数学人教A版选修2-3优化课件:第一章 排列与组合

合集下载

人教a版数学【选修2-3】1.2.2《组合1》ppt课件

人教a版数学【选修2-3】1.2.2《组合1》ppt课件

第一章
1.2
1.2.2
第1课时ቤተ መጻሕፍቲ ባይዱ
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3. 从 5 本不同书中取出 2 本并成一组和取出 3 本并成一组 的组合数相同吗?为什么? 4.从含有元素 a 的 n+1 个不同元素中取出 m 个元素的组
m 合数 Cn +1,可以分成两类:一类不含元素 a,从剩余的 n 个元
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
组合数公式
思维导航 2.组合的本质是取出的 m 个元素不讲究顺序,也就是说 元素没有位置的要求,因此这 m 个元素的全排列数只对应组合
m 数中的一个, 由此你能得出求 Cn 的计算公式吗?你能不用列举
数数的方法求出前面 3 个问题中的票价种数、积的个数、线段 条数吗?
第一章
1.2
1.2.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
牛刀小试 1.C2 n=10,则 n 的值为( A.10 C.3
[答案] B
) B.5 D.4
nn-1 [解析] 由题意得 2 =10, 解得 n=5 或 n=-4(舍去),故选 B.
第一章
1.2
1.2.2
第1课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.从 9 名学生中选出 3名参加“希望英语”口语比赛,有
( )种不同选法.( A.504 C.84 [答案] C
[解析] 只需从 9 名学生中选出 3 名即可,从而有 C3 9= 9×8×7 =84 种选法. 3×2×1

人教A版数学选修2-3全册课件第一章 1.2 1.2.2 第一课时 组合与组合数公式精选ppt课件

人教A版数学选修2-3全册课件第一章 1.2 1.2.2 第一课时 组合与组合数公式精选ppt课件

[化解疑难] 1.取出的m个元素不讲究顺序,也就是说元素没有位置的要求,无序性 是组合的本质. 2.只要两组合中的元素完全相同,则无论元素的顺序如何,都是相同的 组合.
组合数公式
[提出问题]
从 1,3,5,7 中任取两个数相除. 问题 1:可以得到多少个不同的商? 提示:A42=4×3=12 个不同的商. 问题 2:如何用分步法求商的个数? 提示:第 1 步,从这四个数中任取两个数,有 C24种方 法;第 2 步,将每个组合中的两个数排列,有 A22种排法.由 分步乘法计数原理,可得商的个数为 C24A22.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
(3)从 6 名男教师中选 2 名的选法有 C26种,从 4 名女教师中选 2 名的选法有 C42种,根据分步乘法计数原理,共有 C26×C24= 62××51×42××31=90 种不同的选法.
3.关注组合数中字母的取值范围
[典例] 已知:C1m5 -C1m6 =107Cm7 ,求 m. [解] 依题意,m 的取值范围是{m|0≤m≤5,m∈N*}.因 为m!55!-m!-m!66!-m!=7×m1!0×77-!m!,化简得 m2 -23m+42=0,解得 m=21 或 m=2.因为 0≤m≤5,m∈N*, 所以 m=21 舍去,所以 m=2.
[导入新知]

