【数学】2015-2016年湖南省永州市祁阳县七年级下学期数学期末试卷和答案解析PDF
2015-2016学年度下学期七年级期末考试数学试卷及参考答案
2015-2016学年度七年级下学期期末考试试卷数 学一、精心选一选,旗开得胜 (每小题3分, 满分30分,请将正确答案的序号填写在下表内)1. 如果向北走2米记作+2米,那么-3米表示A. 向东走3米B.向南走3米C.向西走3米D.向北走3米 2.下列说法中正确的是A. -a 一定是负数B. |a |一定是正数C. |a |一定不是负数D. |a |一定是负数。
3.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是A.6105.2⨯千克 B.5105.2⨯千克 C.61046.2⨯千克 D.51046.2⨯千克4.电影院第一排有m 个座位,后面每一排比前一排多2个座位,则第n 排的座位数有 A. m+2n, B. mn+2 C. m+(n+2) D. m+2(n-1) 5. 已知多项式ax bx +合并的结果为0,则下列说法正确的是A. a=b=0B.a=b=x=0C.a -b=0D.a+b=0 6.下列计算正确的是A.224a b ab +=B.2232x x -= C.550mn nm -= D.2a a a += 7.如图1,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是图18. 若式子x -1的值是-2,则x 的值是A 、-1B 、-2C 、-3D 、-4 9. 若a <0时,a 和-a 的大小关系是 A .a >-aB .a <-aC .a =-aD .都有可能10. 某班的5位同学在向“希望工程”捐款活动中,捐款如下(单位:元):4,3,8,2,8,那么这组数据的众数、中位数、平均数分别为A .8,8,5B .5,8,5C .4,4,5D .8,4,5二、耐心填一填,一锤定音 (每小题3分, 满分18分)11. -3.5的相反数是 .12.下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是 .13. 一个正多面体有六个面,则该多面体有 条棱. 14.欢欢将自己的零花钱存入银行,一年后共取得102元,已知年利 率为2%,则欢欢存入银行的本金是 元. 15. 比较大小: 34-56-.(填“<”、“>”或“=”) 16. 小明家上个月支出共计800元,各项支出如图2所示,其中用于教育上的支出是 元.三、细心想一想,慧眼识金 (每小题6分, 满分24分17. 计算:[]22)32(95542)3(6)2(⨯÷-÷⨯--+-18.求不等式1223++x >39+x 的最小整数解19. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中12x =,1y =-”.甲同学把“12x =”错抄成“12x =-”,但他计算的最后结果,与其他同学的结果都一样.试说明理由,并求出这个结果.20. 马小哈在解一元一次方程“⊙329x x -=+”时,一不小心将墨水泼在作业本上了,其中未知数x 前的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“∴原方程的解为2x =-”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?四、用心画一画,马到成功 (每小题4分,满分8分)21、画出如下图3中每个木杆在灯光下的影子。
湖南省永州市七年级下学期数学期末考试试卷
湖南省永州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·湖州期中) 如图所示,,,平分,则图中与相等的角有()个.A .B .C .D .2. (2分)收集数据的方法是()A . 查资料B . 做实验C . 做调查D . 以上三者都是3. (2分)如图,下列判断正确的是()A . 若∠1+∠2=180°,则l1∥l2B . 若∠2=∠3,则l1∥l2C . 若∠1+∠2+∠3=180°,则l1∥l2D . 若∠2+∠4=180°,则l1∥l24. (2分)点A(-2,1)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)下列说法正确的是()A . 一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据6,8,7,8,8,9,10的众数和中位数都是8D . 若甲组数据的方差S2甲=0.01,乙组数据的方差S2乙=0.1,则乙组数据比甲组数据稳定6. (2分) (2017八上·西湖期中) 如图在中,,分别是、上的点,作,,垂足分别是,,,,下面三个结论:① ;② ;③≌ .其中正确的是().A . ①②B . ②③C . ①③D . ①②③7. (2分) (2016七下·辉县期中) 使不等式x﹣3<4x﹣1成立的x的值中,最小的整数是()A . 2B . ﹣1C . 0D . ﹣28. (2分)相关数据显示:“鸡、鸭、鹅、鸽子的孵化期分别为21天、30天、30天、16天”,选用最适合的统计图表示这条信息的是()A . 折线统计图B . 条形统计图C . 扇形统计图D . 不确定9. (2分) (2017七下·柳州期末) 若方程组的解为,则点P(a,b)所在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .11. (2分)下列说法中,正确的是()A . 每个命题都有逆命题;B . 每个定理都有逆定理;C . 真命题的逆命题也是真命题;D . 假命题的逆命题也是假命题.12. (2分)(2017·石家庄模拟) 如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC 的度数别为x°、y°,根据题意,下列的方程组正确的是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)把方程2(x+y)﹣3(x﹣y)=3改写成用含y代数式表示x的形式,得________.14. (1分)(2018·广东) 一个正数的平方根分别是x+1和x﹣5,则x=________.15. (1分) (2020七上·青岛期末) 有100个数据,其中最大值为76,最小值为32,若取组距为5,对数据进行分组,则应分为________组.16. (1分)(2017·滨江模拟) 不等式组的最大整数解为________.17. (1分) (2017八上·莒县期中) 把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠BOG=________.18. (1分)请你来玩“24”点游戏,给出3、﹣5、﹣12、7四个数凑成24的算式________三、解答题 (共8题;共65分)19. (10分) (2020八上·港南期末)(1)计算:(2)先化简,再求值:,其中, .20. (5分)根据不等式的基本性质,把﹣2x<15化成“x>a”或“x<a”的形式.21. (15分)(2019·山西模拟) 综合与实践:再探平行四边形的性质问题情境:学完平行四边形的有关知识后,同学们开展了再探平行四边形的性质数学活动,以下是“希望小组”得到的一个性质:如图1,已知▱ABCD中,∠BAD>90°,AE⊥BC于点E ,AF⊥CD于点F ,则∠EAF=∠ABC .问题解决:(1)如图2,当0°<∠BAD<90°时,∠EAF=∠ABC还成立吗?证明你发现的结论;(2)如图2,连接EF和AC ,若∠ACB=27°,求∠AFE的度数;拓广探索:(3)如图3,当0°<∠BAD<90°且AB=BC时,已知EF与AB , AD分别相交于点M和点N ,探究图中由点A , E , M , N , F五个点构成的线段或角的数量关系,请你直接写出两个结论(不考虑直角,不必证明).22. (11分)(2018·龙东) 为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=________,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?23. (5分)(2011·嘉兴) 解不等式组:,并把它的解在数轴上表示出来.24. (5分)在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)(1)若点A在y轴上,求a的值及点A的坐标.(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.25. (10分) (2017七下·东城期末) 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?26. (4分) (2017八上·灌云月考) 如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1 ,第二次将△QA1B1变换成△OA2B2 ,第三次将△OA2B2变换成△OA3B3 .已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0)(1)观察每次变换前后三角形的变化规律,若再将△OA3B3变换成△OA4B4 ,则点A4的坐标为________,点B4的坐标为________;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn ,则点An的坐标为________,点Bn的坐标为________.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共65分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
【最新】2015-2016学年度湘教版七年级数学第二学期期末测试卷(含答案)
的平均成绩是
,方差是
。
A
17、在△ ABC 中, AB=AC ,AB 的垂直平分线与 AC
所在的直线相交得到的锐角是 50°,则∠ B=
。
18、如图所示,将△ ABC 形的纸片沿 DE 折叠,点
A 落在 A′处,已知∠ 1+∠ 2=100°,则∠ A= 三、解答题( 58 分)
。 B
x y1 19、( 6 分)解方程组:
A
B
1
E
2
C
D
第 21 题
22、( 12 分)“巍巍古寺在山林,不知寺内几多僧,三百六十四只碗,看看用尽 不差争,三人共食一碗饭,四人共吃一碗羹,请问先生明算者,算来寺内几多 僧?” 题目大意:一寺庙内不知有多少僧人,已知饭碗和汤碗共 364 只,如果 3 人共 用一只饭碗吃饭, 4 人共用一只汤碗喝汤,正好用完所有的碗,问:寺庙内有多 少僧人?
