2010-2018高考真题分类训练:第十三讲 平面向量的概念与运算
9年全国高考文科数学试题分类汇编之专题五平面向量第十三讲平面向量的概念与运算及答案
9年全国高考文科数学试题分类汇编之专题五平面向量第十三讲平面向量的概念与运算及答案专题五 平面向量第十三讲 平面向量的概念与运算 一、选择题1.(2018全国卷Ⅰ)在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC- C .3144AB AC+D .1344AB AC+2.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .03.(2018天津)在如图的平面图形中,已知1OM =,2ON =,120MON ∠=,2BM MA =,2CN NA =,则·BC OM 的值为NMOCBAA .15-B .9-C .6-D .04.(2017新课标Ⅱ)设非零向量a ,b 满足||||+=-a b a b 则A .⊥a bB .||||=a bC .∥a bD .||||>a b5.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.(2016年天津)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅的值为A .85-B .81C .41D .8117.(2016全国III 卷)已知向量1(2BA =uu v ,1),2BC =uu u v 则ABC ∠= A .30° B .45° C .60° D .120°8.(2015重庆)已知非零向量,a b 满足||=4||b a ,且(+)⊥2a a b ,则a 与b 的夹角为A .3πB .2πC .23πD .56π9.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是 A .||||||⋅≤a b a b B .||||||||--≤a b a bC .22()||+=+a b a bD .22()()+-=-a b a b a b10.(2015新课标2)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .211.(2014新课标1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点, 则=+A .B . 21C . 21D .12.(2014新课标2)设向量a ,b 满足|+a b |-a b 则⋅=a b A .1 B .2 C .3 D .513.(2014山东) 已知向量(1(3,)m ==a b . 若向量,a b 的夹角为6π,则实数m =A .B ..0D .14.(2014安徽)设,a b 为非零向量,2=b a,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a,则a 与b 的夹角为A .23πB .3πC .6πD .015.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是A .12(0,0),(1,2)==e e B .12(1,2),(5,2)=-=-e eC .12(3,5),(6,10)==e e D .12(2,3),(2,3)=-=-e e16.(2014浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||t +b a 是最小值为1 A .若θ确定,则||a 唯一确定 B .若θ确定,则||b 唯一确定 C .若||a 确定,则θ唯一确定 D .若||b 确定,则θ唯一确定17.(2014重庆)已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =A .92-B .0C .3D .15218.(2013福建)在四边形ABCD 中,)2,4(),2,1(-==,则该四边形的面积为 A .5B .52C .5D .1019.(2013浙江)设ABC ∆,0P是边AB 上一定点,满足014PB AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅≥.则A .090=∠ABCB .090=∠BAC C .AC AB = D .BC AC =20.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB 同方向的单位向量为A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,- C .3455⎛⎫- ⎪⎝⎭, D .4355⎛⎫- ⎪⎝⎭, 21.(2013湖北)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A. B. C. D.22.(2013湖南)已知,a b 是单位向量,⋅0a b =.若向量c 满足1--=c a b ,则c的最大值为A.1B.1 D223.(2013重庆)在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA的取值范围是A 、⎛ ⎝⎦B 、⎝⎦ C 、⎝D、⎝24.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .425.(2012陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于A .2B .12C .0D .-126.(2012浙江)设a ,b 是两个非零向量 A .若||||||+=-a b a b ,则⊥a b B .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b27.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=A . 14B .12 C .1 D .228.(2011辽宁)已知向量(2,1)=a ,(1,)k =-b ,(2)0⋅-=a a b ,则=k A .12- B .6- C .6 D .1229.(2010辽宁)平面上O ,A ,B 三点不共线,设OA=a ,OB =b ,则△OAB 的面积等于A .BC .30.(2010山东)定义平面向量之间的一种运算“”如下:对任意的(,)m n =a ,(,)p q =b ,令mq np =-ab ,下面说法错误的是A .若a 与b 共线,则0=a bB .=ab baC .对任意的R λ∈,有()()λλ=a b abD .2222()()||||+∙=ab a b a b二、填空题31.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+ca b ,则λ=_.32.(2018北京)设向量(1,0)=a ,(1,)m =-b ,若()m ⊥-a a b ,则m =_______.33.(2017新课标Ⅰ)已知向量(1,2)=-a ,(,1)m =b .若向量+a b 与a 垂直,则m =__. 34.(2017新课标Ⅲ)已知向量(2,3)=-a ,(3,)m =b ,且⊥a b ,则m = .35.(2017天津)在△ABC 中,60A ∠=︒,AB =3,AC =2.若2BD DC =,AE AC AB λ=-(λ∈R ),且4AD AE ⋅=-,则λ的值为 .36.(2017山东)已知向量(2,6)=a ,(1,)λ=-b ,若a ∥b ,则λ= .37.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
理科数学2010-2018高考真题分类训练:专题五 平面向量第十三讲 平面向量的概念与运算答案
专题五 平面向量第十三讲 平面向量的概念与运算答案部分 2019年1.解析:(1,3)BC AC AB t =-=-,则21(3)1t +-=,得3t =,即(1,0)BC =,所以(2,3)(1,0)2AB BC ⋅=⋅=.故选C.2.解析2(2)22⋅=⋅-=-⋅=a c a a a b ,因为2222(2)459==-⋅+=c a a b b , 所以||3=c ,所以2cos ,||||3⋅==a c a c a c .2010-2018年1.A 【解析】通解 如图所示,CB11111()()22222=+=+=⨯++-EB ED DB AD CB AB AC AB AC 3144=-AB AC .故选A . 优解 111()222=-=-=-⨯+EB AB AE AB AD AB AB AC3144=-AB AC .故选A . 2.C 【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a a b b2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .3.B 【解析】2(2)22(1)3⋅-=-⋅=--=a a b a a b ,故选B .4.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.5.B 【解析】由()t ⊥+n m n 可得()0t ⋅+=n m n ,即20t ⋅+=m n n ,所以2221|cos |3||t |||<,>|||=-=-=-⋅⋅⨯⨯n n n m n m n m n m n||4334||3=-=-⨯=-n m .故选B . 6.B 【解析】设BA a =,BC b =,∴11()22DE AC b a ==-, 33()24DF DE b a ==-,1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=,故选B.7.D 【解析】由向量的坐标运算得()42m +=-,a b , ∵()+⊥a b b ,∴()122(2)0m +⋅=--=a b b , 解得8m =,故选D .8.A【解析】由题意得112222cos 11||||BA BC ABC BA BC +⋅∠===⨯⋅, 所以30ABC ∠=,故选A .9.A 【解析】由题意22()(32)320a b a b a a b b -⋅+=-⋅-=,即223cos 20a a b b θ--=,所以23()cos 2033θ⨯--=,cos θ=,4πθ=,选A . 10.B 【解析】对于A 选项,设向量a 、b 的夹角为θ,∵||||||cos |||θ⋅=≤|a b a b a b ,∴A 选项正确;对于B 选项,∵当向量a 、b 反向时,||||||||--≥a b a b ,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出22()()+⋅-=-a b a b a b ,故D 选项正确,综上选B . 11.D 【解析】如图由题意,(2)2BC AC AB a b a b =-=+-=,故||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=, 所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=, 且AD BC ⊥,所以()4C a b +⊥B ,故选D . 12.A 【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=. 13.A 【解析】由2()10+=a b ①,2()6-=a b②,①-②得1⋅=a b .14.Bcos 6π==,两边平方化简得18=, 解得m =15.B 【解析】设11223344S x y x y x y x y =⋅+⋅+⋅+⋅,若S 的表达式中有0个a b ⋅,则2222S a b =+,记为1S ,若S 的表达式中有2个a b ⋅,则22222S a b a b =++⋅, 记为2S ,若S 的表达式中有4个a b ⋅,则4S a b =⋅,记为3S ,又||2||b a =, 所以222132242()0S S a b a b a b -=+-⋅=->,222122()0S S a b a b a b -=+-⋅=->,223()0S S a b -=->,∴321S S S <<,故min 34S S a b ==⋅,设,a b 的夹角为θ,则22min 48||cos 4||S a b a a θ=⋅==,即1cos 2θ=,又[0,]θπ∈,所以3πθ=. 16.B 【解析】对于A ,C ,D ,都有1e ∥2e ,所以只有B 成立.17.B 【解析】由于2222||2t t t +=++b a b a b a ,令222()2f t t t =++b a b a ,而t 是任意实数,所以可得()f t 的最小值为2222222222224(2)44cos 4sin 1444θθ--===a b ab a b a b b a a , 即22||sin 1θ=b ,则知若θ确定,则||b 唯一确定. 18.C 【解析】∵23(23,6)k -=--a b ,(23)-⊥a b c ,所以(23)-⋅a b c =2(23)60k --=。
【理科数学2010-2018高考真题分类】专题五平面向量第十三讲平面向量的概念与运算
1 B. AB
4 1 D. AB 4
3 AC
4 3
AC 4
2. (2018 北京 ) 设 a , b 均为单位向量,则 “a 3b 3a b ”是 “a ⊥ b ”的
A .充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D .既不充分也不必要条件
3. (2018 全国卷Ⅱ )已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b)
A . 30
B . 45
C. 60
D. 120
一线名师凭借教学实践科学分类,高质量的解析,你能感受到名家不一样的解题思路
22
9. (2015 重庆 ) 若非零向量 a , b 满足 a
b ,且 (a b) (3a 2b) ,则 a 与 b 的夹
3
角为
A.
4
B.
2
3
C.
D.
4
10.( 2015 陕西)对任意向量 a ,b ,下列关系式中不恒成立的是
B . e1 ( 1,2),e2 (5, 2)
C. e1 (3,5),e2 (6,10) D. e1 (2, 3),e2 ( 2,3)
一线名师凭借教学实践科学分类,高质量的解析,你能感受到名家不一样的解题思路
17.( 2014 浙江)设 为两个非零向量 a , b 的夹角,已知对任意实数 t , | b t a | 是最小值
4
11
D.
