积分表公式推导1

合集下载

积分公式表

积分公式表

基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x=+⎰ (4)2tan 1dx arl x C x=++⎰ (5)2arcsin 1x C x =+-⎰(6)cos sin xdx x C =+⎰(7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x=+⎰(9)21cot sin dx x C x =-+⎰ (10)sec tan sec x xdx x C =+⎰(11)csc cot csc x xdx x C =-+⎰(12)x x e dx e C =+⎰(13)ln xxa a dx C a =+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰(15)chxdx shx C =+⎰ (16)2211tan x dx arc C a x a a=++⎰(17)2211ln ||2x a dx C x a a x a -=+-+⎰(18)22sin x dx arc C a a x =+-⎰(19)2222ln(dx x a x C a x =+++ (20)2222ln |x x a C x a =-+-⎰(21)tan ln |cos |xdx x C =-+⎰(22)cot ln |sin |xdx x C =+⎰(23)sec ln |sec tan |xdx x x C =++⎰(24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2x x +=, 21cos 2sin 2x x -=。

积分公式

积分公式

2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.被积函数含根式换元方法运用的三角公式x=a sec t sec2t-1=tan2tx=a tan t tan2t+1=sec2tx=a sin t1-sin2t=cos2t例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如被积函数凑微分d vx3arctan x,x3ln x arctan x d,ln x dx2sin x,x2cos x,x2e x x2d(-cos x),x2dsin x,x2d e xe x sin x,e x cos x sin x d e x,cos x d e x我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x +C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln |sin x|+C(16)=(a >0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。

积分表积分公式推导(打印版1)

积分表积分公式推导(打印版1)
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·11 (四)含有 ax + b (a > 0) 的积分(22~28)
(五)含有 ax 2 + bx + c (a > 0) 的积分(29~30 ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·14 (六)含有
±
x − a x − b

( x − a )( b − x )
的积分(79~82) · · · · · · · · · · · · · · · · · · · · · · · · · · ·51
(十一)含有三角函数的积分(83~112) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·55 (十二)含有反三角函数的积分(其中 a > 0)(113~121) · · · · · · · · · · · · · · · · · · · · · · ·68
∫x
2
即 x 2 (Aa + C) + x ( Ab + aB ) + Bb = 1
a ⎧ ⎪A = − b2 ⎧ Aa + C = 0 ⎪ 1 ⎪ ⎪ ∴ 有 ⎨ Ab + aB = 0 ⇒ ⎨ B = b ⎪ Bb = 1 ⎪ ⎩ ⎪ a2 C = ⎪ b2 ⎩ dx a 1 1 1 a2 于是 ∫ 2 = − 2 ∫ dx + ∫ 2 dx + 2 x (ax + b) b x b x b

高等数学积分表公式推导

高等数学积分表公式推导
x−b
(十一)含有三角函数的积分(83~112)···········································55 (十二)含有反三角函数的积分(其中 a > 0)(113~121)·······················68 (十三)含有指数函数的积分(122~131)··········································73 (十四)含有对数函数的积分(132~136)··········································78 (十五)含有双曲函数的积分(137~141)··········································80 (十六)定积分(142~147)····························································81
ax +
dx b
=
1 a3
⎡1 ⎢⎣ 2
(ax +
b) 2

2b (ax
+
b)
+
b2
⋅ ln
ax +
b
⎤ ⎥⎦
+C
5.
dx
1
∫ x (ax + b) = − b ⋅ ln
ax + b x
+C
证明:被积函数 f ( x ) = 1 的定义域为{x | x ≠ − b}
x ⋅ (ax+ b)


dx ax +
b
=
1 a

1dt t
= 1 ⋅ ln t + C a

积分表147个公式的推导(修正版)

积分表147个公式的推导(修正版)

