证明(三)复习2导学案

合集下载

苏教版八年级物理上册同步学案:第3章 光现象 复习2

苏教版八年级物理上册同步学案:第3章 光现象 复习2

第三章光现象复习(第2课时)导学案【学习目标】1.复习平面镜的成像特点,了解平面镜在生产、生活中的应用;2. 复习光的反射定律,了解光的反射现象的应用。

【预习探学】1.平面镜的成像特点:①平面镜所成的像立是像。

②像与物的大小。

③像与物到镜面的距离;④像与物相对于镜面是的。

2. 实像:(能/不能)被人看见, (能/不能)呈现在光屏上;虚像:(能/不能)被人看见, (能/不能)呈现在光屏上;3.平面镜有着广泛的应用,生活中常用的梳妆镜是镜;商场里常利用平面镜成像来扩大;牙齿借助镜看清牙齿的背面;军事上的在早期也是由两块平面镜组成的。

4. 平面镜若使用不当,也会带来麻烦,高楼大厦的玻璃幕墙会造成;夜间行车时,车内的景物在挡风玻璃上成像会干扰。

5. 光射到物体表面时,有一部分 ,这种现象叫作光的反射。

我们能看见本身不发光的物体,就是因为。

6.光的反射定律是:反射光线、入射光线和法线在内,反射光线、入射光线分居在两侧,反射角入射角。

光反射时,光路是的。

7. 平面镜成像的原理是光的。

物体在平面镜中所成的虚像是由射入人眼中的光线的相交形成的。

8.一束平行光射到的物体表面上,反射光仍是 ,这种反射叫作镜面反射。

发生镜面反射时,物体发生镜面反射时,我们只能从(某个/各个)方向看到(较强/较弱)的反射光。

9. 一束平行光射到的物体表面上,反射光就会射向 ,这种反射叫做漫反射。

发生漫反射时,我们能从(某个/各个)方向看到(较强/较弱)的反射光。

10. 利用球面内表面作为反射面的镜子叫镜,对光线有作用。

利用球面外表面作为反射面的镜子叫镜,对光线有作用。

【合作互学、交流助学】例1 身高为1.6m的小芳面向穿衣镜站立在镜前1m处,她在镜中的像距离平面镜m,像高为 m;若她远离平面镜,后退0.5m,则她在镜中的像(变大/不变/变小),此时她在镜中的像距离自己 m。

例2 如图所示为水位测量仪的示意图.A点与光屏PQ在同一水平面上,从A点发出的一束与水平面成45°角,方向不变的激光,经水面反射后,在光屏上的B点处形成一个光斑,光斑位置随水位变化而发生变化.(1)在图中完成上述A点反射到B点的光路;(2)A点与光屏在水中所成的像是像(选填“虚”或“实”);(3)A点与水面相距3m,则A与它在水中的像A′之间的距离为 m;(4)若光斑B向右移动了1m,说明水位(上升/下降)了m.例3 晚上,在桌面上铺一张白纸,把一块小平面镜平放在纸上,关闭灯,让手电筒的光正对着平面镜照射,从侧面看去,下述现象正确的是()A.镜面比白纸亮 B.白纸比镜面亮C.镜面、白纸都是亮的 D.镜面、白纸都是暗的例4 按下列题目的要求进行作图:(1)小宇的妈妈喜欢在家中养花,为了使客厅里花盆中的花能茁壮成长,小宇想让室外太阳光照射到盆中花上的B处,如图。

推理与证明复习(导学案)

推理与证明复习(导学案)

宁陕中学导学案(数学)高二级 班 姓名 年 月 日《推理与证明》复习学习目标:1、能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构。

2、能比较数学证明的几种基本方法的思维过程和特点,灵活运用各种方法进行一些 数学证明。

3、了解合情推理和演绎推理之间的联系、差异和各自所起的作用。

本章知识结构图:一、基础训练1.已知,,且,则( )A .B .C .D .2.推理:“①矩形是平行四边形;②三角形不是平行四边形;③所以三角形不是矩形.”中的小前提是( )A .①B .②C .③D .①和②3.一同学在电脑中打出如下若干个圆:○●○○●○○○●○○○○●○○○○○●…,若依此规律继续下去,得到一系列的圆,则在前2 012个圆中共有●的个数是( )A .61B .62C .63D .644.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是 ( )A.42n + B.42n - C.24n + D.33n +5.观察下列格式:20117655,781255,156255,31255则 ===的末四位数字为( )A.3125B.5625C.0625D.81256.半径为r 的圆的面积2)(r r S π=,周长r r C π2)(=,若将r 看作),0(+∞上的变量,则r r ππ2)(2=',类比上述命题可得到若球的半径为r ,则 。

7.在平面上,若两个正三角形的边长之比为1:2,则它们的面积之比为1:4,类似的在空间中,若两个正四面体的棱长之比为1:2,则它们的体积之比为 。

6-63-333a =21n n n a a a ++=-26a =13a =二、典型例题例1.已知a,b 为正数,且a+b=1,求证:411≥+ba .例2.用分析法证明:5317)12(2<+.例3.若a,b ,c 均为实数,且222π+-=y x a ,322π+-=z y b ,622π+-=x z c ,求证:a,b,c 中至少有一个大于零.三、巩固训练1.将下面平面几何中的概念类比到立体几何中,会得到什么结果?将下表填充完整。

第一章 三角形的证明 复习(有答案)导学案

第一章 三角形的证明 复习(有答案)导学案

第一章三角形的证明复习课导学案班级:__________姓名:_____________一.本章重要知识回顾:1.等腰三角形的性质:(1)等腰三角形是图形.(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“”),它们所在的直线都是等腰三角形的,等腰三角形有条对称轴.(3)等腰三角形的两个底角,简称;(4)等腰三角形的相等;相等;相等;(5)等腰三角形底边的中点到两腰的距离(6)等腰三角形底边上任意一点到两腰距离之和等于。

2.等腰三角形的判定:(1)的三角形叫做等腰三角形(2)如果一个三角形有两个角相等,那么它们所对的边也,简称.3.等边三角形的性质:(1)等边三角形三边都相等,三个内角都是,等边三角形是图形,等边三角形有条对称轴.(2)等边三角形内任意一点到三边距离之和等于。

4.等边三角形的判定:(1)三边都的三角形是等边三角形;(2)三角都的三角形是等边三角形;(3)有一个角等于的三角形是等边三角形.5.直角三角形的性质:(1)直角三角形的两锐角;(2)直角三角形两直角边的平方和等于斜边的平方(勾股定理);(3)直角三角形中30°的角所对的直角边等于;(4)如果直角三角形中一条直角边等于斜边的一半,那么这条直角边所对的锐角 .6.直角三角形的判定:(1)有一个是直角的三角形是直角三角形;(2)如果一个三角形的两条边的平分和等于第三条的平方,这个三角形是直角三角形(勾股定理的逆定理)。

7.直角三角形全等的判定方法:ASA,AAS,SSS,SAS,HL8.线段的垂直平分线和角平分线的性质和判定:(1)线段垂直平分线上的点到这条线段两个的距离相等。

(2)到一条线段两个距离的点,在这条线段的垂直平分线上。

(3)三角形三条边的垂直平分线相交于点,并且这点到的距离相等。

(4)角平分线上的点到的距离相等。

(5)在一个角的内部,到角距离相等的点,在这个角的上。

(6)三角形三个角的平分线相交于点,并且这点到的距离相等。

2023年湘教版八年级数学上册:2.2命题与证明(3)导学案

2023年湘教版八年级数学上册:2.2命题与证明(3)导学案

G F E
D C B A
新湘教版八年级数学上册:2.2命题与证明(3)导学案
【学习目标】 1、会运用定义、定理、推论对一个命题进行推理论证;
2、明确证明文字命题的三个步骤。

3、了解反证法的证明思路。

【前置学习】
1.如图,AB//CD ,AB 与D E 相交于点G ,∠B=∠D ,求证:DE//BF 。

2. 用“反证法”证明:两条直线被第三条直线所截,如果同旁内角不互补,那么这两条直线必相交。

应先假设_____________________。

【经典例题】
例1、证明命题“三角形的外角和为360°”是真命题。

已知:
求证: (在此画图) 证明:
G F E D C
B A
例2、用反证法证明:一个三角形中不可能有两个钝角。

例3、已知:如图,B D ⊥AC ,EF ⊥AC ,D ,F 是垂足,∠BDG=∠CEF,求证:∠ADG=∠C 。

【课堂小结】。

期末复习(2)导学案

期末复习(2)导学案
2 2

2 2


2.如图 3 所示,设 A 为反比例函数 y
k 图象上一.如果直角三角形的两边分别为 3 、 4 ,那么第三边的长为 4.某市广播电视局欲招聘播音员一名,对 A,B 两名候选人进行了两项素质测试,两人的两项测试 成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按 3: 2 的比例计算两人 的总成绩,那么 (填 A 或 B )将被录用. 5.已知 x y 7 且 xy 12 ,则当 x y 时,
cm
2y x2 2y2 3x 2 y 2 x
2
三、 (每小题 5 分,共 15 分)
3x 2 1.计算: 4y
1 1 1 1 2.化简: 2 2 b a b a
2
3.如图 6,公路 MN 和公路 PQ 在点 P 处交汇,公路 PQ 上点 A 处有学校,点 A 到公路 MN 的距离 为 80 m , 现有一拖拉机在公路 MN 上以 18km/ h 的速度沿 PN 方向行驶, 拖拉机行驶时周围 100 m 以 内都会受到噪音声的影响,试问该校受影响的时间为多少秒?

