立体几何证明平行专题

合集下载

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。

平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。

在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。

本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。

一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。

要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。

通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。

2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。

这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。

3. 平行线的性质:在平面几何中,平行线具有很多性质。

常见的平行线定理包括等角定理、同位角定理、内错角定理等。

通过运用这些性质,可以证明两条直线平行。

二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。

根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。

2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。

这一方法常用于证明两条直线垂直的情况。

通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。

3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。

两条直线垂直时,其错角是互相垂直的。

通过构建直线的错角,可以证明所求的两条直线垂直关系。

三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。

通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。

2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。

立体几何(平行线的证明)

立体几何(平行线的证明)

立体几何(平行线的证明)在立体几何中,平行线是一种非常重要的概念。

平行线可以定义为在同一个平面内没有交点的两条直线。

证明两条直线平行的方法有很多种,下面将介绍一种简单而常用的方法。

方法一:使用平行线的性质平行线有很多性质,其中一个性质是平行线与横截线之间的夹角相等。

根据这个性质,我们可以通过检查两条线的夹角来证明它们是否平行。

具体步骤如下:1. 给定两条直线AB和CD,我们要证明这两条直线平行。

2. 构建一条横截线EF,该直线与AB和CD相交于点E和F。

3. 使用量角器或直尺测量∠AED和∠CFD的夹角。

如果这两个夹角相等,即∠AED = ∠CFD,那么我们可以得出结论AB与CD平行。

这种方法的好处是简单直观,只需要测量夹角即可。

然而,这种方法并不适用于所有情况,因为有些情况下无法构建合适的横截线。

方法二:使用等边三角形的性质等边三角形是一个有趣的几何形状,所有边都相等。

在等边三角形中,对角线之间的直线也是平行线。

具体步骤如下:1. 给定两条直线AB和CD,我们要证明这两条直线平行。

2. 构建一个等边三角形BCD,在这个等边三角形中,BC = CD。

3. 连接线段AD,我们可以发现线段AD与线段BC平行。

这种方法的好处是不需要测量夹角,只需要利用等边三角形的性质即可。

然而,这种方法也有局限性,因为有些情况下无法构建等边三角形。

综上所述,证明平行线的方法有很多种,其中一些常用的方法是使用平行线的性质和使用等边三角形的性质。

选择合适的方法取决于具体的几何形状和问题要求。

第8章立体几何专题3 平行的证明

第8章立体几何专题3 平行的证明

平行的证明【方法总结】1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.3. 应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线.4. 有时为了得到交线还需作出辅助平面,而且证明与平行有关的问题时,常与公理4等结合起来使用.【分题型练习】考向一 证明线面平行例1、如图,四棱锥P ABCD -中,90BAD ABC ︒∠=∠=,证明:BC ∥平面PAD【答案】证明过程见详解;【解析】因为四棱锥P ABCD -中,90︒∠=∠=BAD ABC ,所以BC AD ∥,因为AD ⊂平面PAD ,BC ⊄平面PAD ,所以BC ∥平面PAD ;例2、如图,四棱锥P ABCD -中,底面ABCD 为矩形,F 是AB 的中 点,E 是PD 的中点,//PB 平面AEC【答案】证明见解析【解析】连接BD ,设BD 与AC 的交点为O ,连接EO .因为四边形ABCD 为矩形,所以O 为BD 的中点,又因为E 为PD 的中点,所以//EO PB ,因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .例3、如图,已知四棱锥P ABCD -的底面为直角梯形, //AB DC 且12DC AB =,M 是PB 的中点,证明: //MC 平面PAD【答案】证明见解析【解析】证明:取PA 中点为N ,因为,N M 分别是,PA PB 中点,11所以四边形MNDC 为平行四边形,所以//MC ND ,ND ⊂平面PAD ,MC ⊄平面PAD ,所以//MC 平面PAD .例4、如图,在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =求证://PQ 平面BCD .【答案】证明见解析【解析】如下图所示,取BD 的中点O ,在线段CD 上取点F ,使得3DF FC =,连接OP 、OF 、FQ .3AQ QC =O 、P 分别为M 为AD //OP QF ∴且OP QF =,四边形OPQF 是平行四边形,//PQ OF ∴.PQ ⊄平面BCD ,OF ⊂平面BCD ,//PQ ∴平面BCD .【巩固练习】1.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,点M 为PC 中点,证明://PA 平面BDM ;【答案】(1)证明见解析;(2)证明见解析【解析】连接AC 交BD 于点O ,连接OM ,因为底面ABCD 为平行四边形,所以O 为AC 中点.在PAC ∆中,又M 为PC 中点,所以//OM PA .又PA ⊄平面BDM ,OM ⊂平面BDM ,所以//PA 平面BDM .2.如图,在三棱锥A -BCD 中,点M ,N 分别在棱AC ,CD 的中点,求证:AD //平面BMN【答案】详见解析 【解析】证明:在ACD 中,因为M ,N 分别为棱AC ,CD 的中点,所以//MN AD ,又AD ⊄平面BMN ,MN ⊂平面BMN ,所以AD 平面BMN .3.四棱锥P ABCD -中,底面ABCD 为菱形,求证://CD 平面PAB【答案】详见解析【解析】因为四边形ABCD 是平行四边形,所以//CD AB , 又因为AB 平面PAB ,CD ⊄平面PAB ,所以//CD 平面PAB 。