人教A版高中数学选修2-3全册ppt课件

人教A版高中数学选修2-3全册ppt课件

[一题多变] 1.[变条件]若本例条件变为个位数字小于十位数字且为偶数, 那么这样的两位数有多少个.
解:当个位数字是 8 时,十位数字取 9,只有 1 个. 当个位数字是 6 时,十位数字可取 7,8,9,共 3 个. 当个位数字是 4 时,十位数字可取 5,6,7,8,9,共 5 个. 同理可知,当个位数字是 2 时,共 7 个, 当个位数字是 0 时,共 9 个. 由分类加法计数原理知,符合条件的两位数共有 1+3+5 +7+9=25(个).
用计数原理解决涂色(种植)问题
[ 典例 ] 如图所示,要给“优”、
“化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步.
第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
利用分类加法计数原理计数时的解题流程
分步乘法计数原理的应用
[典例]
从 1,2,3,4 中选三个数字,组成无重复数字的整
数,则分别满足下列条件的数有多少个? (1)三位数; (2)三位数的偶数.
[解] (1)三位数有三个数位, 百位 十位 个位
故可分三个步骤完成: 第 1 步,排个位,从 1,2,3,4 中选 1 个数字,有 4 种方法; 第 2 步, 排十位, 从剩下的 3 个数字中选 1 个, 有 3 种方法;
2.如果一个三位正整数如“a1a2a3”满足 a1<a2 且 a3<a2,则称这样的 三位数为凸数(如 120,342,275 等),那么所有凸数个数是多少? 解:分 8 类,当中间数为 2 时,百位只能选 1,个位可选 1、0, 由分步乘法计数原理,有 1×2=2 个; 当中间数为 3 时,百位可选 1,2,个位可选 0,1,2,由分步乘法计 数原理,有 2×3=6 个;同理可得: 当中间数为 4 时,有 3×4=12 个; 当中间数为 5 时,有 4×5=20 个; 当中间数为 6 时,有 5×6=30 个; 当中间数为 7 时,有 6×7=42 个; 当中间数为 8 时,有 7×8=56 个; 当中间数为 9 时,有 8×9=72 个. 故共有 2+6+12+20+30+42+56+72=240 个.

《排列与组合》课件2(新人教A版选修2-3)

《排列与组合》课件2(新人教A版选修2-3)
第四类,4个点都不在α上,只有1种 取法.
应用分类计数原理,得所求的不 同取法数为68+27+30+9+6+1=141.
[例4] 4个男同学,3个女同学站成 一排:
(1) 3个女同学必须排在一起,有多 少种不同的排法?
(2) 任何两个女同学彼此不相邻,有 多少种不同的排法?
(3) 其中甲、乙两同学之间必须有3 人,有多少种不同的排法?
[评注] 排列问题中,部分元素 相邻的问题可用“视一法”解;部分 元素不相邻的问题可用“插入法”解, 部分元素定序的问题也可用“插入法” 解.
[例5] 按以下要求分配6本不同的书, 各有几种分法?
(1) 平均分给甲、乙、丙三人,每人 2本;
(2) 平均分成三份,每份2本; (3) 甲、乙、丙三人一人得1本,一 人得2本,一人得3本;
选 出4本 有 :C 6 4种 方 法 ; 第二步,分给甲、乙、丙中的一
人 , 有A31;
第三步,余下2本给人,有A22 .








有C
1 6

C
1 3

A2
2
种方法.
(6)




从6 本


取4本

有C
4 6
种方法.
第二步:将2本平均分成2份,每份1
本,有 C22C11 种方法.由分步计数原理有 A2 2
[例3] 四面体的顶点和各棱中点共
10个点,在其中取4个不共面的点,则不同
的取法共有 ( )
A. 150种
B. 147种
C. 144种
D. 141种

2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)

2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)
课时作业
[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.

高二数学人教A版选修2-3课件:1.2.2 组合

高二数学人教A版选修2-3课件:1.2.2 组合

=
C������������ =左边,
故原式成立.
迁移应用
一 二三四
知识精要
典题例解
迁移应用
三、简单组合问题 解简单的组合应用题时,要先判断它是不是组合问题,取出元素只是组成一组,与顺序无关则是组合问题;取出 元素排成一列,与顺序有关则是排列问题.只有当该问题能构成组合模型时,才能运用组合数公式求出其种数. 在解题时还应注意两个计数原理的运用,在分类和分步时,注意有无重复或遗漏.
种,从4名C女62教师中选2名的选法有 种,根据分步乘法计数C原42理,共有选法
C62
×
C42
=
6×5 ×
2×1
42××31=90(种).
一 二三四
知识精要
典题例解
迁移应用
1.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种
B.63种
C.65种
D.66种
同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为( )
A.360
B.520
C.600
D.720
答案:C
解析:分两类:第1类,甲、乙中只有一人参加,则有
=2×10×24=480(种)选法.
C21 × C53 × A44
一 二三四
知识精要
典题例解
【例1】 判断下列问题是排列问题还是组合问题,并分别求出对应的方法数.
迁移应用
(1)把当日动物园的4张门票分给5个人,每人至多分一张,而且票必须分完,有多少种分配方法?
(2)从2,3,5,7,11这5个质数中,每次取2个数分别作为分子和分母构成一个分数,共能构成多少个不同的分数?
答)

