与向量 a、 b 共面的充要条件是存在实数对( x, y ),使P.共面向量定理的推论:.5.空间向量基本定理(1)空间向量的基底:的三个向量.(2)空间向量基本定理:假如a, b, c 三个向量不共面,那么对空间中随意一个向量p ,存在一个独一的有序实数组 x, y, z ,使.空间向量基本定理的推论:设O, A, B, C 是不共面的的四点,则对空间中随意一点P,都存在独一的有序实数组 x, y, z ,使.6.空间向量的数目积(1)空间向量的夹角:.(2)空间向量的长度或模:.(3)空间向量的数目积:已知空间中随意两个向量a、 b,则 a·b=.空间向量的数目积的常用结论:(a) cos〈 a、 b〉=;(4) 空间向量的数量积的运算律:(b) a 2=;(a) 互换律 a·b=;(c) a b (b) 分派律 a·(b+ c)=..例 1.已知正方体 ABCD—A1 B1C1D1中,点 F 是侧面 CDD1C1的中心,若典型例题AF AD x AB y AA1,求 x- y 的值 .解:易求得 x y 1, x y0 2变式训练 1. 在平行六面体ABCD A1 B1C1D1中,M为AC与BD的交点,若A1 B1a,A1D1b,A1A c,则以下向量中与B1 M 相等的向量是( )A.1a+1b+ c B.1a+1b+ c A1 2222B1CC.1a1b+ c D.1a1b +cD2222A C解: AB 例 2. 底面为正三角形的斜棱柱 ABC- A1B1C1中, D 为 AC的中点,求证: AB1∥平面 C1BD.证明:记 AB a, AC b, AA1 c , 则AB111a c, DB AB AD a b, DC1 DC CC1bc ∴DB DC1 a c AB1,∴AB1, DB , DC1共面.22∵B1平面 C1 BD, AB1// 平面 C1BD.变式训练2:正方体 ABCD- EFGH中, M 、N 分别是对角线AC和 BE上的点,且AM= EN.(1) 求证: MN ∥平面 FC ;(2) 求证: MN ⊥AB ;(3) 当 MA 为什么值时, MN 取最小值,最小值是多少? 解: (1) 设 NBMC k, 则 MN ( k 1) BC k BF .EBAC (2) MN AB (k1)BC AB k BFAB0.(3) 设正方体的边长为 a,也即AM1AC 时,2MNmin22a例 3. 已知四周体 ABCD 中, AB ⊥ CD ,AC ⊥ BD , G 、 H 分别是△ ABC 和△ ACD 的重心.求证: (1) AD ⊥ BC ; (2) GH ∥ BD .证明: (1) AD ⊥ BC AD BC0 .因为 AB CD AB CD0,ACBD AC BD 0,而 AD BC( AB BD) (BD DC) 0 .所以 AD ⊥BC .(2) 设 E 、 F 各为 BC 和 CD 的中点.欲证 GH ∥ BD ,只需证 GH ∥ EF , GH GAAH =2(EAAF )=2EF .33变式训练 3:已知平行六面体 ABCD A 1 B 1C 1D 1 ,E 、F 、G 、H 分别为棱 A 1D 1, D 1C 1 , C 1C 和 AB 的中点.求证: E 、F 、 G 、H 四点共面. 解: HGHC CG =HCGC1= HCGFFC=A F FCGF = 2EFGF ,111所以 EF , EG, EH 共面,即点 E 、 F 、 G 、 H 共面.例 4. 如图,平行六面体 AC 1 中, AE =3EA 1, AF = FD , AG = 1GB ,过 E 、 F 、 G 的平面与对角线AC 1 交于点 P ,求2AP:PC 的值. 1解:设 APmAC 1C1B1∴ APm AG4m AE 2mAF3D31A 1CE又∵ E 、 F 、G 、 P 四点共面,∴ 3m 4 m 2m 1PB3GD∴ m31FA19∴ AP ︰ PC = 3︰ 16变式训练 4:已知空间四边形 OABC 中, M 为 BC 的中点, N 为 AC 的中点, P 为 OA 的中点, Q 为 OB 的中点,若AB = OC ,求证 PM QN .法二: PMQN = ( PQ + QM QM + MN)1 (· ) (·证明: 法一: OM)OB OC1 12=(AB OC)2· (OC BA)PMPO OM1(ABOC)22=12 2(OC AB )=0故 PMQN4小结概括1.立体几何中有关垂直和平行的一些命题,可经过向量运算来证明.关于垂直,一般是利用a⊥ b a·b= 0 进行证明.关于平行,一般是利用共线向量和共面向量定理进行证明.2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,而后计算这个向量对应的模.而计算过程中只需运用好加法法例,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,进而求得结果.3.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转变为求两个向量的夹角,而求两个向量的夹角则能够利用公式cosθ=a b.a b4.异面直线间的距离的向量求法:已知异面直线l1、l2,AB 为其公垂线段,C、D 分别为 l1、l2上的随意一点,n为与AB共线的向量,则|AB |=| CD n |.| n |α的一个法向量为n,点P是平面α外一点,且P o∈ α,则点P到平面α的距离是d=| Po P n |.| n |第 2 课时空间向量的坐标运算基础过关设 a=( a1, a2, a3), b=(b1, b2, b3)(1) a±b=(2)a=.(3) a·b=.(4) a∥b; a b.(5)设 A(x1 , y1 , z1 ), B( x2 , y 2 , z 2 )则 AB=, AB.AB 的中点 M 的坐标为.典型例题例 1. 