8
7.( 2016 年全国 II )已知向量 a (1, m) ,b=(3, 2) ,且 (a b) b ,则 m =
A. 8
B. 6
C.6
D. 8
uuv 1 3 uuuv 3 1
2018年全国各地高考数学试题及解答分类汇编大全(10平面向量)
2018年全国各地高考数学试题及解答分类汇编大全(10平面向量)一、选择题1.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.假设非零向量a 与e的夹角为π3,向量b 知足b 2−4e ·b +3=0,那么|a −b |的最小值是( )A .3−1B .3+1C .2D .2−31.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如下图,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min131a bCD -=-=-.(其中CD OA ⊥.)2.(2018天津文)在如图的平面图形中, 已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为( )(A )15- (B )9- (C )6- (D )02.【答案】C【解析】如下图,连结MN ,由2BM MA =,2CN NA = 可知点M ,N 别离为线段AB ,AC 上靠近点A 的三等分点,那么()33BC MN ON OM ==-,由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯︒=-, 结合数量积的运算法那么可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.故选C .3.(2018天津理)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 假设点E 为边CD 上的动点,那么⋅AE BE 的最小值为 ( )(A)2116 (B) 32 (C) 2516(D) 33.【答案】A【解析】成立如下图的平面直角坐标系,则10,2A ⎛⎫- ⎪⎝⎭,3,02B ⎛⎫ ⎪ ⎪⎝⎭,30,2C ⎛⎫⎪⎝⎭,3,02D ⎛⎫- ⎪ ⎪⎝⎭,点E 在CD 上,那么()01DE DC λλ=≤≤,设(),E x y ,那么:333,,222x y λ⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即332232x y λλ⎧⎪+=⎨=⎪⎪⎪⎩, 据此可得333,222E λλ⎛⎫- ⎪ ⎪⎝⎭,且3331,2222AE λλ⎛⎫=-+ ⎪ ⎪⎝⎭,333,22BE λλ⎛⎫=- ⎪ ⎪⎝⎭, 由数量积的坐标运算法那么可得:3333313222222AE BE λλλλ⎛⎫⎛⎫⎛⎫⋅=--+⨯+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 整理可得:()()23422014AE BE λλλ⋅=-+≤≤,结合二次函数的性质可知,当14λ=时,AE BE ⋅取得最小值2116,应选A .4.(2018全国新课标Ⅰ文、理)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,那么EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +4.答案:A解答:由题可知11131[()]22244EB EA AB AD AB AB AC AB AB AC =+=-+=-++=-.5.(2018全国新课标Ⅱ文、理)已知向量a ,b 知足||1=a ,1⋅=-a b ,那么(2)⋅-=a a b ( )A .4B .3C .2D .05.【答案】B 【解析】因为()()222221213⋅-=-⋅=--=+=a a b a a b a ,因此选B .二、填空1.(2018北京文)设向量()10=,a ,()1,m =-b ,若()m ⊥-a a b ,那么m =_________. 1.【答案】1-【解析】()10=,a ,()1m =-,b ,()()()011m m m m m ∴-=--=+-,,,a b , 由()m ⊥-a a b 得,()0m ⋅-=a a b ,()10m m ∴⋅-=+=a a b ,即1m =-.2. (2018上海)在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y轴上的两个动点,且|EF |=2,那么AE ·BF 的最小值为______3.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .假设0AB CD ⋅=,那么点A 的横坐标为 ▲ .3.【答案】3【解析】设()(),20A a a a >,那么由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易患()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,因此()1,2D .因此()5,2AB a a =--,51,22a CD a +⎛⎫=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,因此3a =.4.(2018全国新课标Ⅲ文、理)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b ,那么λ=________. 4.答案:12解答:2(4,2)a b +=,∵//(2)c a b +,∴1240λ⨯-⨯=,解得12λ=.三、解答题。
2018全国卷高考复习 平面向量(知识总结+题型)
第一部分平面向量的概念及线性运算1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a |a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .【基础练习】1.判断正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( )(5)在△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( )2.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②3.(2017·枣庄模拟)设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( ) A.2B.3C.-2D.-34.(2015·全国Ⅱ卷)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.5.(必修4P92A12改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________(用a ,b 表示).6.(2017·嘉兴七校联考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1=________,λ2=________.考点一 平面向量的概念【例1】 下列命题中,不正确的是________(填序号).①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c .【训练1】 下列命题中,正确的是________(填序号).①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个向量不能比较大小,但它们的模能比较大小.解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.答案 ③考点二 平面向量的线性运算【例2】 (2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC.若AB →=a ,AC →=b ,则PQ →=( ) A.13a +13b B.-13a +13b C.13a -13bD.-13a -13b【训练2】 (1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( ) A.12AB →-13AD → B.14AB →+12AD → C.13AB →+12DA →D.12AB →-23AD →考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【训练3】已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A.A ,B ,C 三点共线 B.A ,B ,D 三点共线 C.A ,C ,D 三点共线D.B ,C ,D 三点共线第二部分 平面向量基本定理与坐标表示1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x 1,y 1),B(x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.【基础练习】1.(2017·东阳月考)已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A.(5,7)B.(5,9)C.(3,7)D.(3,9)2.(2015·全国Ⅰ卷)已知点A(0,1),B(3,2),向量AC →=(-4,-3),则向量BC →=( ) A.(-7,-4) B.(7,4) C.(-1,4)D.(1,4)3.(2016·全国Ⅱ卷)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.(必修4P101A3改编)已知▱ABCD 的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D 的坐标为________.考点一 平面向量基本定理及其应用【例1】 (2014·全国Ⅰ卷)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.AD →B.12AD →C.12BC →D.BC →【训练1】如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.考点二 平面向量的坐标运算【例2】 (1)已知向量a =(5,2),b =(-4,-3),c =(x ,y),若3a -2b +c =0,则c =( ) A.(-23,-12) B.(23,12) C.(7,0)D.(-7,0)【训练2】 (1)已知点A(-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A.(7,4) B.(7,14) C.(5,4)D.(5,14)(2)(2015·江苏卷)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.考点三 平面向量共线的坐标表示【例3】 (1)已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =________. (2)(必修4P101练习7改编)已知A(2,3),B(4,-3),点P 在线段AB 的延长线上,且|AP|=32|BP|,则点P 的坐标为________.【训练3】 (1)(2017·浙江三市十二校联考)已知点A(1,3),B(4,-1),则与AB →同方向的单位向量是( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45D.⎝⎛⎭⎫-45,35(2)若三点A(1,-5),B(a ,-2),C(-2,-1)共线,则实数a 的值为________.第三部分 平面向量的数量积及其应用1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos__θ 叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ,规定零向量与任一向量的数量积为0,即0·a =0.(3)数量积几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.(1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y2x 21+y 21·x 22+y22.(4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.3.平面向量数量积的运算律:(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律).(3)(a +b )·c =a ·c +b ·c (分配律). 【基础练习】1.(2015·全国Ⅱ卷)向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A.-1B.0C.1D.22.(2017·湖州模拟)已知向量a ,b ,其中|a |=3,|b |=2,且(a -b )⊥a ,则向量a 和b 的夹角是________.3.(2016·石家庄模拟)已知平面向量a ,b 的夹角为2π3,|a |=2,|b |=1,则|a +b |=________. 5.(必修4P104例1改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.6.(2017·瑞安一中检测)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2),|b |=1,且a +b 与a -2b 垂直,则向量a ·b =________;a 与b 的夹角θ的余弦值为________. 【考点突破】考点一 平面向量的数量积及在平面几何中的应用(用已知表示未知)【例1】 (1)(2015·四川卷)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20B. 15C.9D.6(2)(2016·天津卷)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A.-58B.18C.14D.118【训练1】 (1)(2017·义乌市调研)在Rt △ABC 中,∠A =90°,AB =AC =2,点D 为AC的中点,点E 满足BE →=13BC →,则AE →·BD →=________.(2)(2017·宁波质检)已有正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 考点二 平面向量的夹角与垂直【例2】 (1)(2016·全国Ⅱ卷)已知向量a =(1,m),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8B.-6C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【训练2】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 考点三 平面向量的模及其应用【例3】 (2017·云南统一检测)已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )。
2018高考数学题源探究课件——平面向量:平面向量的概念及线性运算
解析:∵e1 与 e2 不共线,且 a=e1-e2 与 b=-2e1+λe2 共线,∴ 存在 μ∈R,使 e1-e2=μ(-2e1+λe2)=-2μe1+μλe2,
1=-2μ 得 -1=μλ
,
∴λ=2.
6.(必修 4 P91A 组 T4 改编)下列四个结论: → → → → → → → → → → ② ③ ①AB+BC+CA=0; AB+MB+BO+OM=0; AB-AC+BD → → → → → ④ -CD=0; NQ+QP+MN-MP=0, 其中一定正确的结论个数是( C ) A.1 C.3 B.2 D.4
(1)交换律:a+b= 加法 求两个向量 和的运算 三角形法则
b+a ;