题 学 目 校
星火一中 自我设计 略 略




总课时
1
期末总复习(2)





学 科
设计来源 学 习 目 标 重 点 难 点
学习 方法
教学时间 2012-05-15
知识技能 过程方法 情感态度 价 值 观 基础知识

应用基础知识解决问题
小组合作、自学
一基础知识 二、填空题: (每小题 3 分,共 24 分) 1.计算: a b ab

第一章《图形与证明》(二)导学案

第一章《图形与证明》(二)导学案

邳州市邹庄中学2009-2010学年度第一学期初三数学电子备课第一章导学案(总计16课时)邹庄中学孟庆金课题:等腰三角形的性质和判定(1)学习目标:1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

重点、难点:1、等腰三角形的性质及其证明。

2、应用性质解题。

学习过程:一、知识回顾:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

2、证明与图形有关的命题,一般步骤有哪些?(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、____________等。

4、我们初中数学中,选用了哪些真命题作为基本事实:(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。

24.2.1命题与证明导学案

24.2.1命题与证明导学案
教师复备栏
或学生笔记栏
二、重点、难点:
重点是理解证明的必要性
难点是推论证明的思路和方法.
三、预习导航
(一)知识链接:()
举例说明:真命题与假命题
(二)新知初探()
通过完成下面三个个问题串(将答案写在空白处)体会:利用观察、测量、归纳、类比等方法探索发现的结论(命题),可能是真命题,也可能是假命题。
1.当n=1时,(n2-5n+5)2=1;
当n=2时,(n2-5n+5)2=1;
当n=3时,(n2-5n+5)2=1.
由此归纳得出:当n取任意正整数时,(n2-5n+5)2的值都是1.
你认为这个命题正确吗?为什么?
2.如果a=b,那么a2=b2.由此类比猜想得出:当a>b时,a2>b2,你认为这个命题正确吗?为什么?
3.已知;如图24—3(1),a∥b,b∥c直线a,b平行吗?
课题:§24.2.1命题的证明课型:预习+展示学案编号:
编制人:崔立明审核人:使用时间:班级:姓名:小组:评价等级:
一、学习目标:
1、经历通过观察、验证、归纳、类比等方法猜想结论的过程,发现由这些方法得到的结论可能不正确,从而认识证明的必要性
2、理解定义、定理、公理的含义
3、能写出简单的逻辑推理过程,体会逻辑推理在几何学中的在图24—3(1)中,再作一条直线l,使直线l与直线a,b,c都相交,如图24—3(2).用量角器测量∠1和∠2,根据∠1和∠2的大小关系,你能判定“a与b平行”这一结论正确吗?
(3)借助图(2)通过有理有据的说理你能说明“a∥b”吗?
(三)抽象概念
阅读课本116页后理解定理、公理、定义的含义
所以AC=DB().
所以AC+CD=DB+CD().

《整理与复习(二)2》导学案

《整理与复习(二)2》导学案
课题
整理与复习(二)
课型
学案导学课
课时
2
学习内容
北师大版小学数学五年级(上册)第三单元第63—65页“整理与复习(二)”。
学习目标
1、归纳整理分数的有关知识,理清相关知识之间的关系。
2、进一步深化对各个概念的理解。
3、在复习中体会归纳、总结等数学思想和方法,提高概括能力与整理能力。
重难点
帮助学生理清相关的知识之间的关系,并能进一步深化对各概念的理解。
自主思考后小组合作完成。
学习反思
作业布置
P65练一练7、8题
预习:折纸。
板书设计
整理与复习(二)
你学到了什么?
教学反思
学法指导
引导启发、合作交流。
教学用具
课件
学案
导案ห้องสมุดไป่ตู้
个案



自主完成会的,不会的与同学交流。
先举例子,完成计算,再总结方法。
引导说一说,整理归纳。



1、小组展示交流。(小组长分工归纳,准备展示。)
2、师生共同完成。
组织探究、交流,共同归纳小结。



自主完成练习,教师巡视指导学困生。
自主完成后,小组长检查,教师引导集体反馈和补纠。

北师大版九年级数学1.1你能证明它们吗(第三课时)导学案

北师大版九年级数学1.1你能证明它们吗(第三课时)导学案
o
) ) )
________( 等量代换) BC AC ( __________ 等量代换) __( ABC是等边三角形(等边三角形的定义).
情况二: 60°角为等腰三角形的顶角.
已知:如图,在ABC中,AB AC,A 60 o. 求证:ABC是等边三角形. 证明: A 60 o B C 120 o (三角形内角和为180 o ) AB AC C B 60 o ( A B( AB BC AC ( ) ) )
o
) )
ABD是等边三角形( BC ___ BD ___ AB
即学即用:
在RtABC中,C 90 o A 30 o BC ____ AB.( )
活动三:
请先独立完成下列问题,然后与你的同伴进行交流. 例 2 等腰三角形的底角为 15o ,腰长为 2a,求腰上的 高. 解:
1、 先阅读并思考 P11—P13 页教材内容, 思考等腰三角形成为等边 学法 指导: 三角形的条件,探索含有 30º角的直角三角形性质; 2、 将存在疑问的地方标出来,准备课堂上质疑. 1、 一个三角形满足什么条件时便成为等边三角形?
自主 2、 一个等腰三角形满足什么条பைடு நூலகம்时便成为等边三角形? 学习:
第 1 页 /共 5 页
自我评价:
小组长评价:
活动一:
合作 探究:
请你试着证明它. 情况一: 60°角为等腰三角形的底角.
第 2 页 /共 5 页
已知:如图,在ABC中,AB AC,B 60 o. 求证:ABC是等边三角形. 证明: AB AC,B 60 o C B 60 o ( A 60 (
第 3 页 /共 5 页