目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)········································14 (六)含有)0( 22>+a a x 的积分(31~44).........................................15 (七)含有)0( 22>-a a x 的积分(45~58).........................................24 (八)含有)0( 22>-a x a 的积分(59~72).........................................37 (九)含有)0( 2>++±a c bx a 的积分(73~78) (48)(十)含有 或))((x b a x --的积分(79~82)...........................51 (十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)附录:常数和基本初等函数导数公式 (85)bx a x --±- 1 -(一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dtt a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:- 2 -Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxbax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:- 3 -C x b ax ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ++⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:C b ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa x B Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f C b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+=+⎪⎭⎫ ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11 )(111)( 1A 01 )(AB )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:- 4 -()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t aC t ln a b t a t a b dt t a b dt a dt t a b dt t a bt t b dx b ax x t a btt b t a t b b ax x dt adx ,b t a x ,t t b ax a b x |x b ax x )x (f C b ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫ ⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(121 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x b ax x )x (f C|xbax |ln b b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠+=++-+=+⎰⎰⎰⎰⎰2222222222221)(11111)(1111)( 1 )()( )()( )()(1 }{)(1 ·1)(1)( 9于是有则设:的定义域为证明:被积函数- 5 -(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax a dx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1 )(32 .10证明:C b ax b ax a C b ax b b ax a dx b ax x b ax t C b t a t C t a b t a dt a b dt a dtbt t a dt a t t a b t dx b ax x t abt b ax x dt a t dx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-⋅=++⋅-+=++=+-=+⋅-⋅=-=-=⋅⋅-=+∴⋅-=+=-=≥=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰⎰32322233252325224222232)()23(152 )(]5)(3[152 )53(152 ******** )(22 , 2 , , )0()()23(152 .11代入上式得:将则令证明:[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dt t a b dt t a b dt t a dtbt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C b ax b abx x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰+++3222322223322243353332731432132163432326332532232522222322232)()81215(1052 )(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( )()81215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t C t a b t a C t a b t a bdt a dt t a dt a t at b t dx b ax xdt a t dx abt x t t b ax C b ax b ax a dx b ax x++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32)(2)()(3223222112222, 2 , , )0( )()2(32.132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a dt a tt a b t dx bax x dt a t dx a b t x t t b ax C b ax b abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅⋅-=+∴=-=>=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152)()(1015)2(3)(152)10153(152 )3251(2 422 )2(221)(, 2 , , )0( )()843(152 .142223222232224332532323432243222222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-+⋅-=++=+-⋅-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12t2 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .15222222222b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan bb ax x dx b ax t Cb arctan b dt b t dt b t b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx b ax x b a b ax d x b bx b ax dx b ax x b a xd b ax b dx b ax x b a dx x b ax b dx bax x b a b ax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111 111 11111 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+bax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxt ab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt b t b dt dt bt b b t dtbt t dt a t b t at dx x b ax dt atdx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 112.182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax 证明:C a x arctan a a x dx a x arctan t a xarctant tant a x C t adt at dt sec a tsec a a x dx t sec a t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222222+⋅=+==∴⋅=+⋅==⋅⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 