八年级数学期中复习试卷
八年级数学期中测试卷【含答案】
八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。
()3. 对角线互相垂直平分的四边形一定是菱形。
()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。
()5. 两个相似三角形的对应边长之比等于它们的面积之比。
()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。
2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。
3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。
4. 一个圆的周长为31.4cm,则该圆的半径为______cm。
5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。
四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。
河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)
邯郸市第二十五中学2022-2023学年第一学期期中考试八年级数学一、选择题(1—10题每题3分,11—16题每题2分,共42分)1.下列图形具有稳定性的是()A. B. C. D.【答案】A解析:A .具有稳定性,符合题意;B .不具有稳定性,故不符合题意;C .不具有稳定性,故不符合题意;D .不具有稳定性,故不符合题意,故选:A .2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C解析:解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .3.平面直角坐标系中,点()3,4A -关于y 轴的对称点是1A ,点1A 的坐标是()A.()4,3-- B.()3,4- C.()3,4-- D.()3,4【答案】D解析:解:点()3,4A -关于y 轴的对称点的坐标为:()3,4.故选:D .4.如图,点C 在AD 上,,40CA CB A =∠=︒,则BCD ∠等于()A.40︒B.70︒C.80︒D.110︒【答案】C解析:解:CA CB = ,40A ∠=︒,40A B ∴∠=∠=︒,404080BCD A B ∴∠=∠+∠=︒+︒=︒,故选:C .5.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是()A.8B.7C.6D.5【答案】B解析:解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE +CD =BC +DE =14,∴2CD =14,∴CD =7,故选:B .6.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A解析:解:B ,C ,D 都不是△ABC 的边BC 上的高,A 选项是△ABC 的边BC 上的高,故选:A .7.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于()A.30°B.35°C.45°D.60°【答案】A 解析:解:如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形花环为正六边形,∴∠ABD=×°6(6-2)180=120°,而∠CBD=∠BAC=90°,∴∠ABC=120°-90°=30°.故选:A .8.如图,已知ABC 的周长是20,OB 和OC 分别平分ABC ∠和ACB ∠,OD BC ⊥,垂足为点D ,3OD =,则ABC 的面积是()A.20B.30C.40D.60【答案】B 解析:连接AO ,过点O 分别作OE AB ⊥于点E ,OF AC ⊥于点F ,∵ABC AOB BOC AOC S S S S =++△△△△,111222AB OE BC OD AC OF =++,∵BO 、CO 为角平分线,∴3OE OD OF ===,∴()113203022ABC S OD AB BC AC =++==.故选:B .9.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A.40海里B.60海里C.70海里D.80海里【答案】D解析:∵根据方向角的意义和平行的性质,∠M =70°,∠N =40°,∴根据三角形内角和定理得∠MPN =70°.∴∠M =∠MPN =70°.∴NP =NM =80(海里).故选D .10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.10【答案】C 解析:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C11.