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。

一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。

例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。

2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。

3.平行线性质法:利用平行线的性质来证明其他线段平行。

例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。

二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。

例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。

2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。

例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。

3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。

综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。

在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。

立体几何线面平行证明

立体几何线面平行证明

立体几何线面平行证明要证明两个线面平行,一般可以通过以下几种方法来进行证明:方法一:使用平行线的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设线面A和线面B不平行,即存在一条线a与线面A不平行,又与线面B相交于一点P。

2.假设在线面A上存在一点Q,它与直线a上相交于一点R。

3.由于线a与线面B相交于P,所以线段PR必然属于线面B。

4.由于线a与线面A相交于R,所以线段PR必然属于线面A。

5.由于线面A和线面B都包含线段PR,所以它们必然相交。

6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。

方法二:使用支撑面的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设在线面A上存在一条直线a,它与线面B相交于一点P。

2.过直线a作平行于线面B的平面,该平面与线面A相交于线段QR。

3.由于直线a与线面B相交于点P,所以线段PR必然属于线面B。

4.由于平面上的任意两点可以确定一条直线,所以线段QR也属于线面B。

5.因此,线段QR同时属于线面A和线面B,所以它们不是平行的。

6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。

方法三:使用平行四边形的性质假设我们有线面A和线面B,要证明A和B平行1.假设在线面A上存在一条直线a,它与线面B相交于一点P。

2.在线面A上选择一点Q,并通过P点作一条平行于线面A的直线b。

3.连接直线a和直线b,得到平行四边形PQRD。

4.由于平行四边形的特性,相邻两边平行且长度相等,所以线段PD也是平行于线面A的,并且它必然属于线面B。

5.因此,线段PD同时属于线面A和线面B,所以它们不是平行的。

6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。

以上三种方法是一些常用的证明线面平行的方法,根据实际问题的具体情况,可以选择适合的方法进行证明。

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。

主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。

证明AF∥平面PCE。

证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。

因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。

因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。

题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。

证明:连接PE,因为E为PC的中点,所以PE∥AD。

又因为CD⊥AD,所以CD∥PE。

又因为CD=2AB,所以AB∥PE。

因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。

2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。

证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。

因此,EF∥AD,EG∥BD,FG∥AC。

又因为M为BC的中点,所以AM∥FG。

因此,AM∥平面EFG。

3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

空间立体几何中的平行、垂直证明

空间立体几何中的平行、垂直证明

l ml m
☺ 简称:线面垂直,线线垂直.
精选ppt
15
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
b
b
b
☺ 简称:线面垂直,面面垂直.
精选ppt
16
复习定理
空间中的垂直
4.平面与平面垂直性质
性质:如果两个平面互相垂直,则其中一个平面内垂直于 交线的直线必垂直于另一个平面.
13
复习定理
空间中的垂直
1.直线与平面垂直判定
判定:如果一条直线和一个平面内的两条相交直线都垂 直,则称这条直线和这个平面垂直.
l P mn
m
n m
n
P
l .
l m
l n
☺ 简称:线线垂直,线面垂直.
精选ppt
14
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21
(1) 证明 如图所示,取线段 BC 的中点 F,
连接 EF、FD.
在△PBC 中,E、F 分别为 PC、CB 的中点,
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
精选ppt