1-2-3-2数学证明导学案

1-2-3-2数学证明导学案

第三章推理与证明§2数学证明基础自主预习1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式,包括:①大前提------一般性道理;②小前提------研究对象的特殊情况;③结论------由大前提和小前提作出的判断3.“三段论”可以表示为:①大前提:M是P②小前提:S是M③结论:S是P用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素都具有性质P.4.在数学中,证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来练习:一切无理数都不能写成分数的形式,2是无理数,所以2不能写成分数的形式,其演绎推理的“三段论”形式为:__________________________________________.【答案】大前提:一切无理数都不能写成分数的形式小前提:2是无理数结论:所以2不能写成分数的形式1.下列说法正确的个数有( )①演绎推理是由一般到特殊的推理;②三段论推理的常用规则有假言推理、三段论推理、关系推理、归纳推理;③演绎推理得到的结论的正误与大前提、小前提有关. A.0个 B.1个 C.2个 D.3个 【答案】C【解析】由演绎推理的相关概念知①③正确.2.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误【答案】C【解析】大前提与小前提都是正确的,但整数就是那些不是真分数的有理数,故不能推出结论来.3. 设,,(,0),a b c ∈-∞则111,,a b c b c a+++() A.都不大于2- B.都不小于2-C.至少有一个不大于2-D.至少有一个不小于2-【答案】D【解析】因为6111-≤+++++ac c b b a 所以111,,a b c b c a+++中至少有一个不大于2-.4.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________【答案】x y <【解析】2222()2a b y a b x +==+=>=5.已知ABC ∆中,45,30=∠=∠B A ,求证b a <.证明:B A B A ∠<∠∴=∠=∠,45,30b a <∴此问题的证明过程中蕴含的“三段论”中的大前提是. 【答案】b a B A <⇒∠<∠.【解析】三角形中”大边对大角,小边对小角”的一个结论.智能提升作业1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 【答案】A【解析】大前提为“直线平行于平面,则平行于平面内所有直线”,而此结论是不成立的,应是平行于平面内无数条直线才对. 2.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值 【答案】C【解析】正弦函数在闭区间内有最值,]2,0[)44sin(3)(ππ在+=x x f 内的最小值与最大值分别是0与223. 3.在ABC ∆中,F E ,分别为AC AB ,的中点,则有BC EF //,此问题的大前提为( ) A.三角形中的中位线平行于第三边 B. 三角形的中位线等于第三边的一半C.EF 为中位线D. BC EF // 【答案】A 【解析】此问题的大前提便是三角形中位线的性质结论,即三角形中的中位线平行于第三边. B 选项中的结论在这没用到,C 选项中EF 为中位线即转述F E ,分别为AC AB ,的中点,此为该题的小前提,而D 选项BC EF //是结论,故B 、C 、D 错,A 正确. 4. 函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 【答案】D 【解析】函数xy 1=的导函数是3121xy -=',当4=x 时,161-='y . 5.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335- C .-3 D .27-【答案】C 【解析】令)(sin 3,cos 6R b a ∈==ααα,则))(sin(3sin 3cos 6R b a ∈++=+=+ϕαϕααα,于是其最小值为3-.6. 在ABC ∆中,CD BC AC ,>是AB 边上的高,求证:BCD ACD ∠>∠.证明:在ABC ∆中,BC AC BC AC >>, , ①BD AD >∴ ② 于是BCD ACD ∠>∠ ③ 则在上面证明的过程中错误的序号是( )A.①B.②C.③D. ①③ 【答案】C【解析】①②都正确,而对于③中的结论BCD ACD ∠>∠,只有在同一三角形中才有大边对大角的结论成立.7.)1,2(),2,1(-== 012)2(1=⨯+-⨯=⋅∴ ⊥大前提:________________________; 小前提:________________________; 结论:________________________.【答案】⊥⇒=⋅0; 012)2(1=⨯+-⨯=⋅; ⊥.【解析】结合题目已知的证明过程,答案易知.8.已知:空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,则直线EF 与平面ABD 的关系是_______________________. 【答案】//EF 面ABD【解析】连接BD ,因为F E ,分别为CD BC ,的中点,所以 EF ∥BD.又因为⊄EF 面ABD ,⊂BD 面ABD ,故//EF 面ABD .9.△ABC 三边长,,a b c 的倒数成等差数列,求证:角B 090<.【证明】222cos 2a c b B ac +-=≥222ac b ac -=212b ac -=211()b bb ac a c -=-++ ,,a b c 为△ABC 三边,a c ∴+b >,1ba c∴-+0>cos B ∴0> ∴B 090<. 10. 若数列{}n a 的前n 项和为2)(1n n a a n s +=,求证:数列{}n a 为等差数列。

第一章证明复习回顾导学案 北师大版

第一章证明复习回顾导学案 北师大版
用心 爱心 专心 2
3.如右图,已知 BE⊥AC 于 E,CF⊥AB 于 F,BE、CF 相 交于点 D,若 BD=CD.求证:AD 平分∠BAC. 五、三角形全等 1、如图:已知 P,O 是线段 CD 垂直平分线上的点,A,B 分别是射线 OC,OD 上的点, 且 PC⊥OA,PD⊥OB,垂足分别 是 C,D. 求证:[1]OC=OD [2]OP 平分∠AOB A 2、.如图:在△ABC 中, AD,CE 分别是△ABC 的高, E H 请你再加一个___________ B C 条件 D 即可使△AEH≌△CEB。 [6] 六、命题 1. 命题“直角三角形斜边上的中线等于斜边的一半” , 其逆命题是 _____________________________________. 它 是 一 个 __________命题。 2.下列各语句中,不是真命题的是 A.直角都相等 B.等角的补角相等 C.点 P 在角的平分线上 D.对顶角相等 3、.下列命题中是真命题的是 A. 有两角及其中一角的平分线对应相等的两个三 角形全等 B.相等的角是对顶角 C.余角相等的角互余 D.两直线被第三条直线所截,截得的同位角相等 七、综合 小军和小强互相编数学题考察对方: (1)小军编题:将含有 45 度角的的直角三角板和直尺 如图摆放在桌子上,然后分别过 A、B 两个顶点向直尺 作了两条垂线段 AD,BE。 问题 [1] :你能发现并证明这个图形中的全等三角形
15 等于 3 , 则此等腰三角形的周长是 ( ) A.9 B. 12 C.
随时纠错
D. 12 或 15 2.等腰三角形的底角为 15°,腰上的高为 16,那么腰长 为__________ 3、等腰三角形的一个角是 80 度,则它的另两个角是 4、 (选作)△ABC 中,D,E 分别是 AC,AB 上的点,BD 与 CE 交于点 O,给出下列四个条件: ①∠EBO=∠DCO ②∠BEO=∠CDO ③BE=CD ④OB=OC [1]上述四个条件中, 哪两个条件可以判定△ABC 是等腰 三角形(用序号写出) [2]选择第[1]小题中的一种情形,证明△ABC 是等腰三 角 二、等边三角形 1、如图:等边三角形 ABC 中,D 为 AC 的中点,E 为 BC 延长线上一点, 且 DB=DE,若△ABC 的周长为 12, 则△DCE 的周长为___________. 三、垂直平分线 1、如图 1,在△ABC 中,已知 AC=27,AB 的垂直 平分线交 AB 于点 D,交 AC 于点 E,△BCE 的周长等于 50,求 BC 的长. 0 2、 (选作)如图:△ABC 中,AB=AC,∠BAC=120 ,EF 垂直 平分 AB,EF=2,求 AB 与 BC 的 长。

初二数学《三角形的有关证明复习》课时教案

初二数学《三角形的有关证明复习》课时教案

初二数学《三角形的有关证明复习》课时教案【课题】《三角形的有关证明复习》【课型】复习【教学目标】1.了解三角形全等的识别方法和三角形全等的性质,能够证明与等腰三角形、直角三角形、线段垂直平分线、角平分线相关的性质定理和判定定理.2.理解互逆命题、互逆定理,体会反证法的含义.3.能够利用尺规作图作等腰三角形、直角三角形、已知线段的垂直平分线和已知角的角平分线.【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。

【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。

)知识回顾(15分钟)【课堂梳理】知识点一全等三角形1.判断三角形全等的方法:①(三个公理)______、______、_____、②(一个定理)_____.2.全等三角形的性质:①线段相等:对应边相等、对应边上的_______、对应中线、______相等.②角相等:相等.注:利用全等三角形证明线段或角相等知识点二等腰三角形3.等腰三角形性质:①定理: .(等边对等角)②推论: .(三线合一)4.等腰三角形的判断方法:①定义: .②定理: .(等角对等边)知识点三等边三角形5.等边三角形概念: .6.等边三角形的性质:①等边三角形的三条边______.(边)②等边三角形的三个内角都等于______.(角)7.等边三角形的判定:①______相等的三角形是等边三角形.②三个角相等的三角形是 .③有一个角等于____的等腰三角形是等边三角形.注:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.知识点四直角三角形8.直角三角形的性质:①直角三角形的两个锐角 .②直角三角形两条直角边的平方和等于 .③在直角三角形中,如果有一个锐角等于____,那么它所对的直角边等于斜边的 .9.直角三角形的判定:①有两个角的三角形是直角三角形.②如果三角形两边的平方和等于,那么这个三角形为直角三角形.10.直角三角形全等的判定方法:(HL) . 注:(HL)只适用于直角三角形.知识点五线段垂直平分线11.段垂直平分线的定理: .12.线段垂直平分线的逆定理: .13.三角形垂直平分线定理: .知识点六角平分线14.角平分线的定理: .15.角平分线的逆定理: .16.三角形角平分线定理: .注:若一个点到三角形三边以及到三角形三个顶点的距离相等,这个点一定为三角形三边垂直平分线与三个内角角平分线的交点.(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。

八年级数学第一学期期末复习导学案(2)

八年级数学第一学期期末复习导学案(2)

D CB A DB八年级数学期末复习导学案(2)-----1.5-1.6一、 自主复习:(要求:熟记定理、复习例题) 二、 自我检查:(课前完成,限时20分钟)1.等腰三角形中,如果底边长为6,一腰长为8,那么周长是 。

如果等腰三角形有一边长是6,另一边长是8,那么它的周长是 ;如果等腰三角形的两边长分别是4、8,那么它的周长是 。

2.若等腰三角形的一个外角为70°,则它的底角为 度。

3.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为_______cm . 4、 某花木场有一块如等腰梯形ABCD 的空地,各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm 5、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为 。