如图,在四边形ABCD 中,90A ∠=︒,2AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的值不可能是()A.1.5B.2C.2.5D.3【答案】A 解析:解:如图,过点D 作DH BC ⊥交BC 于点H ,BD CD ⊥ ,90BDC ∴∠=︒,又180C BDC DBC ∠+∠+∠=︒ ,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,ABD CBD ∴∠=∠,BD ∴是ABC ∠的角平分线,又AD AB ⊥ DH BC ⊥,,AD DH =∴,又2AD = ,2DH ∴=,又∵点D 是直线BC 上一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 的长,即DP 的长最小值为2,1.52< ,DP ∴的长不可能是1.5,故选:A .12.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A.BAD CAD∠=∠ B.△BCD 是等边三角形C.AD 垂直平分BCD.ABDC S AD BC= 【答案】D解析:解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .13.如图,在正方形网格中有M ,N 两点,在直线l 上求一点P ,使PM PN +最短,则点P 应选在()A.A 点B.B 点C.C 点D.D 点【答案】C 解析:解:如图,点M '是点M 关于直线l 的对称点,连接M N ',则M N '与直线l 的交点,即为点P ,此时PM PN +最短,M N ' 与直线l 交于点C ,∴点P 应选C 点.故选:C .14.如图,在ABC 中,30,90A C ∠=︒∠=︒,AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是()A.DE DC= B.AD DB = C.AD BC = D.BC AE=【答案】C 解析:解:∵ 30, 90A C ∠=︒∠=︒,∴60ABC ∠=︒,∵DE 垂直平分AB ,∴AD BD =,AE BE =,故B 选项正确,不符合题意;C 选项错误,符合题意;∴30ABD A ∠=∠=︒,∴30CBD ∠=︒,∴CBD ABD ∠=∠,∵90,C DE AB ∠=︒⊥,∴DE DC =,故A 选项正确,不符合题意;∵ 30, 90A C ∠=︒∠=︒,∴12BC AB =,∴BC AE =,故D 选项正确,不符合题意;故选:C15.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠.若5AC =,3BC =,则BD 的长为()A.2.5B.1.5C.2D.1【答案】D 解析:解:∵CD 平分ACB ∠,BE CD ⊥,∴ECD BCD ∠=∠,90BDC EDC ∠=∠=︒,在BCD △与ECD 中,90ECD BCD CD CD BDC EDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ASA BCD ECD ∴≌ ,BC CE ∴=,BEC ∴ 是等腰三角形,∴12BD BE =,又A ABE ∠=∠ ,ABE ∴ 是等腰三角形,AE BE ∴=,()111222BD BE AE AC CE ∴===-,∵5AC =,3BC =,()15312BD ∴=⨯-=.故选:D .16.如图,已知等边三角形ABC ,2AB =,点D 在AB 上,点F 在AC 的延长线上,,BD CF DE BC =⊥于E ,FG BC ⊥于G ,DF 交BC 于点P ,则下列结论:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.其中一定正确的是()A.①③B.②④C.①②③D.①②④【答案】D 解析:解:ABC 是等边三角形,AB BC AC ∴==,60A B ACB ∠=∠=∠=︒.ACB GCF ∠=∠ ,DE BC ⊥ ,FG BC ⊥,90DEB FGC DEP ∴∠=∠=∠=︒.在DEB 和FGC △中,DEB FGC B GCF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEB FGC ∴△≌△BE CG ∴=,DE FG =,故①正确;在DEP 和FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEP FGP ∴△≌△,故②正确;PE PG ∴=,EDP ∠不一定等于60︒,当PD AB ⊥时,60EDP ∠=︒,故③错误;PG PC CG =+ ,PE PC BE ∴=+.2PE PC BE ++= ,1PE ∴=.故④正确.正确的有①②④,故选:D .二、填空题(17,18题每题3分,19题每空2分,共10分)17.如图,ABC 中,D ,E 分别是BC ,AD 的中点,ABC 的面积是20,则阴影部分的面积是______.【答案】5解析:解:ABC 中,D 、E 分别是BC ,AD 的中点,AD ∴是ABC 的中线,CE 是ADC △的中线,2ABC ADC S S ∴= ,2ADC AEC S S = ,4ABC AEC S S ∴= ,ABC 的面积是20,AEC ∴ 的面积为5,即阴影部分的面积是5.故答案为:5.18.如图,已知8AO =,P 是射线ON 上一动点(即Р点可在射线ON 上运动),60AON ∠=︒,则OP =_______时,AOP 为直角三角形.