若a= (1,5,-1),b= (-2,3,5)(1)若 (k a + b )∥( a-3 b ),务实数 k 的值;(2)若 (k a + b )⊥( a-3 b ),务实数 k 的值;( 3)若k a b 获得最小值,务实数k 的值.解: (1) k 1 ;3欢迎阅读(2) k 106 ;(3) k8327变式训练 1.uuur uuur uuur uuur uuur uuur uuur已知 O 为原点,向量 OA 3,0,1 ,OB1,1,2 ,OC OA,BC ∥OA ,求 AC . uuur uuur x 1, y 1, z 2解:设OC x, y, z , BC , uuur uuur uuur uuur uuur uuur uuur uuur R ,∵ OC OA, BC ∥ OA ,∴ OC OA 0, BC OA3x z 0,3x z0,,即x 1 3 , ∴x 1, y1, z 23,0,1y 1 0,z 2.解此方程组,得 x7, y 1, z21 ,1 。
高中数学精编空间向量教案
![高中数学精编空间向量教案](https://img.taocdn.com/s3/m/20376d9788eb172ded630b1c59eef8c75fbf953f.png)
高中数学精编空间向量教案一、教学目标:1. 理解空间向量的定义和性质;2. 掌握向量的加法、减法和数乘运算;3. 能够使用向量的线性组合、共线性和共面性等性质解决实际问题;4. 熟练运用向量相关理论证明和计算。
二、教学内容:1. 空间向量的定义和性质;2. 向量的加法、减法和数乘运算;3. 向量的线性组合、共线性和共面性;4. 向量的坐标表示和点积、向量积的计算。
三、教学步骤:1. 导入:通过引入几何问题或实际生活中的例子,让学生感受到向量的重要性和应用场景;2. 概念讲解:介绍空间向量的定义和性质,引导学生理解向量的概念和基本运算规则;3. 练习演练:给学生提供一些简单的向量加减法、数乘的练习题目,帮助学生掌握向量的计算方法;4. 深化拓展:引导学生思考向量的线性组合、共线性和共面性等性质,通过相关题目加深对向量概念的理解;5. 应用实践:设计一些综合性的问题,让学生运用所学知识解决实际问题,提升解决问题的能力;6. 总结反思:对本节课所学内容进行总结,强化学生对空间向量相关知识的理解和记忆。
四、教学方式:1. 教师讲授搭配学生讨论:教师介绍知识点的同时,与学生互动讨论,激发学生思考和学习兴趣;2. 小组合作探究:设计一些小组活动,让学生合作探索讨论,提升学生团队合作和问题解决能力;3. 案例分析:结合实际案例,让学生分析和解决问题,提高学生的问题解决能力和应用能力。
五、教学评价:1. 课堂表现评价:通过学生课堂积极参与和表现情况,评价学生的学习态度和表达能力;2. 练习题目评价:通过给学生布置一定量的练习题目,评价学生对知识点的掌握程度和运用能力;3. 知识应用评价:通过设计一些综合性实际问题,评价学生对所学知识点的应用能力和解决问题的能力。
高中高三数学《空间向量》教案、教学设计
![高中高三数学《空间向量》教案、教学设计](https://img.taocdn.com/s3/m/b2587cd3690203d8ce2f0066f5335a8103d2664b.png)
3.运用案例教学法,结合实际生活中的空间几何问题,激发学生学习兴趣,提高学生运用空间向量解决实际问题的能力。
4.引导学生运用数形结合思想,将空间向量与空间几何图形相结合,培养学生直观想象和逻辑思维能力。
5.设计丰富的课堂练习,让学生在实际操作中掌握空间向量的运算方法和技巧。
-已知空间向量$\vec{a} = (1, 2, 3)$和$\vec{b} = (4, 5, 6)$,求向量$\vec{a} + \vec{b}$、$\vec{a} - \vec{b}$和$3\vec{a} - 2\vec{b}$的坐标表示。
-设点A(2, 3, 4)和点B(5, 6, 7),向量$\vec{v} = (x, y, z)$,若$\vec{v}$与向量$\vec{AB}$垂直,求$\vec{v}$的坐标。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索空间几何问题的热情。
2.培养学生严谨求实的科学态度,让学生在解决问题的过程中,体验数学的简洁美和逻辑美。
3.培养学生勇于挑战困难、克服挫折的精神,增强自信心。
4.引导学生认识到数学知识在科学技术、生产生活中的重要应用,增强学生的社会责任感和使命感。
(二)教学设想
1.针对教学重点和难点,采用以下教学策略:
-通过引入生动的实际案例,激发学生学习兴趣,引导学生从二维空间向三维空间过渡;
-采用多媒体教学手段,如动画、模型等,帮助学生建立空间想象力,降低学习难度;
-设计层次分明的教学活动,逐步引导学生掌握空间向量的性质、运算和应用;
-加强课堂练习,及时反馈,针对学生的错误进行有针对性的指导。
2.教学过程设想:
《空间向量及其运算》示范公开课教学设计【高中数学人教版】
![《空间向量及其运算》示范公开课教学设计【高中数学人教版】](https://img.taocdn.com/s3/m/fb1b50fabb68a98270fefadd.png)