(2)结合律:(a+b) +c=a+(b+c)
平行四边形法则
向量运算
定义 求 a 与 b 的相
法则(或几何意义)
运算律
减法
反向量-b 的 和的运算 (1)|λa|= |λ||a| ,
a-b=a+(-b)
求实数 λ 与向 (2)当 λ>0 时, λa 与 a 的 λ(μa)= (λμ)a ; 数乘 量 a 的积的运 方向相同; 当 λ<0 时, λa (λ+μ)a=λa+μa; 算 与 a 的方向相反 ; 当 λ λ(a+b)= λa+λb =0 时,λa= 0
1 1 → 1→ 1 解析: MD= BD= (b-a)=- a+ b,故选 D. 2 2 2 2
4.(必修 4 P92B 组 T2 改编)已知 a,b 是非零向量,命题 p:a=b, 命题 q:|a+b|=|a|+|b|,则 p 是 q 的什么条件( A ) A.充分不必要 C.充要 B.必要不充分 D.既不充分也不必要
7.(必修 4 P92B 组 T5 改编)O 为四边形 ABCD 所在平面内一点, → → → → 若OA+OC=OB+OD,则四边形 ABCD 一定为( D ) A.正方形 C.菱形 B.矩形 D.平行四边形
平面向量(附例题_习题及答案)
平⾯向量(附例题_习题及答案)向量的线性运算⼀.教学⽬标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的⼏何意义、向量共线的含义、平⾏向量基本定理;4.理解平⾯向量基本定理,掌握平⾯向量的正交分解及其坐标表⽰、平⾯向量的坐标运算;5.理解⽤坐标表⽰平⾯向量的共线条件。
⼆.知识清单1.向量基本概念(1)向量的定义:既有⼜有称为向量;(2)向量的⼤⼩(或称模):有向线段的表⽰向量的⼤⼩;(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平⾏向量),叫做相等向量。
2.向量的线性运算(1)向量的加法a.向量加法的三⾓形法则、平⾏四边形法则和多边形法则。
b.向量加法满⾜的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法a.定义:a-b=a+(-b),即减去⼀个向量相当于加上这个向量的相反向量。
⼀个向量等于终点位置向量减始点位置向量,即AB=OB-OA。
b.三⾓形法则:“共始点,连终点,指向被减”。
(3)数乘向量a.定义:⼀般地,实数λ和向量a的乘积是⼀个向量,记作λa.b.数乘向量满⾜的运算律:(λ+µ)a=λ(µa)=λ(a+b)=3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平⾏向量基本定理:如果,则;反之,如果,且,则⼀定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平⾯向量基本定理如果是⼀平⾯内的的向量,那么该平⾯内的任⼀向量a,存在,使。
(2)平⾯向量的正交分解定义:把⼀个向量分解为,叫做把向量正交分解。
(3)向量的坐标表⽰在平⾯直⾓坐标系中,分别取与x轴、y轴⽅向相同的两个_______作为基底。
对于平⾯内的任⼀个向量,由平⾯向量基本定理可知,有且只有⼀对实数x,y使得____________,这样,平⾯内的任⼀向量a都可由__________唯⼀确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表⽰,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。
平面向量的概念及其线性运算训练题
平面向量的概念及其线性运算训练题一、题点全面练1.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( )A .2OA ―→-OB ―→B.-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→,故选A.2.(2019·石家庄质检)在△ABC 中,点D 在边AB 上,且BD ―→=12DA ―→,设CB ―→=a ,CA―→=b ,则CD ―→=( )A.13a +23bB.23a +13bC.35a +45b D .45a +35b 解析:选B ∵BD ―→=12DA ―→,∴BD ―→=13BA ―→,∴CD ―→=CB ―→+BD ―→=CB ―→+13BA ―→=CB ―→+13(CA ―→-CB ―→)=23CB ―→+13CA ―→=23a +13b ,故选B. 3.(2018·大同一模)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23bB.-13a -23bC .-13a +23bD .13a -23b 解析:选C 如图,因为点E 为CD 的中点,CD ∥AB ,所以BFEF =AB EC=2,所以BF ―→=23BE ―→=23(BC ―→+CE ―→)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b ,故选C.4.(2019·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC =6,则△PAB 的面积为( )A .2B.3C .4D .8解析:选A ∵PA ―→+PB ―→+PC ―→=2AB ―→=2(PB ―→-PA ―→),∴3PA ―→=PB ―→-PC ―→=CB ―→,∴PA ―→∥CB ―→,且方向相同,∴S △ABC S △PAB =BC AP =|CB ―→||PA ―→|=3,∴S △PAB =S △ABC3=2.5.(2018·安庆二模)在△ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM ―→=λAB ―→+μAC ―→,则λ+μ=( )A.12B.-12C .2D .-2解析:选B 如图,因为点D 在边BC 上,所以存在t ∈R ,使得BD ―→=t BC ―→=t (AC ―→-AB ―→).因为M 是线段AD 的中点,所以BM ―→=12(BA ―→+BD ―→)=12(-AB ―→+t AC ―→-t AB ―→)=-12(t+1)·AB ―→+12t AC ―→.又BM ―→=λAB ―→+μAC ―→,所以λ=-12(t +1),μ=12t ,所以λ+μ=-12.故选B.6.已知O 为△ABC 内一点,且2AO ―→=OB ―→+OC ―→,AD ―→=t AC ―→,若B ,O ,D 三点共线,则t 的值为________.解析:设线段BC 的中点为M ,则OB ―→+OC ―→=2OM ―→. 因为2AO ―→=OB ―→+OC ―→,所以AO ―→=OM ―→,则AO ―→=12AM ―→=14(AB ―→+AC ―→)=14⎝ ⎛⎭⎪⎫AB ―→+1t AD ―→=14AB ―→+14t AD ―→.由B ,O ,D 三点共线,得14+14t =1,解得t =13.答案:137.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM―→=34AB ―→,∵在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,∴四边形ANDM 为菱形,∵AB =4,∴AN =AM =3,AD =3 3.答案:3 38.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )AC ―→,则x 的取值范围是________.解析:设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→) =-y AB ―→+(1+y )AC ―→.∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0.答案:⎝ ⎛⎭⎪⎫-13,09.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ―→=a ,AC ―→=b ,试用a ,b 表示AD ―→,AG ―→.解:AD ―→=12(AB ―→+AC ―→)=12a +12b.AG ―→=AB ―→+BG ―→=AB ―→+23BE ―→=AB ―→+13(BA ―→+BC ―→)=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b. 10.已知a ,b 不共线,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b.因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.二、专项培优练(一)易错专练——不丢怨枉分1.设a ,b 都是非零向量,下列四个条件中,使a |a|=b|b|成立的充分条件是( ) A .a =-b B.a ∥bC .a =2bD .a ∥b 且|a|=|b|解析:选C 因为向量a |a |的方向与向量a 相同,向量b |b|的方向与向量b 相同,且a|a|=b|b|,所以向量a 与向量b 方向相同,故可排除选项A 、B 、D. 当a =2b 时,a |a |=2b |2b |=b |b |,故a =2b 是a |a|=b|b|成立的充分条件.2.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB ―→|AB ―→|,则( )A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:选D 由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.3.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,则实数λ的值为( )A .1 B.-12C .1或-12D .-1或-12解析:选B 由于c 与d 反向共线,则存在实数k 使c =kd (k <0),于是λa +b =k []a +λ-b .整理得λa +b =k a +(2λk -k )b.由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.(二)素养专练——学会更学通4.[直观想象]如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的三等分点,AB ―→=a ,AC ―→=b ,则AD ―→=( )A .a -12bB.12a -b C .a +12bD .12a +b 解析:选D 连接CD (图略),由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD ―→=12AB―→=12a ,所以AD ―→=AC ―→+CD ―→=b +12a. 5.[逻辑推理]如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2D.2m +1n是定值,定值为3解析:选D 因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n=3,故选D.6.[数学建模]在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上,若c 与x a +y b(x ,y 为非零实数)共线,则xy的值为________.解析:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b),所以e 1-2e 2=2λ(x-y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λx -y =1,λx -2y =-2,所以⎩⎪⎨⎪⎧x =3λ,y =52λ,则x y 的值为65. 答案:657.[数学运算]经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP ―→=m OA ―→,OQ ―→=n OB ―→,m ,n ∈R ,求1n +1m的值.解:设OA ―→=a ,OB ―→=b ,则OG ―→=13(a +b),PQ ―→=OQ ―→-OP ―→=n b -m a ,PG ―→=OG ―→-OP ―→=13(a +b)-m a =⎝ ⎛⎭⎪⎫13-m a +13b.由P ,G ,Q 共线得,存在实数λ使得PQ ―→=λPG ―→,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,则⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.8.[逻辑推理]已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1, 则OP ―→=m OA ―→+(1-m )OB ―→ =OB ―→+m (OA ―→-OB ―→),∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B , ∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0. ∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.。
平面向量的概念及运算
平⾯向量的概念及运算平⾯向量的概念及运算向量的概念、向量的线性运算、向量的分解和向量的坐标运算⼆. 课标要求:(1)平⾯向量的实际背景及基本概念通过⼒和⼒的分析等实例,了解向量的实际背景,理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其⼏何意义;②通过实例,掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其⼏何意义。
(3)平⾯向量的基本定理及坐标表⽰①了解平⾯向量的基本定理及其意义;②掌握平⾯向量的正交分解及其坐标表⽰;③会⽤坐标表⽰平⾯向量的加、减与数乘运算;④理解⽤坐标表⽰的平⾯向量共线的条件。
三. 命题⾛向本讲内容属于平⾯向量的基础性内容,与平⾯向量的数量积⽐较,出题量⼩。
以选择题、填空题考查本章的基本概念和性质,重点考查向量的概念、向量的⼏何表⽰、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
此类题难度不⼤,分值5~9分。
预测⾼考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平⾯图形为载体表达平⾯向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。
【教学过程】⼀. 基本知识要点回顾1. 向量的概念①向量:既有⼤⼩⼜有⽅向的量。
向量⼀般⽤……来表⽰,或⽤有向线段的起点与终点的⼤写字母表⽰,如:⼏何表⽰法,;坐标表⽰法。
向量的⼤⼩即向量的模(长度),记作||,即向量的⼤⼩,记作||。
向量不能⽐较⼤⼩,但向量的模可以⽐较⼤⼩。
②零向量:长度为0的向量,记为,其⽅向是任意的,与任意向量平⾏零向量=||=0。
由于的⽅向是任意的,且规定平⾏于任何向量,故在有关向量平⾏(共线)的问题中务必看清楚是否有“⾮零向量”这个条件。
(注意与0的区别)③单位向量:模为1个单位长度的向量,向量为单位向量||=1。
④平⾏向量(共线向量):⽅向相同或相反的⾮零向量。
理科数学2010-2019高考真题分类训练13专题五 平面向量第十三讲 平面向量的概念与运算—附解析答案
10.(2015 陕西)对任意向量 a, b ,下列关系式中不恒成立的是
A.| a b |≤| a || b |
B.| a b |≤|| a | | b ||
C. (a b)2 | a b |2
D. (a b)(a b) a2 b2
11.(2015 安徽) ΑΒC 是边长为 2 的等边三角形,已知向量 a , b 满足 ΑΒ 2a ,
⑤若| b
|
2|
a
|,
Smin
8|a
|2
,则 a
与b
的夹角为
4
.
45.(2014 北京)已知向量 a 、b 满足 a 1,b (2,1) ,且 a b 0 ( R ),则 __.