选修2-3 1.2.1(排列一)排列概念与排列数公式(人教A版)精选教学PPT课件

选修2-3 1.2.1(排列一)排列概念与排列数公式(人教A版)精选教学PPT课件

(乘积形式)
n (n 1) (n m 1)(n m) 2 1 (n m) 2 1
n! (n m)! (阶乘形式)
说明:排列数公式的第一个常用来计算,第二个常用来证明。
3.例题讲解 利用排列数公式求值或化简
1.求值
(1)2A35
+
A
2 4
2.解方程
8! 7! m! (m 1)!
我想不起病重的母亲是怎样背着我走路,我是怎样在母亲背上长大,可想而知,有病的母亲比健康的人更艰难。是母亲让我学会了人之初,做人做事的道理。当时我不懂母亲的心,她的爱她的温柔,她的关怀和牵挂,不懂事的我在母亲的包容下慢慢地长大,当我知道 和读懂母亲的时候,母亲含着眼泪,带着多少担忧与牵挂永远的离开了我。
“排列”和“排列数”有什么区别和联系?
“一个排列”是指:从n个不同元素中,任取 m 个元素
按照一定的顺序排成一列,不是数;
“排列数”是指从 n 个不同元素中,任取 m 个元素的
所有排列的个数,是一个数;所以符号 Anm 只表示
排列数,而不表示具体的排列。
问题1中是求从3个不同元素中取出2个元素的排
(2)从1,2,3,4中任意选出3个组成一个三位数,共可得到多 少个三位数?
1.排列的概念
排列:一般的,从n个不同的元素中取出m
(m≤n)个元素,按照一定的顺序排成一列,
叫做从n个不同元素中取出m个元素的一个排列。
排列问题实际包含两个过程: (1)先从n个不同元素中取出m个不同的元素。 (2)再把这m个不同元素按照一定的顺序排成一列。
A(. A3165)m B共. 有A21m05个mm .C因..数A1.66m D.
A5 20 m
全排列

2015-2016学年高二数学人教版A版选修2-3课件:1.2.2.1 组合与组合数公式

2015-2016学年高二数学人教版A版选修2-3课件:1.2.2.1 组合与组合数公式
第七页,编辑于星期五:八点 九分。
数学 选修2-3
第一章 计数原理
自主学习 新知突破
合作探究 课堂互动
组合数
1 . 从 n 个 不 同 元 素 中 取 出 m(m≤n) 个 元 素 的 ___所__有__不__同__组__合__的_个__数____,叫做从n个不同元素中取出m个元素
的组合数.用符号___C__nm_____表示.
第二十一页,编辑于星期五:八点 九分。
数学 选修2-3
第一章 计数原理
自主学习 新知突破
合作探究 课堂互动
解析: (1)发邮件有先后之分,与顺序有关是排列问 题,共写了A28个电子邮件.
(2)是组合问题.两队只需要比赛一次,与顺序无关,共 进行C210场比赛.
(3)是排列问题.主客场比赛有主场、客场之分,与顺序 有关,共进行A210场比赛.
第十三页,编辑于星期五:八点 九分。
数学 选修2-3
第一章 计数原理
自主学习 新知突破
合作探究 课堂互动
4.判断下列各事件是排列问题,还是组合问题. (1)10个人相互各写一封信,共写多少封信? (2)10个人相互通一次电话,共通了多少次电话? (3)10支球队进行比赛,这次比赛冠、亚军获得者有多少种 可能? (4)从10个人中选3个代表去开会,有多少种选法? (5)从10个人里选出3个不同学科的代表,有多少种选法?
有关.
答案: C
第十一页,编辑于星期五:八点 九分。
数学 选修2-3
第一章 计数原理
自主学习 新知突破
合作探究 课堂互动
2.方程C2x8=C32x8-8的解为(
)
A.4或9
B.4
C.9
D.其他
解析: 当x=3x-8时,解得x=4;当28-x=3x-8时,解 得x=9.