6、已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC ,且AD ∥BC 。

求证:AB =AC7.如图,在直角梯形ABCD 中,AD ∥BC,BC-AD=2cm,∠B=90°,∠C=45°,BC+AD=10cm.求梯形ABCD 的面积.三、重要知识点:(课前完成,要求熟记)1. 等腰三角形的性质:①等腰三角形是 图形, 是它的对称轴;②等腰三角形的两个底角相等;(简称“ ”) ③等腰三角形的顶角 线、底边上的 线、底边上的 互相重合。

(简称“ ”) 2. 等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”) ②两边相等的三角形是等腰三角形。

3、直角三角形的性质:直角三角形斜边上的 线等于斜边长的 。

4.等边三角形:等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。

① 等边三角形的性质:等边三角形是 图形,并且有 条对称轴;等边三角形的每个角都等于 0。

③等边三角形的判定:; 的三角形是等边三角形;第18题三角形是等边三角形; 三角形是等边三角形。

高三复习导学案——推理、证明、数学归纳法(含详细答案)

高三复习导学案——推理、证明、数学归纳法(含详细答案)

合情推理与演绎推理导学案【学习要求】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异.【课前准备】自主梳理推理⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧合情推理⎩⎪⎨⎪⎧⎩⎨⎪⎧定义:由个别事实推演出 的结论.特点:是由 到整体、由 到一般的推理. ⎩⎪⎨⎪⎧定义:由两个(或两类)对象之间在某些方 面的相似或相同推演出它们在其他方面也相似或相同.演绎推理⎩⎪⎨⎪⎧模式:三段论⎩⎪⎨⎪⎧ ①大前提——已知的 ;②小前提——所研究的 ;③结论——根据一般原理,对作出的判断.特点:演绎推理是由 到 的推理.【自我检测】1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________.2.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是________________________________________________________.3.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为____________________________________________________.【活动探究】探究点一 归纳推理例1 在数列{a n }中,a 1=1,a n +1=2a n2+a n,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移1 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二 类比推理例2 在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高分别为h a ,h b ,h c ,则有p a h a +p b h b +p ch c=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2 在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 22,将此结论类比到空间有___________________________________________探究点三 演绎推理例3 在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.变式迁移3 指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.【课堂小结】1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想.一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明.2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.3.从一般性的原理出发,推出某个特殊情况下的结论,把这种推理称为演绎推理,也就是由一般到特殊的推理,三段论是演绎推理的一般模式,包括大前提,小前提,结论.【课后作业】一、填空题(每小题6分,共48分)1.定义A *B ,B *C ,C *D ,D *A 的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果分别为________________.2.设f (x )=1+x1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2 011(x )=____________.3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a|·|b |”;⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是________.4.有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含有一个数1,第二组含有两个数3,5;第三组含有三个数:7,9,11;第四组含有四个数:13,15,17,19;…试观察每组内各数之和与组的编号数n 的关系为_____.5.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是________.6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是____7.定义一种运算“*”:对于自然数n 满足以下运算性质: (1)1] .8.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为___________________________________________________. 二、解答题(共42分)9.(14分)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n +1+2=0(n ≥2).计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.10.(14分)已知函数f (x )=-aa x +a(a >0且a ≠1),(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.11.(14分)如图1,若射线OM ,ON 上分别存在点M 1,M 2与点N 1,N 2,则S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2;如图2,若不在同一平面内的射线OP ,OQ 和OR 上分别存在点P 1,P 2,点Q 1,Q 2和点R 1,R 2,则类似的结论是什么?这个结论正确吗?说明理由.直接证明与间接证明导学案【学习要求】1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程及特点. 2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程及特点.【课前准备】1.直接证明 (1)综合法①定义:从已知条件出发,以______________________为依据,逐步下推,直到推出所要证明的结论为止,这种证明方法叫做综合法.②框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件,Q 表示要证的结论). (2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使________________和______________________为止.这种证明方法叫做分析法.②框图表示:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件.2.间接证明反证法:假设原命题________(即在原命题的条件下,结论不成立),经过正确的推理,最后得出________,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.【自我检测】1.分析法是从要证的结论出发,寻求使它成立的________条件.(填“充分”、“必要”或“充要”) 2.用反证法证明“如果a >b ,那么3a >3b ”的假设内容应是__________________. 3.设a 、b 、c 是互不相等的正数,则下列不等式中不恒成立的是________.(填序号). ①|a -c |≤|a -b |+|c -b |;②a 2+1a 2≥a +1a;③a +3-a +1<a +2-a ;④|a -b |+1a -b≥2.4.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系为____________________.5.设x 、y 、z ∈R +,a =x +1y ,b =y +1z ,c =z +1x,证明a ,b ,c 中至少有一个不小于2.【活动探究】探究点一 综合法例1 已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .变式迁移1 设a ,b ,c >0,证明: a 2b +b 2c +c 2a ≥a +b +c .探究点二 分析法例2 若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .变式迁移2 已知a >0,求证: a 2+1a 2-2≥a +1a-2.探究点三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立.式迁移3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c 中至少有一个大于0.转化与化归思想例 (14分)(2010·上海改编)若实数x 、y 、m 满足|x -m |>|y -m |,则称x 比y 远离m .(1)若x 2-1比1远离0,求x 的取值范围.(2)对任意两个不相等的正数a 、b ,证明:a 3+b 3比a 2b +ab 2远离2ab ab .多角度审题 (1)本题属新定义题,根据“远离”的含义列出不等式,然后加以求解.(2)第(2)小题,实质是证明不等式|a 3+b 3-2ab ab |>|a 2b +ab 2-2ab ab |成立.证明时注意提取公因式及配方法的运用.【答题模板】(1)解 由题意得||x 2-1>1, 即x 2-1>1或x 2-1<-1.[2分]由x 2-1>1,得x 2>2,即x <-2或x >2; 由x 2-1<-1,得x ∈∅.综上可知x 的取值范围为(-∞,-2)∪(2,+∞).[4分](2)证明 由题意知即证||a 3+b 3-2ab ab >||a 2b +ab 2-2ab ab 成立.[8分] ∵a ≠b ,且a 、b 都为正数,∴||a 3+b 3-2ab ab =||(a 3)2+(b 3)2-2a 3b 3=||(a 3-b 3)2=(a a -b b )2,||a 2b +ab 2-2ab ab =||ab (a +b -2ab )=ab (a -b )2=(a b -b a )2,[10分] 即证(a a -b b )2-(a b -b a )2>0,即证(a a -b b -a b +b a )(a a -b b +a b -b a )>0, 需证[](a -b )(a +b )[](a -b )(a +b )>0,[12分] 即证(a +b )(a -b )2>0,∵a 、b 都为正数且a ≠b , ∴上式成立.故原命题成立.[14分] 【突破思维障碍】1.准确理解题意,提炼出相应不等式是解决问题的关键.2.代数式|a 3+b 3-2ab ab |与|a 2b +ab 2-2ab ab |中的绝对值符号去掉为后续等价变形提供了方便. 【易错点剖析】1.推理论证能力较差,绝对值符号不会去.2.运用能力较差,不能有效地进行式子的等价变形或中间变形出错.【课堂小结】1.综合法是从条件推导到结论的思维方法,它是从已知条件出发,经过逐步的推理,最后达到待证的结论.即由因导果.2.分析法是从待证结论出发,一步一步地寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.即执果索因,用分析法寻找解题思路,再用综合法书写,这样比较有条理,叫分析综合法.3.用反证法证明问题的一般步骤:(1)反设:假设命题的结论不成立,即假定原结论的反面为真;(否定结论)(2)归谬:从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(推导矛盾) (3)存真:由矛盾结果断定反设不真,从而肯定原结论成立.(结论成立) 【课后作业】(满分:90分)一、填空题(每小题6分,共48分)1.用反证法证明命题“若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数”.假设内容应为____________________________________.2.设a ,b 是两个实数,给出下列条件: (1)a +b >1;(2)a +b =2;(3)a +b >2; (4)a 2+b 2>2;(5)ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是______.(填序号)3.设a 、b 、c ∈(0,+∞),P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P 、Q 、R 同时大于零”的________条件.4.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3; ⑤1a +1b≥2. 5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是________三角形(填“锐角”“钝角”或“直角”).6.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是__________________________________________________________________________________________________________________________. 7.对于任意实数a ,b 定义运算a *b =(a +1)(b +1)-1,给出以下结论: ①对于任意实数a ,b ,c ,有a *(b +c )=(a *b )+(a *c ); ②对于任意实数a ,b ,c ,有a *(b *c )=(a *b )*c ;③对于任意实数a ,有a *0=a .则以上结论正确的是________.(写出你认为正确的结论的所有序号) 8.已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.二、解答题(共42分)9.(14分)已知非零向量a 、b ,a ⊥b ,求证:|a |+|b ||a -b |≤ 2.10.(14分)已知a 、b 、c >0,求证:a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).11.(14分)已知a 、b 、c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14.学案37 数学归纳法【学习要求】1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.