【答案】4或16##16或4解析:解:当90APO ∠=︒时,9030OAP AOP ∠︒∠=︒=-,142OP OA ∴==,当90OAP ∠=︒时,9030OPA AOP ∠=︒-∠=︒,216OP OA ∴==,故答案为:4或16.19.如图,已知()()3,0,0,1A B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC ,C 点坐标为__________;Р点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当C 、P 、Q 三点共线时Р点的坐标为___________.【答案】①.(1,4)-②.(1,0)解析:解:如图,过C 作CH y ⊥轴于H ,则90BCH CBH ∠+∠=︒,∵()()3,0,0,1A B -,∴3OA =,1OB =,AB BC ⊥ ,90ABC ∴∠=︒,90ABO CBH ∴∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH V 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△,3BH OA ∴==,1CH OB ==,4OH OB BH ∴=+=,C ∴点坐标为(1,4)-;BPQ △是等腰直角三角形,90PBQ ABC ∴∠=∠=︒,PBQ ABQ ABC ABQ ∴∠-∠=∠-∠,即PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,(SAS)PBA QBC ∴△≌△,135BPA BQC ∴∠=∠=︒,BPQ △是等腰直角三角形,45BQP ∴∠=︒,当C 、P ,Q 三点共线时,135BQC ∠=︒,18013545OPB ∴∠=︒-︒=︒,1OP OB ∴==,P ∴点坐标为(1,0),故答案为:(1,4)-,(1,0).三、解答题(共68分)20.求出下列图形中x 的值.【答案】(1)70x =;(2)60x =解析:解:(1)∵40180x x ++=,解得70x =;(2)∵()7010x x x +=++,解得60x =.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.解析:(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示:(2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C ----- 1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC+=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB 如图,连接1CB ,与y 轴的交点P 即为所求.22.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BF =CE .试说明:AB ∥DE .【答案】见解析解析:证明:BF CE = ,BF CF CE CF ∴+=+,即BC EF =,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴,B E ∴∠=∠,//AB DE ∴.23.如图,ABC 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值【答案】(1)40︒(2)6PD x =-;当3x =时,PD 有最大值,即3PD =【小问1详解】解:在ABC 与ADE V 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC ADE ∴≌△△,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠,30B ∠=︒ ,70APC ∠=︒,703040CAE BAD APC B ∴∠=∠=∠-∠=︒-︒=︒;【小问2详解】解:AB AC ⊥ ,90BAC ∴∠=︒,6AB = ,AP x =,()SAS ABC ADE ≌,6AB AD ∴==,∴当AD BC ⊥时,x 最小,PD 最大,6PD x =-,30B ∠=︒ ,AD BC ⊥,90APB ∴∠=︒,132AP AB ∴==,3AP x ∴==时,PD 有最大值,即633PD AD AP =-=-=.24.如图:已知等边ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE CD =.(1)求E ∠的度数.(2)求证:DBE 是等腰三角形.【答案】(1)30︒(2)见解析【小问1详解】解: ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,又CE CD = ,E CDE ∴∠=∠,又ACB E CDE ∠=∠+∠ ,1302E ACB ∴∠=∠=︒;【小问2详解】证明: 等边ABC 中,D 是AC 的中点,11603022DBC ABC ∴∠=∠=⨯︒=︒由(1)知30E ∠=︒,30DBC E ∴∠=∠=︒,DB DE ∴=,即DBE 是等腰三角形.25.