7、下列由左边到右边的变形,是因式分解的是(
)
A. am+bm- 1=m(a+b)- 1; B.(x+2)(x- 5)=x2- 3x- 10;
C. x2+5x+4=x(x+5+ 4 ); x
D.x2- 4x=x(x- 4);
DE
F
8、24 与 64 的最大公因数是( )
A. 2;
B.4; C.6;
D. 8;
)
A.相交; B.平行; C.平行或在同一直线上且相等; D.相等;
二、填空题( 32 分)
x1
11、写出一个解为
的二元一次方程组
。
y2
12、在 2015 年体育考试中,某校 6 名学生的分数分布是 27、28、29、 28、26、
2015-2016湘教版数学七年级下册期末测试卷(含答案解析)
2015-2016湘教版数学七年级下册期末测试卷(含答案解析)湘教版数学七年级下册期末测试题一、填空题(第1题每空1.5分,2-10题每题3分,共36分)1、计算:x·x2·x3=______;(-x)·(-x)=______。
2、1,3,5,7,9这组数据的平均数是_______,方差是_______。
3、已知二元一次方程组2x+y=7x+2y=8则x-y=_______,x+y=_______。
4、不等式组3x+4<22x+1<3的解是_______。
5、已知∠α=60°,则∠α的补角等于_______。
6、已知|2a-b|是(b-1),则(a+b)=_______。
7、若-4xm-2的相反数,则y3与x3y7-2n是同类项,则m2+2n=_______。
8、多项式2x+y+3的次数是_______。
9、三角形有两边的长为2cm和9cm,第三边的长为xcm,则x的范围是_______。
10、当等腰三角形的一个外角为100时,这个等腰三角形的内角分别是_______。
二、选择题(每小题3分,共30分)11、下列图案中,不能用平移得到的图案是()ABCD12、面四个图形中,∠1与∠2是对顶角的是()221212113、下面四个图形中,∠1,∠2不是同位角的是()ABCD14、下列说法正确的是()A、-1是单项式B、2x是7次单项式C、单项式a的系数是1D、单项式a的次数是015、平面内有三条直线a,b,c,若a⊥b,b⊥c,则()A、a⊥cB、a//cC、a与c相交D、a与c既不相交也不平行。
16、两条直线被第三条所截,则()A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对17、下面各式中计算正确的是()A、(x-2)(x+2)=x2-4B、(x-2)2=x2-4x+4C、(-2x-1)(2x-1)=-4x2-3D、(-2x-3)(2x+9)=-4x2-15x-2718、下面命题错误的是()A、等腰三角形的两个底角相等B、等腰三角形的底边大于腰C、等边三角形一定是锐角三角形D、等边三角形每个外角都等于120°19、数据82,60,71,93,95的极差是_______。
湖南省永州市七年级下学期期末数学试卷(五四学制)
湖南省永州市七年级下学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七下·广饶开学考) 二元一次方程x+y=5的正整数解有()个.A . 4B . 5C . 6D . 7个2. (2分) (2019八下·罗湖期中) 一元一次不等式组的解集是x>a ,则a与b的关系为()A . a≥bB . a>bC . a≤bD . a<b3. (2分)一个等腰三角形的一个内角为90°,那么这个等腰三角形的一个底角为()A . 90°B . 45°C . 50°D . 22.5°4. (2分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是()A . 两种客车总的载客量不少于500人B . 两种客车总的载客量不超过500人C . 两种客车总的载客量不足500人D . 两种客车总的载客量恰好等于500人5. (2分)(2020·南充模拟) 下列说法正确的是()A . 可能性很大的事件,在一次试验中一定发生B . 可能性很小的事件,在一次试验中可能发生C . 必然事件,在一次试验中有可能不会发生D . 不可能事件,在一次试验中也可能发生6. (2分) (2019七下·迁西期末) 如图,,,则、、的关系为A .B .C .D .7. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在丙区域内的概率是()A . 1B .C .D .8. (2分) (2016九上·南浔期末) 如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于 AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结DE,DF.若BD=6,AF=5,CD=3,则BE的长是()A . 7B . 8C . 9D . 109. (2分)下列命题是真命题的是()A . 有一个角相等的两个等腰三角形相似B . 两边对应成比例且有一个角相等的两个三角形相似C . 四个内角都对应相等的两个四边形相似D . 斜边和一条直角边对应成比例的两个直角三角形相似10. (2分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔A . 1B . 2C . 3D . 411. (2分) (2020七下·巴中期中) 已知方程组的解满足,则k的值为()A .B .C .D .12. (2分)如图,一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西20º的方向行驶40海里到达C地,则A、C两地相距()A . 40海里B . 30海里C . 50海里D . 60海里二、填空题 (共6题;共6分)13. (1分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=70°,则∠AED′等于________14. (1分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个.15. (1分) (2020八下·蓬溪期中) 若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是________ .16. (1分) (2018八上·泰兴期中) 如图,OP平分∠AOB,∠AOP=15°,PC∥OB,PD⊥OB于点D,PD=3,则PC等于________.17. (1分)如图:函数y=2x和y=ax+4的图象交于点A(m,2),不等式2x<ax+4的解集为________ .18. (1分)某校举行“中国梦•劳动美”知识竞赛,其评分规则如下:答对一题得5分,答错一题得﹣5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格.设小明答对x道题,答错y道题,则可列出满足题意的方程组为________ .三、解答题 (共7题;共57分)19. (10分) (2015七下·绍兴期中) 用适当方法解下列方程组.(1)(2).20. (6分) (2016七下·威海期末) 如图,点M,N分别在∠AOB的边OA,OB上,且OM=ON.(1)利用尺规作图:过点M,N分别作OA,OB的垂线,两条垂线相交于点D(不用写作法,只保留作图痕迹);(2)连接OD,若∠AOB=70°,则∠ODN的度数是________.21. (6分)(2019·莲湖模拟) 为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为________,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.22. (5分) (2018八上·武汉期中) 已知△ABN和△ACM的位置如图所示,∠1=∠2,AB=AC,AM=AN,求证:∠M=∠N.23. (10分)(2017·南漳模拟) 某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?24. (10分) (2020九上·镇海期中) 如图,A,B,C是⊙O上的点,其中 =2 ,过点B画BD⊥OC.于点D.(1)求证:AB=2BD.(2)若AB=2 ,CD=1,求图中涂色部分的面积.25. (10分)已知直线L经过点A(﹣2,0),B(0,3)(1)求直线L的解析式.(2)在x轴上有一点P,且△ABP是等腰三角形,求点P的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共57分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。
2015-2016人教版七年级数学下册期末考试卷及答案
2014-2015人教版七年级数学下册期末考试卷C及答案 A AA 1 一、选择题:(本大题共10个小题,每小题3分,共30分) 小刚 D P1.若m>-1,则下列各式中错误的是()... B C 1 小军 C BA.6m>-6 B.-5m<-5C.m+1>0 D.1-m<2 1 CB小华2.下列各式中,正确的是( ) (1) (2) (3) 23( 4)A.=±4 B.±=4 C.=-3 D.=-4 1616 277.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三3.已知a>b>0,那么下列不等式组中无解的是()..角形的个数是().4.B.C.D. Ax ax ax ax a A.在各个B.3 C.2 D.1 x bx bx bx b 18内角都相等的多边形中,一个外角等于一个内角的,则这个4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,2多边形的边数是()那么两个拐弯的角度可能为()A.5 B.6 C.7 D.8 (A) 先右转50°,后右转40° (B) 先右转50°,后左转40°9.如图(2),△ABC是由△ABC沿BC方向平移了BC长度的一半得到的,(C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 1112若△ABC的面积为20 cm,则四边形ADCC的面积为() x 1 115.解为的方程.10 cmB.12 c m C.15 cm组是() y 22222 AD.17 cm10.课间操时,小华、小军、小刚的位置如图3,小华对小刚说,如果C. D.我的位x y 1x y 1x y 3x 2y 3 A. B.置用(•0,0)表示,3x y 13x y 53x y 53x y 5小军的位置用(2,1)表示,那么你的位置可以表示成( ) 00 A.(5,4) B.(4,5)C.(3,4)D.(4,3) 6.如图(1),在△ABC中,∠ABC=50,∠ACB=80,BP平分∠ABC,CP平分二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填∠ACB,则∠BPC的大小是()0000在答题卷的横线上.A.100 B.110 C.115 D.120 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 第 1 页共 4 页七年级数学下册期末考试卷C12.不等式5x-9≤3(x+1)的解集是________.19.解不等式组:,并把解集在数轴上x 3(x 2) 4,表示出来.2x 1x 1 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. . 25 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. D李庄A312 x y 20.解方程组:342 火车站15.从A沿北偏东60°的方4(x y) 3(2x y) 17 BC向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠ABC=_______度. 16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.21.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正明理由。