《空间向量及其运算》教学设计1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. 重点:理解共线向量定理和共面向量定理及它们的推论;难点:掌握空间直线、空间平面的向量参数方程和线段中点的向量公式. (一)复习:空间向量的概念及表示; (二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.读作:a 平行于b ,记作://a b .2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ=(λ唯一). 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+①,其中向量a 叫做直线l 的方向向量.在l 上取AB a =,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+② 当12t =时,点P 是线段AB 的中点,此时1()2OP OA OB =+③ ①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行: 如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+.推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++① 上面①式叫做平面MAB 的向量表达式.(三)例题分析:al PBA O例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++, 试判断:点P 与,,A B C 是否一定共面?解:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+,即22PA PB PC =--,所以,点P 与,,A B C 共面. 说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++ (其中1x y z ++=)的四点,,,P A B C 是否共面?解:∵(1)OP z y OA yOB zOC =--++,∴()()OP OA y OB OA z OC OA -=-+-,∴AP yAB zAC =+,∴点P 与点,,A B C 共面.例2.已知ABCD ,从平面AC 外一点O 引向量,,,OE kOA OF KOB OG kOC OH kOD ====,(1)求证:四点,,,E F G H 共面;(2)平面AC //平面EG . 解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+,∵EG OG OE =-,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OEEF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅,∴//,//EF AB EG AC所以,平面//AC 平面EG .五、课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.六、作业: E1.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值.。
空间向量数学教案高中版
![空间向量数学教案高中版](https://img.taocdn.com/s3/m/a3ad92b60342a8956bec0975f46527d3240ca681.png)
空间向量数学教案高中版
年级:高中
学科:数学
教学目标:
1. 学生能够理解空间向量的定义和性质;
2. 学生能够进行空间向量的加法、减法和数乘运算;
3. 学生能够应用空间向量解决几何问题。
教学内容:
1. 空间向量的定义和性质;
2. 空间向量的加法、减法和数乘运算;
3. 空间向量的数量积和向量积;
4. 应用空间向量解决几何问题。
教学重点:
1. 空间向量的定义和性质;
2. 空间向量的加法、减法和数乘运算;
3. 应用空间向量解决几何问题。
教学难点:
1. 空间向量的数量积和向量积的运算;
2. 应用空间向量解决复杂的几何问题。
教学准备:
1. 教案和课件;
2. 黑板和粉笔;
3. 笔记本和笔。
教学过程:
1. 引入:通过简单的例子引入空间向量的概念,并说明其在几何问题中的重要性;
2. 讲解:讲解空间向量的定义和性质,包括向量的表示、加法、减法、数乘运算等;
3. 练习:让学生进行一些基础的空间向量运算练习,加深他们对空间向量的理解;
4. 拓展:讲解空间向量的数量积和向量积,并进行相关实例演练;
5. 应用:让学生应用空间向量解决一些几何问题,提高他们的综合运用能力;
6. 总结:总结本节课的内容,强调重点和难点,并布置相关作业。
教学反思:
本节课主要围绕空间向量的定义、运算和应用展开,通过简单到复杂的教学设计,让学生逐步加深对空间向量的理解和运用能力。
在教学过程中,需要注意引导学生思考和实践,培养他们的数学思维和解决问题的能力。
同时,需要及时调整教学进度和方法,确保教学效果的达成。
高中数学空间向量特色教案
![高中数学空间向量特色教案](https://img.taocdn.com/s3/m/02e1517586c24028915f804d2b160b4e767f81e5.png)
高中数学空间向量特色教案
目标:学生能够熟练掌握空间向量的概念、性质和运算,能够应用空间向量解决实际问题。
教学重点:空间向量的加法、减法、数量积和向量积的运算规律和性质。
教学难点:能够灵活运用空间向量解决实际问题。
教学准备:
1. 准备投影仪、幻灯片等教学辅助工具。
2. 准备相关例题和习题。
3. 准备实物模型或图片,帮助学生理解空间向量的概念。
教学过程:
一、导入(5分钟)
引导学生回顾二维向量相关知识,通过现实生活中的例子引出空间向量的概念,在黑板上
画出空间向量的表示形式。
二、讲解(15分钟)
1. 通过实物模型或图片展示空间向量的概念,介绍空间向量的定义和性质。
2. 详细讲解空间向量的加法、减法、数量积和向量积的运算规律和性质。
三、练习(20分钟)
1. 布置一些基础练习题,让学生巩固空间向量的运算规律。
2. 布置一些实际问题练习题,让学生运用空间向量解决实际问题。
四、拓展(10分钟)
引导学生思考更复杂的空间向量问题,提高他们的问题解决能力。
五、总结(5分钟)
总结空间向量的基本概念和运算规律,强调空间向量在实际问题中的应用。
教学反思:
通过本节课的教学,学生能够清楚地理解空间向量的概念和运算规律,并能够熟练运用空
间向量解决实际问题。
在以后的教学中,可以通过更多的实例和案例来帮助学生进一步理
解和应用空间向量的知识。
教案)空间向量及其运算