46.(2014 陕西)设 0 ,向量 a sin 2 ,cos , bcos ,1 ,若 a ∥b ,则
28.(2011 广东)已知向量 a =(1,2),b =(1,0),c =(3,4).若 为实数, (a b)∥c ,
则 =
A. 1 4
B. 1 2
C.1
D.2
29.(2011 辽宁)已知向量 a (2,1) , b (1, k) , a (2a b) 0 ,则 k
A. 12
B. 6
uuv BA
(
1
,
3)
uuuv , BC (
3 , 1), 则 ABC =
22
22
A. 30
B. 45
C. 60
D.120
9.(2015 重庆)若非零向量 a , b 满足 a 2 2 b ,且 (a b) (3a 2b) ,则 a 与 b 的夹 3
角为
A. 4
B. 2
C. 3 4
2018年全国各地高考数学试题及解答分类汇编大全(10 平面向量)
2018年全国各地高考数学试题及解答分类汇编大全(10平面向量)一、选择题1.(2018浙江)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A1 BC .2D .21.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a bCD -=-=.(其中CD OA ⊥.)2.(2018天津文)在如图的平面图形中, 已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为( )(A )15- (B )9- (C )6- (D )02.【答案】C【解析】如图所示,连结MN ,由2BM MA =,2CN NA = 可知点M ,N 分别为线段AB ,AC 上靠近点A 的三等分点,则()33BC MN ON OM ==-,由题意可知:2211OM ==,12cos1201OM ON ⋅=⨯⨯︒=-, 结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.故选C .3.(2018天津理)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为 ( )(A) 2116 (B) 32 (C) 2516(D) 33.【答案】A【解析】建立如图所示的平面直角坐标系,则10,2A ⎛⎫- ⎪⎝⎭,B ⎫⎪⎪⎝⎭,30,2C ⎛⎫⎪⎝⎭,D ⎛⎫ ⎪ ⎪⎝⎭,点E 在CD 上,则()01DE DC λλ=≤≤,设(),E x y ,则:32x y λ⎛⎫⎫+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,即32x y λ⎧⎪=⎨=⎪⎪⎪⎩, 据此可得333,2E λλ⎫- ⎪ ⎪⎝⎭,且3331,22AE λλ⎛⎫=-+ ⎪ ⎪⎝⎭,333,2BE λλ⎛⎫=- ⎪ ⎪⎝⎭,由数量积的坐标运算法则可得:3331222AE BE λλ⎛⎛⎫⋅=+⨯+ ⎪⎝⎭⎝⎭⎝, 整理可得:()()23422014AE BE λλλ⋅=-+≤≤,结合二次函数的性质可知,当14λ=时,AE BE ⋅取得最小值2116,故选A .4.(2018全国新课标Ⅰ文、理)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A .3144AB AC - B .1344AB AC - C .3144AB AC+ D .1344AB AC +4.答案:A解答:由题可知11131[()]22244EB EA AB AD AB AB AC AB AB AC =+=-+=-++=-.5.(2018全国新课标Ⅱ文、理)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )A .4B .3C .2D .0 5.【答案】B 【解析】因为()()222221213⋅-=-⋅=--=+=a a b a a b a ,所以选B .二、填空1.(2018北京文)设向量()10=,a ,()1,m =-b ,若()m ⊥-a a b ,则m =_________. 1.【答案】1-【解析】()10=Q ,a ,()1m =-,b ,()()()011m m m m m ∴-=--=+-,,,a b , 由()m ⊥-a a b 得,()0m ⋅-=a a b ,()10m m ∴⋅-=+=a a b ,即1m =-.2. (2018上海)在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______3.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .3.【答案】3【解析】设()(),20A a a a >,则由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,所以()1,2D .所以()5,2AB a a =--,51,22a CD a +⎛⎫=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,所以3a =.4.(2018全国新课标Ⅲ文、理)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b ,则λ=________.4.答案:12解答:2(4,2)a b +=,∵//(2)c a b +,∴1240λ⨯-⨯=,解得12λ=.三、解答题。
高三数学平面向量的概念及几何运算试题答案及解析
高三数学平面向量的概念及几何运算试题答案及解析1.已知平面向量, 且, 则 ( )A.B.C.D.【答案】C【解析】由向量, 且.所以.即.故选C.【考点】1.向量平行的性质.2.向量的模的运算2. [2014·龙岩质检]已知向量a=(1,-1),b=(1,2),向量c满足(c+b)⊥a,(c-a)∥b,则c=()A.(2,1)B.(1,0)C.(,)D.(0,-1)【答案】A【解析】设c=(x,y),则c+b=(x+1,y+2),c-a=(x-1,y+1).由(c+b)⊥a,(c-a)∥b 可得,解得,因此c=(2,1).3.在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【答案】2【解析】由平行四边行的性质知,AC与BD互相平分,又+==2所以λ=24.在四边形中,,,则四边形的面积为()A.B.C.2D.【答案】A【解析】由,可知四边形为平行四边形,且,因为,所以可知平行四边形ABCD的角平分线BD平分∠ABC,四边形为菱形,其边长为,且对角线对于边长的倍,即,则,即,所以三角形的面积为,所以四边形的面积为,选A5.已知△ABC中,点D是BC的中点,过点D的直线分别交直线AB、AC于E、F两点,若,,则的最小值是()A.9B.C. 5D.【答案】D【解析】由题意得,,又D、E、F在同一条直线上,可得.所以,当且仅当2λ=μ时取等号.故选D.6.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为() A.B.C.D.1【答案】A【解析】∵M为边BC上任意一点,∴可设.∴N为AM中点,∴.∴.故选A.7.已知双曲线的右顶点、左焦点分别为A、F,点B(0,-b),若,则双曲线的离心率值为()(A)(B)(C)(D)【答案】B【解析】由得,又,,则,,所以有,即,从而解得,又,所以,故选.【考点】向量的运算、双曲线的离心率、解一元二次方程.8.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()A.B.C.D.【答案】A【解析】=(3,-4),则与同方向的单位向量为=(3,-4)=.故选A.9.直线的一个法向量可以是【答案】【解析】已知直线的一般式方程为,因此其一个法向量为.【考点】直线的法向量.10.设a,b是两个非零向量,下列选项正确的是().A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|【答案】C【解析】对于A,可得cos〈a,b〉=-1,因此a⊥b不成立;对于B,满足a⊥b时,|a+b|=|a|-|b|不成立;对于C,可得cos〈a,b〉=-1,因此成立,而D显然不一定成立.11.已知O,A,M,B为平面上不同的四点,且=λ+(1-λ) ,λ∈(1,2),则().A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,M,B四点共线【答案】B【解析】根据题意知=λ+-λ=λ(-)+,则-=λ(-),即=λ.由λ∈(1,2)可以判断出点M在线段AB的延长线上,即点B在线段AM上.12.如图,为直线外一点,若,,,,,,,中任意相邻两点的距离相等,设,,用,表示,其结果为 .【答案】【解析】设的中点为A,则A也是,…的中点,由向量的中点公式可得,同理可得,故.【考点】平面向量的加法法则,中点公式.13.如图,在中,点是边上靠近的三等分点,则()A.B.C.D.【答案】C【解析】由平面向量的三角形法则,可得:,又因为点是边上靠近的三等分点,所以,==.【考点】平面向量的三角形法则.14.在边长为6的等边△ABC中,点M满足,则等于.【答案】 24【解析】【考点】本小题考查向量的线性运算及其向量的数量积。
文科数学2010-2019高考真题分类训练专题五平面向量第十三讲平面向量的概念与运算答案
专题五 平面向量第十三讲 平面向量的概念与运算答案部分1.A 【解析】通解 如图所示,CB 11111()()22222=+=+=⨯++-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r EB ED DB AD CB AB AC AB AC 3144=-u u u r u u u r AB AC .故选A . 优解 111()222=-=-=-⨯+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r EB AB AE AB AD AB AB AC 3144=-u u u r u u u r AB AC .故选A . 2.B 【解析】2(2)22(1)3⋅-=-⋅=--=a a b a a b ,故选B .3.C 【解析】由2BM MA =u u u u r u u u r ,可知||2||BM MA =u u u u r u u u r ,∴||3||BA MA =u u u r u u u r . 由2CN NA =u u u r u u u r ,可知||2||CN NA =u u u r u u u r ,∴||3||CA NA =u u u r u u u r ,故||||3||||BA CA MA NA ==u u u r u u u r u u u r u u u r , 连接MN ,则BC MN ∥,且||3||BA MN =u u u r u u u u r ,∴33()BC MN ON OM ==-u u u r u u u u r u u u r u u u u r ,∴23()3()BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u r u u u u r23(||||cos120||)6ON OM OM =-=-o u u u r u u u u r u u u u r .故选C .4.A 【解析】由+=-a b a b 两边平方得,222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A .5.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>=o m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.6.B 【解析】设BA a =u u u r r ,BC b =u u u r r ,∴11()22DE AC b a ==-u u u r u u u r r r ,33()24DF DE b a ==-u u u r u u u r r r , 1353()2444AF AD DF a b a a b =+=-+-=-+u u u r u u u r u u u r r r r r r , ∴25353144848AF BC a b b ⋅=-⋅+=-+=u u u r u u u r r r r ,故选B. 7.A【解析】由题意得112222cos 112||||BA BC ABC BA BC ⨯+⨯⋅∠===⨯⋅u u u r u u u r u u u r u u u r , 所以30ABC ∠=o,故选A .8.C 【解析】由题意,得2(2)20+=+⋅=a a b a a b ,即22⋅=-a b a , 所以cos ,||||⋅<>=a b a b a b 222142-==-a a ,所以23π<⋅>=a b ,故选C . 9.B 【解析】对于A 选项,设向量a 、b 的夹角为θ,∵||||||cos |||θ⋅=≤|a b a b a b ,∴A 选项正确;对于B 选项,∵当向量a 、b 反向时,||||||||--≥a b a b ,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出22()()+⋅-=-a b a b a b ,故D 选项正确,综上选B .10.C 【解析】由题意可得22=a ,3⋅=-a b ,所以()222431+⋅=+⋅=-=a b a a a b .故选C .11.A 【解析】111()()()222EB FC BA BC CA CB AB AC AD +=-+-+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 12.A 【解析】由2()10+=a b ①,2()6-=a b ②,①②得1⋅=a b . 13.Bcos 6π==,两边平方化简得18=,解得m =14.B 【解析】设11223344S x y x y x y x y =⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r ,若S 的表达式中有0个a b ⋅r r ,则2222S a b =+r r ,记为1S ,若S 的表达式中有2个a b ⋅r r ,则22222S a b a b =++⋅r r r r ,记为2S ,若S 的表达式中有4个a b ⋅r r ,则4S a b =⋅r r ,记为3S ,又||2||b a =r r ,所以222132242()0S S a b a b a b -=+-⋅=->r r r r r r ,222122()0S S a b a b a b -=+-⋅=->r r r r r r ,223()0S S a b -=->r r ,∴321S S S <<,故min 34S S a b ==⋅r r ,设,a b r r 的夹角为θ,则22min 48||cos 4||S a b a a θ=⋅==r r r r ,即1cos 2θ=,又[0,]θπ∈,所以3πθ=. 15.B 【解析】对于A ,C ,D ,都有1e ∥2e ,所以只有B 成立.16.B 【解析】由于2222||2t t t +=++gb a b a b a ,令222()2f t t t =+⋅+b a b a ,而t 是任意实数,所以可得()f t 的最小值为2222222222224(2)44cos 4sin 1444θθ--===a b ab a b a b b a a , 即22||sin 1θ=b ,则知若θ确定,则||b 唯一确定.17.C 【解析】∵23(23,6)k -=--a b ,(23)-⊥a b c ,所以(23)-⋅a b c =2(23)60k --=.解得3k =,选C18.C 【解析】因为022)4(1=⨯+-⨯=⋅BD AC ,所以⊥,所以四边形的面积为522)4(212||||2222=+-⋅+=⋅,故选C . 