解三角形

合集下载

解三角形方法大全

解三角形方法大全
(辽宁·17)在△ABC中,a, b, c分别为内角A, B, C的对边,且
(Ⅰ)求A的大小;(Ⅱ)求 的最大值
.
(天津·17)在△ABC中,BC= ,AC=3,sinC=2sinA.( I )求AB的值;( II )求 的值。
(安徽·16)在△ABC中,sin(C-A)=1 , sinB= . I )求sinA的值;( II )设AC= ,求△ABC的面积。
3.如上图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南 的方向上,行驶5km后到达B处,测得此山顶在东偏南 的方向上,仰角为 ,求此山的高度CD.
4. (2009·辽宁卷·17)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为 , ,于水面C处测得B点和D点的仰角均为 ,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离。(计算结果精确到0.01km, 1.414, 2.449)

(1)求 的大小;(2)求 的最大值
【例】在 中,角 的对边分别为 ,,
(1)求 的大小;(2)求 的范围
【例】(11全国2)设 的内角 的对边分别为 ,已知 ,
,求
【11江西文】在 中,角 的对边分别是 ,已知
(1)求 的值;(2)若 , ,求边 的值
解三角形
正余弦定理的应用:
1.正弦定理适用于有两个角存在的情况,下图是“边边角”的情况:(a<bsinA无解)
余弦定理: , 其变式为:
2.余弦定理及其变式可用来解决以下两类三角形问题:
(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;

解三角形的实用方法

解三角形的实用方法

解三角形的实用方法在几何学中,解三角形是一项重要的任务,它涉及到通过给定的边长或角度来确定三角形的其他未知量。

本文将介绍几种常见的实用方法来解决三角形问题。

一、已知边长解三角形当我们已知三角形的三条边长时,可以使用余弦定理和正弦定理来求解三个内角。

接下来以边长分别为a、b、c,内角为A、B、C的三角形为例进行说明。

1. 余弦定理余弦定理给出了两边和夹角余弦之间的关系:c² = a² + b² - 2abcosC,b² = a² + c² - 2accosB,a² = b² + c² - 2bccosA。

根据这些公式,我们可以计算出三个内角的余弦值,然后使用反余弦函数得出最终结果。

2. 正弦定理正弦定理描述了三角形的边与其对应角的正弦之间的关系:sinA/a= sinB/b = sinC/c。

根据这个公式,我们可以计算出三个内角的正弦值,然后使用反正弦函数得出最终结果。

通过以上两个定理,我们可以根据已知的边长求解三角形的内角。

二、已知角度解三角形当我们已知三角形的一个内角以及与该角相对应的两个边长时,可以使用正弦定理和余弦定理求解三角形的其他未知量。

1. 正弦定理根据正弦定理,我们可以得到一个方程,用于计算三角形的边长:a/sinA = b/sinB = c/sinC。

通过已知的内角和两个边长,可以解出第三边的长度。

2. 余弦定理如果我们已知一个角和两个边长,可以使用余弦定理求解三角形的一条边:c² = a² + b² - 2abcosC,b² = a² + c² - 2accosB,a² = b² + c² -2bccosA。

通过以上两个定理,我们可以根据已知的角度和边长求解三角形的其他未知量。

三、特殊三角形的解法除了上述方法外,特殊三角形也有一些独特的解法。

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)(解析版)

解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。

解三角形公式汇总

解三角形公式汇总

解三角形解三角形公式汇总一、正弦定理正弦定理:公式推论1:(边化角)推论2:(角化边)题(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

型(2)asin B=2b:方法:边化角,推论1,a:b=sinA :sinB(3)3sin A=5sinB 或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA :sinB=a:b二、余弦定理公余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)式2+b2-c2=2abcosC2+c2-a2=2bccosA2+c2-b2=2accosBaba题(1)已知a,b,角C,求c 2=a2+b2-2abcosC方法:已知两边及夹角,求第三边,余弦定理 c型(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2, b2+c2-a2=2bccosA1解三角形三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC 的面积.方法:带公式题型2:已知A,a,b+c,求△ABC 的面积.方法:四、判断三角形形状题型: b cosC c cosB asin A ,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin 2A,用三角恒等变换公式求解。

注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:2。

解三角形知识点归纳总结

解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。

如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

解三角形(讲义)

解三角形(讲义)