![教案)空间向量及其运算](https://img.taocdn.com/s3/m/5bcd8e5dcd1755270722192e453610661ed95adb.png)
教案)空间向量及其运算教案内容:一、教学目标1. 了解空间向量的概念,理解向量的几何表示和坐标表示。
2. 掌握空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够应用空间向量的运算解决实际问题。
二、教学重点与难点1. 空间向量的概念及其几何表示。
2. 空间向量的坐标表示及其运算。
3. 空间向量的应用问题。
三、教学准备1. 教师准备PPT或黑板,用于展示向量的图形和运算过程。
2. 准备一些实际问题,用于引导学生应用向量知识解决。
四、教学过程1. 引入:通过展示一些实际问题,如物体运动、几何图形等,引导学生思考向量的概念和作用。
2. 讲解:向学生介绍空间向量的概念,讲解向量的几何表示和坐标表示。
通过示例和图形,让学生理解向量的加法、减法、数乘和点乘运算。
3. 练习:让学生通过练习题的方式,巩固对向量运算的理解和掌握。
可以提供一些选择题和填空题,以及一些应用问题。
4. 应用:引导学生将向量知识应用到实际问题中,如物体运动、几何图形等。
可以让学生分组讨论和展示解题过程。
5. 总结:对本节课的主要内容和知识点进行总结,强调重点和难点。
五、作业布置1. 完成课后练习题,包括选择题、填空题和应用问题。
2. 准备下一节课的预习内容,了解空间向量的线性组合和叉乘。
六、教学反思在课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
根据学生的反馈和表现,调整教学方法和策略,以便更好地进行后续教学。
六、教学评价1. 评价方式:通过课堂讲解、练习题和实际问题解决,评价学生对空间向量的概念理解和运算掌握程度。
2. 评价标准:学生能准确地描述空间向量的概念,理解向量的几何表示和坐标表示;能熟练地进行向量的加法、减法、数乘和点乘运算;能将向量知识应用到实际问题中,解决问题。
七、拓展与延伸1. 向量的线性组合:向学生介绍空间向量的线性组合概念,讲解线性组合的性质和运算规律。
2. 向量的叉乘:向学生介绍空间向量的叉乘概念,讲解叉乘的性质和运算规律。
新教材高中数学第1章空间向量基本定理教案新人教A版选择性必修第一册
![新教材高中数学第1章空间向量基本定理教案新人教A版选择性必修第一册](https://img.taocdn.com/s3/m/b9cf9c9827d3240c8547efbd.png)
新教材高中数学教案新人教A 版选择性必修第一册:1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底.思考:(1)零向量能不能作为一个基向量?(2)当基底确定后,空间向量基本定理中实数组(x ,y ,z )是否唯一?[提示] (1)不能.因为0与任意一个非零向量共线,与任意两个非零向量共面. (2)唯一确定. 2.正交分解 (1)单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底.常用{i ,j ,k }表示.(2)正交分解把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.1.思考辨析(正确的打“√”,错误的打“×”)(1)若{OA →,OB →,OC →}不能构成空间的一个基底,则O ,A ,B ,C 四点共面. ( ) (2)若{a ,b ,c }为空间的一个基底,则a ,b ,c 全不是零向量. ( ) (3)只有两两垂直的三个向量才能作为空间向量的一组基底. ( )[提示] (1)√ (2)√ (3)×2.已知{a ,b ,c }是空间的一个基底,则可以和向量p =a +b ,q =a -b 构成基底的向量是( )A .aB .bC .a +2bD .a +2c[答案] D3.在长方体ABCD A 1B 1C 1D 1中,可以作为空间向量一个基底的是( ) A .AB →,AC →,AD → B .AB →,AA 1→,AB 1→ C .D 1A 1→,D 1C 1→,D 1D →D .AC 1→,A 1C →,CC 1→ C [由题意知,D 1A 1→,D 1C 1→,D 1D →不共面,可以作为空间向量的一个基底.]4.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [由m 与n 共线,得1x =-1y =11,∴x =1,y =-1.]基底的判断x a b y b c z c a a b c 列向量组:①{a ,b ,x },②{x ,y ,z },③{b ,c ,z },④{x ,y ,a +b +c }.其中可以作为空间一个基底的向量组有( )A .1个B .2个C .3个D .4个(2)已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.(1)C [如图所示,令a =AB →,b =AA 1→,c =AD →,则x =AB 1→,y =AD 1→,z =AC →,a +b +c =AC 1→.由于A ,B 1,C ,D 1四点不共面,可知向量x ,y ,z 也不共面,同理b ,c ,z 和x ,y ,a +b +c 也不共面,故选C.](2)[解] 假设OA →,OB →,OC →共面,由向量共面的充要条件知,存在实数x ,y ,使OA →=xOB →+yOC →成立,∴e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3), 即e 1+2e 2-e 3=(y -3x )e 1+(x +y )e 2+(2x -y )e 3 ∵{e 1,e 2,e 3}是空间的一个基底,∴e 1,e 2,e 3不共面.∴⎩⎪⎨⎪⎧y -3x =1,x +y =2,2x -y =-1,此方程组无解.