高中数学 第一章 计数原理 1_2 排列与组合 1_2_2_1课件 新人教A版选修2-3

高中数学 第一章 计数原理 1_2 排列与组合 1_2_2_1课件 新人教A版选修2-3
(仿照教材P23例6的解析过程)
【解析】(1)从口袋里的8个球中任取5个球,不同取法 的种数是
8 7 6 C C 56. 3 2 1 5个球,其中恰有一个红球, (2)从口袋里的8个球中任取
5 8 3 8
可以分两步完成: 第一步,从7个白球中任取4个白球,有 第二步,把1个红球取出,有
主题2:组合数公式与组合数性质 从1,3,5,7中任取两个相除,
1.可以得到多少个不同的商?
提示: =4×3=12个不同的商.
A
2 4
2.如何用分步乘法计数原理求商的个数? 提示:第1步,从这四个数中任取两个数,有
第2步,将每个组合中的两个数排列,有
步乘法计数原理,可得商的个数为
2 C2 A 4 2
4.计算
CA
3 4
3 3
=________.
3 3 3 4
【解析】
答案:24
C A A 4 3 2 24.
3 4
5.一个口袋里装有7个白球和1个红球,从口袋中任取5 个球. (1)共有多少种不同的取法? (2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
C 28得
2 n
n n 1 2
=28,所以n=8或n=-7(舍).
2.给出下面几个问题,其中是组合问题的是 ①某班选10名同学参加计算机汉字录入比赛;
(
)
②从1,2,3,4中选出2个数,构成平面向量a的坐标; ③从1,2,3,4中选出2个数分别作为实轴长和虚轴长,构
成焦点在x轴上的双曲线的方程;
4 种取法.C 7
种取法;
C1 1
故不同取法的种数是:
4 1 4 C7 C1 C7 C3 7 35. (3)从口袋里任取5个球,其中不含红球,只需从7个白球

人教版A版高中数学选修2-3:排列与组合_课件1

人教版A版高中数学选修2-3:排列与组合_课件1

(2)方法 1:先把甲、乙作为一个“整体”,看作一个人, 有 A55种站法,再把甲、乙进行全排列,有 A22种站法,根椐分 步计数原理,共有 A55·A22=240 种站法.
方法 2:先把甲、乙以外的 4 个人作全排列,有 A44种站法, 再在 5 个空档中选出一个供甲、乙放入,有 A15种站法,最后 让甲、乙全排列,有 A22种方法,共有 A44·A15·A22=240 种.
三 几何型排列组合问题
【例 3】已知平面 a∥β 在 a 内有 4 个点,在 β 内有 6 个点. (1)过这 10 个点中的 3 点作一平面,最多可作多少个
不同平面? (2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积?
【解析】 (1)所作出的平面有三类: ①α 内 1 点,β 内 2 点确定的平面,有 C14·C26个; ②α 内 2 点,β 内 1 点确定平面,有 C24·C16个; ③α,β 本身,共 2 个. 所以所作的平面最多有 C14·C26+C24·C16+2=98(个).
(2)要使六位数为奇数,其个位数字必须是 1 或 3 或 5,所 以所求六位奇数的个数是 A13A14A44=288.
(3)要使六位数能被 5 整除,个位数字必须是 0 或 5,当个 位数字是 0 时,有 A55个;当个位数字是 5 时,有 4A44个,因 此,能被 5 整除的六位数的个数是 A55+4A44=216.
相邻问题捆绑法;
不相邻问题插空法;
多排问题单排法; 定序问题倍缩法; 定位问题优先法; 有序分配问题分步法; 多元问题分类法; 交叉问题集合法; 至少(或至多)问题间接法; 选排问题先取后排法; 局部与整体问题排除法; 复杂问题转化法.
3.解答组合应用题的总体思路 (1)⑥ 整体分类 .从集合的意义讲,分类要 做到各类的并集等于全集,以保证分类的不 遗漏,任何两类的交集等于空集,以保证分 类的不重复,计算结果是使用分类计数原理. (2)⑦ 局部分步 .整体分类以后,对每一类 进行局部分步,分步要做到步骤连续,以保证 分步的不遗漏.同时步骤要独立,以保证分步 的不重复.计算结果时用分步计数原理.