解三角形(讲义)➢知识点睛1.解三角形(1)在三角形中,由已知的边、角出发,求未知边、角的过程叫做解三角形.已知边指已知该边的长度,已知角指已知该角的三角函数值.解三角形时,往往会通过作高的方式将三角形分割为2个直角三角形进行研究;作高时,一般要保留已知三角函数值的角.(2)常见的可解三角形①2边1角②2角1边③3边④1边1角表达AB=mACAB+BC=n➢精讲精练1.如图,在△ABC中,AB=BC=11,tan B=12,则AC=________,sin C=________.2.如图,在△ABC中,AC=ABC=150°,BC=8,则AB=______,sinA=________.3.如图,在钝角三角形ABC中,∠CAB>90°,AB=10,BC=14,∠C=45°,则AC=_______.4.如图,在△ABC中,tan B=12,∠C=45°,BC=12,则AB=_________.5.如图,在△ABC中,tan A=12,∠ABC=135°,BC=AB=___________.6.如图,在△ABC中,AB=5,BC=4,AC=6,则∠B的正切值为_________.7.如图,在△ABC中,BC∠C=45°,AB AC,则AC的长为_________.8.如图,在矩形ABCD中,AB=4,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tan∠BAF=12,则CE=_______.9. 如图,在△ABC 中,D 是AC 边上的中点,连接BD ,把△BDC 沿BD 翻折,得到△BDC′,DC′与AB 交于点E ,连接AC′,若AD =AC′=2,BD =3,则点D 到BC′的距离为()A .2B .7C D10. 如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE ,AD ,则两个三角形重叠部分的面积为________.第10题图第11题图11. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________.12. 如图,在Rt △ABC 中,∠A =90°,AB =23,点E ,点D 分别是边AB ,AC 上一点,AE =3,AD =4,过点E 作EF ⊥DE ,交BC 于点F .若EF =2ED ,则AC 的长为__________.13. 如图,在Rt △ABC 中,∠B =90°,AB =BC△ABC 绕点A 按逆时针方向旋转90°得到△AB′C′,连接B′C ,则sin ∠ACB′=________.14.如图,在△ABC中,∠B=90°,AB BC=4,点D是AB上一点,BD=2,点E是线段AC上一动点,将△ABE沿BE折叠,使点A的对应点A′落在线段CD上,此时tan∠A′BC=__________.15.在正方形ABCD中,AB=6,连接AC,BD,P是正方形对角线上一点,若PD=2AP,则AP的长为__________.16.如图,在矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的平分线上时,DE的长为__________.【参考答案】1.5;4 52.3.4.5. 26.7. 28.9. B10.311.112.23 213.4 514.1 1815.16.52或53。

解三角形

解三角形
A.5( 6 2 ) B.5( 6 2 )
C .10( 6 2 ) D.10( 6 2 )
典例:
例1:在△ABC中,∠B=450,AC= cosC= 2 5
5
(1)求BC边的长
10 ,
(2)记AB的中点为D,求中线CD的长度
例2:
在ABC中,m

(cos
C
,

sin
C
),n

(cos
(4)余弦定理的变式:cos C a2 b2 c2 2ab
(5)三角形面积公式:SΔ

1 ah
2
,


1 ab sinC
2
(6)在△ABC中,易推出: ① sinA=sin(B+C),cosA=-cos(B+C),
tanA=-tan(B+C)
② sin A cos B C , cos A sin B C ,
解斜三角形
知识要点归纳
(1)正弦定理:
a b c 2R sinA sinB sinC
(2)余弦定理: c2=a2+b2-2abcosC
(3)正弦定理的变式:
a=2RsinA b=2RsinB
sin A a sinB b
2R
2R
c=2RsinC.
sinC c 2R
a : b : c sin A: sinB : sinC
基础训练: 1、在△ABC中, 若A 600,a 4 3,b 4 2
则B=

2、在△ABC中, a=6,b= 6 3 ,A=300
则边c=

3、在△ABC中,sinA:sinB:sinC=2:3:4, 则CosB=_________

专题一、二:解三角形

专题一、二:解三角形

专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。

利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。

②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。

剖析:已知两角与一边,用正弦定理,有解时,只有一解。

已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。

3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。

解三角形最全知识点总结

解三角形最全知识点总结

解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

〔1〕三边之间的关系:a 2+b 2=c 2。

〔勾股定理〕 〔2〕锐角之间的关系:A +B =90°; 〔3〕边角之间的关系:〔锐角三角函数定义〕 sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