如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456……n ∠α的度数______°_____°______°______°……_____°(2)根据规律,计算正八边形中的∠α的度数.(3)是否存在正n 边形使得∠α=21°?若存在,请求出n 的值,若不存在,请说明理由.【答案】(1)60,45,36,30°,180n;(2)22.5;(3)不存在.解析:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456…n ∠α的度数60°45°36°30°…(1808)°(2)根据规律,计算正八边形中的∠α=(1808)°=22.5°;(3)不存在,理由如下:设存在正n 边形使得∠α=21°,得∠α=21°=(180n)°.解得n=847,n 是正整数,n=847(不符合题意要舍去),不存在正n 边形使得∠α=21°.26.如图,已知:在ABC 中,4AC BC ==,120ACB ∠=︒,将一块足够大的直角三角尺()90,30PMN M MPN ∠=︒∠=︒按如图放置,顶点Р在线段AB 上滑动(且不与A 、B 重合),三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当α=______°,PN BC ∥,此时APD ∠=______°(2)点Р在滑动时,当AP 长为多少时,ADP △与BPC △全等,为什么?(3)点Р在滑动时,PCD 的形状可以是等腰三角形吗?若可以,直接写出夹角α的大小;若不可以,请说明理由.【答案】(1)30,30(2)4AP =时,ADP △与BPC △全等,理由见解析(3)45α∠=︒或90︒时,PCD 的形状可以是等腰三角形【小问1详解】若PN BC ∥,则MPN α∠=∠,30MPN ∠=︒,∴30MPN α∠=∠=︒,120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,30α∠=︒,303060APC B α∴∠=∠+∠=︒+︒=︒,30MPN ∠=︒,603030APD APC MPN ∠=∠-∠=︒-︒=︒,故答案为:30,30;【小问2详解】当4AP =时,ADP BPC ≌ ,理由如下:120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,APC ∠ 是BPC △的一个外角,30APC B αα∴∠=∠+∠=︒+∠,30APC DPC APD APD ∠=∠+∠=︒+∠ ,APD α∴∠=∠,4AP BC == ,在ADP △和BPC △中,A B AP BC APD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADP BPC ∴≌ ;【小问3详解】PCD QV 是等腰三角形,120PCD α∠=-°,30CPD ∠=︒,①当PC PD =时,()118030752PCD PDC ∴∠=∠=︒-︒=︒,即12075α-=°°,45α∴∠=︒;②当PD CD =时,PCD 是等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;③当PC CD =时,PCD 是等腰三角形,30CDP CPD ∴∠=∠=︒,180230120PCD ∴∠=︒-⨯︒=︒,即120120α-=°°,0α∴=︒,此时点P 与点B 重合,点D 和A 重合,∵点P 不与A ,B 重合,0α∴=︒,舍去,综合所述:当PCD 是等腰三角形时,45α=︒或90︒.20。
人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]
二、境空题:本大题共 6 小题,每小题 3 分,共 18 分,请将答案直接填在答题
纸中对应的横线上.
13.已知点 P(-2,1),则点 P 关于 x 轴对称的点的坐标是 .
14.如果将一副三角板按如图方式叠放,那么 1 等于
.
15.如图,D 在 BC 边上, EAC 40° , △ ABC ≌△ ADE ,则 B 的度数为
A.5
B.8
C.9
D.10
11.如图,在 V ABC 中, BAC 90°,AB 6,AC 8,BC 10,EF 垂直平分 BC ,点 P
为直线 EF 上的任意一点,则 AP + BP 的最小值是( )
A.6
B.7
C.8
D.10
12.如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形 ABC 和
2024-2025 学年第一学期人教版八年级期中数学复习训练试
卷(天津)
试卷满分:120 分 考试时间:100 分钟
一、选择题本大愿共 12 小题每小题 3 分共 36 分在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.下列图形中,不是轴对称图形的是( )
A.
B.
C.
D.
2.下列长度的三条线段中,能组成三角形的是( )
2
A. AF BF
B. AE
C. DBF + DFB 90°
D. BAF EBC
7.如图, Rt△ ABC 中, ACB 90°, A 55° ,将其折叠,使点 A 落在边 CB 上 A 处,折
痕为 CD ,则 ADB ( )
A. 40°
B. 30°