19.D 【解析】由题意,设||4AB =u u u r ,则0||1P B =u u u r ,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设0HP a =,则由数量积的几何意义可得,||||(||(1))||PB PC PH PB PB a PB ⋅==-+u u u r u u u r u u u r u u u r u u u r u u u r ,0000||||P B PC P H P B a ⋅=-=-u u u r u u u r u u u u r u u u r ,于是00PB PC P B PC ⋅⋅u u u r u u u r u u u r u u u r ≥恒成立,相当于(||(1))||PB a PB a -+-u u u r u u u r ≥恒成立, 整理得2||(1)||PB a PB a -++u u u r u u u r ≥0恒成立,只需22(1)4(1)0a a a ∆=+-=-≤即可,于是1a =,因此我们得到2HB =,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC BC =.P 0P H CB A20.A 【解析】(3,4)AB =-u u u r ,所以||5AB =u u u r ,这样同方向的单位向量 是134(,)555AB =-u u u r . 21.A 【解析】=(2,1),CD =(5,5),则向量在向量CD 方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==θ 22.C 【解析】建立平面直角坐标系,令向量,a b 的坐标()()1,0,0,1==a b ,又设(),x y =c ,代入1--=c a b1=, 又c 的最大值为圆()()22111x y -+-=上的动点到原点的距离的最大值,即圆心(1,1)1.23.D 【解析】因为1AB u u u r ⊥2AB u u u u r ,所以可以A 为原点,分别以1AB u u u r ,2AB u u u u r 所在直线为轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (,y ), 则AP u u u r =1AB u u u r +2AB u u u u r =(a ,b ),即P (a ,b ). 由|1OB u u u r |=|2OB u u u u r |=1,得(-a )2+y 2=2+(y -b )2=1.所以(-a )2=1-y 2≥0,(y -b )2=1-2≥0. 由|OP uuu r |<12,得(-a )2+(y -b )2<14, 即0≤1-2+1-y 2<14. 所以74<2+y 2≤2<≤所以|OA uu u r |的取值范围是2⎛ ⎝,故选D . 24.B 【解析】利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量的基本定理考前还强调过,不懂学生做得如何.25.C 【解析】22,0,12cos 0,cos 22cos 10.a b a b θθθ⊥∴⋅=∴-+=∴=-=r r r r Q 正确的是C .26.C 【解析】2222||||||||2||||2||||||+=-⇒++=-+a b a b a ab b a a b b ,则 ||||0=-≠ab a b ,所以,a b 不垂直,A 不正确,同理B 也不正确;||||=-ab a b ,则cos ,1>=-<a b ,所以,a b 共线,故存在实数λ,使得λ=b a , C 正确;若=b a ,则1λ=,此时||2|0||||+=≠=-a b a |a b ,所以D 不正确.27.B 【解析】(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=12 28.D 【解析】∵2(5,2)k -=-a b ,由(2)0⋅-=a a b ,得(2,1)(5,2)0k ⋅-=,∴1020k +-=,解得12k =.29.C 【解析】三角形的面积S=12||sin ,<>a ||b a b ,而=11||||||||sin ,22a b a b a b =<> 30.B 【解析】若a 与b 共线,则有==0mq np -e a b ,故A 正确;因为pn qm =-e b a ,而=mq np -e a b ,所以有≠e e a b b a ,故选项B 错误,故选B .31.12【解析】2(4,2)+a b =,因为(1,)λ=c ,且(2)+∥c a b , 32.1-【解析】依题意m -a b =(1,)m m +-,根据向量垂直的充要条件可得1(1)0()0m m ⨯++⨯-=,所以1m =-.所以124λ⨯=,即12λ=. 33.7【解析】∵(1,3)m +=-a b ,∴()=0+⋅a b a所以(1)230m --+⨯=,解得7m =.34.2【解析】由题意0⋅=a b ,所以2330m -⨯+⨯=,即2m =.35.311【解析】032cos603AB AC ⋅=⨯⨯=u u u r u u u r ,1233AD AB AC =+u u u r u u u r u u u r ,则 12212()()34934333333AD AE AB AC AC AB λλλ⋅=+-=⨯+⨯-⨯-⨯=-u u u r u u u r u u u r u u u r u u u r u u u r , 311λ=. 36.3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=-37.3【解析】由tan 7α=可得sin 10α=,cos 10α=,由OC u u u r =m OA u u u r +n OB uuu r 得22OC OA mOA nOB OA OC OB mOB OA nOB⎧⋅=+⋅⎪⎨⎪⋅=⋅+⎩u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即cos(45)45cos(45)m n m n ααα⎧=++⎪=++o o ocos 45)()(1cos(45))m n αα+=+++o o所以4531cos(45)102102m n αα++===++o o 所以3m n +=.38.23-【解析】因为(,1),(1,2),x x =+=⊥a b a b ,所以2(1)0x x ++=,解得23x =-. 39.6-【解析】由题意2120m --=,所以6m =-.40.-3【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 41.9【解析】因为OA AB ⊥u u u r u u u r ,||3OA =u u u r ,所以OA OB •=u u u r u u u r 93||||)(222===•+=+•.42.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.431(1,0)e =u r,21(2e =u u r ,设(,)b x y =r , 则11b e x ⋅==r r,2112b e x y ⋅=+=r r,所以b =r ,所以3b ==r 44.90o 【解析】由1()2AO AB AC =+u u u r u u u r u u u r ,得O 为BC 的中点,故BC 为圆O 的直径, 所以AB u u u r 与AC u u u r 的夹角为90o .45.16【解析】∵cos AB AC AB AC A ⋅=⋅uu u r uuu r uu u r uuu r ,∴由cos tan AB AC A A ⋅=uu u r uuu r , 得23AB AC ⋅=uu u r uuu r ,故ABC V 的面积为11||||sin 266AB AC π=u u u r u u u r . 46.②④【解析】S 有下列三种情况:222221S a a b b b =++++r r r r r ,2222S a a b a b b b =+⋅+⋅++r r r r r r r ,23S a b a b a b a b b =⋅+⋅+⋅+⋅+r r r r r r r r r∵222212232()||0S S S S a b a b a b a b -=-=+-⋅=-=-≥r r r r r r r r,∴min 3S S =, 若a b ⊥r r ,则2min 3S S b ==r ,与||a r 无关,②正确;若a b r r P ,则2min 34S S a b b ==⋅+r r r ,与||b r 有关,③错误;若||4||b a >r r ,则2222min 34||||cos ||4||||||||||0S S a b b a b b b b θ==⋅+≥-⋅+>-+=r r r r r r r r ,④正确;若2min ||2||,8||b a S a ==r r r ,则2222min 348||cos 4||8||S S a b b a a a θ==⋅+=+=r r r r r r ∴1cos 2θ=, ∴3πθ=,⑤错误. 47【解析】∵||1=a ,∴可令(cos ,sin )θθ=a ,∵0λ+=a b ,∴cos 20sin 10λθλθ+=⎧⎨+=⎩,即2cos 1sin θλθλ⎧=-⎪⎪⎨⎪=-⎪⎩,解得25λ=得||λ= 48.12【解析】∵∥a b ,∴2sin 2cos θθ=,∴22sin cos cos θθθ=, ∵(0,)2πθ∈,∴1tan 2θ=. 49.2【解析1】(4,22)c m m =++r因为cos ,||||c a c a c a ⋅=⋅r r r r r r ,cos ,||||c b c b c b ⋅=⋅r r r r r r ,所以||||||||c a c b c a c b ⋅⋅=⋅⋅r r r r r r r r , 又||2||b a =r r ,所以2c a c b ⋅=⋅r r r r即2[(4)2(22)]4(4)2(22)m m m m +++=+++2m ⇒=.【解析2】由几何意义知c r 为以ma r ,b r 为邻边的菱形的对角线向量,又||2||b a =r r ,故2m =50.2【解析】g b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 51.2【解析】在正方形中,12AE AD DC =+u u u r u u u r u u u r ,BD BA AD AD DC =+=-u u u r u u u r u u u r u u u r u u u r , 所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 52.712【解析】向量AB u u u v 与AC u u u v 的夹角为120o ,且||3,||2,AB AC ==u u u v u u u v 所以1cos1203232AB AC AB AC ⋅=⋅=-⨯⨯=-o u u u v u u u v u u u v u u u v .由AP BC ⊥u u u v u u u v 得,0AP BC ⋅=u u u v u u u v , 即()()0AP BC AB AC AC AB λ⋅=+⋅-=u u u v u u u v u u u v u u u v u u u v u u u v ,所以22(1)0AC AB AB AC λλ-+-⋅=u u u v u u u v u u u v u u u v , 即493(1)0λλ---=,解得712λ=. 53.【解析】||||x ===b==||||x b 的最大值为2. 54.12【解析】因为E 为CD 的中点,所以1122BE BC CE AD DC AD AB =+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r . AD AC AB =+u u u r u u u r u u u r ,因为·1AC BE =u u u r u u u r , 所以22111·()()1222AC BE AD AB AD AB AD AB AB AD =-⋅+=-+⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 即2111cos60122AB AB -+=o u u u r u u u r ,所以211024AB AB -+=u u u r u u u r ,解得12AB =u u u r . 55.4【解析】如图建立坐标系,则()1,1a =-r ,()6,2b =r ,()1,3c =-r由c a b λμ=+r r r ,可得12,2λμ=-=-,∴4λμ= 56.b=r222(2)1044cos 4510a b a b b b ︒-=⇔-=⇔+-=r r r r r rb ⇔=r 57.(Ⅰ)⎝⎭(Ⅱ) 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y>,解得,1010x y ⎧=⎪⎪⎨⎪=⎪⎩故1010⎛⎫ ⎪ ⎪⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 3θ-⋅-⋅===-b a a b a a58.98-【解析】2223494a b a b a b -≤⇔+≤+r r r r r r g 2294449448a b a b a b a b a b a b +≥≥-⋅⇒+⋅≥-⋅⇔⋅≥-r r r r r r r r r r r r . 59.5[,]66ππ【解析】如图,向量α与β在单位圆O 内,因|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为边的三角形的面积为14,故β的终点在如图的线段AB 上(α∥AB ,且圆心O 到AB 的距离为12),因此夹角θ的取值范围为5[,]66ππ.60.54【解析】由题意知1212(2)()0k ⋅=-+=a b e e e e ,即22112122220k k +--=e e e e e e , 即22cos 2cos 2033k k ππ+--=,化简可求得54k =. 61.1【解析】向量a +b 与向量k a -b 垂直,∴()()0k +⋅=a b a -b ,化简得(1)(1)0k -⋅⋅+=a b ,易知0⋅≠a b ,故1k =.62.3π【解析】设a 与b 的夹角为θ,由题意有()()22+2⋅-=+⋅-2a b a b a a b b cos θ=-7+2=-6,所以1cos 2θ=,因此0θπ≤≤,所以3πθ=. 63.-1【解析】(1,1)m +=-a b ,由()+∥a a c ,得12(1)(1)0m ⨯--⨯-=,所以m =-1.。
(完整版)平面向量专项训练(含答案)
平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
专题五平面向量第十三讲平面向量的概念与运算答案十年高考数学(文科)真题题型分类汇编