【课前准备】1.归纳法由一系列有限的特殊事例得出一般结论的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为完全归纳法和不完全归纳法.2.数学归纳法设{P n }是一个与正整数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切正整数成立.3.数学归纳法公理(1)(归纳奠基)证明当n 取第一个值__________时命题成立.(2)(归纳递推)假设______________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.【自我检测】1.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”在验证n =1时,左端计算所得的项为___.2.如果命题P (n )对于n =k (k ∈N *)时成立,则它对n =k +2也成立,又若P (n )对于n =2时成立,则下列结论中正确的序号有________.①P (n )对所有正整数n 成立;②P (n )对所有正偶数n 成立;③P (n )对所有正奇数n 成立;④P (n )对所有大于1的正整数n 成立.3.证明n +22<1+12+13+14+…+12n <n +1(n >1),当n =2时,中间式子等于______________.4.用数学归纳法证明“2n >n 2+1对于n >n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________. 5.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为______________;由此猜想S n =__________.【活动探究】探究点一 用数学归纳法证明等式例1 对于n ∈N *,用数学归纳法证明:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1=16n (n +1)(n +2).变式迁移1 用数学归纳法证明:对任意的n ∈N *,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .探究点二 用数学归纳法证明不等式例2 用数学归纳法证明:对一切大于1的自然数,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝⎛⎭⎫1+12n -1>2n +12均成立.变式迁移2 已知m 为正整数,用数学归纳法证明:当x >-1时,(1+x )m ≥1+mx . 探究点三 用数学归纳法证明整除问题例3 用数学归纳法证明:当n ∈N *时,a n +1+(a +1)2n -1能被a 2+a +1整除.变式迁移3 用数学归纳法证明:当n 为正整数时,f (n )=32n +2-8n-9能被64整除.从特殊到一般的思想例 (14分)已知等差数列{a n }的公差d 大于0,且a 2、a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n }、{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.【答题模板】解 (1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12a 2a 5=27,又∵{a n }的公差大于0,∴a 5>a 2,∴a 2=3,a 5=9.∴d =a 5-a 23=9-33=2,a 1=1,∴a n =1+(n -1)×2=2n -1.[2分]∵T n =1-12b n ,∴b 1=23,当n ≥2时,T n -1=1-12b n -1,∴b n =T n -T n -1=1-12b n -⎝⎛⎭⎫1-12b n -1, 化简,得b n =13b n -1,[4分]∴{b n }是首项为23,公比为13的等比数列,即b n =23·⎝⎛⎭⎫13n -1=23n ,∴a n =2n -1,b n =23n .[6分](2)∵S n =1+n -2n =n 2,∴S n +1=(n +1)2,1b n =3n 2.以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,∴1b 1<S 2,当n =2时,1b 2=92,S 3=9,∴1b 2<S 3,当n =3时,1b 3=272,S 4=16,∴1b 3<S 4,当n =4时,1b 4=812,S 5=25,∴1b 4>S 5.[9分]猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k 2>(k +1)2.[11分] 那么,n =k +1时,1b k +1=3k +12=3·3k2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1,∴n =k +1时,1b n>S n +1也成立.由①②可知n ∈N *,n ≥4时,1b n >S n +1都成立.综上所述,当n =1,2,3时,1b n <S n +1,当n ≥4时,1b n>S n +1.[14分]【突破思维障碍】1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.2.数列是定义在N *上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.【易错点剖析】1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.2.在进行n =k +1命题证明时,一定要用n =k 时的命题,没有用到该命题而推理证明的方法不是数学归纳法.【课堂小结】1.数学归纳法:先证明当n 取第一个值n 0时命题成立,然后假设当n =k (k ∈N *,k ≥n 0)时命题成立,并证明当n =k +1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n 取第一个值n 0时,命题成立,这样假设就有了存在的基础,至少k =n 0时命题成立,由假设合理推证出n =k +1时命题也成立,这实质上是证明了一种循环,如验证了n 0=1成立,又证明了n =k +1也成立,这就一定有n =2成立,n =2成立,则n =3成立,n =3成立,则n =4也成立,如此反复以至无穷,对所有n ≥n 0的整数就都成立了.2.(1)第①步验证n =n 0使命题成立时n 0不一定是1,是使命题成立的最小正整数.(2)第②步证明n =k +1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.【课后作业】一、填空题 1.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是________(填序号).①假设n =k (k ∈N *)时命题成立,证明n =k +1命题成立;②假设n =k (k 是正奇数)时命题成立,证明n =k +1命题成立; ③假设n =2k +1 (k ∈N *)时命题成立,证明n =k +1命题成立; ④假设n =k (k 是正奇数)时命题成立,证明n =k +2命题成立.2.已知f (n )=1n +1n +1+1n +2+…+1n2,则f (n )中共有_______项;当n =2时,f (2)=___.3.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是________(填序号).①P (n )对n ∈N *成立;②P (n )对n >4且n ∈N *成立;③P (n )对n <4且n ∈N *成立;④P (n )对n ≤4且n ∈N *不成立.4.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上______.5.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是__________.6.用数学归纳法证明“1+2+3+…+n +…+3+2+1=n 2 (n ∈N *)”时,从n =k 到n =k +1时,该式左边应添加的代数式是________.7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________________.8.凸n 边形有f (n )条对角线,凸n +1边形有f (n +1)条对角线,则f (n +1)=f (n )+________. 二、解答题9.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).10.数列{a n }满足a n >0,S n =12(a n +1a n),求S 1,S 2,猜想S n ,并用数学归纳法证明.11.已知函数f (x )=1x 2e -1|x |(其中e 为自然对数的底数).(1)判断f (x )的奇偶性;(2)在(-∞,0)上求函数f (x )的极值;(3)用数学归纳法证明:当x >0时,对任意正整数n 都有f (1x)<n !·x 2-n .合情推理与演绎推理导学案答案【课前准备】归纳推理 一般性 部分 个别 类比推理 ①一般性原理 ②特殊对象 ③特殊对象 一般 特殊 【自我检测】1.-g (x )解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.2解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小. 3.1∶8解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212解析 由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除 大前提 2100+1是奇数 小前提所以2100+1不能被2整除 结论 【活动探究】例1 解题导引 归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解 在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n2+a n,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列, 所以1a n =1+(n -1)×12=12n +12,所以通项公式a n =2n +1.变式迁移1 解 猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明如下:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin 2α+⎝⎛⎭⎫32cos α-12sin α⎝⎛⎭⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.例2 解题导引 类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为p a ,p b ,p c ,p d ,且相应各面上的高分别为h a ,h b ,h c ,h d ,则有p a h a +p b h b +p c h c +p dh d=1.证明如下:p a h a =13S △BCD ·pa 13S △BCD ·h a=V P —BCD V A —BCD, 同理有p b h b =V P —CDA V B —CDA ,p c h c =V P —BDA V C —BDA ,p d h d =V P —ABCV D —ABC,V P —BCD +V P —CDA +V P —BDA +V P —ABC =V A —BCD , ∴p a h a +p b h b +p c h c +p d h d=V P —BCD +V P —CDA +V P —BDA +V P —ABC V A —BCD=1.变式迁移2 在三棱锥A —BCD 中,若AB 、AC 、AD 两两互相垂直,且AB =a ,AC =b ,AD =c ,则此三棱锥的外接球半径R =a 2+b 2+c 22例3 解题导引 在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明 (1)因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ADB 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提而M 是Rt △ADB 斜边AB 的中点,DM 是斜边上的中线,——小前提所以DM =12AB .——结论同理EM =12AB ,所以DM =EM .变式迁移3 解 证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定. 【课后作业】1.B *D ,A *C解析 由(1)(2)(3)(4)图得A 表示|,B 表示□,C 表示—,D 表示○,故图(A)(B)表示B *D 和A *C . 2.x -1x +1解析 计算f 2(x )=f ⎝ ⎛⎭⎪⎫1+x 1-x =1+1+x 1-x 1-1+x 1-x=-1x ,f 3(x )=f ⎝⎛⎭⎫-1x =1-1x 1+1x=x -1x +1, f 4(x )=1+x -1x +11-x -1x +1=x ,f 5(x )=f 1(x )=1+x1-x ,归纳得f 4k +i (x )=f i (x ),k ∈N *,i =1,2,3,4.∴f 2 011(x )=f 3(x )=x -1x +1.3.2解析 只有①、②对,其余错误. 4.每组内各数之和等于n 3解析 1=13,3+5=23,7+9+11=33. 猜想每组内各数之和等于n 3. 5.(5,7)解析 观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n +1的数对有n 个,多个数对的排序是按照横坐标依次增大的顺序来排的,由n (n +1)2=60⇒n (n +1)=120,n ∈Z ,n =10时,n (n +1)2=55(个)数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),∴第60个数对是(5,7).6.空间正四面体的内切球的半径是高的14解析 利用体积分割可证明. 7.n解析 由(n +1)*1=n *1+1,得n *1=(n -1)*1+1=(n -2)*1+2=…=1] 8.n +(n +1)+…+(3n -2)=(2n -1)2解析 ∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n 个等式为n +(n +1)+…+(3n -2)=(2n -1)2.9.解 当n =1时,S 1=a 1=-23.(2分)当n =2时,1S 2=-2-S 1=-43,∴S 2=-34.(5分)当n =3时,1S 3=-2-S 2=-54,∴S 3=-45.(8分)当n =4时,1S 4=-2-S 3=-65,∴S 4=-56.(11分)猜想:S n =-n +1n +2(n ∈N *).(14分)10.(1)证明 函数f (x )的定义域为R ,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ).(2分) 由已知得y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a ,(4分)f (1-x )=-a a 1-x +a=-aa a x+a=-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ).即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称.(7分) (2)解 由(1)有-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.