即不存在实数x ,y 使得OA →=xOB →+yOC →, 所以OA →,OB →,OC →不共面.所以{OA →,OB →,OC →}能作为空间的一个基底.基底判断的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb +μ c ,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.[跟进训练]1.设向量{a ,b ,c }是空间一个基底,则一定可以与向量p =a +b ,q =a -b ,构成空间的另一个基底的向量是( )A .aB .bC .cD .a 或bC [由题意和空间向量的共面定理,结合p +q =(a +b )+(a -b )=2a , 得a 与p ,q 是共面向量, 同理b 与p ,q 是共面向量,所以a 与b 不能与p ,q 构成空间的一个基底; 又c 与a 和b 不共面,所以c 与p ,q 构成空间的一个基底.]用基底表示向量【例2】 如图,四棱锥P OABC 的底面为一矩形,PO ⊥平面OABC ,设OA →=a ,OC →=b ,OP →=c ,E ,F 分别是PC ,PB 的中点,试用a ,b ,c 表示:BF →,BE →,AE →,EF →.[思路探究]利用图形寻找待求向量与a ,b ,c 的关系→利利用向量运算进行分拆→直至向量用a ,b ,c 表示[解] 连接BO (图略),则BF →=12BP →=12(BO →+OP →)=12(c -b -a )=-12a -12b +12c .BE →=BC →+CE →=BC →+12CP →=BC →+12(CO →+OP →)=-a -12b +12c .AE →=AP →+PE →=AO →+OP →+12(PO →+OC →)=-a +c +12(-c +b )=-a +12b +12c .EF →=12CB →=12OA →=12a .基向量的选择和使用方法(1)尽可能选择具有垂直关系的,从同一起点出发的三个向量作为基底.(2)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑加法,否则考虑减法;如果此向量与一个易求的向量共线,可用数乘.[跟进训练]2.点P 是矩形ABCD 所在平面外一点,且PA ⊥平面ABCD ,M ,N 分别是PC ,PD 上的点,且PM →=23PC →,PN →=ND →,则满足MN →=xAB →+yAD →+zAP →的实数x ,y ,z 的值分别为( )A .-23,16,16B .23,-16,16 C .-23,16,-16D .-23,-16,16D [如图所示,取PC 的中点E ,连接NE ,则MN →=EN →-EM →=12CD →-(PM→-PE →)=12CD →-⎝ ⎛⎭⎪⎫23PC →-12PC →=12CD →-16PC →=-12AB →-16(-AP →+AB →+AD →)=-23AB →-16AD →+16AP →,比较知x =-23,y =-16,z =16,故选D.]正交分解在立体几何中的应用[探究问题]1.取单位正交基底比一般的基底的优点有哪些?[提示] 若取单位正交基底{i ,j ,k },那么|i |=|j |=|k |=1.且i ·j =j ·k =i ·k =0,这是其他一般基底所没有的.2.正方体ABCD A ′B ′C ′D ′中,O 1,O 2,O 3分别是AC ,AB ′,AD ′的中点,以{AO 1→,AO 2→,AO 3→}为基底,如何表示向量AC ′.[提示] AC ′→=AB →+AD →+AA ′→=12(AB →+AD →)+12(AD →+AA ′→)+12(AB →+AA ′→)=AO 1→+AO 2→+AO 3→.【例3】 如图,已知平行六面体ABCD A 1B 1C 1D 1中,底面ABCD 是边长为a 的正方形,侧棱AA 1长为b ,且∠A 1AB =∠A 1AD =120°,求异面直线BD 1和AC 所成角的余弦值.[思路探究] 取基底{AB →,AD →,AA 1→}→用基底表示向量BD 1→和AC →→求|BD 1→|,|AC →|和BD 1→·AC →→求BD 1→与AC →的夹角余弦值→得异面直线所成角的余弦值[解] {AB →,AD →,AA 1→}可以作为空间的一个基底,且|AB →|=a ,|AD →|=a ,|AA 1→|=b ,〈AB →,AD →〉=90°,〈AA 1→,AB →〉=120°,〈AA 1→,AD →〉=120°. 又BD 1→=AD →+AA 1→-AB →,AC →=AB →+AD →,∴|BD 1→|2=|AD →|2+|AA 1→|2+|AB →|2+2AD →·AA 1→-2AD →·AB →-2AA 1→·AB →=a 2+b 2+a 2+2ab cos 120°-0-2ab cos 120°=2a 2+b 2,|AC →|2=|AB →|2+2AB →·AD →+|AD →|2=2a 2, ∴|BD 1→|=2a 2+b 2,|AC →|=2a .∴BD 1→·AC →=(AD →+AA 1→-AB →)·(AB →+AD →)=AD →·AB →+|AD →|2+AA 1→·AB →+AA 1→·AD →-|AB →|2-AB →·AD →=0+a 2+ab cos 120°+ab cos 120°-a 2-0=-ab .∴|cos〈BD 1→,AC →〉|=|BD 1→·AC →||BD 1→||AC →|=|-ab |2a 2+b 2·2a =b4a 2+2b 2. ∴异面直线BD 1和AC 所成角的余弦值为b4a 2+2b2.1.[变结论]在本例条件不变的前提下,求|AC 1→|. [解] 由条件可知|AB →|=|AD →|=a ,|AA 1→|=b , 且〈AB →,AA 1→〉=〈AD →,AA 1→〉=120°,AB →⊥AD →. ∴|AC 1→|2=|AB →+AD →+AA 1→|2=AB →2+AD →2+AA 1→2+2AB →·AD →+2AB →·AA 1→+2AD →·AA 1→ =a 2+a 2+b 2+0+4×a ×b ×cos 120° =2a 2+b 2-2ab .