八年级期中试卷数学及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。
12. 绝对值小于2的有理数有______。
13. 若|a| = 5,则a的值为______。
14. 已知a、b是实数,且a - b = 3,则a + b的值为______。
15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。
16. 若|a| = |b|,则a和b的关系是______。
17. 若a^2 = b^2,则a和b的关系是______。
18. 若a、b是实数,且a + b = 0,则a和b互为______。
19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。
20. 若|a| > |b|,则a和b的关系是______。
湖南省长沙市2023-2024学年八年级上学期期中考试数学复习试卷(含答案)
湖南师范大学附属中学2023-2024学年度八年级上期期中考试数学试题一、选择题(共10小题,满分30分,每小题3分)1. 下列图形中,是轴对称图形的是()A. B. C. D.2. 下列计算正确的是()A. B.C. D.3. 下列能用完全平方公式进行因式分解的是()A. B. C. D.4. 如图,实线内图形的面积可以用来验证下列的某个等式成立,该等式是()A. B.C. D.5. 长方形的面积为,长为,则它的宽为()A. B. C. D.6. 若,则的值为()A. B. 6 C. D. 17. 下列式子,总能成立的是()A. B.C. D.8. 计算的结果是()A. B. C. D.9. 如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A. AB,AC两边中线的交点处B. AB,AC两边高线的交点处C. 与这两个角的角平分线的交点处D. AB,AC两边的垂直平分线的交点处10. 如图所示的“三等分角仪”能三等分任意一个角. 这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O点转动. C点固定,,点D,E可在槽中滑动,若,则的度数是()A. 65°B. 68°C. 66°D. 70°二、填空题(共6小题,满分18分,每小题3分)11. 分解因式:_________.12. 已知,,则的值为_________.13. 若,则代数式的值是_________.14. 等腰三角形有一个角是70°,则它的底角是_________.15. 如图,将一副三角尺按如图所示的方式叠放在一起,则图中的度数是_________.16. 如图,在中,,,,,AD是的平分线. 若P,Q分别是AD和AC上的动点,则的最小值是_________.三、解答题(共9小题,17,18,19每小题6分,20,21每小题8分,22,23每小题9分,24,25每小题10分. )17. 计算:.18. 先化简,再求值:,其中.19. 如图,在中,,AB的垂直平分线MN交AC于点D,交AB于点E.,求的度数.20. 如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形,点的坐标为__________.(2)将沿x轴方向向左平移3个单位,向下平移2个单位后得到,直接写出顶点,,的坐标:_________,_________,_________.21. 如图,是等腰三角形,,点D是AB上一点,过点D作交BC于点E,交CA延长线于点F.(1)证明:是等腰三角形;(2)若,,,求EC的长.22. 将边长为x的小正方形和边长为y的大正方形按如图所示放置,其中点D 在边CE上.(1)若,且,求的值;(2)连接AG,EG,若,,求阴影部分的面积.23. 在中,,,.(1)求a的取值范围;(2)若为等腰三角形,求a的值与的周长.24. 如图1,在平面直角坐标系中,点A在x轴负半轴上,点B在y轴正半轴上,设,且.(1)请写出a和b的数量关系;(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形,连接DQ并延长交x轴于点M,若,求点M的坐标;(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,过点F作轴交CB的延长线于点M,①求证:P为AF的中点;②求的值.图1 图2 图325. 定义:a,b,c为正整数,若,则称c为“完美勾股数”,a,b为c的“伴侣勾股数”. 如,则13是“完美勾股数”,5,12是13的“伴侣勾股数”. (1)数10________“完美勾股数”(填“是”或“不是”);(2)已知的三边a,b,c满足. 求证:c是“完美勾股数”.(3)已知m,且,,,,c为“完美勾股数”,a,b为c的“伴侣勾股数”. 多项式有一个因式,求该多项式的另一个因式.八年级数学参考答案一、单项选择题(每小题3分,共30分)12345678910D D C C A A B D D B二、填空题(每小题3分,共18分)111213141516或三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每题10分,共72分)17.18. ,2解:当时,原式19.解:∵在中,,,的垂直平分线交于点,,,;20. (1)画图略,点的坐标为(2).21. (1)证明见下. (2)4.