总结证明线面平行的常用方法

总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

立体几何平行证明题

立体几何平行证明题

立体证明题(2)1•如图,直二面角D- AB- E中,四边形ABCD是正方形,AE=EB F为CE上的点,且BF丄平面ACE(1) 求证:AE丄平面BCE(2) 求二面角B-AC- E的余弦值.2•等腰△ ABC中, AC=BC= AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C 至U P,得至U四棱锥P— ABFE 且AP=BP=(1) 求证:平面EFP!平面ABFE(2) 求二面角B-AP- E的大小.3•如图,在四棱锥P- ABCD中,底面是正方形,侧面PADL底面ABCD且PA=PD= AD,若E、F分别为PC BD的中点.(I)求证:EF//平面PAD(n)求证:EF丄平面PDC4•如图:正△ ABC与Rt△ BCD所在平面互相垂直,且/ BCD=90°,/ CBD=30°(1)求证:AB丄CD(2)求二面角D- AB- C的正切值.5•如图,在四棱锥P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形ABCD 是平行四边形,/ ADC=120 , AB=2AD(1)求证:平面PADL平面PBD(2)求二面角A- PB- C的余弦值.6•如图,在直三棱柱ABC- A1B1C1 中,/ ACB=90°, AC=CB=CC2, E是AB中点.(I)求证:AB丄平面ACE(H)求直线AG与平面ACE所成角的正弦值.7•如图,在四棱锥P- ABCD中, PA丄平面ABCD / DAB为直角,AB// CD, AD=CD=2AB=2E, F分别为PC, CD的中点.(I)证明:AB丄平面BEF;(H)若PA=求二面角E- BD- C.8•如图,在四棱锥P-ABCD 中,PA丄平面ABCD , PA=AB=AD=2,四边形ABCD 满足AB 丄AD , BC // AD 且BC=4,点M 为PC 中点.(I)求证:DM丄平面PBC;BE(2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角P- DE - B的EC2余弦值为-?若存在,求出实数入的值;若不存在,请说明理由.39•如图,ABED是长方形,平面ABEDL平面ABC AB=AC=5 BC=BE=6且M是BC的中点(I) 求证:AM L平面BEC(H) 求三棱锥B- ACE的体积;(川)若点Q是线段AD上的一点,且平面QECL平面BEC求线段AQ的长.10. 如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB// CD AB丄BC, AB=2CD=2BC EA L EB(1)求证:EA丄平面EBC(2)求二面角C- BE- D的余弦值.11. 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD// BC, / ADC=90°,平面PADL 底面ABCD O为AD中点,M是棱PC上的点,AD=2BC(1)求证:平面POBL平面PAD12. 如图,三棱柱ABC- A1B1C中,侧棱AA丄平面ABC △ ABC为等腰直角三角形,/BAC=90,且AB=AA, E、F 分别是CC, BC的中点.(1)求证:平面ABF丄平面AEF;(2)求二面角B1- AE- F 的余弦值.13. 如图,在菱形ABCD中,/ ABC=60°, AC与BD相交于点Q AE丄平面ABCD CF/ AE, AB=AE=2.(I )求证:BD丄平面ACFE(II )当直线FO与平面BDE所成的角为45。