〔1〕三角形内角和:A +B +C =π。

〔2〕正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===〔R 为外接圆半径〕 〔3〕余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:〔1〕∆S =21ah a =21bh b =21ch c 〔h a 、h b 、h c 分别表示a 、b 、c 上的高〕; 〔2〕∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素〔即三条边和三个内角〕中的三个元素〔其中至少有一个是边〕求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: 〔1〕两类正弦定理解三角形的问题:第1、两角和任意一边,求其他的两边及一角. 第2、两角和其中一边的对角,求其他边角. 〔2〕两类余弦定理解三角形的问题:第1、三边求三角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时〔1〕应注意两边和其中一边的对角解三角形时,可能有两解的情形;〔2〕对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

初中解三角形题型及解题方法

初中解三角形题型及解题方法

初中解三角形题型及解题方法在初中数学课程中,解三角形题型是比较常见的内容之一,掌握了解三角形的相关知识和解题方法,能够帮助我们更好地理解几何知识,提高解题效率。

下面将介绍几种常见的解三角形题型及解题方法。

1. 已知两角求第三角当已知一个三角形中的两个角度时,我们可以通过两个角相加等于第三角来求解第三角度。

假设已知三角形中角A和角B的度数分别为x°和y°,则角C的度数为180°-x°-y°。

2. 已知两边求夹角当已知一个三角形中的两边长度时,我们可以利用余弦定理或正弦定理来求解夹角。

假设已知三角形中边a和边b的长度分别为x和y,夹角为θ,则可以利用余弦定理或正弦定理求解角度。

3. 已知一个角边边求另外两个角及边当已知一个三角形中的一个角度和两个边的长度时,我们可以利用正弦定理或余弦定理来求解其余两个角和一条边。

根据已知条件,可以列出方程组来求解。

4. 利用相似三角形性质在解三角形问题中,有时候可以利用相似三角形的性质来简化问题并求解。

如果能够找到两个或多个相似三角形,可以通过比较边长比例或角度比例来求解。

5. 利用角平分线、垂直平分线等性质在解三角形问题中,角平分线、垂直平分线等性质也是常用的解题方法。

通过这些性质可以快速求解角度或边长。

总之,在解三角形问题时,需要充分理解三角形的性质和几何知识,善于灵活运用各种解题方法来解决问题。

通过反复练习和总结经验,相信每位同学都能够轻松地解决各种三角形问题。

希望以上介绍的解三角形题型及解题方法能够帮助大家更好地掌握这一部分内容。

祝愿大家在学习数学的道路上取得更好的成绩!。

解三角形公式整理

解三角形公式整理

解三角形公式整理三角形是平面几何中最基本的形状之一,它由三条边和三个角组成。

在解决与三角形相关的问题时,我们经常会使用一些公式和定理来简化计算。

下面我将整理一些常用的三角形公式,帮助大家更好地理解和运用它们。

一、三角形的周长和面积公式:1.三角形的周长:三角形的周长等于其三条边的长度之和。

设三角形的三边分别为a、b、c,则三角形的周长P=a+b+c。

2.海伦公式(用于计算三角形的面积):三角形的面积S可以根据海伦公式计算。

海伦公式如下:S=√(p×(p-a)×(p-b)×(p-c)),其中p=(a+b+c)/2为三角形的半周长。

二、根据边求角的公式:1.余弦定理:余弦定理用于计算三角形中的角度,下面给出余弦定理和常见推论:余弦定理:c² = a² + b² - 2ab×cos(C) (其中a、b、c为三角形的边,C为对应的角)推论1:如果已知三个角,可以根据余弦定理计算对应边的长度。

推论2:如果已知两条边和它们夹角的大小,可以根据余弦定理计算第三边的长度。

2.正弦定理:正弦定理用于计算三角形中的角度,下面给出正弦定理和常见推论:正弦定理:a/sin(A) = b/sin(B) = c/sin(C) (其中a、b、c为三角形的边,A、B、C为对应的角)推论1:如果已知两个角和对应边的长度,可以根据正弦定理计算第三个角的大小。