七年级下册永州数学期末试卷复习练习(Word版 含答案)
七年级下册永州数学期末试卷复习练习(Word 版 含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠ 2.下列现象属于平移的是() A .投篮时的篮球运动 B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,假命题的数量为( )①如果两个角的和等于平角,那么这两个角互为补角;②内错角相等;③两个锐角的和是锐角;④如果直线a ∥b ,b ∥c ,那么a ∥c .A .3B .2C .1D .05.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76°6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,已知//AB CD ,点E 在CD 上,连接AE ,作EF 平分AED ∠交AB 于点F ,60AFE ∠=︒,则AEC ∠的度数为( ).A .60AEC ∠=︒B .70AEC ∠=︒ C .80AEC ∠=︒D .90AEC ∠=︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2021的坐标为( ) A .(﹣3,1) B .(0,﹣2) C .(3,1) D .(0,4)二、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.10.点()3,2A -关于y 轴对称的点的坐标是______.11.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则∠A 与∠C 的等量关系是________________(等式中含有α)12.如图,直线AB ∥CD ,OA ⊥OB ,若∠1=140°,则∠2=_____度.13.如图, 把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG=54°,则∠EGB=_______.14.任何实数a ,可用[]a 表示不超过a 的最大整数,如[4]4,[3]1==,现对72进行如下操作:7272]8[8]2[2]1−−−→=−−−→=−−−→=第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________.15.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足()22222a b b c c -+++=--BC 与y 轴的交点坐标为__________.16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.三、解答题17.计算:(1)232(222312127(6)(5)--18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD ,∴2∠=________( )又∵12∠=∠,∴13∠=∠,∴//AB __________( )∴______180AGD ∠+=︒( )∵110AGD ∠=︒,∴BAC ∠=______度.20.如图,三角形ABC在平面直角坐标系中,(1)请写出三角形ABC各点的坐标;(2)将三角形ABC经过平移后得到三角形A1B1C1,若三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b+2),写出A1B1C1的坐标,并画出平移后的图形;(3)求出三角形ABC的面积.21.例如∵479.即273<,∴7的整数部分为272,仿照上例回答下列问题;(117介于连续的两个整数a和b之间,且a<b,那么a=,b=;(2)x172的小数部分,y171的整数部分,求x=,y=;x的平方根.(3)求(17)y二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.已知点C 在射线OA 上.(1)如图①,CD //OE ,若∠AOB =90°,∠OCD =120°,求∠BOE 的度数;(2)在①中,将射线OE 沿射线OB 平移得O ′E '(如图②),若∠AOB =α,探究∠OCD 与∠BO ′E ′的关系(用含α的代数式表示)(3)在②中,过点O ′作OB 的垂线,与∠OCD 的平分线交于点P (如图③),若∠CPO ′=90°,探究∠AOB 与∠BO ′E ′的关系.24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】根据同位角的定义即可求出答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角.故选:B .【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ; B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C .【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.B【分析】构建不等式求出m ,n 的范围可得结论.【详解】解:由题意,3040m n +<⎧⎨->⎩, 解得:34m n <-⎧⎨>⎩, ∴A (m ,n )在第二象限,故选:B .【点睛】此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题. 4.B【分析】根据平角和补角的性质判断①;内错角不一定相等判断②;根据锐角的定义:小于90°的角,判断③;根据平行线的性质判断④.【详解】根据平角和补角的性质可以判断①是真命题;两直线平行内错角相等,故②是假命题;两锐角的和可能是钝角也可能是直角,故③是假命题;平行于同一条直线的两条直线平行,故④是真命题,因此假命题有两个②和③,故选:B.【点睛】本题考查了平角、补角、内错角、平行线和锐角,熟练掌握相关定义和性质是解决本题的关键.5.B【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.【详解】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,即∠E+2∠BFC=180°,①又∵∠E-∠BFC=48°,∴∠E =∠BFC+48°,②∴由①②可得,∠BFC+48°+2∠BFC=180°,解得∠BFC=44°,故选:B.【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.C解:由题意可知4的算术平方根是2,4的算术平方根是2<,8的立方根是2,故根据数轴可知,故选C7.A【分析】由平行线的性质可得60DEF AFE ∠=∠=︒,再由角平分线性质可得2120AED DEF ∠=∠=︒,利用邻补角可求AEC ∠的度数.【详解】解://AB CD ,60AFE ∠=︒,60DEF AFE ∴∠=∠=︒, EF 平分AED ∠交AB 于点F ,2120AED DEF ∴∠=∠=︒,18060AEC AED ∴∠=︒-∠=︒.故选:A .【点睛】本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质.8.C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(﹣3,1),A 4(0,﹣2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A 2021的坐标与A 1的坐标相同,为(3,1).故选:C .本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题9.【分析】设这个正方形的边长为x (x >0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x (x >0).由题意得:x2=3.∴x =.故答案为:.【点睛【分析】设这个正方形的边长为x (x >0),由题意得x 2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x (x >0).由题意得:x 2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.10.【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y 轴对称的点的坐标是,故答案为:.【点睛】本题考查了点坐标解析:()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 11.∠A =∠C+2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A+∠ABC =180°,∠ADC+∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠ 解析:∠A =∠C +2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A +∠ABC =180°,∠ADC +∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠C +2α即可得到答案.【详解】解:如图所示:∵BD 为∠ABC 的角平分线,∴∠ABC =2∠CBD ,又∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A +2∠CBD =180°,又∵DF 是∠ADC 的角平分线,∴∠ADC =2∠ADF ,又∵∠ADF =∠ADB +α∴∠ADC =2∠ADB +2α,又∵∠ADC +∠C =180°,∴2∠ADB +2α+∠C =180°,∴∠A +2∠CBD =2∠ADB +2α+∠C又∵∠CBD =∠ADB ,∴∠A =∠C +2α,故答案为:∠A =∠C +2α.【点睛】本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.12.50【分析】先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.【详解】∵OA⊥OB,∴∠O=90°,∵∠1=∠3+∠O=1解析:50【分析】先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2.【详解】∵OA⊥OB,∴∠O=90°,∵∠1=∠3+∠O=140°,∴∠3=∠1﹣∠O=140°﹣90°=50°,∵AB∥CD,∴∠2=∠3=50°,故答案为:50.【点睛】此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题.13.108°【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的解析:108°【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EG B.【详解】解:∵AD∥BC,∠EFG=54°,∴∠DEF =∠EFG =54°,∠1+∠2=180°,由折叠的性质可得:∠GEF =∠DEF =54°,∴∠1=180°-∠GEF -∠DEF =180°-54°-54°=72°,∴∠EGB =180°-∠1=108°.故答案为:108°.