立体几何证明方法——证面面平行

立体几何证明方法——证面面平行

立体几何证明方法——证面面平行立体几何中,证明面面平行是一个常见的问题,可以通过多种方法进行证明。

下面将介绍几种常用的证明方法。

1.使用直线面法相交性质证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。

首先,选择平面ABCD上的两条相交直线AE和BF,然后分别在这两条直线上选择两个点C和D。

根据直线面法相交性质,直线AE与平面ABCD相交于点E,直线AE与平面CDH相交于点C,同理,直线BF与平面ABCD相交于点F,直线BF与平面CDH相交于点D。

连接线段AD和BC,可以得到四边形ABCD。

然后,考察四边形ABCD,如果四边形ABCD是平行四边形,则线段AD与线段BC互相平行。

由直线平行与面平行的性质可知,平面ABCD与平面EFHG平行。

因此,我们只需要证明四边形ABCD为平行四边形即可。

接下来,通过证明线段AD与线段BC互相平行来证明四边形ABCD为平行四边形。

可采用向量法、等距向量法等方法进行证明,具体方法根据题目要求来选择。

2.使用距离法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。

首先,在平面ABCD上选择一点P,在平面EFGH上选择一点Q。

然后,构造线段PQ,并将其延长,过点P和Q分别作平行于平面ABCD和EFGH的直线。

两条直线与平面ABCD和EFGH的交点分别为A、B和E、F。

由于点P、Q到平面ABCD的距离相等,点A、B到平面EFGH的距离相等,利用距离的定义可以推出直线AE与直线BF互相平行。

同理可以证明直线BE与直线AF互相平行。

因此,根据平行四边形的性质可知线段AD与线段BC平行。

由于线段AD与线段BC平行,所以平面ABCD与平面EFGH平行。

3.使用垂线法证明:设空间中有两个平面ABCD和EFGH,要证明这两个平面平行。

首先,选择平面ABCD上的两条垂线,可以是两个相交直线的垂线或两个平行直线的垂线。

然后,在平面EFGH中分别找到与这两条垂线相交的直线段,并将其延长。

高中立体几何证明平行的专题

高中立体几何证明平行的专题

FGG A B CD ECA BDE F DE B 1A 1C 1CM 立体几何——平行的证明【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形'【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。

(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; &分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形;【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F GM AD CD BD BC AM EFG 求证:E F BACDP (第1题图)AE;PEDCBAAB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//=12AD BE //=12AF,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形的性质【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O21中点为PD E 求证:AE ∥平面PBC ; ~分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。

立体几何中的平行性的证明.

立体几何中的平行性的证明.

立体几何中的平行性的证明
一、证明两直线平行的方法:
1、定义法:同一平面内无公共点的两条直线(用反证法证明)。

2、判定定理:如果一条直线与一个平面平行,则经过这条直线的平面与这个平
面相交,直线与交线平行。

3、平行与同一直线的两条直线平行。

4、面面平行的性质定理:如果两个平行平面同时和第三个平面相交,则交线平
行。

5、向量法:如果两个直线的方向向量共线,则两直线平行。

6、垂直于同一平面的两直线平行。

二、证明直线和平面平行的方法:
1、定义法:证明直线与平面无公共点(反证法)。

2、判定定理:如果平面外的一条直线和平面内的一条直线平行,则直线和平面
平行。

3、面面平行的性质:如果两个平面平行,那么一个平面内的任何一条直线都平
行于另一个平面。

4、如果平面外的一条直线和平面的一条垂线垂直,那么这条直线和这个平面平
行。

5、如果平面外的一条直线和这个平面都垂直于同一个平面,那么这条直线和这
个平面平行。

三、证明平面与平面平行的方法:
1、定义法:证明两个平面没有公共点(反证法)。

2、判定定理:如果一个平面内的两条相交直线分别和另一个平面平行,那么这
两个平面相互平行。

3、推论:如果一个平面内的两条相交直线分别和另一个平面内的两条直线(相
交)平行,那么这两个平面相互平行。

4、垂直于同一直线的两个平面相互平行。

5、如果两个平面的法向量平行,那么这两个平面平行。

6、。

立体几何中证明线线平行的方法

立体几何中证明线线平行的方法

立体几何中证明线线平行的方法
在立体几何中,证明两条线平行的方法通常有以下几种:
1. 利用平行线的性质:如果可以证明两条线分别与同一条第三条线平行,则可以推断这两条线平行。