推论2:如果已知两个角和对应边的长度,可以根据正弦定理计算未知边的长度。

三、根据角求边的公式:1.余弦定理(通过重排余弦定理的公式)可以计算三角形的边长:a² = b² + c² - 2bc×cos(A)b² = a² + c² - 2ac×cos(B)c² = a² + b² - 2ab×cos(C)2.正弦定理(通过重排正弦定理的公式)可以计算三角形的边长:a/sin(A) = b/sin(B) = c/sin(C)根据正弦定理,对于给定的两个角和它们对应的边,可以计算出第三边的长度。

解三角形-公式汇总

解三角形-公式汇总
四、判断三角形形状
题型: b cosC c cos B a sin A ,判断三角形形状 方法 1:角化边 公式:sinA:sinB:sinC=a:b:c 或 结论:
方法 2:边化角 公式:a:b:c = sinA:sinB:sinC 将原式转化为 sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。 注: 三角形内常见角度转化:
型 (2)已知 a:b:c=1:2: ,求 cosB
方法:已知三边求角,余弦定理推论 1,
(3)已知
,求 cosA
方法:已知三边平方关系,余弦定理推论 2,b2+c2-a2=2bccosA1三、求三角形面积
公式:
题型 1:已知 a,b,c,A 求△ABC 的面积. 方法:带公式 题型 2:已知 A,a,b+c,求△ABC 的面积. 方法:
一、正弦定理 公 正弦定理: 式
推论 1:(边化角)
解三角形 公式汇总
解三角形
推论 2:(角化边)
题 (1)已知 sinB 求 B:一题多解型 判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
型 (2)asin B=2b: 方法:边化角,推论 1,a:b=sinA:sinB
(3)3sin A=5sinB 或 sinA:sinB:sinC=1:2:3 方法:角化边,推论 2,sinA:sinB=a:b
五、解三角形应用举例
仰角: 俯角: 坡度:
2
解三角形
二、余弦定理

余弦定理:
推论 1:
(已知两边及夹角,求第三边) (已知三边,求角)

推论 2: (三边的平方关系)
a2+b2-c2=2abcosC b2+c2-a2=2bccosA a2+c2-b2=2accosB

(完整版)最全解三角形知识点总结

(完整版)最全解三角形知识点总结

解三角形知识点总结一、正弦定理:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,则有推论:等角对等边,等边对等角二、余弦定理:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,则有三、三角形的解的数目、形状判断在△ABC 中, 已知a 、b 、A (两边及其中一边所对的角)2. 判断形状: 一看是否有解,二看最大的角,三看是否等腰、等边。

要注意: (1)三角形中任意两边的边长之和大于第三边,任意两边的边长之差小于第三边; (2)注意角的取值范围及相应的三角函数的取值范围。

三、三角形的面积公式 1. 常用公式(2) ;(1) ( 、 、 分别表示 、 、 上的高);A 为钝角或直角bsinA < a < b两解a = bsinA一解 a < bsinA无解 A ≤ b无解a ≥ b一解 a >b一解A 为锐角, 变式:大角对大边,等边对等角 .( 为 的外接圆半径);四、综合问题1. 与三角恒等变换综合一般思路:将题目条件变形成两个三角函数相等的形式。