∴|AC 1→|=2a 2+b 2-2ab .2.[变结论]在本例条件不变的前提下,证明BD ⊥面AA 1C 1C . [解] 由条件知,BD →=AD →-AB →,∵BD →·AA 1→=AA 1→·(AD →-AB →)=AA 1→·AD →-AA 1→·AB → =a ×b ×cos 120°-a ×b ×cos 120°=0. ∴BD ⊥AA 1.又因四边形ABCD 为正方形, ∴AC ⊥BD .∴BD ⊥面AA 1C 1C .基向量法解决长度、垂直及夹角问题的步骤 (1)设出基向量.(2)用基向量表示出直线的方向向量.(3)用|a |=a ·a 求长度,用a ·b =0⇔a ⊥b ,用cos θ=a ·b|a ||b |求夹角. (4)转化为线段长度,两直线垂直及夹角问题.1.基底中不能有零向量.因零向量与任意一个非零向量都为共线向量,与任意两个非零向量都共面,所以三个向量为基底隐含着三个向量一定为非零向量.2.空间向量基本定理说明,用空间三个不共面的向量构成的向量组{a ,b ,c }可以表示空间任意一个向量,并且表示结果是唯一的.3.用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.1.若{a ,b ,c }为空间的一个基底,则下列各项中能构成基底的一组向量是( ) A .a ,a +b ,a -b B .b ,a +b ,a -b C .c ,a +b ,a -bD .a +b ,a -b ,a +2bC [空间基底必须不共面.A 中a =12[]a +b+a -b,不可为基底;B 中b =12[(a +b )-(a -b )],不可为基底;D 中32(a +b )-12(a -b )=a +2b ,不可为基底.]2.O ,A ,B ,C 为空间四点,且向量OA →,OB →,OC →不能构成空间的一个基底,则( ) A .OA →,OB →,OC →共线 B .OA →,OB →共线C .OB →,OC →共线D .O ,A ,B ,C 四点共面D [由题意知,向量OA →,OB →,OC →共面,从而O ,A ,B ,C 四点共面.]3.若{a ,b ,c }是空间的一个基底,且存在实数x ,y ,z ,使得x a +y b +z c =0,则x ,y ,z 满足的条件是________.x =y =z =0 [由于{a ,b ,c }是空间的一个基底,所以当x a +y b +z c =0时,x =y =z=0.]4.正方体ABCD A 1B 1C 1D 1中,取{AB →,AD →,AA 1→}为基底,若G 为面BCC 1B 1的中心,且AG →=xAB →+yAD →+zAA 1→,则x +y +z =________.2 [如图,AG →=AB →+BG →=AB →+12BC 1→=AB →+12(BC →+BB 1→)=AB →+12AD →+12AA 1→.由条件知x =1,y =12,z =12.∴x +y +z =1+12+12=2.]5.若{a ,b ,c }是空间的一个基底,试判断{a +b ,b +c ,c +a }能否作为空间的一个基底.[解] 假设a +b ,b +c ,c +a 共面,则存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a ),即a +b =μa +λb +(λ+μ)c .∵{a ,b ,c }是空间的一个基底,∴a ,b ,c 不共面. ∴⎩⎪⎨⎪⎧1=μ,1=λ,0=λ+μ,此方程组无解.即不存在实数λ,μ,使得a +b =λ(b +c )+μ(c +a ), ∴a +b ,b +c ,c +a 不共面.故{a +b ,b +c ,c +a }能作为空间的一个基底.。
高中数学空间向量教案
![高中数学空间向量教案](https://img.taocdn.com/s3/m/6a546f7f42323968011ca300a6c30c225901f0a0.png)
高中数学空间向量教案
教学目标:
1. 理解空间向量的概念及其表示方法
2. 掌握空间向量的运算法则及应用
3. 能够解决相关的空间向量问题
教学重点:
1. 空间向量的概念和表示方法
2. 空间向量的运算法则
教学内容:
1. 空间向量的定义:空间中具有大小和方向的量,可以表示为有向线段
2. 空间向量的表示方法:以空间直角坐标系为基础,用坐标表示空间向量
3. 空间向量的加法和减法:向量相加减的结果是一个新的向量,满足平行四边形法则
4. 点积和叉积:点积表示向量之间的夹角关系,叉积表示向量之间的垂直关系
教学过程:
1. 引入:通过实际生活中的例子引入空间向量的概念
2. 讲解:讲解空间向量的定义、表示方法和运算法则
3. 演示:给出几个实例,让学生通过计算来实践空间向量的运算
4. 练习:让学生进行相关题目的练习,巩固所学内容
5. 总结:总结空间向量的重点内容,强化学生的学习成果
教学资源:
1. 教材《高中数学》
2. 实物模型:空间向量的有向线段模型
3. 习题集:相关的空间向量练习题
评估方法:
1. 班级小测验:对学生进行简单的空间向量知识测试
2. 课堂练习:检查学生在课堂上的问题解答情况
3. 作业:布置空间向量的相关作业,让学生独立完成
拓展阅读:
1. 参考书籍:《线性代数》
2. 网站资源:国家教育在线等网站上关于空间向量的相关资料教学反思:
1. 教学内容是否清晰易懂
2. 学生对空间向量的理解程度
3. 是否需要调整教学方法和教学资源
以上为高中数学空间向量的教案范本,仅供参考。
高中数学教案空间向量
![高中数学教案空间向量](https://img.taocdn.com/s3/m/53ee13da6aec0975f46527d3240c844769eaa0ad.png)