【点睛】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF 的度数.14.255【分析】根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:∵,,,∴对144只需进行3次操作解析:255【分析】根据运算过程得出12=,3=,1=,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:∵12=,3=,1=,∴对144只需进行3次操作后变为1, ∵15=,3=,1=,∴对255只需进行3次操作后变为1,从后向前推,找到需要4次操作得到1的最小整数,∵1=,2=, 4=, 16=,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:3,255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.15.【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】∵、都有意义,∴,∴,∴,∴,∵第四象限的点到轴的距离为3,∴C 点的坐标为,设直 解析:30,2⎛⎫- ⎪⎝⎭ 【分析】根据二次根式的非负性、绝对值的非负性求出a ,b ,再求出直线BC 的解析式即可得解;【详解】∵都有意义,∴2c =, ∴()2220a b b -+++=,∴2020a b b -+=⎧⎨+=⎩, ∴42a b =-⎧⎨=-⎩, ∵第四象限的点(),C c m 到x 轴的距离为3,∴C 点的坐标为()2,3-,设直线BC 的解析式为y kx d =+,把()2,0-,()2,3-代入得:2320k d k d +=-⎧⎨-+=⎩, 解得:3432k d ⎧=-⎪⎪⎨⎪=-⎪⎩, 故BC 的解析式为3342y x =--, 当0x =时,32y =-, 故BC 与y 轴的交点坐标为302⎛⎫ ⎪⎝⎭,-; 故答案是302⎛⎫ ⎪⎝⎭,-. 【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、2021,2解析:()【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,÷=⋯,202145051A坐标是(2021,2).故点2021故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.三、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行).∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).∵∠AGD=110°,∴∠BAC=70度.故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.20.(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;解析:(1)A(-2,-2),B(3,1),C(0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A、B、C的坐标;(2)先利用点的坐标平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC的面积.【详解】解:(1)如图观察可得:A(-2,-2),B(3,1),C(0,2);(2)根据三角形ABC中任意一点M(a,b)与三角形A1B1C1的对应点的坐标为M1(a-1,b +2)可知,△ABC 向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A 1(-3,0),B 1(2,3),C 1(-1,4),平移后的△A 1B 1C 1如下图所示: ;(3)111545313247222ABC S ==⨯-⨯⨯-⨯⨯-⨯⨯. 【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)174,3x y =;(3)8±【分析】(117a 、b 的值;(2172171的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x叫做a二十三、解答题23.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠ 解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 26.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)解析:(1)①70;②∠F=123045α︒≤<︒【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED ,理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ;(3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
湖南省永州市七年级下学期期末考试数学试题
湖南省永州市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)图中的小船通过平移后可得到的图案是()A .B .C .D .2. (2分) (2019七上·道外期末) 正数5的算术平方根是()A .B .C .D .3. (2分) (2019七下·钦州期末) 下列调查中,适合用全面调查方式的是()A . 了解市场上酸奶的质量情况B . 了解一批签字笔的使用寿命情况C . 了解某条河流的水质情况D . 了解某校七年级甲班学生期中数学考试的成绩4. (2分) (2018八上·海曙期末) 下列语句是命题的是()A . 延长线段ABB . 过点A作直线a的垂线C . 对顶角相等D . x与y相等吗?5. (2分) (2011八下·建平竞赛) 根据下列表述,能确定位置的是()A . 某电影院2排B . 南京市大桥南路C . 北偏东30°D . 东经118°,北纬40°6. (2分) (2019七下·廉江期末) 若m<n,则下列不等式不成立的是()A .B .C .D .7. (2分)(2017·崇左) 如图所示BC∥DE,∠1=108°,∠AED=75°,则∠A的大小是()A . 60°B . 33°C . 30°D . 23°8. (2分)不等式4x<11的正整数解是()A . 1;2;3B . 0;1;2C . 1;2;﹣1D . 1;29. (2分) (2019七上·东阳期末) 若单项式与单项式是同类项,那么这两个单项式的和是()A .B .C .D .10. (2分) (2017八下·宾县期末) 实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是()A . ﹣2a+bB . 2a﹣bC . ﹣bD . b11. (2分)在频数分布表中,各小组的频数之和()A . 小于数据总数B . 等于数据总数C . 大于数据总数D . 不能确定12. (2分)(2014·防城港) 下列命题是假命题的是()A . 四个角相等的四边形是矩形B . 对角线相等的平行四边形是矩形C . 对角线垂直的四边形是菱形D . 对角线垂直的平行四边形是菱形二、填空题 (共6题;共8分)13. (1分)如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________14. (1分) (2018七下·黑龙江期中) 等腰三角形的两边长分别是3和7,则其周长为________.15. (1分) (2019七上·大东期末) 若则 ________.16. (1分)(2018·绥化) 为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品每种体育用品都购买,其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.17. (1分) (2018八下·句容月考) 大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势应选用________统计图来描述数据.18. (3分)如图,在6×4的正方形网格中,点A、B、C、D、E、F都在格点上.连接点A、B得线段AB.(1)连接C、D、E、F中的任意两点,共可得________ 条线段,在图中画出来;(2)在(1)中所连得的线段中,与AB平行的线段是________ ;(3)用三角尺或量角器度量、检验,AB及(1)中所连得的线段中,互相垂直的线段有几对?(请用“⊥”表示出来)________ .三、解答题 (共6题;共56分)19. (10分)(2018·商河模拟) 如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.20. (5分)求下列各式中的x.①x2=25②(x﹣3)3=27.21. (5分) (2017八上·鄞州月考) 如图,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC 交BC于点E,DF⊥AE于点F,求∠ADF的度数.22. (15分) (2017八下·嘉祥期末) 已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.23. (10分) (2017七下·平南期末) 某班将举行“防溺水安全知识竞赛”活动,班主任安排班长购买奖品,下面是班长买回奖品时与班主任的对话情况:班长:买了两种不同的奖品共50件,单价分别为3元和5元,我领了200元,现在找回35元班主任:你肯定搞错了!班长:哦!我把自己口袋里的15元一起当作找回的钱款了.班主任:这就对了!请根据上面的信息,解决下列问题:(1)计算两种奖品各买了多少件?(2)请你解释:班长为什么不可能找回35元?24. (11分) (2019七下·随县月考) 问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为________度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC 与α、β之间的数量关系.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共56分) 19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
2015-2016学年第二学期7下数学期末试题与答案
七年级数学试题与答案 第1页(共2页)2015—2016学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题3分,计30分. 1.下列命题中是假命题的是A.对顶角相等B.邻补角是互补的角C.同旁内角互补D.垂线段最短2.23的算术平方根是A.3B. ±3.已知点A (a +3,a -2)位于第四象限,则a 的取值范围是 A .a <-3B .a > 2C .-3<a <2D .-2<a <34.在平面直角坐标系中,将点P (-2,1)向左平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是A .(1,5)B .(-5,5)C .(1,-3)D .(-5,-3) 5.若x >y ,则下列式子错误的是A. x ﹣3>y ﹣3B.﹣3x >﹣3yC. x +3>y +3D. 3x >3y6.若a b +=3,a b -=7,则22a b +的值是A.5B.21C.29D. 857.下列调查:①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查春节联欢晚会收视率;④选出某校短跑最快的学生参加全市比赛.其中适宜抽样调查的是A. ①②B. ①③ 错误!未找到引用源。
C. ②③错误!未找到引用源。
2015—2016学年度第二学期期末考试七年级数学试题带答案