新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)

新人教A版高中数学(选修2-3)1.2《排列与组合》(组合)

例6.甲、乙、丙3位志愿者安排在周一至
周五的5天中参加某项志愿者活动,要求
每人参加一天且每天至多安排一人,并要
求甲安排在另外两位前面。不同的安排方
法共有( )
种方法,
所以,一共有90+360+90=540种方法.
元素相同问题隔板策略
例.有10个运动员名额,再分给7个班,每 班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成 一排。相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 将n个相同共的有元__素__分__成__m__份_种(分n,法m。为正整数),每 份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
组合数性质1: 2:
特别地:
练习一
(1) (2)
(3) (4) (5)求
0 7
1,或5
的值 511
例题解读
求证: 证明:因为
左边= =左边,所以等式成立
评注: 注意阶乘的变形形式:
练习精选: 证明下列等式 : (1)
(2)
例题解读:
例1.6本不同的书,按下列要求各有多少种 不同的选法: (1)分给甲、乙、丙三人,每人2本;
你发现ad了b bda dba
acd
什么ac?d cad dac
adc cda dca
bcd cbd dbc
bcd
bdc cdb dcb
(三个元素的)1个组合,对应着6个排列
对于 ,我们可以按照以下步骤进行
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出m个元素的

2019-2020学年人教A版高中数学选修2-3课件:第1章 计数原理1.2.2(2)

2019-2020学年人教A版高中数学选修2-3课件:第1章 计数原理1.2.2(2)
第一章
计数原理
1.2 排列与组合 1.2.2 组合(二)
课前 教材预案 课堂 深度拓展 课末 随堂演练 课后 限时作业
课前教材预案
要点 求解组合问题的常用方法
• 常用的方法分直接法与间接法两大类.所谓直接法,就是利 用分类或者分步计数原理,准确地分类或者分步,直接计算 出结果;所谓的间接法,则是采用迂回战术,先求出不受限 制条件下的组合数,再减去不符合题意的组合数的方法.
第一类,这 4 人全部入选,另一组 4 人由余下的 8 人中任选 4 人组成,有 C44C48=70 种方法;
第二类,这 4 人中恰有 3 人入选日语翻译小组,必 有 1 名“双面手”入选日语翻译小组,有 C34C12C47=280 种方法;
第三类,这 4 人中恰有 2 人入选日语翻译小组,必 有 2 名“双面手”都入选日语翻译小组,有 C24C22C46=90 种方法;
• 【例题2】 车间有11名工人,其中5名是钳工,4名是车工, 另外2名既能做钳工又能做车工,从中选出4名钳工4名车工, 问有多少种不同方法?
• 思维导引:可以从“既会钳工又会车工”的2名工人考虑分 类求解,也可以从“只会钳工”的5名工人考虑分类求解.
解析 方法一 以“既会钳工又会车工”的 2 人(记 为 A,B)来考虑分类,A,B 都不在内,有选法 C45C44=5 种;A,B 都在内时又分“都做钳工”“都做车工”“一 个做钳工一个做车工”三类,合计有选法 C22C25C44+C22C45 C24+A22C35C34=120 种;A,B 仅有一人在内,又有“做钳 工”和“做车工”两种选择,此时有选法 C12C35C44+C12C45 C34=60 种.由分类加法计数原理,合计共有不同的选法 185 种.
第三类:共线的 4 个点中没有点为三角形的顶点, 共有 C38=56 个不同的三角形.