高中数学教案空间向量教学目标:1. 理解向量在三维空间中的表示方法;2. 掌握向量的基本运算法则;3. 能够进行空间向量的坐标化表示和计算。
教学内容:1. 空间向量的概念;2. 空间向量的表示方法;3. 空间向量的基本运算法则。
教学重点和难点:重点:向量在三维空间中的表示方法和基本运算法则;难点:理解空间向量的概念,掌握空间向量的计算方法。
教学准备:1. 讲义和习题集;2. 白板和马克笔;3. 手绘坐标轴和向量示意图。
教学过程:一、导入新知识(10分钟)1. 引入空间向量的概念,让学生思考什么是空间向量;2. 引导学生分析向量在二维和三维空间中的区别,并讨论其表示方法。
二、讲解空间向量(20分钟)1. 讲解空间向量的表示方法,包括点坐标和向量坐标的关系;2. 介绍空间向量的基本运算法则,如向量的加减、数量积和叉积等。
三、练习与讨论(15分钟)1. 给学生几个简单的例题,让他们尝试计算空间向量之间的关系;2. 导入一些复杂的题目,引导学生思考如何运用所学知识解决问题。
四、拓展延伸(10分钟)1. 让学生思考空间向量的应用领域,如物理学、工程学等;2. 提出一些拓展问题,激发学生的思维和求解能力。
五、总结反思(5分钟)1. 总结本节课的重点知识和难点,强化学生对空间向量的理解;2. 鼓励学生勤加练习,巩固所学知识。
板书设计:1. 空间向量:- 定义- 表示方法2. 空间向量的基本运算法则:- 加减法- 数量积- 叉积教学反馈:1. 随堂小测验,检验学生对空间向量的掌握程度;2. 鼓励学生在家完成相关习题,并定期布置作业。
教学资源:1. 数学课本和习题集;2. 电子板书和教学PPT;3. 网络资源和相关视频资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎阅读空间向量1.理解空间向量的概念;掌握空间向量的加法、减法和数乘.2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直.第1课时 空间向量及其运算空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广.本节知识点是:1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量.(2) 向量相等:方向 且长度 .(3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量(1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 .(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量(1) 共面向量:平行于 的向量.基础过关考纲导读高考导航 空间向量定义、加法、减法、数乘运算数量积坐标表示:夹角和距离公式求距离求空间角证明平行与垂直2.线性运算律(1) 加法交换律:a +b = .(2) 加法结合律:(a +b )+c = .(3) 数乘分配律:λ(a +b )= .(2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P .共面向量定理的推论: .5.空间向量基本定理(1) 空间向量的基底: 的三个向量.(2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使 .空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使 .6.空间向量的数量积(1) 空间向量的夹角: .(2) 空间向量的长度或模: .(3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b = .空间向量的数量积的常用结论:(a) cos 〈a 、b 〉= ; (b) ?a ?2= ;(c) a ⊥b ⇔ .例1.已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y AB x AD AF ++=,求x -y 的值.解:易求得0,21=-∴==y x y x 变式训练1. 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b ,=A A 1c ,则下列向量中与M B 1相等的向量是( )A .?21a +21b +c B .21a +21b +cC .21a ?21b +cD .?21a ?21b +c解:A例2. 底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,求证:AB 1∥平面C 1BD.证明:记,,,1c AA b AC a AB ===则c b CC DC DC b a AD AB DB c a AB +=+=-=-=+=21,21,111∴11AB c a DC DB =+=+,∴11,,DC DB AB 共面.∵B 1∉平面C 1BD, AB 1//平面C 1BD.变式训练2:正方体ABCD -EFGH 中,M 、N 分别是对角线AC 和BE 上的点,且AM =EN .典型例题ABCD AC 1B 1(4) 空间向量的数量积的运算律:(a ) 交换律a ·b = ;(b ) 分配律a ·(b +c )= .(1) 求证:MN ∥平面FC ; (2) 求证:MN ⊥AB ;(3) 当MA 为何值时,MN 取最小值,最小值是多少?解:(1) 设.)1(,BF k BC k MN k ACMCEB NB +-===则(2) .0)1(=⋅-⋅-=⋅AB BF k AB BC k AB MN (3) 设正方体的边长为a ,也即时AC AM21=,a 22=0=.G 、H ,求19变式训练4:已知空间四边形OABC 中,M 为BC AB =OC ,求证QN PM ⊥.证明:法一:)(21OC OB OM +=)(21OC AB OM PO PM +=+=∴故QN PM ⊥B 11.