常用的技巧有: ①三角函数的诱导公式、和(差)角公式、倍角公式及图像。

②换边为角:题目条件结合正弦定理或余弦定理消去含有边的项。

③减元变换:题目条件中同时出现A 、B 、C 或a 、b 、c ,通过减元变换进行简化。

常用的减元变换关系:特别强调:注意角(及其相应三角函数)的取值范围!2. 与向量综合——掌握向量的运算、向代数形式的转化、注意数形结合。

; ; .;;;; ;(6) , 是内切圆的半径.(5) ,其中 ;(4) ;(3) , 为外接圆半径;。

解三角形

解三角形

形状判断
勾股定理 勾股定理只适用于直角三角形(外国叫“毕达哥拉斯定理”) a ²+ b ²= c ², 其 中 a 和 b 分 别 为 直 角 三 角 形 两 直 角 边 , c 为 斜 边 。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;7,24,25;10,24,26等等。
感谢观看
意义
传统的平面几何学通常只能讨论边与边、边与面积、面积与面积、角与角之间的数量关系,却无法讨论角和 边、角和面积之间的数量关系。如果我们能够讨论角和边之间的数量关系,然后讨论边与面积之间的数量关系, 我们就可以讨论角与面积之间的数量关系。对于角和边之间的定量关系,虽然我们也有诸如“30°的角所对的直 角边为斜边的一半”这样的定理,再用勾股定理也可以求出60°的角所对的直角边为斜边的(根号3)/2倍,但这 些都仅仅是针对“特殊值”加以讨论,从而很难推广到一般性(任意值)的讨论 。
a ²= b ²+ c ²- 2 b c c o s A b ²= a ²+ c ²- 2 a c c o s B c ²= a ²+ b ²- 2 a b c o s C 注:勾股定理其实是余弦定理的一种特殊情况 。
p=(a+b+c)/2(公式里的p为半周长) 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 已知三条中线求面积 方法一:已知三条中线Ma,Mb,Mc, 则S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 ; 方法二:已知三边a,b,c ; 则S= √[p(p-a)(p-b)(p-c)];其中:p=(a+b+c)/2 ;

解三角形知识点归纳总结

解三角形知识点归纳总结

解三角形知识点归纳总结一、基本概念三角形:由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形的元素:三角形的三个角A、B、C和它们的对边a、b、c。

二、三角形的分类按角分:锐角三角形、直角三角形、钝角三角形。

锐角三角形:三个内角都小于90度。

直角三角形:有一个内角等于90度。

钝角三角形:有一个内角大于90度。

按边分:不等边三角形、等腰三角形、等边三角形。

等腰三角形:两边相等的三角形,相等的两边称为腰,另一边称为底边。

等边三角形:三边都相等的等腰三角形,也是特殊的等腰三角形。

三、三角形的性质三角形的内角和定理:三角形的三个内角之和等于180度。

三角形的稳定性:三角形的形状是固定的,具有稳定性。

四、解三角形的常用定理和公式正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中R是三角形的外接圆半径。

余弦定理:c² = a² + b² - 2ab·cosC(以及针对其他角的类似公式)。

面积公式:S = 1/2 * bc * sinA(以及针对其他角的类似公式),或者S = √[p(p - a)(p - b)(p - c)],其中p是半周长,即p = (a + b + c) / 2。

五、解三角形的过程解三角形通常涉及已知三角形的几个元素(如两个角和一条边,或三条边等),然后利用上述定理和公式求出其他未知元素的过程。

六、应用解三角形在实际问题中有广泛应用,如在航海、测量、地理、工程等领域中,经常需要利用三角形的性质进行角度和距离的计算。

通过学习和掌握这些知识点,可以更深入地理解三角形的性质和应用,为解决实际问题提供有力工具。

同时,解三角形也是培养逻辑思维和空间想象能力的重要途径。

解三角形的几种方法

解三角形的几种方法

解三角形的几种方法三角形是初中数学学科的基础内容之一,解三角形问题是常见的数学题型之一。

通过解三角形问题可以帮助我们深入理解三角函数的定义和性质。

本文将介绍解三角形的几种常见方法。

一、正弦定理正弦定理是解三角形问题中最基本也是最常用的方法之一。

它的原理是:在任意三角形ABC中,有以下关系成立:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三个对应角的大小。

根据正弦定理,我们可以通过已知角和边的数据来求解未知角和边的长度。

例如,已知三角形的两个角的大小以及一个边的长度,可以通过正弦定理求解出三角形的其他边和角的大小。

二、余弦定理余弦定理也是解三角形问题中常用的方法之一。

它的原理是:在任意三角形ABC中,有以下关系成立:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形的三条边的长度,C表示夹在两边a 和b之间的角的大小,cosC表示角C的余弦值。

通过余弦定理,我们可以通过已知角和边的数据来求解未知角和边的长度。

例如,已知三角形的三个边的长度,可以通过余弦定理求解出三角形的角的大小。

三、正切定理正切定理是解三角形问题中较少使用的方法之一。

它的原理是:在任意三角形ABC中,有以下关系成立:tanA = (b - c) / atanB = (c - a) / btanC = (a - b) / c其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三个对应角的大小。