2015—2016学年度第二学期期末考试七年级数学试题是正确的,请将正确选项的代号填在题后的括号内.) 1.下列实数是无理数的是( ) (A (B )3.14 (C )227(D 分析:考查实数的分类,简单题,选A . 2.下列运算正确的是( )(A )222(3)6mn m n -=- (B )4444426x x x x ++=(C )2()()xy xy xy ÷-=- (D )22()()a b a b a b ---=-分析:考查整式的运算,简单题,选C . 3.不等式组21024x x +>⎧⎨<⎩的整数解的个数是( )(A )1 (B )2 (C )3 (D )4 分析:考查不等式组的解集,简单题,选B . 4.如图,BC ∥DE ,AB ∥CD ,∠B =40°,则∠D 的度数是( )(A )40° (B )100° (C )120° (D )140°分析:考查平行线的性质,简单题,选D . 5.若m n >,下列不等式不一定...成立的是( ) (A )22m n ->- (B )22m n > (C )22m n> (D )22m n > 分析:考查不等式的性质,简单题,选D .6.若2(8)(1)x x x mx n +-=++对任意x 都成立,则m n +=( ) (A )8- (B )1- (C )1 (D )8 分析:考查多项式乘法运算,简单题,选B .EDCBA(第4题图)7.有旅客m 人,若每n 个人住一间客房,还有一个人无房间住,则客房的间数为( ) (A )1m n + (B)1m n + (C )1m n - (D )1m n- 分析:考查分式的知识,简单题,选D . 8.如图,在数轴上标注了四段范围,则表示的点落在( )(A )段① (B )段② (C )段③ (D )段④分析:考查无理数的近似值,简单题,选C .9.如图,直线AC ∥BD , AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) (A )互余 (B )相等 (C )互补 (D )不等分析:考查平行线的性质、角平分线、互余的知识,简单题,选A .10.已知3a b -=,2ab =,则22a b +的值为( ) (A )13(B )9 (C )5 (D )4分析:考查完全平方公式的应用,中等题,选A .二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上) 11.64-的立方根是 . 分析:考查立方根,简单题,答案:4-. 12.不等式组12010x x ->⎧⎨+≤⎩的解集为 .分析:考查解不等式组,简单题,答案:1x ≤-. 13.分解因式:282x -= __________.分析:考查因式分解,简单题,答案:2(2)(2)x x -+ .14.规定:[]x 表示不超过x 的最大整数,例如:[3.69]3=,[ 3.69]4-=-,1=. 计算:1-= .分析:考查实数知识,简单题,答案:2.15.如图,将长方形纸片ABCD 折叠,使边AB ,CB 均落(第8题图)(第9题图) FEDCBA在BD 上,得折痕BE 、BF ,则∠EBF = °. 分析:考查角平分线知识的应用,简单题,答案:45.16.从一个边长为2a b +的大正方形中剪出一个边长为b 的小正方形,剩余的正好能剪拼成四个宽为a 的长方形,那么这个长方形的长为 . 分析:考查整式运算的应用,中等题,答案:a b +.17.如图,AB ∥EF ∥CD ,∠ABC=46°,∠CEF=154°,则∠BCE= °.分析:考查角平分线的性质及角的运算,简单题,答案:20°.18.若关于x 的方程2222x mx x++=--的解为正数,则m 的取值范围是 . 分析:考查分式方程及不等式的应用,中等题,答案:6m <且0m ≠. 三、解答题(本大题共6小题,共46分) 19.(本题共6分)计算:(1)2237.512.5- (2)2(2)(2)x a a a x ---解:(1)原式(37.512.5)(37.512.5)=-+………………………2分25501250=⨯=………………………3分(2)原式222442x ax a a ax =-+-+………………………5分 2232x ax a =-+………………………6分分析:(1)考查利用因式分解进行简便运算,简单题;(2)整式乘法的应用,简单题.20.(本题共8分)解不等式:135432y y +--≥,并将其解集在数轴上表示出来.解:去分母,得:2(1)3(35)24y y +--≥………………………4分 去括号,得: 2291524y y +-+≥, 移项、合并同类项,得:77y -≥,系数化为1,得:1y ≤-………………………6分FE DCBA(第17题图)在数轴上表示不等式的解集为:……………………8分分析:考查解一元一次不等式,简单题.21.(本题共8分)先化简,再求值:235(2)236m m m m m -÷+---,其中23m =. 解:原式323(2)(3)(3)m m m m m m --=⋅-+- ……………………3分13(3)m m =+ ………………………6分当23m =时,原式322= ……………………………8分分析:考查分式的化简、求值,简单题.22.(本题共8分)如图,直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,交CD 于点G ,若∠EFG =72°,求∠MEG 的度数. 解:因为AB ∥CD所以∠MEB =∠EFG =72°(两直线平行,同位角相等),∠FEB +∠EFG =180°(两直线平行,同旁内角互补),即∠FEB =108°…………………………4分 而EG 平分∠BEF ,所以∠GEB =12∠FEB =54°(角平分线定义)…………………………6分故∠MEG =∠GEB +∠MEB =54°+72°=126°…………………………8分 说明:括号中的理由可以不写.分析:考查平行线的性质、角平分线及角的计算,简单题.23.(本题共8分)某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.G F EMNDCBA-4 -3 -2 -1 0 1 2 3 4(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)解:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件, 由题意可得:2880013200102x x-=,……………………2分 解得120x =,经检验120x =是原方程的根.……………………3分 答:该商家购进的第一批衬衫是120件.…………………………4分(2)设每件衬衫的标价至少是a 元,由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:28800240120÷=(元/件).…………5分由题意可得:120(110)1202(120)30%(2880013200)a a -+⨯-≥⨯+……7分 解得21513a ≥,即每件衬衫的标价至少是152元.………………8分分析:(1)考查列分式方程解应用题,简单题;(2)考查列一元一次不等式解应用题,中等题.24.(本题共8分)如图是用总长为8米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC =EB=x 米. (1)用含x 的代数式表示AB 、BC 的长;(2)用含x 的代数式表示长方形ABCD 的面积(要求化简). 解:(1)由题意得,AE=DF=HG=2x ,DH=HA=GE=FG ,所以AB=23x x x +=(米)……3分 BC=AD=EF=83328833x x x x----=(米)…………6分(2)8833ABCD xS AB BC x -=⨯=⨯………………………7分 2(88)88x x x x =-=-(平方米)………………………8分 分析:考查列代数式,及整式的应用,较难题.x区域③②区域①区域A BCEFHGD。
2015-2016学年度第二学期期末检测七年级数学试题及答案
abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。
每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。
)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。
湖南七年级数学下册期末试卷(附答案)学习资料
湖南七年级数学下册期末试卷(附答案)xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、计算题四、简答题五、综合题总分得分一、选择题(每空3分,共24 分)1、已知,则为()A.15B.14C.16 D.172、如图3,直线AB、CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=()A.30°B.45°C. 60°D. 120°3、下列命题中,不正确的是()A.在同一平面内,过一点有而且只有一条直线与已知直线垂直B.经过直线外一点,有而且只有一条直线与这条直线平行评卷人得分C.垂直于同一直线的两条直线垂直D.平行于同一直线的两条直线平行4、下列为二元一次方程的是 ( ) (A) ; (B);(C) ; (D)5、已知方程是二元一次方程,则m+n的值()A.1B. 2C.-3D.36、下列各式为完全平方式的是()A.a2+2ab-b2 B.a2b-2ab+ab=2C.4(a+b)2-20(a+b)2+25 D.-2a2+4ab+2b27、下列运算结果正确的是()A. B.C. D.8、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33分米 2 B.24分米2C.21分米 2 D.42分米2二、填空题(每空3 分,共24 分)9、已知是方程的解,则m=____________.10、如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度。
11、已知方程2+3-4=0,用含的代数式表示为:=_______;用含的代数式表示为:=________.12、如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=62°,则∠1=_________.13、计算所得的结果是()A.-2 B.2 C.-D.评卷人得分14、若(x+5)(x-7)=x2+m x+n,则m=__________,n=________.15、一组数据3、4、5、a、7的平均数是5,则它的方差是16、已知,,则的值为 .三、计算题(17-23每小题4分,24题8分,共36 分)17、18、解方程组:.19、20、把下列各式分解因式21、把下列各式分解因式22、将下列各式分解因式:.23、因式分解:(1)评卷人得分24、先化简再求值:,其中四、简答题评卷人得分(每空分,共 29分)25、小明与他的爸爸一起做投篮游戏,两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分,两人共投中20个,经计算两人的得分恰好相等.他们两人各投中几个?(5分)26、某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示:(((7分)))类型A型B型价格进价(元/件)60 100标价(元/件)100 160(1)这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27、A、B两地相距40千米,甲、乙两人分别同时从A、B两地出发,相向而行,两小时后两人相遇,然后甲即返回A地,乙继续前进,当甲回到A地时,乙离A地还有4千米,求甲、乙两人的速度。
2015-2016(下)七年级数学期末试题及答案