专题五平面向量第十三讲平面向量的观点与运算答案部分1.A【分析】通解如下图,AEB D CEBEDDB1AD1CB11(ABAC)1(ABAC)222223AB1AC.应选A.44优解111 EBABAEABADAB2(ABAC) 223AB1AC.应选A.4 2.B【分析】a(2ab)2a2ab2 (1)3,应选B.3.C【分析】由BM|BM||BA|3.2MA,可知2,∴|MA||MA|由CN2NA,可知|CN|2,∴|CA|3,故|BA||CA|3,|NA||NA||MA||NA|连结MN,则BC∥MN,且|BA|3|MN|,∴BC3MN3(ONOM),∴BCOM3(ONOM)OM3(ONOM2 OM)3(|ON||OM|cos120|OM|2)6.应选C.4.A【分析】由a+b=ab两边平方得,a22ab b2a22ab b2,即ab0,则ab,应选A.5.A【分析】因为m,n为非零向量,所以mn|m||n|cos m,n0的充要条件是cosm,n0.因为0,则由m n可知m,n的方向相反,m,n180,所以cosm,n0,所以“存在负数,使得mn”可推出“mn0”;而mn 0可推出cosm,n 0,但不必定推出 m,n 的方向相反,进而不必定推得“存在负数,使得m n ”,所以“存在负数 ,使得m n ”是“mn 0” 的充足而不用要条件.6.B 【分析】设BAa ,BC b ,∴DE1AC 1(b a),DF 3DE 3(b a),2 2 2 4 AF AD DF 13 a ) 5 3a (b a b ,2 4 4 4∴AFBC 5 3 b 2 5 3 14 ab 8 4 ,应选B.4 8BABC 1 3 3 1 37.A 【分析】由题意得 cosABC 2 2 2 2|BA| |BC| 1 1 ,2所以 ABC 30,应选A .8.C 【分析】由题意,得a(2a b) 2a 2 ab0,即ab 2a 2,所以cosa,b ab 2a 21 ,所以ab 2 ,应选C .|a||b | 4a 2 3 29.B 【分析】关于A 选项,设向量a 、b 的夹角为 ,∵|ab| |a||b |cos≤|a||b|, ∴A 选项正确;关于 B 选项,∵当向量a 、b 反向时,|a b |≥||a||b||,∴B 选项 错误;关于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;关于D 选项, 依据向量的运算法例,可推导出(a b) (a b ) a 2b 2,故D 选项正确,综上选 B . 10.C 【分析】由题意可得a 22 ,ab3 ,所以 2a b a 2a 2 ab431 .故 选C .11.A 【分析】EBFC 1 (BA BC) 1(CA CB) 1(AB AC) AD . 2 2 2 12.A 【分析】由(a b)210 ①,(a b)26 ②,①②得ab 1. 13.B 【分析】由题意得3 cos 1 3 3m,两边平方化简得 6 3m18,2 6 2 9 m 2解得m 3,经查验切合题意.14.B【分析】设S x1y1x2y2x3y3x4y4,若S的表达式中有0个ab,则22 2 2 S 2a 2b ,记为S 1,若S 的表达式中有 2个ab ,则S 2a2b 2a b , 记为S 2,若S 的表达式中有4个a b ,则S 4a b ,记为S 3 ,又|b| 2|a|,所以S 12 2b 2 b2(ab)20,S 32a 4a2 2 0,SSab2ab(ab)21 2S 2 S 3 (a b)20,∴S 3 S 2 S 1,故S min S 3 4ab ,设a,b 的夹角为 ,则S min 4ab 8|a|2 cos 4|a|2,即cos 1 ,又 [0, ],所以 .23 15.B 【分析】关于 A ,C ,D ,都有e 1∥e 2,所以只有B成立.16.B 【分析】因为 |b ta|2 b 2 2ab t a 2t 2,令f(t) b 22abt a 2t 2,而t 是随意实 数,所以可得f(t)的最小值为4a 2b 2 (2a b) 2 4a 2b 2 4a 2b 2cos 2 4b 2si n 2 1,4a 2 4a 24即|b|2sin 21,则知若 确立,则|b|独一确立.17.C 【分析】∵2a3b (2k 3, 6),(2a 3b) c ,所以(2a 3b ) c=2(2k 3) 6 0.解得 k 3,选C18.C 【分析】因为 ACBD1 ( 4) 220 ,所以AC BC ,所以四边形的面积为|AC||BD|1222(4)2222 2 5,应选C .19D 【分析】由题意,设 |AB| 4,则 |P 0B|1 ,过点 C 作 AB 的垂线,垂足为 H,. 在AB 上任取一点P ,设HP 0 a ,则由数目积的几何意义可得,PBPC |PH ||PB| (|PB| (a 1))|PB|,PBPC |PH||PB| a ,0 0 0 0 于是PBPC≥P 0BPC 0 恒成立,相当于(|PB| (a 1))|PB|≥ a 恒成立, 整理得|PB|2 (a1)|PB| a≥0 恒成立,只要 (a 1)2 4a (a1)2≤0即可,于是a 1,所以我们获得 HB2,即H 是AB 的中点,故△ABC是等腰三角形,所以AC BC.C A BPHP020.A 【分析】A B(3, 4),所以|AB|5,这样同方向的单位向量是1AB521.A 【分析】(3, 4).5 5AB=(2,1),CD=(5,5),则向量A B在向量C D方向上的射影为ABcosABCD (2,1) (5,5) 2 5 153 2CD52 525 2222.C 【分析】成立平面直角坐标系,令向量a,b 的坐标a 1,0,b0,1,又设c x,y ,代入ca b 1得 x 2 y 1 211, 又c 的最大值为圆x 2 y 1 21 1上的动点到原点的距离的最大值, 即圆心(1,1)到原点的距离加圆的半径,即2 1. 23.D 【分析】因为AB 1 ⊥AB 2,所以能够A 为原点,分别以 AB 1,AB 2所在直线为x 轴,y 轴成立平面直角坐标系.设 B1(a,0),B2(0,b),O(x ,y),则AP =AB 1+AB 2=(a ,b),即P(a ,b).由|OB 1|=|OB 2|=1,得(x -a)2+y 2=x 2+(y -b)2=1.所以(x -a)2=1-y 2≥0,(y -b)2=1-x 2≥0.由|OP|<1,得(x -a)2+(y -b)2<1,24即0≤1-x 2+1-y 2<1. 4所以7<x 2+y 2≤2,即 7 x 2 y 2 2.4 2所以|OA|的取值范围是 7, 2 ,应选D . 224.B【分析】利用向量加法的三角形法例,易的①是对的;利用平面向量的基本定理,易的②是对的;以a的终点作长度为的圆,这个圆一定和向量b有交点,这个不必定能知足,③是错的;利用向量加法的三角形法例,联合三角形两边的和大于第三边,即一定bc=+a ,所以④是假命题.综上,此题选 B.平面向量的基本定理考前 还重申过,不懂学生做得怎样.25.C 【分析】a b , ab 0,1 2cos 20, cos22cos 210.正确的选项是 C .26.C 【分析】|ab||a||b| |a|2 2ab |b|2|a|2 2|a||b||b|2,则 ab|a||b| 0,所以a,b 不垂直,A 不正确,同理B 也不正确; ab|a||b|,则cos<a,b1,所以a,b 共线,故存在实数,使得ba ,正确;若27.B【分析】b a ,则 1,此时|a b|2|a|0 |a| |b|,所以D 不正确.a b(1 ,2),由(a b)∥c ,得64(1 1)0,解得2 28.D 【分析】∵2a b(5,2 k),由a(2ab) 0,得(2,1)(5,2k) 0, ∴102k 0 ,解得k 12.129.C 【分析】三角形的面积S=|a||b|sina,b ,而 21 |a|2|b|2 (ab)2 1 |a|2|b|2 (ab)2cos 2a,b 2 21|a||b| 1 cos2a,b 1|a||b|si n a,b 2 230B 【分析】若a 与 b 共线,则有 a b=mq np=0 ,故A正确;. 因为b a pn qm ,而a b=mq np ,所以有a bba ,应选项B 错误,应选B . 31.1【分析】2a b=(4,2) ,因为c (1, ),且c ∥(2ab), 2 32. 1 ma b = (m1, m),依据向量垂直的充要条件可得【分析】依题意 1 (m 1) 0 ( m) 0,所以m 1. 所以1 2 4 ,即 1 .233.7【分析】∵ab (m 1,3) ,∴(a b) a=0 所以(m 1) 2 3 0,解得m7.34.2【分析】由题意ab0,所以233m0,即m2..3【分析】AB AC32c os6003,12则AD AB3511AC, 33ADAE(1AB2AC)(AC AB)332419234,333333.1136.3【分析】由a∥b可得162 3.37.3【分析】由tan7可得sin72,cos2,由OC=m OA+n OB1010OCOA2nOBOA2cos m ncos(45)得mOA,即OCOB mOBOA22cos45mcos(45)nnOB两式相加得,2(cos cos45)(m n)(1cos(45))2cos2cos4522222所以m n1031cos(45)227221102102所以m n3.38.2(x,x1),b(1,2),ab,所以x2(x1)0,解得x2【分析】因为a.3339.6【分析】由题意2m120,所以m6.40.-3【分析】由题意得:2m n 9,m2n8m2,n5,m n 3.41.9【分析】因为OA AB,|OA|3,所以OA OB OA(OA AB)|OA|2OAOB|OA|2329.42.1【分析】由题意f(x)xln(x a x2)f(x)xln(a x2x),所以a2x x1,解得a=1.a2x x43.23【分析】由题可知,不如e1(1,0),e2(1,3),设b(x,y),322则be1x1,b e213y13x2,所以b(1,),23所以b1123.3344.9【分析】由AO1(ABAC),得O为BC的中点,故BC为圆O的直径,2所以AB与AC的夹角为90.uuuruuuruur uuuruuuruuurtanA,45.1【分析】∵ABAC AB ACcosA,∴由AB ACcosA6uuur uuur2,故VABC的面积为1|AB||AC|sin1得AB AC.3266 46.②④【分析】S有以下三种状况:S 122222 a a b b b,S 2a2ab ab22b b,S 32ababababb22b)2b|2∵S1S2S2S3a b2ab(a|a0,∴SminS3,若a b,则S min S32b,与|a|没关,②正确;若ab,则Smin S324abb,与|b|相关,③错误;若|b|4|a|,则S S4|a||b|cos|b|24|a||b||b|2|b|2|b|20,min3④正确;若|b|2|a|,S8|a|2,则S min S34a b b 24|a|28|a|2 8|a|2cosmi n∴co s 1,∴,⑤错误.2347.5【分析】∵|a|1,∴可令a(cos,sin ),∵a b0,cos20cos22∴,解得5得||5.si1,即n0sin148.1【分析】∵a∥b,∴sin2cos2,∴2sin cos cos2,21∵(0,),∴tan.2249.2【分析1】c(m 4,2m2)因为cosca,cosc,bcb,所以ca cb,c,a|c||b||c||a||c||b| |c||a|又|b|2|a|,所以2cacb即2[(m4)2(2m2)]4(m4)2(2m2)m2.【分析2】由几何意义知c为以ma,b为邻边的菱形的对角线向量,又|b|2|a|,故m250.2【分析】bc=b[ta (1t)b]=ta b(1t)b2=1t1t=11t=0,解得t=2.1DC,BD2251.2【分析】在正方形中,AE AD BA AD AD DC,1DC)(AD 2122所以AEBD(AD DC)AD 22222.1DC7【分析】向量22252.AB与AC的夹角为120,且|AB|3,|AC|2,所以12ABAC AB ACcos1201323.由AP BC得,APBC0,2即AP BC(AB AC)(ACAB)22(1)AB AC0,0,所以AC AB即493(1)0,解得7.12|x||x||x|153.【分析】|b|(xe1ye2)2x2y23xy x2y23xyx211,所以|x|的最大值为2.(y)23y1(y3)21|b|x x x2454.1【分析】因为E为CD的中点,所以BE BC CE AD1DC AD1AB.222AC ADAB,因为AC·BE1,所以AC·BE(AD1AB)(ADAB)AD2即1121ABcos601,所以1ABAB222221ABAD1,1AB2221AB0,解得AB1.42 55.4【分析】如图成立坐标系,y x则a1,1,b 6,2 ,c1,3由cab ,可得2,14,∴256.b 32【分析】2ab10 (2ab)22104b4bcos4510b 3257.(Ⅰ)310, 10 (Ⅱ) 2 510 105【分析】(Ⅰ)由a= 1,0,b=1,1 ,得2a b= 3,1 .设与 2ab 同向的单位向量为x 2 y 21,x 3 10 ,c= x,yx,y 0 ,解得 10 310 10 ,则 且 故 c= , 即与3y x 0, 10 .y 10 10.102a b 同向的单位向量的坐标为 3 10, 10 .10 10(Ⅱ)由a= 1,0 ,b=1,1,得b 3a= 2,1.设向量b 3a 与向量a 的夹角为 ,则cosb 3a a2,1 1,025.b 3aa5 159 【分析】2a b 34a 2 2 9 4ab58. b892 24ab94ab.4ab4ab4abab5 8. 【分析】如图,向量与 在单位圆 O 内,因| |=1,| |≤1,且以向量 , 59[,]66为邻边的平行四边形的面积为1,故以向量,为边的三角形的面积为1,故24的终点在如图的线段AB上(∥AB,且圆心O到AB的距离为1),所以夹角的,52取值范围为[].66A Bβα60.5【分析】由题意知ab(e12e2)(ke1e2)0,即ke12e1e22ke1e22e22,42220,化简可求得k5即kcos2kcos.33461.1【分析】向量a+b与向量ka-b垂直,∴(a b)(ka-b)0,化简得(k1)(ab1)0,易知ab0,故k 1.62.【分析】设a与b的夹角为,由题意有(ab)(a b)a ab b31cos,所以cos,所以.,所以0≤≤2363.-1【分析】a b (1,m1),由(aa)∥c,得12(m1)(1)0,所以m=-1.。
2018全国卷高考复习平面向量(知识总结+题型)
第一部分平面向量的概念及线性运算向量a( a z 0)与b共线的充要条件是存在唯一一个实数入,使得bi a.【基础练习】1. 判断正误(在括号内打或“X”)⑴零向量与任意向量平行.()(2)若a// b, b// c,贝U a// c.()⑶向量云B与向量6D是共线向量,贝y A B, C, D四点在一条直线上.()(4)当两个非零向量a, b共线时,一定有b=入a,反之成立.()⑸在厶ABC中, D是BC中点,则A D= 2(心A B.()2. 给出下列命题:①零向量的长度为零,方向是任意的;②若③向量ABW BA相等.则所有正确命题的序号是()A.①B.③C.①③D.①②3.(2017•枣庄模拟)设D ABC所在平面内一点,K D= —4A C若目C= X D C X€ R), 则X =()A.2B.3C. —2D. —34.(2015 •全国n卷)设向量a, b不平行,向量入a+ b与a+ 2b平行,则实数X =5.(必修4P92A12改编)已知?ABCD勺对角线AC和BD相交于Q且OA= a,O B= b,则张 _____ BC= ______ (用a, b 表示).1 26.(2017 •嘉兴七校联考)设D, E分别是△ ABC的边AB BC上的点,AD= -AB BE=§BC若DE= 入l AB+ 入2AC 入 1 , 入2为实数),贝V 入 1 = _____________ , 入2= _______________ .考点一平面向量的概念【例1】下列命题中,不正确的是 _________ (填序号).①若I a| = |b| ,则a= b;②若A, B, C, D是不共线的四点,贝厂’AB=承”是“四边形ABCD为平行四边形”的充要条件;③若a= b, b= c,贝V a= c.【训练1】下列命题中,正确的是 _________ (填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;a, b都是单位向量,则a= b;考点三共线向量定理及其应用【例3】 设两个非零向量a 与b 不共线.(1)若 AB= a + b , BC= 2a + 8b , CD= 3( a — b ).求证:A, B , ⑵ 试确定实数k ,使ka + b 和a + kb 共线.【训练 3】已知向量 AB= a + 3b , BC= 5a + 3b , CD=- 3a + 3b ,则( )A.AB, C 三点共线 B.A, B, D 三点共线 C.A, C D 三点共线D.B, C, D 三点共线第二部分平面向量基本定理与坐标表示1. 平面向量的基本定理如果e 1, e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 对实数入1,入2,使a =入e+入2e 2.其中,不共线的向量 e 1, e 2叫做表示这一平面内所有向量的一组基底.2. 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解3. 