通过正切定理,我们可以通过已知边的长度来求解未知角的大小。

例如,已知三角形的两边的长度和一个角的大小,可以通过正切定理求解出其他两个角的大小。

四、利用勾股定理解直角三角形在解直角三角形问题中,我们可以应用勾股定理。

勾股定理是指在直角三角形中,直角边的平方等于两个直角边的平方和。

即,设直角三角形的两直角边分别为a和b,斜边的长度为c,则有:c² = a² + b²通过勾股定理,我们可以通过已知两边的长度来求解未知边的长度。

解三角形常见题型及技巧

解三角形常见题型及技巧

解三角形常见题型及技巧1.正弦定理 a sin A =b sin B =c sin C=2R 其中2R 为△ABC 外接圆直径。

变式1:a =2R sin A ,b =2R sin B ,c =2R sin C 。

变式2:sin 2a A R =,sin 2b B R =,sin 2c C R= 变式3:a ∶b ∶c =sin A ∶sin B ∶sin C 。

变式4:R CB A cb a C Ac a C B c b B A b a A a 2sin sin sin sin sin sin sin sin sin sin =++++=++=++=++= 2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C 。

(边换角后)sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。

变式1:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。

变式2:a 2=(b +c )2-2b c (1+cos A )(题目已知b +c ,bc 或可求时常用) 3.解三角形(知道三个元素,且含有边)(1)已知三边a ,b ,c 或两边a ,b 及夹角C 都用余弦定理(2)已知两边a ,b 及一边对角A,一般先用正弦定理,求sin B ,sin B =b sin Aa 。

(3)已知一边a 及两角A ,B (或B ,C )用正弦定理(已知两角,第三角就可以求)。

4.三角形常用面积公式(1)S =12a ·h (2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R (3)S =12r (a +b +c )(r 为内切圆半径)5.在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。

解三角形(总结+题+解析)

解三角形(总结+题+解析)

解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。

俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。

解三角形(一)

解三角形(一)

f (x )
(3)对称变换引申
f (x) 先横向平移|a|个单位,再以x=a为轴作对称变换 f (a x)
(4)翻折变换引申
f (x) 以x=a为轴作翻折变换
f (| x a |)
描点法(周期五点法)作和谐函数的图像
先画图象后画轴 头为负比尾加T
注1.“头”的含义
①正弦式:当 Aω>0时,“头”是距原点最近的上升平衡点
当 Aω<0时,“头”是距原点最近的下降平衡点
②余弦式:当 A>0时,“头”是距原点最近的最高点
当 A<0时,“头”是距原点最近的最低点
③正切式:“头”是距原点最近的平衡点
注2.头为负比:x1
注3.尾加T:弦式 x5 x1 T
注4.正弦式: 当A>0,ω>0时,y1=y3=y5=B,y2=B+A,y4=B-A
A>B
a>b
②锐角三角形中,一定有 sinA>cosB, sinA>cosC …
练习1.解三角形常用的定理及结论
(1).(2010年辽宁)平面上O,A,B三点不共线
设 OA a,OB b ,则△OAB的面积等于 【C】
(A) | a |2| b |2 (a • b)2 (B) | a |2| b |2 (a • b)2
tanA+tanB+tanC = tanAtanBtanC
② sin A B cos C
2
2
cot C
2
2
(2).正余弦定理:
a b c 2R sin A sin B sin C
a 2 b2 c2 2bc cos A b2 a 2 c2 2ac cos B c2 a 2 b2 2ab cos C
注⑤:图象变换的基础是点的变换,故应该用“图象上 所有点”来描述变换,但实际操作时,可简化。 可模仿注⑥的书写格式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形
一、基础梳理
1.两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β.
(2)cos(α±β)=cos αcos β∓sin αsin β.
(3)tan(α±β)=tan α±tan β
1∓tan αtan β.
2.二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α.
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
(3)tan 2α=2tan α
1-tan2α
.
3.三角恒等式的证明方法
(1)从等式的一边推导变形到另一边,一般是化繁为简.
(2)等式的两边同时变形为同一个式子.
(3)将式子变形后再证明.
4.正、余弦定理
在∓ABC中,若角A,B,C所对的边分别是a,b,c,R为∓ABC外接圆半径,则
5.S∓ABC=1
2ab sin C=
1
2bc sin A=
1
2ac sin B=
abc
4R=
1
2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算
R、r.
6.在∓ABC 中,已知a 、b 和A 时,解的情况如下:
a =
b sin A b sin A <a <b a ≥b a >b 二、例题精讲
考点一 利用正弦定理、余弦定理解三角形
例1 设∓ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =7
9.
(1)求a ,c 的值; (2)求sin(A -B )的值.
变式训练1
1.(2013·湖南)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )
A.π12
B.π6
C.π4
D.π
3
2.∓ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =1
4a,2sin B =3sin C ,则cos A 的值为
________.
3.设∓ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =5
13,b =3,则c =________.
4.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =5
13,a =1,
则b =________.
考点二 利用正、余弦定理判定三角形的形状
例2 在∓ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C . (1)求角A 的大小;
(2)若sin B +sin C =3,试判断∓ABC 的形状.
变式训练2
1.在∓ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c
b <cos A ,则∓ABC 为( )
A .钝角三角形
B .直角三角形
C .锐角三角形
D .等边三角形
2.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形
D .不确定
3.在∓ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则∓ABC 的形状为( )
A .等边三角形
B .直角三角形
C .等腰三角形或直角三角形
D .等腰直角三角形
4.在∓ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断∓ABC 的形状.
考点三 解三角图形
例3 如图,在ABC ∆中,8,3
==
∠AB B π
,点D 在BC 边上,且7
1
cos ,2=
∠=ADC CD (1)求BAD ∠sin ; (2)求AC BD ,的长。