2015-2016学年度七年级(下)期末教学质量监测数 学 试 卷(满分150分,考试时间120分钟)题号 一 二 三 四 五 总分 得分得分 评卷人 一、选择题:(本大题12个小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项符合题意. 1. 在6,4,0,3-这四个数中,最大的数是( )A .3-B .0C .4D .6 2. 下面各图中∠1和∠2是对顶角的是( )A .B .C .D .3. 下列图形中,由如图经过一次平移得到的图形是( )A .B .C .D .4. 下列各组数中是方程组⎩⎨⎧=+=-104332y x y x 的解为 ( )A. 21x y =⎧⎨=⎩B.27x y =-⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 33x y =⎧⎨=⎩5. 在平面直角坐标系中,将点P )1,2(-向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,3-)D .(5-,5)第3题图6. 下列调查中,须用普查的是( )A .了解某市学生的视力情况B .了解某市中学生课外阅读的情况C .了解某班学生“50米跑”的成绩D .了解某市老年人参加晨练的情况 7.不等式102<x 的解集在数轴上表示正确的是( )A .B .C .D . 8. 如图是某班学生参加兴趣小组的人数占总人数比例的统计图, 则参加人数最多的课外兴趣小组是( ) A .棋类组 B .演唱组 C .书法组 D .美术组9. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( )A .40°B .35°C .50°D .45° 10. 如图,数轴上A 、B 两点表示的数分别为2和1.5,则A 、B 两点之间表示整数的点共有( ) A .6个 B .5个 C .4个 D .3个11. 把一根长7m 的钢管截成2m 和1m 长两种规格的钢管,怎样截不造成浪费?你有几种不同的截法( )A .5种B .4种C .3种D .2种12. 把一些书分给几位同学,如果每人3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?设有学生x 人,所列不等式组为( )A . ⎩⎨⎧++<-+≥-3)1(583)1(583x x x xB .⎩⎨⎧+-<+->+3)1(583)1(583x x x xC .⎩⎨⎧+->+-≤+3)1(583)1(583x x x x D .⎩⎨⎧+-<+-≥+3)1(583)1(583x x x x 得分 评卷人 二、填空题:(本大题6个小题,每小题4分,共24分)13. 实数4的平方根是 .14. 如图,直线a 和直线b 相交于点O ,∠1=50°,则∠2 = .15. 不等式组⎩⎨⎧<-≥-02401x x 的最小整数解是 .第9题图 第14题图第8题图 第10题图16. 如图,△DEF 是由△ABC 通过平移得到,且点B 、E 、C 、F 在同一条直线上.若BF=14,EC=6. 则BE 的长度是17. 张老师想了解本校“生活中的数学知识”大赛的成绩 分布情况,随机抽取了100份试卷的成绩(满分为 120分,成绩为整数),绘制成如图所示的统计图. 由图可知,成绩不低于90分的共有 人.18. 如图,在平面直角坐标系中,A (1,1)、B (1-,1)、C (1-,2-)、D (1,2-).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A-B-C-D-A-…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 .19. 计算:24234183--+--得分 评卷人三、解答题:(本大题2个小题,每小题7分,共14分)解答时每 小题必须写出必要的演算过程.第16题图第17题图第18题图20. 如图,把△ABC 向上平移4个单位长度,再向右平移2个单位长度得△A ′B ′C ′,解答下列 问题:(1)在图上画出△A′B′C′(2)写出点A′、B′、C′的坐标得分 评卷人 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程. 21.(1)解方程组356415x z x z -=⎧⎨+=-⎩ ①②(2)解不等式组⎪⎩⎪⎨⎧-≥+>+3148)2(3x x x x ,并将解集在数轴上表示出来.● ●●A BC22. 完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD. 求证:∠EGF=90°证明:∵HG ∥AB (已知)∴∠ =∠3( ) ∵HG ∥CD (已知) ∴∠2=∠ 又∵AB ∥CD (已知)∴ + =180°( ) 又∵EG 平分∠BEF (已知)∴∠1=21∠ 又∵FG 平分∠EFD (已知)∴∠2=21∠ ∴∠1+∠2= 21( )∴∠1+∠2=90° ∴∠3+∠4=90° ( ) 即∠EGF=90°.23. 初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?第22题图24. 某中学七年级学生在社会实践中,调查了500位市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.(1)请你将图①这个统计图改成用折线统计图表示的形式;(2)请根据此项调查,对城市交通给政府提出一条建议.图①图②五、解答题:(本大题2个小题,第25小题12分,第26小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程.25. 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家商场购物花费少?26. 如图1,在平面直角坐标系中,A (0,a ),C (b ,4),且满足()0322=-+-b a ,过C 作CB ⊥x 轴于B .(1)求a ,b 的值;(2)如果在第二象限内有一点P (m ,21),请用含m 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.第26题图2015-2016年度七年级(下)期末教学质量监测数学试卷答案一、选择题:1、C2、B3、D4、A5、B6、C7、D8、B9、A 10、C 11、C 12、D 二、填空题:13、2± 14、50° 15、3 16、4 17、27 18、(-1,-1) 三、解答题: 19、解:24234183--+--=)22(23212--+-- ………………… 4分 =2223212+-+-- ………………… 5分=24214+- ………………… 7分20、解:(1)…………………………… 4分(2) A′(0 , 6 ); B′(-1 , 2 );C′(5 , 2 ) …………………………… 7分四、解答题21 、(1)解:由②得154x z =-- ③,……………… 1分把③代入①,得3(154)56z z ---= 3=-∴z ……………… 3分把z=-3代入③得:x=-3 ……………… 4分∴原方程组的解为:33x z =-⎧⎨=-⎩……………… 5分 ● ● ● A BC ● ● ● A ′B ′C ′(2)解:,由①得:x >1 ……………… 1分由②得:x≤4 ………………2分 所以这个不等式的解集是1<x≤4,……………… 4分 将解集在数轴表示为.……………… 5分 22、 ∠1, 两直线平行、内错角相等, ∠4, ∠BEF , ∠EFD ,两直线平行、同旁内角互补, ∠BEF , ∠EFD , ∠BEF+∠EFD , 等量代换(每空1分)23、解:设小亮的英语成绩为x 分,数学成绩为y 分,……………… 1分由题意得,⎩⎨⎧=++++=++368)101(1812333812300y x y x ……………… 6分解得:⎩⎨⎧==12095y x ……………… 9分答:小亮质检英语成绩为95分,数学成绩为120分.……………… 10分 24、解:(1)步行人数:30650000=⨯ (人) ……………… 1分骑自行车的人数:1002050000=⨯(人) ……………… 2分 骑电动车的人数:601250000=⨯(人) ……………… 3分 乘公交车的人数:2805650000=⨯(人) ……………… 4分 乘私家车的人数:30650000=⨯(人) ……………… 5分折线统计图如右:word 格式-可编辑-感谢下载支持…………… 9分(2)如实行公交优先;或宣传步行有利健康等等都可以.……………… 10分五、解答题25、解:设顾客累计花费x 元,……………… 1分根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;……………… 3分(2)若100<x≤200,去乙商场享受优惠,花费少;……………… 5分(3)若x≥200,在甲商场花费200+(x-200)×90%=0.9x+20(元),……………… 7分在乙商场花费100+(x-100)×95%=0.95x+5(元),……………… 9分① 到甲商场花费少,则0.9x+20<0.95x+5,解得x >300;……… 10分② 到乙商场花费少,则0.9x+20>0.95x+5,x <300;……………… 11分③ 到两家商场花费一样多,则0.9x+20=0.95x+5,x=300. (12)分0 50 100 150 200 250 300 步行 自行车 电动车 公交车 私家车交通工具 人数 500位市民出行的交通工具折线统计图。
2015-2016学年湖南省永州市祁阳县羊角塘一中七年级(下)竞赛数学试卷(解析版)
2015-2016学年湖南省永州市祁阳县羊角塘一中七年级(下)竞赛数学试卷一、选择题.(每题3分共30分)1.(3分)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.中位数C.平均数D.众数2.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b23.(3分)如图,甲、乙两所学校,其中男女生情况可见下列统计图,甲学校有1000人,乙有1250人,则()A.甲校的女生比乙校的女生多B.甲校的女生比乙校的女生少C.甲校与乙校的女生一样多D.甲校与乙校男生共是2250人4.(3分)如图,下面推理中,正确的是()A.∵∠A+∠D=180°∴AD∥BC B.∵∠C+∠D=180°∴AB∥CDC.∵∠A+∠D=180°∴AB∥CD D.∵∠B+∠C=180°∴AD∥BC5.(3分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1 B.2 C.3 D.46.(3分)下列图案中,是轴对称图形的是()A. B. C. D.7.(3分)如图,AB∥CD,那么∠BAE+∠AEC+∠ECD=()A.180°B.270° C.360° D.540°8.(3分)多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)2;③(x+1)4﹣4(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③9.(3分)无论x、y取何值,x2+y2﹣2x+12y+40的值都是()A.正数B.负数C.零D.非负数10.(3分)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组正确的是()A.B.C.D.二、填空题(每题4分,共24分)11.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA 分子的直径约为0.0000002cm.这个数量用科学记数法可表示为cm.12.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y=.13.(3分)如果2x3﹣m=y是二元一次方程,则m=.14.(3分)如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是.15.(3分)若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是.16.(3分)已知关于x 的方程组的解是二元一次方程x﹣y=1的一个解,则a=.17.(3分)分解因式:﹣x2+4x﹣4=.18.(3分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是;众数是.三、解答题(共66分)19.(10分)用适当的方法解下列方程组:(1)(2).20.