(10分)∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1,则f (-2)+f (-1)+f (0)+f(1)+f (2)+f (3)=-3. (14分)11.解 类似的结论为:VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.(4分)这个结论是正确的,证明如下:如图,过R 2作R 2M 2⊥平面P 2OQ 2于M 2,连结OM 2. 过R 1在平面OR 2M 2作R 1M 1∥R 2M 2交OM 2于M 1,则R 1M 1⊥平面P 2OQ 2.由VO —P 1Q 1R 1=13S △P 1OQ 1·R 1M 1=13·12OP 1·OQ 1·sin ∠P 1OQ 1·R 1M 1=16OP 1·OQ 1·R 1M 1·sin ∠P 1OQ 1,(8分) 同理,VO —P 2Q 2R 2=16OP 2·OQ 2·R 2M 2·sin ∠P 2OQ 2.所以VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1·OQ 1·R 1M 1OP 2·OQ 2·R 2M 2.(10分)由平面几何知识可得R 1M 1R 2M 2=OR 1OR 2.(12分)所以VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1·OQ 1·OR 1OP 2·OQ 2·OR 2.所以结论正确.(14分)直接证明与间接证明导学案答案【课前准备】1.(1)①已知的定义、公理、定理 (2)①结论成立的条件 已知条件或已知事实吻合 2.不成立 矛盾 【自我检测】1.充分解析 由分析法的定义可知.2.3a ≤3b解析 3a >3b 的否定是3a ≤3b . 3.④解析 ④选项成立时需得证a -b >0.①中|a -b |+|c -b |≥|(a -b )-(c -b )|=|a -c |,②作差可证; ③移项平方可证. 4.a b 2+b a 2≥1a +1b解析 a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a2 =(a -b )⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 5.证明 假设a ,b ,c 均小于2,则a +b +c <6. ①又a +b +c =x +1y +y +1z +z +1x=(x +1x )+(y +1y )+(z +1z)≥6,这与①式相矛盾,∴假设不正确. ∴a ,b ,c 至少有一个不小于2. 【活动探究】例1 解题导引 综合法证明不等式,要特别注意基本不等式的运用和对题设条件的运用.这里可从基本不等式相加的角度先证得a 2+b 2+c 2≥ab +bc +ca 成立,再进一步得出结论.证明 ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,三式相加得a 2+b 2+c 2≥ab +bc +ca ,∴3a 2+3b 2+3c 2≥(a 2+b 2+c 2)+2(ab +bc +ca ) =(a +b +c )2.∴a 2+b 2+c 2≥13(a +b +c )2;∵a 2+b 2+c 2≥ab +bc +ca ,∴a 2+b 2+c 2+2(ab +bc +ca )≥ab +bc +ca +2(ab +bc +ca ), ∴(a +b +c )2≥3(ab +bc +ca ). ∴原命题得证.变式迁移1 证明 ∵a ,b ,c >0,根据基本不等式, 有a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c . 三式相加:a 2b +b 2c +c2a+a +b +c ≥2(a +b +c ).即a 2b +b 2c +c2a≥a +b +c . 例2 解题导引 当所给的条件简单,而所证的结论复杂,一般采用分析法.含有根号、对数符号、绝对值的不等式,若从题设不易推导时,可以考虑分析法.证明 要证lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a 2>abc .(中间结果)因为a ,b ,c 是不全相等的正数, 则a +b 2≥ab >0,b +c 2≥bc >0,c +a 2≥ca >0.且上述三式中的等号不全成立,所以a +b 2·b +c 2·c +a 2>abc .(中间结果)所以lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .变式迁移2 证明 要证 a 2+1a 2-2≥a +1a-2,只要证 a 2+1a 2+2≥a +1a+ 2.∵a >0,故只要证 ⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22, 即a 2+1a 2+4 a 2+1a2+4≥a 2+2+1a2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a2≥2,而该不等式显然成立,故原不等式成立.例3 解题导引 (1)当一个命题的结论是以“至多”、“至少”、“惟一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是①与已知条件矛盾,②与假设矛盾,③与定义、公理、定理矛盾,④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.(2)利用反证法证明问题时,要注意与之矛盾的定理不能是用本题的结论证明的定理,否则,将出现循环论证的错误.证明 假设1+x y <2和1+yx<2都不成立,则有1+x y ≥2和1+y x ≥2同时成立,因为x >0且y >0,所以1+x ≥2y ,且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2,这与已知条件x +y >2相矛盾,因此1+x y <2与1+y x<2中至少有一个成立.变式迁移3 证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0.∵a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,∴x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+(π-3)≤0, ①又∵(x -1)2+(y -1)2+(z -1)2≥0,π-3>0, ∴(x -1)2+(y -1)2+(z -1)2+(π-3)>0. ② ①式与②式矛盾, ∴假设不成立,即a ,b ,c 中至少有一个大于0. 【课后作业】1.假设a 、b 、c 都不是偶数 2.(3)解析 若a =12,b =23,则a +b >1,但a <1,b <1,故(1)推不出;若a =b =1,则a +b =2,故(2)推不出;若a =-2,b =-3,则a 2+b 2>2,故(4)推不出; 若a =-2,b =-3,则ab >1,故(5)推不出;对于(3),即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1. 3.充要解析 必要性是显然成立的,当PQR >0时,若P 、Q 、R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.4.①③⑤解析 ①ab ≤(a +b 2)2=1,成立.②欲证a +b ≤2,即证a +b +2ab ≤2,即2ab ≤0,显然不成立. ③欲证a 2+b 2=(a +b )2-2ab ≥2, 即证4-2ab ≥2,即ab ≤1,由①知成立.④a 3+b 3=(a +b )(a 2-ab +b 2)≥3⇔a 2-ab +b 2≥32⇔(a +b )2-3ab ≥32⇔4-32≥3ab ⇔ab ≤56,由①知,ab ≤56不恒成立.⑤欲证1a +1b ≥2,即证a +b ab ≥2,即ab ≤1,由①知成立.5.钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾,所以假设不成立,所以△A 2B 2C 2是钝角三角形.6.“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|,则|f (x 1)-f (x 2)|≥12”7.②③解析 按新定义,可以验证a *(b +c )≠(a *b )+(a *c ); 所以①不成立;而a *(b *c )=(a *b )*c 成立,a *0=(a +1)(0+1)-1=a .所以正确的结论是②③. 8.18解析 由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时“=”号成立).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时“=”成立), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18. 9.证明 ∵a ⊥b ,∴a·b =0. (2分)要证|a |+|b ||a -b |≤2,只需证:|a |+|b |≤2|a -b |, (6分)平方得:|a |2+|b |2+2|a||b |≤2(|a |2+|b |2-2a·b ), (10分)只需证:|a |2+|b |2-2|a||b |≥0, (12分)即(|a |-|b |)2≥0,显然成立.故原不等式得证. (14分)10.证明 ∵a 2+b 2≥2ab ,a 、b 、c >0, ∴(a 2+b 2)(a +b )≥2ab (a +b ), (3分) ∴a 3+b 3+a 2b +ab 2≥2ab (a +b )=2a 2b +2ab 2, ∴a 3+b 3≥a 2b +ab 2.(7分)同理,b 3+c 3≥b 2c +bc 2,a 3+c 3≥a 2c +ac 2, 将三式相加得,2(a 3+b 3+c 3)≥a 2b +ab 2+b 2c +bc 2+a 2c +ac 2.(10分)∴3(a 3+b 3+c 3)≥(a 3+a 2b +a 2c )+(b 3+b 2a +b 2c )+(c 3+c 2a +c 2b )=(a +b +c )(a 2+b 2+c 2).∴a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).(14分)11.证明 方法一 假设三式同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,(3分)∵a 、b 、c ∈(0,1),∴三式同向相乘得(1-a )b (1-b )c (1-c )a >164.(8分)又(1-a )a ≤⎝⎛⎭⎫1-a +a 22=14,(10分)同理(1-b )b ≤14,(1-c )c ≤14,∴(1-a )a (1-b )b (1-c )c ≤164,(12分)这与假设矛盾,故原命题正确.(14分)方法二 假设三式同时大于14,∵0<a <1,∴1-a >0,(2分) (1-a )+b 2≥ (1-a )b > 14=12,(8分) 同理(1-b )+c 2>12,(1-c )+a 2>12,(10分)三式相加得32>32,这是矛盾的,故假设错误,∴原命题正确.(14分)数学归纳法导学案答案【课前准备】3.(1)n 0 (n 0∈N *) (2)n =k (k ∈N *,且k ≥n 0) n =k +1 【自我检测】1.1+a +a 2 解析 当n =1时左端有n +2项,∴左端=1+a +a 2.2.② 解析 由n =2成立,根据递推关系“P (n )对于n =k 时成立,则它对n =k +2也成立”,可以推出n =4时成立,再推出n =6时成立,…,依次类推,P (n )对所有正偶数n 成立”.3.1+12+13+14 解析 当n =2时,中间的式子1+12+13+122=1+12+13+14.4.5 解析 当n =1时,21=12+1;当n =2时,22<22+1;当n =3时,23<32+1;当n =4时,24<42+1.而当n =5时,25>52+1, ∴n 0=5.5.32,74,158,2n-12n -1 【活动探究】例1 解题导引 用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.证明 设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. (1)当n =1时,左边=1,右边=1,等式成立; (2)假设当n =k (k ≥1且k ∈N *)时等式成立,即1·k +2·(k -1)+3·(k -2)+…+(k -1)·2+k ·1=16k (k +1)(k +2),则当n =k +1时, f (k +1)=1·(k +1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-1]·2+(k +1)·1=f (k )+1+2+3+…+k +(k +1)=16k (k +1)(k +2)+12(k +1)(k +1+1)=16(k +1)(k +2)(k +3).由(1)(2)可知当n ∈N *时等式都成立. 变式迁移1 证明 (1)当n =1时,左边=1-12=12=11+1=右边,∴等式成立.(2)假设当n =k (k ≥1,k ∈N *)时,等式成立,即 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k . 则当n =k +1时, 1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2 =1k +1+1+1k +1+2+…+12k +12k +1+⎝⎛⎭⎫1k +1-12k +2=1k +1+1+1k +1+2+…+12k +12k +1+12(k +1),即当n =k +1时,等式也成立,所以由(1)(2)知对任意的n ∈N *等式都成立.例2 解题导引 用数学归纳法证明不等式问题时,从n =k 到n =k +1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.证明 (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.(2)假设当n =k (k ≥2,且k ∈N *)时不等式成立,即⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝⎛⎭⎫1+12k -1>2k +12.则当n =k +1时,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝⎛⎭⎫1+12k -1⎣⎡⎦⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1 >4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 变式迁移2 证明 (1)当m =1时,原不等式成立; 当m =2时,左边=1+2x +x 2,右边=1+2x , 因为x 2≥0,所以左边≥右边,原不等式成立; (2)假设当m =k (k ≥2,k ∈N *)时,不等式成立,即(1+x )k ≥1+kx ,则当m =k +1时,∵x >-1,∴1+x >0. 于是在不等式(1+x )k ≥1+kx 两边同时乘以1+x 得, (1+x )k ·(1+x )≥(1+kx )(1+x )=1+(k +1)x +kx 2≥1+(k +1)x .所以(1+x )k +1≥1+(k +1)x ,即当m =k +1时,不等式也成立.综合(1)(2)知,对一切正整数m ,不等式都成立.例3 解题导引 用数学归纳法证明整除问题,由k 过渡到k +1时常使用“配凑法”.在证明n =k +1成立时,先将n =k +1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,。