人教A版高中数学选修2-3课件1.2.3《排列组合的应用》课时2.pptx

人教A版高中数学选修2-3课件1.2.3《排列组合的应用》课时2.pptx
解:因为10个名额没有差别,把它们排成一排。相邻名 额之间形成9个空隙。在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个班级,每一种插板方
法对应一种分法共有____C__96_____种分法。
将n个相同的元素分成m份(n,m为正整数),每份
C 至成少一一排个 的一班n元-1素个二 班,空可隙以三班中用m,四班-所1块有分隔五班板法,数六班为插入七 班n个mn11元素. 排
解含有约束条件的排列组合问题,可按元素 的性质进行分类,按事件发生的连续过程分 步,做到标准明确。分步层次清楚,不重不 漏,分类标准一旦确定要贯穿于解题过程的 始终。
练习题:
从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,
则不同的选法共有. 34
(7).构造模型策略
共有. 34
2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最 多乘2人,3号船只能乘1人,他们任选2只船或3只船, 但小孩不能单独乘一只船,这3人共有多少乘船方法.
27
二、间接法(排除法)
(先不考虑限制条件,算出所有的排列数,再从 中减去不符合条件的排列数)
例9.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三 个数, 使其和为不小于10的偶数,不同的取法有多少种?
例7.马路上有编号为1,2,3,4,5,6,7,8,9的九只路 灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3 盏,也不能关掉两端的2盏,求满足条件的关灯方法 有多少种?
解:把此问题当作一个排队模型在6盏亮灯的5
个空隙中插入3个不亮的灯有__C___35 __种.
一些不易理解的排列组合题如果能转化为非常 熟悉的模型,如占位填空模型,排队模型,装 盒模型等,可使问题直观解决.

人教a版数学【选修2-3】1.2.1《排列2》ppt课件

人教a版数学【选修2-3】1.2.1《排列2》ppt课件

第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.5名同学排成一排,其中甲、乙、丙三人必须排在一起
的不同排法有(
A.70 C.36 [答案] C
)
B.72 D.12
[解析] 甲、乙、丙先排好后视为一个整体与其他 2 个同
3 学进行排列,共有 A3 A 3 3=36 种排法.
3 .间接法:先不考虑附加条件,计算出总排列数,再减
不合要求 的排列数. 去__________ 捆绑 法,相离问题 ______ 插空 法,定元、定位 4 .相邻元素 ______ 优先排 法,至多、至少______ 间接 法,定序元素__________ 最后排 法. ________
第一章
1.2
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章 1.2 排列与组合
1.2.1 排列
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
明确问题的限制条件,能够解决含有特殊元素 ( 或特殊位 置)的排列问题,会用间接法求解有限制条件的排列问题.
第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
mAm n-1 __________

2020学年数学人教a版选修2-3优化课件第一章 排列与组合(习题课)

2020学年数学人教a版选修2-3优化课件第一章 排列与组合(习题课)