1)1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)( .20n n n n n n n n n 2n n n n n n n n n n n nn n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dx a x a x a ax dx C a x ax ln a ax dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:- 11 -(四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 121 )(11 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1 )( )0( 21)0( 1 .222222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-=+-+--⋅⋅-=--=+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰⎰b C b x a bx a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab C a bx ab x ln a a b dx a bx a b ax dx a a b x a a b x b ax b C x b aarctan abx b aarctan b a a dxa b x a b ax dx a ab x a a b x b ax 0a b C b x a b x a ln ab b C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:C b ax ln a b ax d b ax a dx b ax dx bax x a C b ax ln a dx bax x 22++⋅=++=+=+>++⋅=+⎰⎰⎰⎰21 )(121 121)0( 21 .23222222证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:C 21 2121 )(12112112121])(1[21)( 11 )()(1 )(1)(121 )()( )( C 21)( .25222222222222222222++=++-=++-=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=++=+=+>++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰bax x ln ·b Cb ax ln ·b x ln ·b b ax d bax b dx x b dxb ax b a dx x b dxb ax b a bx b ax x dx b aB bA Ab 0B Aa AbB Aa x Bx b ax A bax Bx A b ax x dxb ax x dx b ax x xb ax x dx 0a bax x lnbb ax x dx 22222222222222于是有则设:证明:- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+b ax dx b a bx dx b ax b a dx x b dx b ax b a bx b ax x dx b aB b A Ab 0B Aa Ab B Aa x Bx b ax A b ax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:C bxx b ax ln baC b ax ln ·ba bx x ln ·ba dx bax b a dx x b dx x b a b ax x dx b a C b a A b B Bb Ba Ab C Aa Bb x Ba Ab x C Aa Cx b ax B b ax Ax bax C x B x A b ax x dx b ax x dx b ax x xb ax x dx 0a C bx x b ax ln b a b ax x dx 222222222222+-+=+++--=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧==+=+∴++++=++++=+++=++=+=+>+-+=+⎰⎰⎰⎰⎰⎰⎰⎰22222222222224222322244244244322223212221 2 1212112 )( 1100 )()( )()(1 )(1 )(121 )()( )( 212)( .27于是有则设:证明:- 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[]⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴-++=++>⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 )()(41 )0( )4( 44 41)4( 42 .292222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx b 4ac b 2ax ac bx ax a ac b C ac b b 2ax ac b b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a a x dx :公式21)(2 )(2121)(2)(212121)(21 )(2121121)(21 )(2121()(21 211102 2 2)(1 2)(21 21 1121 21 1121 121)( )( 21)(2)( 2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Abx )Ba Aa (Bax b ax A b ax B ax A b ax ax dxax b ax b ax ax ax d b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b ax dx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dx a b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 21 12)(121 21221 221 )0( 2 21 .30证明:C )( , 1 |AB | , |AC | B Rt 1 , 01, 22 || , ) )22(}{1 )0( C )( 31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx 0x a x C x a x ln C lna x a x ln C a xa x ln C tant sect ln a x dx a xtant a a x cost sect a x x ,a |BC |,t ABC ΔC tant sect ln dt sect dt t sec a sect a a x dx secta a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x ax )x (f a a x x ln C a x arsh ax dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt 1cos 1 11 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x xa x x a BC t ABC ΔC sint a tdt a dt sect a dt t sec a t sec a a x dx t sec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C ax a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dtat t t a t dx a x x dta t t tdt a t dx a t x t t a x a C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21 , )0( )0( .