这可以通过使用平行线的定理或者平行线的判定条件来证明。

2. 利用等角定理:如果可以证明两条线与另一条线之间形成的对应角度相等,则可以推断这两条线平行。

这可以通过使用等角定理(如同位角、内错角等)来证明。

3. 利用平行四边形的性质:如果可以证明两条线分别是平行四边形的对角线,或者两条线分别平分平行四边形的两个对角线角度,则可以推断这两条线平行。

4.利用向量的性质:如果可以证明两条线的方向向量相等,则可以推断这两条线平行。

这可以通过计算两条线的方向向量并比较它们来证明。

需要注意的是,每种方法都需要根据具体问题的情况选择合适的方法,有时可能需要结合多种方法来证明两条线平行。

在证明过程中,也需要合理运用已知的几何定理和性质,并且注意推理的逻辑性和严密性。

高中数学《立体几何》证明平行的一般方法

高中数学《立体几何》证明平行的一般方法

例4:正方形ABCD与正方 形ABEF所在的平面相交于 AB,P、Q分别是AE、BD的 的点,且AP=DQ。 求证:PQ∥平面BCE
A FP
MB E
D
Q
NC
第一课时 证明平行位置关系
判定定理①
判定定理②
线线平行
线面平行
面面平行
性质定理①
性质②
判定定理① 平面外一条直线与平面内的一条直线平行,那么该直线与此平面平行。
解:连接AB,设交BD于点Q,连接PQ
A
D
在△BEC中, ∵点P,Q分别是AE,AC的中点 ∴PQ∥EC
F P
Q
又∵ EC⊂平面BCE,PQ⊄平面BCE ∴ PQ∥平面BCE
B
C
E
第一课时 证明平行位置关系
判定定理①
判定定理②
线线平行
线面平行
面面平行
性质定理①
性质②
判定定理① 平面外一条直线与平面内的一条直线平行,那么该直线与此平面平行。
例4:正方形ABCD与正方 形ABEF所在的平面相交于 AB,P、Q分别是AE、BD的 的点,且AP=DQ。 求证:PQ∥平面BCE
A FP
MB E
D
Q
NC
第一课时 证明平行位置关系
判定定理①
判定定理②
线线平行
线面平行
面面平行
性质定理①
性质②
判定定理① 平面外一条直线与平面内的一条直线平行,那么该直线与此平面平行。
F
Q
P
B
C
E
第一课时 证明平行位置关系
判定定理①
判定定理②
线线平行
线面平行
面面平行
性质定理①

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。

求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。

解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。

变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。

求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。

变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C
D
B A 1
A
F
立体几何证明平行专题训练
命题:***
1. 如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、PD 的中点.
求证:AF ∥平面PCE ;
2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,
过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC. (Ⅰ)求证:FG∥面BCD ; (Ⅱ)求证:BC⊥面CDE ;
3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证:
(Ⅰ) C 1D∥平面B 1FM. (Ⅱ)C 1D⊥BC;
(第1题图)
4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 求证: //EB PAD 平面;
5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

6、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。

求证: PA ∥平面BDE
A
B
C
D
E
F G M
P
E
D
C
B A
7.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点.



AB 1ABEF ⊥ABCD ABEF ABCD 0
90,BAD FAB BC ∠=∠=//=12AD BE //=12AF ,G H ,FA FD
//BC DHG 平面,,,C D F E 1C
2
1
中点为PD E 求证:AE ∥平面PBC ;
11、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND
BN
, 求证:MN ∥平面SDC
12、如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,PB=BC=CA ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. (1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;
提示:
1. 分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形
2. 分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形
3. 分析:连EA,易证C1EAD是平行四边形,于是MF分析::取PD的中点F,连EF,AF则易证ABEF是平行四边形
5. 分析:连MD交GF于H,易证EH是△AMD的中位线
6.分析:连接EO,即为三角形中位线
7.分析:连B1C交BC1于点E,易证ED是△B1AC的中位线
8. 分析:证四边形BCHG是平行四边形
9. 分析:连D1B1交A1C1于O1点,易证四边形OBB1O1是平行四边形
10,分析:取PC的中点F,连EF则易证ABFE是平行四边形
11. 分析:过M作ME分析: 取AF的中点N,连CN、MN,易证平面CMN//EFB。

相关文档
最新文档