[解析] (1)根据分步乘法计数原理得 C26C24C22=90(种). (2)分给甲、乙、丙三人,每人两本,有 C26C24C22种分法,这个过程可以分两步完成:第一 步,分为三份,每份两本,设有 x 种分法;第二步,将这三份分给甲、乙、丙三名同学, 有 A33种分法.根据分步乘法计数原理可得 C26C24C22=xA33,所以 x=C26AC3243C22=15. 因此分为三份,每份两本,一共有 15 种分法. (3)这是不均匀分组问题,一共有 C16C25C33=60 种分法. (4)在(3)的基础上再进行全排列,所以一共有 C16C25C33A33=360 种分法. (5)可以分为三类情况:①“2、2、2”型,即(1)中的分配情况,有 C26C24C22=90 种分法; ②“1、2、3”型,即(4)中的分配情况,有 C16C25C33A33=360 种分法;③“1、1、4”型, 有 C46A33=90 种分法. 所以一共有 90+360+90=540 种分法.
置上的数字相同的信息个数为( )
A.10
B.11
C.12
D.15
解析:解法一 分 0 个相同、1 个相同、2 个相同讨论.
(1)若 0 个相同,则信息为:1001.共 1 个.
(2)若 1 个相同,则信息为:0001,1101,1011,1000.共 4 个.
(3)若 2 个相同,又分为以下情况: ①若位置一与二相同,则信息为:0101; ②若位置一与三相同,则信息为:0011; ③若位置一与四相同,则信息为:0000; ④若位置二与三相同,则信息为:1111; ⑤若位置二与四相同,则信息为:1100; ⑥若位置三与四相同,则信息为:1010. 共有 6 个. 故与信息 0110 至多有两个对应位置上的数字相同的信息个数为 1+4+6=11.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案:B
排列组合的综合应用 [典例] (本小题满分 12 分)从 1,3,5,7,9 中任取 3 个数字,从 0,2,4,6,8 中任取 2 个数字, 一共可以组成多少个没有重复数字的五位偶数? [解析] (1)五位数中不含数字 0. 第 1 步,选出 5 个数字,共有 C35C24种选法.1 分 第 2 步,排成偶数,先排末位数,有 A12种排法,再排其他四位数字,有 A44种排法. ∴N1=C35·C24·A12·A44.4 分
(2)一人得 4 本,一人得 3 本,一人得 2 本,这件事分两步完成. 第一步:按 4 本、3 本、2 本分成三组,有 C49C35C22种方法; 第二步:将分成的三组书分给甲、乙、丙三个人,有 A33种方法. 根据分步计数原理知,共有不同的分法 C49C35C22A33=7 560(种),即一人得 4 本,一人 得 3 本,一人得 2 本的分法共有 7 560 种.
1.若从 1,2,3,…,9 这 9 个整数中同时取 4 个不同的数,其和为偶数,则不同的取
法共有( )
A.60 种
B.63 种
C.65 种
D.66 种
解析:和为偶数共有 3 种情况,取 4 个数均为偶数有 C44=1 种取法,取 2 奇数 2 偶数 有 C24·C25=60 种取法,取 4 个数均为奇数有 C45=5 种取法,故共有 1+60+5=66 种 不同的取法.
3.有大小形状相同的 3 个红色小球和 5 个白色小球,排成一排,共有多少种不同的 排列方法? 解析:8 个小球排好后对应着 8 个位置,题中的排法相当于在 8 个位置中选出 3 个位 置给红球,剩下的位置给白球,由于这 3 个红球完全相同,所以没有顺序,是组合问 题,这样共有 C38=56 种.
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/9
最新中小学教学课件
24
谢谢欣赏!
2019/7/9
最新中小学教学课件
答案:D
2.从 0,2,4 中取一个数字,从 1,3,5 中取两个数字,组成无重复数字的三位数,则所 有不同的三位数的个数是________. 解析:从 0,2,4 中取一个数字,从 1,3,5 中取两个数字进行排列,然后在得到的排列中 去掉首数字为 0 的即满足题意,因此共有 C13C23A33-A23=3×3×6-6=48 个. 答案:48
置上的数字相同的信息个数为( )
A.10
B.11
C.12
D.15
解析:解法一 分 0 个相同、1 个相同、2 个相同讨论.
(1)若 0 个相同,则信息为:1001.共 1 个.
(2)若 1 个相同,则信息为:0001,1101,1011,1000.共 4 个.
(3)若 2 个相同,又分为以下情况: ①若位置一与二相同,则信息为:0101; ②若位置一与三相同,则信息为:0011; ③若位置一与四相同,则信息为:0000; ④若位置二与三相同,则信息为:1111; ⑤若位置二与四相同,则信息为:1100; ⑥若位置三与四相同,则信息为:1010. 共有 6 个. 故与信息 0110 至多有两个对应位置上的数字相同的信息个数为 1+4+6=11.
解决有重复元素的排列组合问题的方法: 有重复元素的排列组合问题,在解决时一般要抓住具体问题所含重复元素的个数进行 分类.在排列时注意重复元素的排列是无序的.
1.在某种信息传输过程中,用 4 个数字的一个排列(数字允许重复)表示一个信息,
不同排列表示不同信息.若所用数字只有 0 到 1,则与信息 0110 至多有两个对应位
[解析] (1)根据分步乘法计数原理得 C26C24C22=90(种). (2)分给甲、乙、丙三人,每人两本,有 C26C24C22种分法,这个过程可以分两步完成:第一 步,分为三份,每份两本,设有 x 种分法;第二步,将这三份分给甲、乙、丙三名同学, 有 A33种分法.根据分步乘法计数原理可得 C26C24C22=xA33,所以 x=C26AC3243C22=15. 因此分为三份,每份两本,一共有 15 种分法. (3)这是不均匀分组问题,一共有 C16C25C33=60 种分法. (4)在(3)的基础上再进行全排列,所以一共有 C16C25C33A33=360 种分法. (5)可以分为三类情况:①“2、2、2”型,即(1)中的分配情况,有 C26C24C22=90 种分法; ②“1、2、3”型,即(4)中的分配情况,有 C16C25C33A33=360 种分法;③“1、1、4”型, 有 C46A33=90 种分法. 所以一共有 90+360+90=540 种分法.
四、听方法。