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C)( )( 22 31)( C )( 1 39)( C )( 22 1)0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d ax a x x ln a a x x dx a x x d a x a dx a x dx a x a a x dx a x x a a x x ln a a x x dx ax x 公式公式证明:C )( )()( 1, |AB | , |AC |, || , B Rt cos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()( )0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna ax x x a x ln C a x xa x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant a x x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sectdt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x t sec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln ax x dx a x x 1111222323233222则中,设在,则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21 )( 21 )( 21 21 1 1 2)(21 , )0( )0( 1.3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a a x x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式bnlog b log a na = 提示: 1 11)1(211121)1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t C t a aC t a a t a d t a a dtt a ta a dt ta t dt a tx d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x x dx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |aa x x |ln 2a a x 2x |tant sect |ln a tant sect a a x tant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt t cos t cos dt t cos t sin tantdt sect tant tantdsect tantdsect a tant sect a dtant sect a tant a sectd a dx a x sect a a x tcos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1· Rt 11 87 )·(1 1111 )·(· · , 01·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 t sec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+Ca x x ln a a x a x x dx a x C x a x ln 83aa x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x aa x a x a tant d t sec a a a x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x tsec a a x cost sect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(4 4 cos 1 |AB | , |AC |, || , B Rt 41 21 21 21 21 )1( ) 3 (41 3 3 )1(3 3 3 3 ) ( )( )( , 01 , 22 ||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x costsect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1 |AB | , |AC |, || , B Rt 48821 21 2121)1( 4 4 ) (41 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0( )( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 23 -)( )( 2 )( 2 21 1 2)(21 , )0( }0|{)( )0(.4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t C a t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dt a t t dt a t t a t t dx x a x dt at t tdt a t dx a t x a t t t a x x x x a x x f a C x aa x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 01 |AB | , |AC |, || , B Rt 1 1 1 )1( , 01 , 20 , ) ( ,)20( , 0 1. }0|{)( )0(C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln xa x dx x a x x a x ln xa x dx x a x x x a x ln x a x dx x a x x a x C lna x a x ln x a x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,ax x sint a x x a BC t ABC ΔC sinttant sect ln dsint t sin dt sect dt t sin cost dt sect dt t sin t cos cost dt sect dt t tan sect dt sect dt t tan t tan sect tdt sec a t tan a sect dx x a x t tan a sect x a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x x a x x f a a x x ln x a x dx x a x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1 . 21 Rt 2)20( . 1}{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πt tant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 || || ||1)( || 1 . 2 || . 1 }{ 1 2 )0( 45 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C a a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .221225224222422422422222232222122222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔCt sin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 )(211121 )()(21 )(21 )0( .47211222221221C a x C a x a x d a x dx a x dx a x x a C a x dx ax x 222222222222+-=+--⨯=--=-=->+-=----⎰⎰⎰⎰:证明- 27 -1)( 2 1 1)( 1)( 1 )()(. 2 11)( Rt 11 11 1)( )( 20 )( )20( . 1 }{ )()0( 1)( 48333333222232332333333 C ax dx a x x , C a x dx a x x x μCaμμd a μμμd a μμdx a x x μx ,x μa x ,a x Cax C a x a a dx a x x a x at cot a x |AC |,x |AB |a |BC |,t B ABC ΔC t cot a tdt csc a dt t sin a dt t tan t sec a dt tant sect a t tan a sect dx a x x t tan a sect a x x πt t tan a sect a a x x tantdt sect a dx πt sect a x ,a x a x a x |x a x xf(x)a C ax dx a x x .22222222222222222222222222222222222222+--=-+--=--=+--=--=-∴-=-=>--<+--=+-⋅-=-∴-=∴-====∠+⋅-=--===⋅⋅⋅⋅=-∴⋅=-<<⋅⋅=-⋅⋅=<<⋅=>-<>-=>+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 C a x x ln a a x x dx ax x C a x x ln a a x dxa C a x x ln a a x x dx a x dxax a dx a x dx ax aa x dxax a a x dx a x x a C a x x ln a a x x dx a x x .22222222222222222222222222222222+-+⋅+-=-+∴+-+⋅=-+-+⋅--⋅=--+-=-+-=-+-=->+-+⋅+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰22 45)( 53)( 221)( )0( 22 49222222222222222②得:由①公式②公式①证明:。