平面向量的坐标运算(1) 向量加法、减法、数乘向量及向量的模 设 a =(X 1, y” , b = (X 2, y 2),贝U③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小 答案③考点二平面向量的线性运算1【例2】(2017 •潍坊模拟)在厶ABC 中, P , Q 分别是AB BC 的三等分点,且 AP= 3AB BQ= 13BC 若AB= a , AC= b ,则 PQ=( )311 A ・3a +3b 1 1B. — 3a +3b 1 1 C.J a -3b1 1 D. - 3a — 3b【训练2】(1)如图,正方形 ABCDK 点 E 是DC 的中点, 靠近B 点的三等分点,那么 EF 等于(A .^AB ^2D 三点共线;a ,有且只有-点F 是BC 的一个A BC.a+ b= (x i + X2, y土y) , a—b= (x i—X2, y i—y2), X a=(入x i, hy , | a| = :x1+y?.(2) 向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标②设A(x i,y i),B(x?,y?),则AB= (x? —X i,y?—y i),| AB = : (x?—X i)?+( y? —y i) 24. 平面向量共线的坐标表示设a= (x i, y i) , b= (x?, y?),贝y a// b? x i y? —x?y i = o.【基础练习】i.(?0i7 •东阳月考)已知向量a= (2 , 4) , b= ( —1 , 1),则2a+ b 等于()A.(5 , 7)B.(5 , 9)C.(3 ,7)D.(3 , 9)2.(20i5 -全国I卷)已知点A(0 , i), B(3 , 2),向量AC= ( —4, —3),则向量BC=( )A.( —7,—4)B.(7 ,4)C.( —1,4)D.(i ,4)3.(20i6 -全国n卷)已知向量a= (m4) , b= (3 , —2),且a / b,则m=4.(必修4Pi0iA3改编)已知?ABCD勺顶点A—i, —2),耳3 , —i) , C(5 , 6),则顶点D的坐标为考点一平面向量基本定理及其应用【例1】(2014 •全国I卷)设D, E, F分别为△ ABC的三边BC CA AB的中点,贝U EB+ F C= ( )A.ADB.[A DC.1B CD. BC >4【训练1】如图,已知AB= a , AC= b , BD= 3DC用a , b表示AD则AD= __ .a DC"考点二平面向量的坐标运算【例2】(1)已知向量a = (5 , 2) , b= ( —4, —3) , c= (x , y),若3a—2b+ c = 0,则c =( ) A.( —23 , —12) B.(23 , 12)C.(7 , 0)D.( —7 , 0)【训练2】(1)已知点A— 1 , 5)和向量a= (2, 3),若AB= 3a ,则点B的坐标为()A.(7 , 4)B.(7 , 14)C.(5 , 4)D.(5 , 14)⑵(2015 •江苏卷)已知向量a= (2 , 1), b= (1 , —2).若na+ nb= (9 , —8)( m n € R),则m—n的值为_________ .考点三平面向量共线的坐标表示【例3】(1)已知平面向量a= (1 , 2), b= ( — 2 , m,且a / b,贝U 2a+ 3b= ___________(2)(必修4P101练习7改编)已知A (2 , 3) , B (4 , — 3),点P 在线段AB 的延长线上,且| AFf =|| Bp ,则点P 的坐标为 ____________单位向量是()⑵若三点A (1 , - 5),政a , — 2) , q — 2, - 1)共线,则实数a 的值为 _____________ .第三部分 平面向量的数量积及其应用1. 平面向量数量积的有关概念⑴ 向量的夹角:已知两个非零向量a 和b ,记O A a , O B- b ,则/ AOB- 0 (0 ° < 0 < 180°)叫做向量a 与b 的夹角.⑵ 数量积的定义:已知两个非零向量a 与b ,它们的夹角为 0,则数量| a || b |cos 0叫做a 与b 的数量积(或内积),记作a • b ,即a • b = | a || b |cos ___ 0,规定零向量与任一向量的数量积为0,即0 • a = 0.⑶数量积几何意义:数量积a • b 等于a 的长度| a |与b 在a 的方向上的投影| b |cos 0的乘积. 2. 平面向量数量积的性质及其坐标表示设向量a = (x i , y i ), b = (X 2, y 2), 0为向量a , b 的夹角.⑴ 数量积:a • b = | a || b |cos 0 = X 1X 2+ y i y 2.(2) 模:| a | = , a • a = , x i + y i . 亠宀 a • bX 1X 2+ y i y 2(3) 夹角:C0S 0= 1 冲=——2222.丨 a ll b | 寸x i + y i •寸X 2 + y 2⑷ 两非零向量 a 丄b 的充要条件:a • b = 0? X 1X 2+ y i y 2= 0.(5)| a • b | <| a || b |(当且仅当 a // b 时等号成立)? | X 1X 2+ yyl w 寸x ;+ y : • p x 2+ y 2. 3. 平面向量数量积的运算律:(1) a - b = b • a (交换律).(2)入a • b = X (a • b ) = a •(入b )(结合律).(3)( a + b ) - c = a - c + b - c (分配律). 【基础练习】1. (2015 •全国 n 卷)向量 a = (1 , — 1), b = ( — 1, 2),则(2a + b ) - a 等于( )A. — 1B.0C.1D.22. (2017 •湖州模拟)已知向量a , b ,其中|a | = 3, | b | = 2,且(a — b )丄a ,则向量a 和b 的 夹角是 ________ .2 n3. (2016 •石家庄模拟)已知平面向量a , b 的夹角为, |a | = 2,|b | = 1,则| a + b | = ________ .【训练3】 (1)(2017 •浙江三市十二校联考)已知点A (1 , 3) , B (4 , — 1),则与AB 同方向的3-4-- D4 - 53 - 5-3 - 5 -4 -4 - 5-3 - 5A35. (必修4P104例1改编)已知I a| = 5, | b| = 4, a与b的夹角0 = 120°,则向量b在向量a方向上的投影为 _________ .6. _______________________________________ (2017 •瑞安一中检测)已知a , b , c 是同一平面内的三个向量,其中 a = (1 , 2) , |b | = 1, 且a + b 与a — 2b 垂直,则向量 a • b =; a 与b 的夹角0的余弦值为 ________________________________ .【考点突破】考点一平面向量的数量积及在平面几何中的应用(用已知表示未知) 【例1】(1)(2015 •四川卷)设四边形ABCD 为平行四边形, 足B M= 3^C 6N = 2hf c 则 AM ・ NM 等于( ) A.20B. 15C.9D.6⑵(2016 •天津卷)已知△ ABC 是边长为1的等边三角形,点连接DE 并延长到点F ,使得DE= 2EF,则AF • BC 的值为(【训练1】(1)(2017 •义乌市调研)在Rt △ ABC 中 , / A = 90° , AB= AC= 2,点D 为AC 的中 点,点E 满足1BE= 3B C 则尺E ・E3D= _____⑵(2017 •宁波质检)已有正方形 ABC 啲边长为1,点E 是AB 边上的动点,贝U 0E- CB 勺值为 ________ ; 6E - [5C 的最大值为 ______ . 考点二平面向量的夹角与垂直【例2】(1)(2016 •全国n 卷)已知向量a = (1 , m ) , b = (3 , — 2),且(a + b )丄b ,则 作( )A. — 8B. — 6C.6D.8⑵ 若向量a = (k , 3), b = (1 , 4), c = (2, 1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取值 范围是_______________ .【训练2】(1)(2016 •全国川卷)已知向量BA= 1 ,右3 , BC= , 2 ,则/ ABC=()A.30 °B.45 °C.60°D.120°2 2 2(2)(2016 •全国I 卷)设向量 a = (m 1) , b = (1 , 2),且 |a + b | = | a | + | b | ,贝 Um ^ .考点三平面向量的模及其应用n【例3】(2017 •云南统一检测)已知平面向量a 与b 的夹角等于—,若|a | = 2 , | b | = 3,则 |2a — 3b | =()| AB = 6, |AD | = 4,若点 M N 满D, E 分别是边AB BC 的中点,11A . —8B.81。
2010-2019高考数学真题分类汇编第13讲 平面向量的概念与运算
专题五 平面向量第十三讲 平面向量的概念与运算2019年1.(2019全国Ⅱ理3)已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3B .-2C .2D .32.(2019全国Ⅲ理13)已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,<>=a c ___________.2010-2018年一、选择题1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 2.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .04.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.(2016年山东)已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为A .4B .–4C .94D .–946.(2016年天津)已知ΔABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅的值为A .85-B .81C .41 D .8117.(2016年全国II )已知向量(1,)(3,2)m =-,=a b ,且()+⊥a b b ,则m = A .8- B .6- C .6 D .88.(2016年全国III )已知向量1(2BA =uu v ,1),2BC =uu u v 则ABC ∠= A .30 B .45 C .60 D .1209.(2015重庆)若非零向量a ,b 满足=a ,且()(32)-⊥+ab a b ,则a 与b 的夹角为A .4πB .2π C .34π D .π 10.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a bD .22()()+-=-a b a b a b11.(2015安徽)ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ=a ,2ΑC =+a b ,则下列结论正确的是A .1=bB .⊥a bC .1⋅=a bD .()4ΒC -⊥a b12.(2014新课标1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A .B . 21C . 21 D .13.(2014新课标2)设向量a ,b 满足|+a b |-a b ⋅=a bA .1B .2C .3D .514.(2014山东)已知向量(3,)m ==a b . 若向量,a b 的夹角为6π,则实数m =A .BC .0D .15.(2014安徽)设,a b 为非零向量,2=b a ,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为A .23π B .3π C .6π D .0 16.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是A .12(0,0),(1,2)==e e B .12(1,2),(5,2)=-=-e e C .12(3,5),(6,10)==e e D .12(2,3),(2,3)=-=-e e17.(2014浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||t +b a 是最小值为1A .若θ确定,则||a 唯一确定B .若θ确定,则||b 唯一确定C .若||a 确定,则θ唯一确定D .若||b 确定,则θ唯一确定18.(2014重庆)已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =A .92-B .0C .3D .15219.(2013福建)在四边形ABCD 中,)2,4(),2,1(-==,则该四边形的面积为A .5B .52C .5D .1020.(2013浙江)设ABC ∆,0P 是边AB 上一定点,满足014PB AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅≥.则 A .090=∠ABC B .090=∠BAC C .AC AB = D .BC AC =21.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB 同方向的单位向量为A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,- C .3455⎛⎫- ⎪⎝⎭, D .4355⎛⎫- ⎪⎝⎭, 22.(2013湖北)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A .2BC .2-D .23.(2013湖南)已知,a b 是单位向量,0⋅a b =.若向量c 满足1--=c a b ,则c 的最大值为A 1BC 1D 224.(2013重庆)在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是A .2⎛ ⎝⎦B .,22⎛ ⎝⎦ C .2⎛ ⎝ D .2⎛ ⎝25.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .426.(2012陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos2θ等于A .2B .12C .0D .-1 27.(2012浙江)设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b28.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=A . 14B .12C .1D .229.(2011辽宁)已知向量(2,1)=a ,(1,)k =-b ,(2)0⋅-=a a b ,则=kA .12-B .6-C .6D .1230.(2010辽宁)平面上O ,A ,B 三点不共线,设OA=a ,OB =b ,则△OAB 的面积等于A BC D 31.(2010山东)定义平面向量之间的一种运算“”如下:对任意的(,)m n =a ,(,)p q =b ,令mq np =-a b ,下面说法错误的是A .若a 与b 共线,则0=ab B .=a b b aC .对任意的R λ∈,有()()λλ=a b a b D .2222()()||||+∙=ab a b a b二、填空题 32.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若(2)+∥c a b ,则λ= .33.(2017新课标Ⅰ)已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b = .34.