在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
(2)五位数中含有数字 0. 第 1 步,选出 5 个数字,共有 C35·C14种选法.5 分 第 2 步,排顺序又可分为两小类: ①末位排 0,有 A11·A44种排列方法;6 分 ②末位不排 0.这时末位数有 C11种选法,而因为零不能排在首位,所以首位有 A13种排 法,其余 3 个数字有 A33种排法. ∴N2=C35·C14(A11·A44+A13·A33).8 分 ∴符合条件的偶数的个数为 N=N1+N2=C35C24A12A44+C35C14(A11A44+A13A33)=4 560.12 分
[规范与警示] 讨论五位数中含“0”与否,是解答本题的关键. 末位排 0 与否,应分类讨论,否则极易出错. 本题是分类情况下的分步排列、组合问题,必须将所讨论的各种结果相加,否则会 丢分. 解题过程中要注意分析特殊元素、特殊情况对结果的影响,并注意总结、避免因考 虑问题不全面而失分.
[随堂训练]
解法二 若 0 个相同,共有 1 个; 若 1 个相同,共有 C14=4(个); 若 2 个相同,共有 C24=6(个); 故共有 1+4+6=11(个). 答案:B
探究二 分组与分配问题 [典例 2] 6 本不同的书,按下列要求各有多少种不同的分法? (1)分给甲、乙、丙三人,每人两本; (2)分为三份,每份两本; (3)分为三份,一份一本,一份两本,一份三本; (4)分给甲、乙、丙三人,一人一本,一人两本,一人三本; (5)分给甲、乙、丙三人,每人至少一本.
2.有 9 本不同的课外书,分给甲、乙、丙三名同学,在下列条件下,各有多少种不 同的分法? (1)甲得 4 本,乙得 3 本,丙得 2 本; (2)一人得 4 本,一人得 3 本,一人得 2 本. 解析:(1)甲得 4 本,乙得 3 本,丙得 2 本,这件事分三步完成. 第一步:从 9 本不同的书中,任取 4 本分给甲,有 C49种方法; 第二步:从余下的 5 本书中,任取 3 本分给乙,有 C35种方法; 第三步:把剩下的 2 本书给丙,有 C22种方法. 根据分步乘法计数原理,共有不同的分法 C49C35C22=1 260(种),即甲得 4 本,乙得 3 本,丙得 2 本的分法共有 1 260 种.
课时作业
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。

一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
理课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
排列与组合(习题课)
01 课堂 合作探究 02 课后 巩固提升
课时作业
探究一 有重复元素的排列组合问题 [典例 1] 有 6 个球,其中有 3 个一样的黑球,红、白、蓝球各 1 个,现从中取出 4 个球排成一列,共有多少种不同的排法?
[解析] 分三类: (1)若取 1 个黑球,和另三个球排 4 个位置,不同的排法为 A44=24; (2)若取 2 个黑球,从另三个球中选 2 个排 4 个位置,2 个黑球是相同的,自动进入, 不需要排列,即不同的排法种数为 C23A24=36; (3)若取 3 个黑球,从另三个球中选 1 个排 4 个位置,3 个黑球是相同的,自动进入, 不需要排列,即不同的排法种数为 C13A14=12. 综上,不同的排法种数为 24+36+12=72.
二、听思路。

思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行
解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
解决排列组合的综合问题应遵循的原则是什么? 本题是一道“既选又排”的排列、组合综合题,解决这类问题的方法是“先选后排”, 同时要注意特殊元素、特殊位置优先安排的原则.
3.(2015 年高考四川卷)用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40 000
大的偶数共有( )
A.144 个
求解分组与分配问题的方法: (1)解决这类问题的关键是分清其为分组问题还是分配问题. (2)分组问题属于“组合”问题,常见的分组问题有三种: ①完全均匀分组,每组的元素个数均相等; ②部分均匀分组,应注意不要重复,有 n 组均匀,最后必须除以 n!; ③完全非均匀分组,这种分组不考虑重复现象. (3)分配问题可以按要求逐个分配,也可以分组后再分配.
相关文档
最新文档