积分公式表

积分公式表

1)—dx cosx—V-dxsin xtan x C cot x Cdx a x 1~2 ------- 2dxx a1 x a2aln|着* 1 C参考医学基本积分表kdx kx C(k 是常数) 1xx dxC, (u 11dx In | x | C xdxsin xdx cosx Csecx tanxdx secx C (1) (2)(3)(4)(5)(6)(7) (8) (9) (10)(11)(⑵(13)(14) (15) (16) (17)cosxdx sinx Ce xdx e xCa x dx-C , (a 0,且 a 1) In ashxdx chx Cchxdx shx Ccscx cot xdx cscx C1arc tan注:由 f[ (x)] '(x)dxf[ (x)]d (x),此步为凑微分过程,所以第类换元法也叫凑微分法。

此方法是非常重要的一种积分法,要运用自如, 务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

小结:1常用凑微分公式参考医学(18)arc sin 仝 Ca(19)_1_ _a^x 2<(20)/ 2 2x aIn |x , x a(21) tan xdx ln | cosx | C (22) cot xdx ln |sinx| C (23) secxdx In | secx tanx| (24) cscxdx In | cscx cotx| C C 注:1、 从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式: 2 2 2sin x cos x 1,tan x 1 2 2sec x,sin 2x 2sin xcosx, cos x1 cos2xsin 2x1 cos2x 2参考医学积分类型换元公式1.1 f(ax b)dx — af (ax b)d(ax b) (a 0)u ax bf(x )x 1dx -u x2.-f(x )d(x ) ( 0)3. 1f(l nx) —dxx f(ln x)d(ln x) u In x 第 4.. f(e x ) e xdxf(e x)de xuxe5. f(a x ) a xdx — - F(a x )da x换In auxa元 6. f (sin x) cosxdxf (sin x)d sin xu sin x 积u cosx分 7. f (cosx) sin xdxf (cosx)d cosx法 8. f (tan x) sec xdxf (tan x)d tanxu tan x9. 2 f (cot x)csc xdxf (cot x)d cot xu cot x10. 1f (arctanx) --1 x… .、 1 -dx f (arctan x)d (arctanx) u arcta nx 11. 1 jp / __ ■ _ \ u arcsin xf (arcsin x):——dxT (arcsin x)d (arcsin x)(注:表格素材和资料部分来自网络,供参考。

积分公式表

积分公式表

基本积分表(1)kdx kx C (k 是常数)(2)1,1x x dx C (1)u (3)1ln ||dx x C x (4)2tan 1dx arl x C x (5)2arcsin 1dx x C x (6)cos sin xdx x C (7)sin cos xdx x C (8)21tan cos dx x C x (9)21cot sin dx x C x (10)sec tan sec x xdx x C (11)csc cot csc x xdx x C (12)x x e dx e C (13)ln x x a a dx C a ,(0,1)a a 且(14)shxdx chx C (15)chxdx shx C (16)2211tan x dx arc C a x a a(18)221sin x dx arc C aa x (19)22221ln()dx x a x Ca x (20)2222ln ||dx x x a C x a (21)tan ln |cos |xdx x C(22)cot ln |sin |xdx x C(23)sec ln |sec tan |xdx x x C(24)csc ln |csc cot |xdx x x C注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x 21cos2cos 2xx ,21cos 2sin 2xx 。

注:由[()]'()[()]()f x x dxf x d x ,此步为凑微分过程,所以第一类换元法也叫凑微分法。

此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

1、乘法公式(1)(a+b )²=a 2+2ab+b 2(2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n maa =anm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n nba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式:(1)b a ba =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aNN a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln-= (7)M n M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc = (8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a- (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v /(2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f a bba⎰⎰-= (4)⎰⎰⎰+=bac abcdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理: (1)()()x f dt t f xa='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

定积分公式表完整

定积分公式表完整

定积分公式表(可以直接使用,可编辑实用优秀文档,欢迎下载)1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 ) 例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰(1)u ≠-(3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+(19)ln(x C =+(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

积分公式表,常用积分公式表

积分公式表,常用积分公式表

积分公式表1、基本积分公式: (1) (2)(3) (4)(5) (6)(7)(8)(8)(10)(11)2、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰(2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰3、积分方法()()bf+1;设:t=xax+bax=()()22=;设:t2xf-xa=ax sin()22af-=;设:txx=ax sec()22x=;设:tf+xax tan=a()3分部积分法:⎰⎰-udv=vduuv附:理解与记忆对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采取的公式分歧.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变更及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 )例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。

积分公式表,常用积分公式表

积分公式表,常用积分公式表

积分公式表1、基本积分公式:(1) (2) (3)(4) (5)(6) (7)(8) (8)(10)(11)2、积分定理:(1)()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰ (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰ (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰3、积分方法 ()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv附:理解与记忆对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数的积分,应分为与.当时,,积分后的函数仍是幂函数,而且幂次升高一次.特别当时,有.当时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.当时,有.是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 )例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)精品文档word文档可以编辑!谢谢下载!。