立体几何中有关垂直和平行的一些命题,可通过向量运算来证明.对于垂直,一般是利用a ⊥b ⇔a ·b =0进行证明.对于平行,一般是利用共线向量和共面向量定理进行证明.2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,然后计算这个向量对应的模.而计算过程中只要运用好加法法则,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,从而求得结果.3.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角,而求两个向量的夹角则可以利用公式c osθ=bab a ⋅.4.异面直线间的距离的向量求法:已知异面直线l 1、l 2,AB 为其公垂线段,C 、D 分别为l 1、l 2上的任意一点,n 为与AB 共线的向量,则|AB |=||||n n CD ⋅.5.设平面α的一个法向量为n ,点P 是平面α外一点,且P o ∈α,则点P 到平面α的距离是d =||||n n P P o ⋅.第2课时 空间向量的坐标运算设a =),,(321a a a ,b =),,(321b b b (1) a ±b =(2) λa = . (3) a ·b = .(4) a ∥b ⇔ ;a ⊥b ⇔ . (5) 设),,(),,,(222111z y x B z y x A ==则AB = ,=AB . AB 的中点M 的坐标为 . 例1. 若a =(1,5,-1),b =(-2,3,5)(1)若(k a +b )∥(a -3b ),求实数k 的值; (2)若(k a +b )⊥(a -3b ),求实数k 的值; (3)若b a k 取得最小值,求实数k 的值. 解:(1)31-=k ; 小结归纳典型例题基础过关(2)3106=k ; (3)278-=k 变式训练1. 已知O 为原点,向量()()3,0,1,1,1,2,,OA OB OC OA BC ==-⊥∥OA ,求AC . 解:设()(),,,1,1,2OC x y z BC x y z ==+--,∵,OC OA BC ⊥∥OA ,∴0OC OA ⋅=,()BC OA R λλ=∈,∴()()30,1,1,23,0,1x z y z λ+=⎧⎪⎨--=⎪⎩,即30,13,10,2.x z x y z λλ+=⎧⎪+=⎪⎨-=⎪⎪-=⎩解此方程组,得7211,1,,101010x y z λ=-===。
∴721,1,1010OC ⎛⎫=-⎪⎝⎭,3711,1,1010AC OC OA ⎛⎫=-=- ⎪⎝⎭。
例2. 如图,直三棱柱111C B A ABC -,底面ABC ∆中,CA =CB =1, 90=∠BCA ,棱21=AA ,M 、N 分别A 1B 1、A 1是的中点. (1) 求BM 的长; (2) 求〉〈11,cos CB BA 的值; (3) 求证:N C B A 11⊥.解:以C 为原点建立空间直角坐标系xyz O -.(1) 依题意得B (0,1,0),M (1,0,1).3)01()10()01(222=-+-+-=∴BM . (2) 依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2).1030,cos 111111=⋅⋅>=<∴CB BA CB BA CB BA . (3) 证明:依题意得C 1(0,0,2),N )0,21,21(),2,1,1(),2,21,21(11=--=∴N C B A .变式训练2. 在四棱锥P -ABCD 中, 底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB =3,BC =1,PA =2,E 为PD 的中点.(1) 在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离; (2) 求(1) 中的点N 到平面PAC 的距离.解:(1) 建立空间直角坐标系A -BDP ,则A 、B 、C 、D 、P 、E 的坐标分别是A(0, 0, 0)、B(3, 0, 0)、C(3, 1, 0)、D(0, 1, 0)、P(0, 0, 2)、E(0,21, 1),依题设N(x , 0, z ),则NE =(-x ,21, 1-z ),由于NE ⊥平面PAC ,xyz B 1C 1 A 1 C BA MNABPED·∴⎪⎩⎪⎨⎧=⋅=⋅00AC NE AP NE 即⎪⎩⎪⎨⎧=+-=-⇒⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--0213010)0,1,3()1,21,(0)2,0,0()1,21,(x z z x z x ⎪⎩⎪⎨⎧==⇒163z x ,即点N 的坐标为(63, 0, 1),从而N 到AB 、AP 的距离分别为1,63.PE :ED⎪⎪⎪⎩=-231)1(λλa a 解得23,21,2121=-==λλλ,即21=λ时,AE AC BF 2321+-=.亦即,F 是PC 的中点时,AE AC BF ,,共面,又⊄BF 平面AEC ,所以当F 是PC 的中点时,BF ∥平面AEC .例4. 如图,多面体是由底面为ABCD 的长方体被截面AEFG 所截而得,其中AB =4,BC =1,BE =3,CF =4. (1) 求EF 和点G 的坐标; (2) 求GE 与平面ABCD 所成的角;(3) 求点C 到截面AEFG 的距离.解:(1) 由图可知:A(1,0,0),B(1,4,0), E(1,4,3),F(0,4,4) ∴)1,0,1(-=EF 又∵EF AG =,设G(0,0,z),则(-1,0,z) =(-1,0,1) ∴z =1 ∴G(0,0,1) (2)平面ABCD 的法向量).1,0,0(=DG)2,4,1(=GE ,设GE 与平面ABCD 成角为θ,则PG0), P (0,0,4),故E (1,1,0),GE =(1,1,0), PC =(0,2,4)。