12.2证明-苏科版七年级数学下册教案

12.2证明-苏科版七年级数学下册教案

12.2 证明-苏科版七年级数学下册教案
教学目标
1.通过本课学习,学生将掌握证明的定义及常用证明方法;
2.培养学生的思维能力和逻辑思维能力。

教学步骤
1. 导入新知识
通过生活实例,引导学生思考证明的定义,例如:我们相信太阳东升西落,那么如何证明这一点呢?
2. 理解证明
引导学生自己思考证明的含义,如何进行证明,及证明的意义和重要性。

3. 认识常用证明方法
通过教师的讲解,介绍一些常用证明方法,如归纳法、反证法、数学归纳法等。

4. 实际案例证明
通过教师给出的实际案例,让学生尝试使用不同的证明方法,掌握证明的技巧和方法。

5. 练习自己的证明能力
学生进行练习,设计自己的证明思路,通过教师的点拨纠正错误,提升自己的证明水平。

教学重点
1.理解证明;
2.熟练掌握常用证明方法;
3.具备一定的证明思维能力。

教学难点
学生的证明思维能力不强,在实际操作中往往难以发挥证明的能力。

教学方法
通过引导学生思考、教师讲解、实际案例分析、练习等方式,帮助学生提高证明的能力。

教学资源
教材《苏科版七年级数学下册》。

教学评价
通过教师的点拨和评价,提高学生的证明水平和思维能力。

作业
设计一个实际的问题,用自己所学的证明方法进行证明,并写出证明过程。

全等三角形复习2(SAS)导学案

全等三角形复习2(SAS)导学案

全等三角形边角边判定习题课学习目标:1、进一步熟练应用边角边的判定方法进行证明.2、培养学生应用知识解决问题的能力。

一、知识梳理、形成框架:1、到现在为止判定三角形全等的方法有几种?2、边角边定理的内容是什么?二、自查疑惑、合作交流:填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD ≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是____________还需要一个条件________________(这个条件可以证得吗?)。

三、重点题型、集中再现:例1 、已知:AD∥BC,AD=CB(图3)。

求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE =CF)?怎样证明呢?例2 、已知:AB=AC、AD=AE、∠1=∠2(图4)。

求证:△ABD≌△ACE。

四、当堂训练、分层达标:1、应用“边角边”的方法判定两个三角形全等时,应注意什么?2、已知:如图,AB=AC,F、E分别是AB、AC的中点。

求证:△ABE≌△ACF。

3、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.A B C D E拓展提高1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE ,求证: △ABD ≌△ACE。