积分原函数公式表

积分原函数公式表

积分原函数公式表
以下是一些常见函数的积分原函数公式表:
1. 常数函数:∫k dx = kx + C,其中k为常数,C为常数。

2. 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C,其中n不等于-1,C为常数。

3. 指数函数:∫e^x dx = e^x + C,其中C为常数。

4. 对数函数:∫(1/x) dx = ln|x| + C,其中C为常数。

5. 三角函数:
- ∫sin(x) dx = -cos(x) + C,其中C为常数。

- ∫cos(x) dx = sin(x) + C,其中C为常数。

- ∫tan(x) dx = -ln|cos(x)| + C,其中C为常数。

6. 反三角函数:
- ∫(1/√(1-x^2)) dx = arcsin(x) + C,其中C为常数。

- ∫(1/√(1+x^2)) dx = arctan(x) + C,其中C为常数。

7. 双曲函数:
- ∫sinh(x) dx = cosh(x) + C,其中C为常数。

- ∫cosh(x) dx = sinh(x) + C,其中C为常数。

- ∫tanh(x) dx = ln|cosh(x)| + C,其中C为常数。

这只是一些常见函数的积分原函数公式,还有许多其他函数的积分原函数公式。

积分表147个公式的推导(修正版)

积分表147个公式的推导(修正版)