(10分)学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?21.(10分)自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?22.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°()∴∠AGD=()23.(8分)如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么GM与HN平行吗?为什么?24.(10分)阅读并解答:对于完全平方公式(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,经过变形可化为①a2+b2=(a+b)2﹣2ab,②a2+b2=(a﹣b)2+2ab,③(a+b)2=(a﹣b)2+4ab,④(a﹣b)2=(a+b)2﹣4ab,根据以上所提供的公式变形,完成下面的计算.已知a﹣b=6,ab=﹣4,求下列各式的值(1)a2+b2(2)a2﹣ab+b2.25.(10分)两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算的值.2015-2016学年湖南省永州市祁阳县羊角塘一中七年级(下)竞赛数学试卷参考答案与试题解析一、选择题.(每题3分共30分)1.(3分)要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.方差B.中位数C.平均数D.众数【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:A.2.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2 B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.3.(3分)如图,甲、乙两所学校,其中男女生情况可见下列统计图,甲学校有1000人,乙有1250人,则()A.甲校的女生比乙校的女生多B.甲校的女生比乙校的女生少C.甲校与乙校的女生一样多D.甲校与乙校男生共是2250人【解答】解:甲校女生数为1000×50%=500人,乙校女生数为1250×40%=500人,则A、甲校的女生比乙校的女生多,应为一样多,错误;B、甲校的女生比乙校的女生少,应为一样多,错误;C、甲校的女生与乙校的女生一样多,正确;D、甲校与乙校共有女生1 250人,男生共有1000人,错误,故选:C.4.(3分)如图,下面推理中,正确的是()A.∵∠A+∠D=180°∴AD∥BC B.∵∠C+∠D=180°∴AB∥CDC.∵∠A+∠D=180°∴AB∥CD D.∵∠B+∠C=180°∴AD∥BC【解答】解:A、∵∠A+∠D=180°∴AB∥CD,故本选项错误;B、∵∠C+∠D=180°∴AD∥BC,故本选项错误;C、∵∠A+∠D=180°∴AB∥CD,符合同旁内角互补,两直线平行的判定定理,故本选项正确;D、∵∠B+∠C=180°∴AB∥CD,故本选项错误.故选:C.5.(3分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1 B.2 C.3 D.4【解答】解:2x﹣3y=5符合二元一次方程的定义;x+=6不是整式方程,不符合二元一次方程的定义;3x﹣y+2z=0含有3个未知数,不符合二元一次方程的定义;2x+4y,5x﹣y>0都不是方程.由上可知是二元一次方程的有1个.6.(3分)下列图案中,是轴对称图形的是()A. B. C. D.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选:D.7.(3分)如图,AB∥CD,那么∠BAE+∠AEC+∠ECD=()A.180°B.270° C.360° D.540°【解答】解:过E点作PE∥AB,∵AB∥PE,AB∥CD,∴AB∥PE∥CD,∴∠A+∠AEP=180°,∠C+∠CEP=180°,又∵∠AEP+∠CEP=∠AEC,∴∠A+∠AEC+∠C=360°.8.(3分)多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)2;③(x+1)4﹣4(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③【解答】解:多项式:①16x2﹣8x=8x(2x﹣1);②(x﹣1)2﹣4(x﹣1)2=﹣3(x﹣1)2;③(x+1)4﹣4(x+1)2+4x2=[(x+1)2﹣2x]2=(x2+1)2;④﹣4x2﹣1+4x=﹣(2x﹣1)2,则结果中含有相同因式的是①和④,故选:C.9.(3分)无论x、y取何值,x2+y2﹣2x+12y+40的值都是()A.正数B.负数C.零D.非负数【解答】解:∵x2+y2﹣2x+12y+40=(x﹣1)2+(y+6)2+3>0,∴多项式x2+y2﹣2x+12y+40的值都是正数.故选:A.10.(3分)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出的方程组正确的是()A.B.C.D.【解答】解:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为y+=10,化简得2y+x=20;根据把小龙的给小刚,小刚就有10颗.可表示为x+=10,化简得3x+y=30.列方程组为.故选:A.二、填空题(每题4分,共24分)11.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA 分子的直径约为0.0000002cm.这个数量用科学记数法可表示为2×10﹣7cm.【解答】解:0.000 000 2cm=2×10﹣7cm.故答案为:2×10﹣7.12.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y=25﹣2x.【解答】解:移项,得y=25﹣2x.故答案为:y=25﹣2x.13.(3分)如果2x3﹣m=y是二元一次方程,则m=2.【解答】解:因为2x3﹣m=y是二元一次方程,所以3﹣m=1,解得m=2.14.(3分)如图,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是40°.【解答】解:∵AB∥CD,∴∠A=∠ECD=70°.∵∠1=∠A+∠E=110°,∴∠E=40°.15.(3分)若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是5.【解答】解:将x+2y+3z=10与4x+3y+2z=15相加得5x+5y+5z=25,即x+y+z=5.故本题答案为:5.16.(3分)已知关于x的方程组的解是二元一次方程x﹣y=1的一个解,则a=0.【解答】解:由题意得:,解得:,再代入方程x+ay=2中得:2+a=2,∴a=0,故答案为:0.17.(3分)分解因式:﹣x2+4x﹣4=﹣(x﹣2)2.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.18.(3分)一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.三、解答题(共66分)19.(10分)用适当的方法解下列方程组:(1)(2).【解答】解:(1),②×2得,2x+8y=26③,③﹣①得,5y=10,解得y=2,把y=2代入②得,x+8=13,解得x=5,所以,方程组的解是;(2),①×2得,4s+6t=﹣2③,③﹣②得,15t=﹣10,解得t=﹣,把t=﹣代入①得,2s+3×(﹣)=﹣1,解得s=,所以,方程组的解是.20.(10分)学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?【解答】解:(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x>83,∴x>90.∴李文同学的总成绩是83分,孔明同学要在总成绩上超过李文同学,则他的普通话成绩应超过90分.21.(10分)自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?【解答】解:因为x、y互为相反数,所以方程组可变形为:,解得:.故m=2.22.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=∠3(两直线平行,同位角相等又∵∠1=∠2∴∠1=∠3(等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+ ∠DGA=180°(两直线平行,同旁内角互补)∵∠BAC=70°(已知)∴∠AGD=110°(等式的性质)【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°(等式的性质).故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠DGA,两直线平行,同旁内角互补,已知,110°,等式的性质.23.(8分)如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么GM与HN平行吗?为什么?【解答】解:GM与HN平行.∵AB∥CD,∴∠BGF=∠CHE,∵GM平分∠BGF,∴∠MGH=∠BGF,同理,∠NHG=∠CHE,∴∠CHE=∠BGF,∴∠NHG=∠MGH,∴HN∥GM.24.(10分)阅读并解答:对于完全平方公式(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,经过变形可化为①a2+b2=(a+b)2﹣2ab,②a2+b2=(a﹣b)2+2ab,③(a+b)2=(a﹣b)2+4ab,④(a﹣b)2=(a+b)2﹣4ab,根据以上所提供的公式变形,完成下面的计算.已知a﹣b=6,ab=﹣4,求下列各式的值(1)a2+b2(2)a2﹣ab+b2.【解答】解:(1)把a﹣b=6两边平方得:(a﹣b)2=a2+b2﹣2ab=36,把ab=﹣4代入得:a2+b2+8=36,解得:a2+b2=28;(2)∵a2+b2=28,ab=﹣4,∴a2﹣ab+b2=a2+b2﹣ab=28﹣(﹣4)=32.25.(10分)两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算的值.【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得a=﹣1,b=10,∴=(﹣1)2004+(﹣×10)2005=1﹣1=0.。
湖南省永州市七年级下学期数学期末考试试卷