变式训练3
1.在△ABC 中,∠BAC =3π
4
,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.
2.如图,在ABC ∆中,
90=∠ABC ,3=
AB ,1=BC ,P 为ABC ∆内一点, 90=∠BPC .
(1)若2
1=
PB ,求PA ;(2)若 150=∠APB ,求PBA ∠tan 。

考点四 和三角形面积有关的问题
例4 在∓ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;
(2)若sin A =4
5,求∓ABC 的面积.
变式训练4
1.∓ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π
4
,则∓ABC 的面积为( )
A .23+2 B.3+1 C .23-2
D.3-1
2.在∓ABC 中,已知AB →·AC →
=tan A ,当A =π6时,∓ABC 的面积为________.
考点五 三角函数最值问题
例5 已知三角形ABC 中,角ABC 所对边分别为c b a 、、,满足6π
=
C 且B b sin 34=,则三
角形ABC 面积的最大值为__________。

变式训练5
设∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且满足C B A B A sin )]cos([cos sin sin --=+π
(1)判断三角形∆ABC 的形状,并说明理由; (2)若21+=++c b a ,试求∆ABC 面积的最大值。

三、课后练习
A 组 专项基础训练
1.在∓ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.
32
2.在∓ABC 中,A ∓B =1∓2,sin C =1,则a ∓b ∓c 等于( ) A .1∓2∓3 B .3∓2∓1 C .1∓3∓2
D .2∓3∓1
3.∓ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1
2b ,且a >b ,则B
等于( )
A.π6
B.π3
C.2π3
D.5π6
4.∓ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.
32 B.332 C.3+62 D.3+394
5.钝角三角形ABC 的面积是1
2,AB =1,BC =2,则AC 等于( )
A .5 B. 5 C .2 D .1
6.在∓ABC 中,若b =5,B =π4,sin A =1
3
,则a =______.
7.在∓ABC 中,若AB =5,AC =5,且cos C =9
10,则BC =________.
8.在∓ABC 中,A =60°,AC =4,BC =23,则∓ABC 的面积等于________.
9.在等腰∓ABC 中,AB AC =,AC 边上的中线BD 长为6,则当ABC ∆的面积取得最大值时,AB 的长为 。

10.在∓ABC 中,a =3,b =26,B =2A . (1)求cos A 的值; (2)求c 的值.
11.在∓ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →
=2,cos B =13,b =3.
求:(1) a 和c 的值; (2) cos(B -C )的值.
12.设∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且满足C a A c a cos sin 32-=。

(1)求C ;(2)若5=
c ,求∆ABC 的面积的最大值。

B 组 专项能力提升
13.∓ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b
a 等于( )
A .2 3
B .2 2 C. 3 D.2
14.在∓ABC 中,若b =5,B =π
4,tan A =2,则a =___________________________.
15.若∓ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 16.在∓ABC 中,C =90°,M 是BC 的中点.若sin∓BAM =1
3
,则sin∓BAC =________.
17.已知∓ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值. (1)求f (x )的值域及周期; (2)求∓ABC 的面积.。

相关文档
最新文档