积分表147个公式的推导(修正版)积分表147个公式的推导(修正版)目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)········································14 (六)含有)0( 22>+a a x 的积分(31~44).........................................15 (七)含有)0( 22>-a a x 的积分(45~58).........................................24 (八)含有)0( 22>-a x a 的积分(59~72).........................................37 (九)含有)0( 2>++±a c bx a 的积分(73~78) (48)(十)含有 或))((x b a x --的积分(79~82)...........................51 (十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)bx a x --±附录:常数和基本初等函数导数公式 (85)积分表147个公式的推导(修正版)- 1 -(一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dtt a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:- 2 -Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxb ax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:积分表147个公式的推导(修正版)- 3 -ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:Cb ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa x B Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+= ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11)(111)( 1A 01 )(AB )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:- 4 -()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t a C t ln a b t a t a b dt ta b dt a dt t a b dt t a bt t b dx b ax x t a bt t b t a t b b ax x dt a dx ,b t a x ,t t b ax a b x |x b ax x )x (f Cb ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫ ⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(1 21 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x )x (f b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠=-+=+⎰⎰⎰⎰⎰22222222221)(11111)(1111)( 1 )()( )()( )()(1 }{ )(1)( 9于是有则设:证明:被积函数- 5 -(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax a dx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1)(32 .10证明:C b ax bC b ax b b ax dx b ax x b ax t C b t a t C t a b t a dt a b dt a dtbt t a dt a t t a b t dx b ax x t abt b ax x dt a t dx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-++⋅-+=++=+-=+⋅-⋅=-=-=⋅⋅-=+∴⋅-=+=-=≥=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰⎰3322233252325224222232)()2 )(]5)(3[2 )53(152 ******** )(22 , 2 , , )0()()23(152 .11代入上式得:将则令证明:[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dt t a b dt t a b dt t a dtbt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=++-⋅=+⎰⎰⎰⎰⎰⎰⎰+++32223222233222433533327314321321634323263325322325222222232)()81215(1052)(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( 1215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t Ct a b t a C t a b t a bdt a dt t a dt a tat b t dx b ax x dt at dx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32 )(2)()(32 232 22112 22 2, 2 , , )0( )()2(32 .132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a a t a b t dx bax x x t t b ax C abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅-=+∴=>=+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152 )()(1015)2(3)(152 )10153(152 )3251(2 422 )2(2)(, , )0( 43(152 .1422232222322243325323234322432222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-++=-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .15222222222b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan b ax t b dt b t dt b t b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx b ax x b a b ax d x b bx b ax dx b ax x b a xd b ax b dx b ax x b a dx x b ax b dx b ax x b a bax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111 111 111 11 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+bax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxt ab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt bt b dt dt b t b b t dtbt t dt a t b t at dx x b ax dt atdx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 11 2.182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax证明:C a x arctan a a x dx a x arctan t a xarctant tant a x C t adt aa tsec a a x dx t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222+⋅=+==∴⋅=+⋅==⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 )1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)(.20n n n n n n n n n 2n n n n n n n n n n n n n n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dxax a x a a x dx Ca x ax ln aa x dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:- 11 -(四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1 )( )0( 21)0( 1 .2222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-==+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰b C b x a bx a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab b ax dx a a b x a a b x b ax b C x b aarctan abx b aarctan b a a dx a b x a b ax dx a ab x a a b x b ax 0a b C b x a bx a ln abb C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:C b ax ln a b ax d b ax a dx b ax dx bax x a C b ax ln a dx bax x 22++⋅=++=+=+>++⋅=+⎰⎰⎰⎰21 )(121 121 )0( 21.23222222证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:C 21 2121 )(12112112121])(1[21)( 11 )()(1 )(1)(121 )()( )( C 21)( .25222222222222222222++=++-=++-=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=++=+=+>++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰bax x ln ·b Cb ax ln ·b x ln ·b b ax d bax b dx x b dxb ax b a dx x b dxb ax b a bx b ax x dx b aB bA Ab 0B Aa AbB Aa x Bx b ax A bax Bx A b ax x dxb ax x dx b ax x xb ax x dx 0a bax x lnbb ax x dx 22222222222222于是有则设:证明:积分表147个公式的推导(修正版)- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+bax dxb a bx dx b ax b a dx x b dx b ax b a bx b ax x dx b a B bA Ab 0B Aa Ab B Aa x Bx b ax A bax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:C bxx b ax ln ba Cb ax ln ·b a bx x ln ·b a dx bax b a dx x b dx x b a b ax x dx b a C b a A b B Bb Ba Ab C Aa Bb x Ba Ab x C Aa Cx b ax B b ax Ax b ax C x B x A b ax x dx b ax x b ax x dx 0a C b ax ln b a b ax x dx 22222222222+-+=+++--=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧==+=+∴++++=++++=+++=++==+>+-+=+⎰⎰⎰⎰⎰⎰⎰2222222222222422232224424443223212221 2 1212112 )( 1100 )()( )()(1 )(1 )(21 )( )( 12)( .27于是有则设:证明:积分表147个公式的推导(修正版) - 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴=++>⎪⎪⎩⎪⎪⎨⎧>+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 (41 )0( )4( 41)4( 42 .29222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan b ac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx ac bx ax a ac b C ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a ax dx :公式 21)(2 )(2121)(2)(212121)(21 )(2121121)(21 )(2121()(21 211102 2 2)(1 2)(21 211121 211121 121)( )( 21)(2)( 2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Abx )Ba Aa (Bax b ax A b ax B ax A b ax ax dxax b ax b ax ax ax d b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b ax dx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dxa b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 2112)(121 21221 221 )0( 2 21 .30证明:C )( , 1 |AB | , |AC | B Rt 1 , 01 , 22 || , ) )22( }{1 )0( C )( 31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx0x a x C x a x ln C lna x a x ln C a x a x ln C tant sect ln ax dx a x tant a a x cost sect a x x ,a |BC |,t ABC ΔC tant sect ln dt sect dt t sec a sect a a x dx sect a a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x a x )x (f a a x x ln C a xarsh a x dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt1cos 111 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x x a x x a BC t ABC ΔC sint atdt a dt sect a dt t sec a t sec a a x dx t sec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C a x a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dtat t t a t dx a x x dt a t ttdt a t dx a t x t t a x C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21, )0( )0 .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C )( )( 2231)( C )( 1 39)( C )( 22 1 )0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d ax a x x ln a a x x dx a x x d a x a dx a x dxax a a x dx a x x a a x x ln a a x x dx a x x 公式公式证明:C )( )( )( 1, |AB | , |AC |, || , B Rtcos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()()0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna a x xx a x ln C ax x a x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant ax x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sect dt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x t sec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln ax x dx a x x 1111222323233222 则中,设在,则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21 )( 21 )( 21 21 1 1 2)(21 , )0( )0( 1.3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a a x x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式b nlog b log a na = 提示: 1 11)1(211121)1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t C t a aC t a at a d t a a dtt a t a a dt t a t dt a t x d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x x dx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |a a x x |ln 2a a x 2x |tant sect |ln a tant sect a axtant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt tcos t cos dt tcos tsin tantdt sect tant tantdsect tantdsect a tant sect a dtant sect a tant a sectd a dx a x sect a a x tcos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1·Rt 1187 )·(1 1111 )·(· · , 01 ·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 tsec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+C a x x ln a a x a x x dx a x Cx a x ln 83a a x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x a a x a x a tant d t sec a a a x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x t sec a a x costsect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(44 cos 1 |AB | , |AC |, || , B Rt 412121 21 21 )1( ) 3 (413 3 )1(3 3 3 3 ) ( )( )( , 01, 22||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x cost sect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1 |AB | , |AC |, || , B Rt 488 21 21 21 21 )1( 44) (41 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0()( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式积分表147个公式的推导(修正版)- 23 -)( )( 2 )( 2 21 1 2)(21 , )0( }0|{)( )0( .4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t C a t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dt a t t dt a t t a t t dx x a x dt a t t tdt a t dx a t x a t t t a x x x x a x x f a C x a a x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 01 |AB | , |AC |, || , B Rt 1 11)1( , 01 , 20, ) ( ,)20( , 0 1. }0|{)( )0( C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln x a x dx x a x x a x ln x a x dx xa x x x a x ln x a x dx x a x x a x C lna x a x ln xa x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,a x x sint a x x a BC t ABC ΔC sint tant sect ln dsint t sin dt sect dt tsin cost dt sect dt t sin tcos cost dt sect dt ttan sect dt sect dt t tan ttan sect tdt sec a t tan a sect dx x a x ttan a sectx a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x xa x x f a a x x ln x a x dx xa x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1 . 21 Rt 2)20( . 1 }{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C a a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πt tant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 | || ||1)( || 1 . 2 ||. 1 }{ 1 2 )0( 45 C |a x x |ln C a |x |,C C a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22154222422422422222232222122222222222122+-+=++=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔCt sin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 )(211121 )()(21 )(21 )0( .47211222221221C a x C a x a x d a x dx a x dx a x x a C a x dx ax x 222222222222+-=+--⨯=--=-=->+-=----⎰⎰⎰⎰:证明- 27 -1)( 2 1 1)( 1)( 1 )()(. 2 11)( Rt 11 11 1)( )( 20 )( )20( . 1 }{ )()0( 1)( 48333333222232332333333 C ax dx a x x , C a x dx a x x x μCaμμd a μμμd a μμdx a x x μx ,x μa x ,a x Cax C a x a a dx a x x a x at cot a x |AC |,x |AB |a |BC |,t B ABC ΔC t cot a tdt csc a dt t sin a dt t tan t sec a dt tant sect a t tan a sect dx a x x t tan a sect a x x πt t tan a sect a a x x tantdt sect a dx πt sect a x ,a x a x a x |x a x xf(x)a C ax dx a x x .22222222222222222222222222222222222222+--=-+--=--=+--=--=-∴-=-=>--<+--=+-⋅-=-∴-=∴-====∠+⋅-=--===⋅⋅⋅⋅=-∴⋅=-<<⋅⋅=-⋅⋅=<<⋅=>-<>-=>+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 C a x x ln a a x x dx ax x C a x x ln a a x dxa C a x x ln a a x x dx a x dxax a dx a x dx ax aa x dxax a a x dx a x x a C a x x ln a a x x dx a x x .22222222222222222222222222222222+-+⋅+-=-+∴+-+⋅=-+-+⋅--⋅=--+-=-+-=-+-=->+-+⋅+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰22 45)( 53)( 221)( )0( 22 49222222222222222②得:由①公式②公式①证明:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档