湖南省永州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2013·贺州) 下列图形是中心对称图形而不是轴对称图形的是()A .B .C .D .2. (2分)某商场将一种商品A按标价的9折出售,依然可获利10%,若商品A的标价为33元,那么该商品的进货价为()A . 31元B . 30.2元C . 29.7元D . 27元3. (2分) (2019八上·镇平月考) 若am=2,an=3,ap=5,则a2m+n-p的值是()A . 2.4B . 2C . 1D . 04. (2分) (2015七下·深圳期中) (x3)5=()A . x8B . x15C . x35D . 以上答案都不对5. (2分)(2019·凉山) 下列各式正确的是()A .B .C .D .6. (2分)如图所示,下列说法正确的是()A . 若AB CD,则∠A+∠ABC=180°B . 若AD BC,则∠C+∠ADC=180°C . 若∠1=∠2,则AB CDD . 若∠3=∠4,则AD BC7. (2分) (2017七下·萧山期中) 已知a+b= ,ab=2,则3a2b+3ab2的值为()A .B .C . 6+D . 2+8. (2分) (2019九下·衡水期中) 正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是()A . (2,0)B . (3,0)C . (2,-1)D . (2,1)9. (2分)如图,AB∥CD,∠A=38°,∠C=80°,则∠M等于()A . 38°B . 42°C . 24°D . 40°10. (2分)下列计算中:①x(2x2﹣x+1)=2x3﹣x2+1;②(a+b)2=a2+b2;③(x﹣4)2=x2﹣4x+16;④(5a ﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2 ,错误的个数有()A . 2个B . 3个C . 4个D . 5个11. (2分)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A . 8,8B . 8.4,8C . 8.4,8.4D . 8,8.412. (2分)(2018·青岛模拟) 如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)光的速度约为3×105km/s,以太阳系以外距离地球最近的一颗恒星(比邻星)发出的光,需要4年的时间才能到达地球.若一年以3×107s计算,则这颗恒星到地球的距离是________ km.(用科学记数法表示)14. (1分)如图,已知在△ABC中,AB=AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转,使点B落在点C处,此时点C落在点D处,延长AD与BC的延长线相交于点E,则DE的长为________.15. (2分)已知一组数据,,, , 的平均数是2,方差是,那么另一组数据,,, , 的平均数是________,方差是________.16. (1分)先化简,再求值:(2a-3)(3a+1)-6a(a-4),其中a= .________17. (1分) (2017七下·临川期末) 如图,△ABC中,∠A=100°,若BM、CM分别是△ABC的外角平分线,则∠M=________.18. (1分) (2019九上·益阳月考) 两个反比例函数y=,y=在第一象限内的图象如图所示,点P1 ,P2 ,P3…,P2017在反比例函数y=图象上,它们的横坐标分别是x1 , x2 ,x3…,x2017 ,纵坐标分别是1,3,5,…,共2017个连续奇数,过点P1 , P2 , P3 ,…P2017分别作y轴的平行线,与y=的图象交点依次是Q1(x1 , y1),Q2(x2 , y2),Q3(x3 , y3),…,Q2017(x2017 , y2017),则y2017=________.三、解答题 (共8题;共81分)19. (10分) (2020七下·姜堰期末) 在等式中,当时,;当时, .(1)求a、b的值;(2)当时,求y的值.20. (20分) (2019八上·泰安期中) 把下列各式因式分解(1)(2)(3)(4)21. (10分)化简下列各式:(1) 4(a+b)2﹣2(a+b)(2a﹣2b)(2)(m+2)÷(m﹣1+ )﹣.22. (5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求∠BOD.23. (11分) (2020八下·渠县期末) 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1 ,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2 ,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是________.24. (5分)某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m)李超:2.50,2.42,2.52,2.56,2.48,2.58陈辉:2.54,2.48,2.50,2.48,2.54,2.52(1)李超和陈辉的平均成绩分别是多少?(2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么?(3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?25. (10分) (2016七上·太康期末) 如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.26. (10分) (2018八上·南山期中) 一辆公交车从A站出发匀速开往B站.在行驶时间相同的前提下,如果车速是60千米/小时,就会超过B站0.2千米;如果车速是50千米/小时,就还需行驶0.8千米才能到达B站.(1)求A站和B站相距多少千米?行驶时间是多少?如果要在行驶时间点恰好到达B站,行驶的速度是多少?(2)图①是这辆公交车线路的收支差额y(票价总收入减去运营成本)与乘客数量的函数图象.目前这条线路亏损,为了扭亏,有关部门举行了提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③.(a)说明图①中点A和点B的实际意义;(b)你认为图②和图③两个图象中,反映乘客意见的是▲,反映公交公司意见的是▲.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共81分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. (4 分)下列图形中,轴对称图形的个数是(
A.1
B.2
C.3
D.4
6. (4 分)下列从左到右的变形: (1)15x2y=3x•5xy; (2) (a+b) (a﹣b)=a2﹣ b2 ; (3)a2﹣2a+1=(a﹣1)2; (4)x2+3x+1=x(x+3+ )其中是因式分解的个数 是( )
2015-2016 学年湖南省永州市祁阳县七年级(下)期末数学试卷
一、选择题(本大题共 12 小题,每小题 4 分,满分 48 分,在每小题给出的四 个选项中,只有一项是符合题目要求的) 1. (4 分)下列是二元一次方程的是( A.3x﹣6=x B.3x=2y )
C.x﹣ =0 D.2x﹣3y=xy )
二、填空题(本大题共 8 小题,每小题 4 分,满分 32 分. ) 13. (4 分)已知(a﹣2) +y=1 是一个二元一次方程,则 a 的值为 . . .
14. (4 分) (﹣3ab2)3•(a2b)=
15. (4 分)若代数式 x2+mx+9 是完全平方式,那么 m=
16. (4 分) 如图, 直线 AB 与直线 CD 相交于点 O, OE⊥AB, 垂足为 O, ∠EOD=40°, 则∠BOC= .
(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定? (2)若老师计算学生的学期总评成绩按照如下的标准:单元测验 1 占 10%,单 元测验 2 占 10%,期中考试占 30%,期末考试占 50%.请你通过计算,比较谁的 学期总评成绩高? 27. (10 分)如图,已知直线 l1∥l2,直线 l 和直线 l1、l2 交于点 C 和 D,在 C、D 之间有一点 P,A 是 l1 上的一点,B 是 l2 上的一点. (1)如果 P 点在 C、D 之间运动时,如图(1)问∠PAC,∠APB,∠PBD 之间有 何关系,并说明理由. (2)若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合) ,在图(2) ,图 (3)中画出图形并探索∠PAC,∠APB,∠PBD 之间的关系又是如何?并选择其 中一种情况说明理由.
17. (4 分)△ABC 与△DEF 关于直线 m 对称,AB=4,BC=6,△DEF 的周长是 15,
则 AC=
. .
18. (4 分) 一组数据 2, 4, x, 2, 4, 7 的众数是 2, 则这组数据的平均数是 19. (4 分)若 a+b=2,ab=1,则 a2+b2= .
20. (4 分)观察下列等式:12﹣3×1=1×(1﹣3) ;22﹣3×2=2×(2﹣3) ; 32 ﹣3×3=3×(3﹣3) ;42﹣3×4=4×(4﹣3) ;…则第 n 个等式可表示为 .
A.平均数 B.中位数 C.众数
11. (4 分)若一列数据 x1,x2,x3,…,xn,的平均数是 3,方差是 2,则数据 x1+5, x2+5,…,xn+5 的平均数与方差分别是( A.8,7 B.5,5 C.3,2 D.8,2 )
12. (4 分)在同一平面内,有 8 条互不重合的直线,l1,l2,l3…l8,若 l1⊥l2,l2 ∥l3,l3⊥l4,l4∥l5…以此类推,则 l1 和 l8 的位置关系是( A.平行 B.垂直 C.平行或垂直 D.无法确定 )
A.0 个 B.1 个 C.2 个 D.3 个 7. (4 分)如图所示,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形(a >b) ,将余下部分拼成一个梯形b 的恒等式为( )
A. (a﹣b)2=a2﹣2ab+b2
B. (a+b)2=a2+2ab+b2
25. (10 分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表 是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息: (水价计费=自 来水销售费用+污水处理费用) 自来水销售价格 每户每月用水量 17 吨及以下 超过 17 吨不超过 30 吨的部分 超过 30 吨的部分 单价:元/吨 a b 6.00 污水处理价格 单价:元/吨 0.80 0.80 0.80
已知小王家 2012 年 4 月份用水 20 吨,交水费 66 元;5 月份用水 25 吨,交水费
91 元. (1)求 a,b 的值. (2)小王家 6 月份交水费 184 元,则小王家 6 月份用水多少吨? 26. (10 分)某班七年级第二学期数学一共进行四次考试,小丽和小明的成绩如 表所示: 学生 小丽 小明 单元测验 1 80 60 期中考试 70 90 单元测验 2 90 80 期末考试 80 90
C.a2﹣b2=(a+b) (a﹣b) D.a2+ab=a(a+b) 8. (4 分)点 P 是直线 l 外一点,A、B、C 为直线 l 上的三点,PA=4cm,PB=5cm, PC=2cm,则点 P 到直线 l 的距离( A.小于 2cm B.等于 2cm )
C.不大于 2cm D.等于 4cm )
三、解答题(本大题共 7 小题,满分 65 分,解答应写出文字说明、证明过程或 演算步骤) 21. (10 分)解方程: (1) (2) ; .
22. (10 分)因式分解 (1)a3b﹣ab3 (2) (x2+4)2﹣16x2. 23. (7 分)先化简,再求值:a(a﹣2b)+2(a+b) (a﹣b)+(a+b)2,其中 a, b 满足|a+ |+(b﹣1)2=0. 24. (8 分)如图,已知:AD⊥BC 于 D,EG⊥BC 于 G,∠E=∠1.求证:AD 平分 ∠BAC.
9. (4 分)下列叙述中,正确的是( A.相等的两个角是对顶角
B.过一点有且只有一条直线与已知直线平行 C.垂直于同一条直线的两直线平行 D.从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短 10. (4 分)有 19 位同学参加歌咏比赛,所得的分数互不相同,取得分前 10 位 同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知 道这 19 位同学的( ) D.方差
2. (4 分)下列计算正确的是(
A.a2•a3=a6 B.a2+a2=a4 C. (﹣a3)2=a6 D. (a2b)2=a4b 3. (4 分)已知 A.2 B.4 是方程 2mx﹣y=10 的解,则 m 的值为( C.6 D.10 ) )
4. (4 分)下列运算正确的是(
A. (x﹣1)2=x2﹣2x﹣1 B. (a﹣b)2=a2﹣b2 C. (a+m) (b+n)=ab+mn D. (m+n) (﹣m+n)=﹣m2+n2 )