新苏科版数学导学案七年级第12章证明

新苏科版数学导学案七年级第12章证明

课堂笔记栏课堂笔记栏⑴猜想:a与b、c与d的大小关系?m与n平行吗?图④中,中间两个圆哪个大?⑵你的猜想对吗?如何检测你的猜想?谈谈你的感受.⑴猜想:这两条小道哪个长?这两条小路的面积相等吗?⑵你有什么理由或证据让别人信服你的猜想?1、如图①是一张88⨯的正方形纸片,把它剪成4块:⑴能拼成一个如图②的长方形吗?⑵分别计算出这两个图形的面积,你有何发现?2、如图所示网格中的△ABC 、△DEF 、△GHI :⑴你感觉它们哪一个面积最大?⑵实际计算一下,验证你的感觉是否正确.3、下面的判断是否正确?为什么?⑴无论x 取什么数,代数式342-+-x x 的值总是负数;⑵无论x 取什么数,代数式342-+-x x 的值不可能为2.4、⑴填表:⑵观察上表,小明发现“1>a 或2-<a 时,代数式()()12-+a a 的值是正数”.你认为小明的结论正确吗?为什么?a4-3-2-1-01234()()12-+a a课堂笔记栏1、如图,点A、B、E在一条直线上.⑴∵∠1=∠3(已知)∴AB∥DC();⑵∵∠DAE=∠CBE(已知)∴AD∥BC();⑶∵∠CDA+∠DAB=180°(已知)∴AB∥DC();⑷∵∠2=∠4(已知)∴∥(内错角相等,两直线平行);⑸∵∠DCB+∠ABC=180°(已知)∴∥(同旁内角互补,两直线平行);⑹∵∠DAB+∠ABC=180°(已知)∴∥(同旁内角互补,两直线平行).2、已知:如图,∠BAD=∠DCB,∠1=∠3.求证:AD∥BC.证明:∵∠BAD=∠DCB,∠1=∠3(),∴∠BAD―=∠DCB―(等式性质),即∠=∠,∴AD∥BC().3、已知:如图,D、B、C三点在同一条直线上,∠A=60°,∠1=2∠2.求证:AB∥CD.4、已知:如图,∠ABC=∠C,∠ABD=∠D,且AD∥BC.求证:∠C=2∠D.课堂笔记栏1、填写下列空格:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(),∴∠=∠(),∵∠1=∠2(已知),∴∠1=∠(),∴AB∥CD().2、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.3、已知:如图,在△ABC中,∠A=∠ABC,直线EF分别交AB、AC和CB的延长线于点D、E、F.求证:∠F+∠FEC=2∠A.4、证明:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.课堂笔记栏班级:学号:姓名:金果学堂12.3互逆命题(第二课时)※学习目标:1、体会认识图形“位置关系”和“数量关系”的内在联系,学习逆向思考研究问题;2、经历构造一个命题的逆命题,并证明这个逆命题是真命题,获得新的数学结论的过程.※自主学习:阅读课本P159、160页探索如图:⑴如果AD ∥EF ,那么可以得到什么结论?⑵如果∠EFC +∠C =180°,那么可以得到什么结论呢?⑶证明AD ∥EF ,需要什么条件?证明EF ∥BC 呢?⑷证明AD ∥EF ∥BC ,需要什么条件?证明证明下列命题:⑴证明:平行于同一条直线的两条直线平行.⑵证明:直角三角形的两个锐角互余.⑶证明:有两个角互余的三角形是直角三角形.练习1、如图,AB ∥CD ,AB 、DE 相交于点G ,∠B =∠D .在下列括号内填写推理的依据:⑴∵AB ∥CD (已知),∴∠EGA =∠D (),又∵∠B =∠D (已知),∴∠EGA =∠B (),∴DE ∥BF ().⑵上述推理中,应用了哪两个互逆的真命题?2、已知:如图,在直角△ABC 中,∠ACB =90°,D 是AB 上一点,且∠ACD =∠B .求证:CD ⊥AB .3、已知:如图,在△ABC 中,点E 在AC 上,点F 在BC 上,点D 、G 在AB 上,FG ∥CD ,∠1=∠2.求证:∠AED =∠ACB .课堂笔记栏※巩固练习:1、如图,点A 、B 、C 、D 在一条直线上,填写下列空格:⑴∵EC ∥FD (已知),∴∠F =∠(),∵∠F =∠E (已知),∴∠=∠E (),∴∥().⑵上述推理中,应用了哪两个互逆的真命题?2、已知:如图,直线AB 、CD 、EF 被直线BF 所截,∠B +∠1=180°,∠2=∠3.求证:∠B +∠F =180°.3、已知:如图,BD 、CE 是△ABC 的高.BD 、CE 相交于点O .求证:∠A +∠BOC =180°.4、已知:如图,AB ⊥BC ,AB 、CD 相交于点E ,∠A =∠C .求证:CD ⊥AD .作业订正栏班级:学号:姓名:金果学堂第12章证明(复习)※学习目标:1、体会通过合情推理探索数学结论,运用演绎推理加以证明的过程;2、知道证明要合乎逻辑,初步会综合法证明的格式.※自主学习:阅读课本P162、163页1、下列语句中,不属于命题的是………………………………………………………()A .延长线段AB 到点C B .有两条边相等的三角形是等腰三角形C .自然数都是整数D .平行于同一条直线的两条直线平行2、若三角形的一个外角是锐角,则此三角形的形状是………………………………()A .钝角三角形B .锐角三角形C .直角三角形D .无法确定3、如图,AB ∥CD ,DA ⊥AC ,垂足为A .若∠ADC =35°,则∠1的度数为……()A .65°B .55°C .45°D .35°4、在锐角三角形中,最大角α的取值范围是…………………………………………()A .︒<<︒900αB .︒<≤︒9060αC .︒<<︒18060αD .︒<<︒9060α5、下列命题中,属于真命题的是………………………………………………………()A .锐角小于它的余角B .锐角小于它的补角C .锐角与锐角的和是钝角D .锐角与钝角的和等于平角6、如图,将一副三角尺按如图所示的方式放置,使含30°角的三角尺所对的直角边和含45°角的三角尺的一条直角边在同一条直线上,则∠1的度数为…………()A .75°B .65°C .45°D .30°7、下列条件:①∠A +∠B =∠C ;②∠A ∶∠B ∶∠C =1∶2∶3;③∠A =90°―∠B ;④∠A =∠B =21∠C .其中,能确定△ABC 是直角三角形的有……………………………………………()A .1个B .2个C .3个D .4个8、如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C .若∠1=58°,则∠2的度数为.9、如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2=.10、如图,直线a ∥b ,△ABC 的顶点B 在直线b 上,∠C =90°,∠1=36°,则∠2的度数为.11、如图,把一块直角三角尺的含60°角的顶点放在直尺的一边上.若∠1=2∠2,则∠1=.12、如图,直线1l ∥2l ,∠α=∠β,∠1=40°,则∠2=.课堂笔记栏13、写出下列各命题的逆命题,并判断其逆命题的真假.若是假命题,请举反例说明.⑴如果b a =,那么b a 33=;⑵互为相反数的两个数的积为负数;⑶钝角小于180°;⑷等底等高的两个三角形面积相等.14、已知:如图,AD 是△ABC 的角平分线,点E 在BC 上,点G 在CA 的延长线上,EG 交AB 于点F ,且∠AFG =∠G .求证:GE ∥AD.15、已知:如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠1=∠2,∠A =∠F .求证:∠C =∠D.16、已知:如图,∠ABC +∠C +∠CDE =360°,GH 分别交AB 、ED 相交于点G 、H .求证:∠1=∠2.作业订正栏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:四边形(复习二)
课型:复习课授课时间:2011.12.7 主备人:审核人:九年级数学组
学习目标:
1、能利用矩形、菱形、正方形的性质和判定进行简单的计算和证明。

学习过程:
一、温故知新:
矩形菱形正方形
特征
具有平行四边形的一切特征具有平行四边形的一切特征
具有矩形、菱形
的一切特征四个角都是直角四条边相等
对角线相等且平分对角线互相垂直平分
对角线分别平分两组对角
判别
有一个角是直角的平行四边形有一组邻边相等的平行四边形
先判定是矩形再
加一组邻边相

先判定是菱形再
加一个角为900对角线相等的平行四边形对角线互相垂直的平行四边形
有三个角是直角的四边形四边都相等的四边形
对角线相等且平分的四边形对角线互相垂直平分的四边形
1、如图,□ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,则AB的长m•取值范围是()
A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<6
2、如图,两张宽度相等的纸条交叉重叠,重合部分是()
A.平行四边形 B.菱形 C.矩形 D.正方形
3、如图,平行四边形ABCD中,E是BC中点,且AE=9,BD=12,AD=10,则该平行四边形的面积是_________.
4、如图,菱形ABCD的对角线长分别为2和5,P是对角线AC上任一点(点P不与点A、C 重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.
5、如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的( )
A. B. C. D.
6、用一块等边三角形的硬纸片(如图甲)做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图乙),在△ABC的每个顶点处各需剪掉一个四边形,其中四边形AMDN 中,∠MDN的度数为()
A.100°
B.110°
C.120°
D.130°
二、小试牛刀
1、如图,平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,问:四边形EBFD是平行四边形吗?为什么?
2、如图, ABCD中,O是对角线AC的中点,EF⊥AC交CD于E,交AB于F,问四边形AFCE 是菱形吗?请说明理由.
3、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。

_A
_B _D_C
4、在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,顺次连结EF,FG,GH,HE。

(1)请判断四边形EFGH的形状,并给予证明;
(2)试添加一个条件,使四边形EFGH是菱形。

(写出你所添加的条件,不要求证明)
三、课堂检测:
1、在直角三角形ABC中,CD是斜边AB
的高,∠A的平分线AE交CD于F,交BC
于E,EG⊥AB于G,求证:CFGE是菱形。

2、若分别以三角形ABC的边AB、AC
为边,在三角形外作正方形ABDE、ACFG,求证:BG=EC,BG⊥EC。

_F
_A_B
_C
_D
_E
_G
_H
_F
_G
_E
_D
_A
_B_C
3、如图,在△ABC中,∠B=∠C,D是BC的中点,DE⊥AB,DF⊥AC,•垂足分别为E、F.求证:(1)△BDE≌CDF.(2)△ABC是直角三角形时,四边形AEDF是正方形.
四、能力提升:
1、如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P•从A开始沿AD边向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q 同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,•问t为何值时.
(1)四边形PQCD是平行四边形.(2)当t为何值时,四边形PQCD为等腰梯形.
五、小结
你本节课学到什么?。

相关文档
最新文档