(2017浙江)已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值是 ,最大值是 .35.(2017山东)已知1e ,2e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .36.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45.若OC =m OA +n OB (m ,n ∈R ),则m n += .37.(2016全国I)设向量(,1)m =a ,(1,2)=b ,且222||||||+=+a b a b ,则m = .38.(2015江苏)已知向量(2,1)=a ,(1,2)=-b ,若(9,8)m n +=-a b (,m n ∈R ),则m n - 的值为___.39.(2015湖北)已知向量OA AB ⊥,||3OA =,则OA OB ⋅= .40.(2015新课标Ⅰ)设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___.41.(2015浙江)已知12,e e 是空间单位向量,1212⋅=e e ,若空间向量b 满足12⋅=b e ,252⋅=b e ,且对于任意,x y R ∈,12010200()()1(,)x y x y x y R -+-+=∈≥b e e b e e ,则0x =____,0y =_____,=b _____.42.(2014新课标Ⅰ)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .43.(2014山东)在ABC V 中,已知tan AB AC A ⋅=uu u r uuu r ,当6A π=时,ABC V 的面积为 . 44.(2014安徽)已知两个不相等的非零向量a ,b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记112233S x y x y x y =⋅+⋅+⋅4455x y x y +⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是____(写出所有正确命题的编号).①S 有5个不同的值.②若⊥a b 则min S 与||a 无关.③若∥a b 则min S 与||b 无关.④若||4||>b a ,则0min >S .⑤若||2||=b a ,2min 8||S =a ,则a 与b 的夹角为4π.45.(2014北京)已知向量a 、b 满足1=a ,(2,1)=b ,且0λ+=a b (R λ∈),则λ=__. 46.(2014陕西)设20πθ<<,向量()sin 2cos θθ=,a ,()cos 1θ,b ,若∥a b ,则=θtan _______.47.(2014四川)平面向量(1,2)=a ,(4,2)=b ,m =+c a b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =____________.48.(2013新课标Ⅰ)已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____.49.(2013新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅= .50.(2013山东)已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为_____.51.(2013浙江)设1e ,2e 为单位向量,非零向量12x y =+b e e ,,x y ∈R ,若1e ,2e 的夹角为6π,则||||x b 的最大值等于________. 52.(2013天津)在平行四边形ABCD 中,AD = 1,60BAD ︒∠=,E 为CD 的中点.若·1AC BE =, 则AB 的长为 .53.(2013北京)向量a ,b ,c 在正方形网格中的位置如图所示,若λμ=+c a b (λ,μ∈R ),则λμ= .54.(2013北京)已知向量a ,b 夹角为o 45,且||1=a ,|2|-=a b ||=b .55.(2012湖北)已知向量a =(1,0),b =(1,1),则(Ⅰ)与2+a b 同向的单位向量的坐标表示为____________;(Ⅱ)向量3-b a 与向量a 夹角的余弦值为____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 平面向量第十三讲 平面向量的概念与运算一、选择题1.(2018全国卷Ⅰ)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 2.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2018全国卷Ⅱ)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .04.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.(2016年山东)已知非零向量m,n 满足4|3|=m |n |,1cos ,3<>=m n .若()t ⊥+n m n ,则实数t 的值为A .4B .–4C .94D .–94 6.(2016年天津)已知ΔABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC ⋅的值为A .85-B .81C .41D .8117.(2016年全国II )已知向量(1,)(3,2)m =-,=a b ,且()+⊥a b b ,则m = A .8- B .6- C .6 D .88.(2016年全国III )已知向量1(,22BA =uu v ,1(,),22BC =uu u v 则ABC ∠= A .30 B .45 C .60 D .1209.(2015重庆)若非零向量a ,b 满足=a ,且()(32)-⊥+ab a b ,则a 与b 的夹角为A .4πB .2π C .34π D .π 10.(2015陕西)对任意向量,a b ,下列关系式中不恒成立的是A .||||||⋅≤a b a bB .||||||||--≤a b a bC .22()||+=+a b a bD .22()()+-=-a b a b a b11.(2015安徽)ΑΒC ∆是边长为2的等边三角形,已知向量a ,b 满足2ΑΒ=a ,2ΑC =+a b ,则下列结论正确的是A .1=bB .⊥a bC .1⋅=a bD .()4ΒC -⊥a b12.(2014新课标1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+A .B . AD 21C . BC 21 D .13.(2014新课标2)设向量a ,b 满足|+a b |-a b ⋅=a bA .1B .2C .3D .514.(2014山东)已知向量(1(3,)m ==a b . 若向量,a b 的夹角为6π,则实数m =A .BC .0D .15.(2014安徽)设,a b 为非零向量,2=b a ,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为A .23π B .3π C .6π D .0 16.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是A .12(0,0),(1,2)==e e B .12(1,2),(5,2)=-=-e e C .12(3,5),(6,10)==e e D .12(2,3),(2,3)=-=-e e17.(2014浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||t +b a 是最小值为1A .若θ确定,则||a 唯一确定B .若θ确定,则||b 唯一确定C .若||a 确定,则θ唯一确定D .若||b 确定,则θ唯一确定18.(2014重庆)已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =A .92-B .0C .3D .15219.(2013福建)在四边形ABCD 中,)2,4(),2,1(-==BD AC ,则该四边形的面积为A .5B .52C .5D .1020.(2013浙江)设ABC ∆,0P 是边AB 上一定点,满足014PB AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅⋅≥.则 A .090=∠ABC B .090=∠BAC C .AC AB = D .BC AC =21.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB 同方向的单位向量为A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,- C .3455⎛⎫- ⎪⎝⎭, D .4355⎛⎫- ⎪⎝⎭, 22.(2013湖北)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C . D . 23.(2013湖南)已知,a b 是单位向量,0⋅a b =.若向量c 满足1--=c a b ,则c 的最大值为A 1BC 1D 224.(2013重庆)在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是A .⎛⎝⎦ B . ⎝⎦ C .⎝ D .⎝ 25.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .426.(2012陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于A B .12 C .0 D .-1 27.(2012浙江)设a ,b 是两个非零向量A .若||||||+=-a b a b ,则⊥a bB .若⊥a b ,则||||||+=-a b a bC .若||||||+=-a b a b ,则存在实数λ,使得λ=b aD .若存在实数λ,使得λ=b a ,则||||||+=-a b a b28.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=A . 14B .12C .1D .229.(2011辽宁)已知向量(2,1)=a ,(1,)k =-b ,(2)0⋅-=a a b ,则=kA .12-B .6-C .6D .1230.(2010辽宁)平面上O ,A ,B 三点不共线,设OA =a ,OB =b ,则△OAB 的面积等于A BC D 31.(2010山东)定义平面向量之间的一种运算“”如下:对任意的(,)m n =a ,(,)p q =b ,令mq np =-a b ,下面说法错误的是A .若a 与b 共线,则0=ab B .=a b b aC .对任意的R λ∈,有()()λλ=a b a b D .2222()()||||+∙=ab a b a b二、填空题 32.(2018全国卷Ⅲ)已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若(2)+∥c a b ,则λ= .33.(2017新课标Ⅰ)已知向量a ,b 的夹角为60°,||2=a ,||1=b ,则|2|+a b = .34.(2017浙江)已知向量a ,b 满足||1=a ,||2=b ,则||||++-a b a b 的最小值是 ,最大值是 .35.(2017山东)已知1e ,2e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .36.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1OA与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45.若OC =m OA +n OB (m ,n ∈R ),则m n += .37.(2016全国I)设向量(,1)m =a ,(1,2)=b ,且222||||||+=+a b a b ,则m = .38.(2015江苏)已知向量(2,1)=a ,(1,2)=-b ,若(9,8)m n +=-a b (,m n ∈R ),则m n - 的值为___.39.(2015湖北)已知向量OA AB ⊥,||3OA =,则OA OB ⋅= .40.(2015新课标Ⅰ)设向量,a b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ___.41.(2015浙江)已知12,e e 是空间单位向量,1212⋅=e e ,若空间向量b 满足12⋅=b e ,252⋅=b e ,且对于任意,x y R ∈,12010200()()1(,)x y x y x y R -+-+=∈≥b e e b e e ,则0x =____,0y =_____,=b _____.42.(2014新课标Ⅰ)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .43.(2014山东)在ABC V 中,已知tan AB AC A ⋅=uu u r uu u r ,当6A π=时,ABC V 的面积为 . 44.(2014安徽)已知两个不相等的非零向量a ,b ,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由2个a 和3个b 排列而成.记112233S x y x y x y =⋅+⋅+⋅4455x y x y +⋅+⋅,min S 表示S 所有可能取值中的最小值.则下列命题正确的是____(写出所有正确命题的编号).①S 有5个不同的值.②若⊥a b 则min S 与||a 无关.③若∥a b 则min S 与||b 无关.④若||4||>b a ,则0min >S .⑤若||2||=b a ,2min 8||S =a ,则a 与b 的夹角为4π. 45.(2014北京)已知向量a 、b 满足1=a ,(2,1)=b ,且0λ+=a b (R λ∈),则λ=__. 46.(2014陕西)设20πθ<<,向量()sin 2cos θθ=,a ,()cos 1θ,b ,若∥a b ,则=θtan _______.47.(2014四川)平面向量(1,2)=a ,(4,2)=b ,m =+c a b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =____________.48.(2013新课标Ⅰ)已知两个单位向量a ,b 的夹角为60,(1)=+-c ta t b ,若0⋅=b c ,则t =_____.49.(2013新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅= .50.(2013山东)已知向量AB 与AC 的夹角120,且|AB |=3,|AC |=2,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为_____.51.(2013浙江)设1e ,2e 为单位向量,非零向量12x y =+b e e ,,x y ∈R ,若1e ,2e 的夹角为6π,则||||x b 的最大值等于________. 52.(2013天津)在平行四边形ABCD 中,AD = 1,60BAD ︒∠=,E 为CD 的中点.若·1AC BE =,则AB 的长为 .53.(2013北京)向量a ,b ,c 在正方形网格中的位置如图所示,若λμ=+c a b (λ,μ∈R ),则λμ= .54.(2013北京)已知向量a ,b 夹角为o 45,且||1=a ,|2|-a b ||=b.55.(2012湖北)已知向量a =(1,0),b =(1,1),则(Ⅰ)与2+a b 同向的单位向量的坐标表示为____________;(Ⅱ)向量3-b a 与向量a 夹角的余弦值为____________。