解:(1),,,,,而,,,是等腰三角形;(2),,,,,是等边三角形,,.22. (1)2. (2)11.解:(1);(2)阴影部分的面积为:,,.23. (1)(2)的周长为52.解:(1)由题意得:,故;(2)为等腰三角形,或,则或,,,的周长.24. (1)(2)(3)①证明见下②解:(1)∵点在轴负半轴上,,或,,,(2)连接,如图2所示:图2是等边三角形,,,,,为的中点,,,,,在和中,,,即,,为等边三角形,,;(3)①过点作轴交的延长线于点,如图3所示:图3则,,,在和中,,,由(1)可知,是等边三角形,∵点与点关于轴对称,又是的中点,,,在和中,为的中点.②又,,.25. (1)是;(2)证明如下;(3)(2)证明:是完美勾股数”(3)解:由题意得:又有一个因式为∴另一个因式为.。
辽宁省沈阳市浑南市2024-2025学年八年级上学期数学期中试卷
辽宁省沈阳市浑南市2024-2025学年八年级上学期数学期中试卷一、单选题1.下列四个数中,无理数是( )A .3-B .CD .132.下列各组数据中能组成直角三角形的是( )A .9 ,16,25B .2,5,6C .3,3,5D .9,12 ,153.某气象台为了预报台风,首先需要确定台风中心的位置,则下列说法能确定台风中心位置的是( )A .北纬38︒B .距气象台500海里C .北纬21.5︒,东经109︒D .北海市附近4.6的平方根是( )A .6B .6±CD .5.在平面直角坐标系中,点()2024,2025A -落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数y=2x+k-1的图象经过第一、三、四象限,则k 的值可以是( )A .3B .2C .1D .07.某校“灯谜节”的奖品是一个底面为等边三角形的灯笼(如图),在灯笼的侧面上,从顶点A 到顶点A '缠绕一圈彩带.已知此灯笼的高为50cm ,底面边长为40cm ,则这圈彩带的长度至少为( )A .50cmB .120cmC .130cmD .150cm 8.如图,在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,量筒量得溢出水的体积为34ml ,则该铁块棱长大小的范围是( )A .2cm ~3cmB .3cm ~4cmC .4cm ~5cmD .5cm ~6cm9.如图,在33⨯的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,AD 为ABC 的高,则AD 的长为( )A B C D10.对于实数p ,我们规定:用p 表示不小于p 的最小整数,例如:44=,<>2=,现对72进行如下操作:72932<>=<>=<>= 第一次操作第二次操作第三次操作,即对72需进行3次操作后变为2.类似地:对99只需进行n 次操作后变为2,则n 的值为( )A .4B .3C .2D .1二、填空题11,则a b += .12.已知点()31,42P x x --在第一象限,且到坐标轴的距离和为4,则点P 的坐标为 .13.在平面直角坐标系中,直线l 对应的函数表达式为23y x =-,现保持直线l 的位置不动,将x 轴沿竖直方向向上平移2个单位.在新平面直角坐标系中,直线l 的函数表达式为 .14.某水果店销售某种新鲜水果,出售量()x kg 与销售额y (元)之间的函数关系如图所示.若小强同学在该家水果店一次购买30kg 该种水果,需要付款 元.15.如图,在四边形ABCD 中,90ABC ∠=︒,连接BD ,2AB AD ==,BD =点E F 、分别在边BC CD 、上,且DF CE =,连接BF DE 、,若3CD =,则BF DE +的最小值为 .三、解答题16.计算:-17.解方程组(1)43145331x y x y -=⎧⎨+=⎩(2)5234x y x y +=⎧⎨-=⎩18.如图所示,在平面直角坐标系中,已知()()()0,12,04,3A B C 、、.(1)在平面直角坐标系中画出ABC V ,则ABC V 的面积是___________;(2)若点D 与点C 关于y 轴对称,则点D 的坐标为___________;19.勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一,如图,有一架秋千,当它静止在AD 的位置时,踏板离地的垂直高度为0.8m ,将秋千AD 往前推送3m ,到达AB 的位置,此时,秋千的踏板离地的垂直高度为1.8m ,秋千的绳索始终保持拉直的状态.(1)求秋千AD 的长度;(2)如果将秋千AD 往前推送4米,求此时踏板离地的垂直高度为多少?20.课堂上,老师新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)思考①根据奇异三角形的定义,请你判断等边三角形是否为奇异三角形,并简要说明理由;②若Rt ABC △是奇异三角形,且其两边长分别为2,Rt ABC △的周长.(2)运用如图,以AB 为斜边分别在AB 的两侧作Rt ABC △,Rt ABD △,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.①试说明:ACE △是奇异三角形;②当90AEC ∠=︒时,若2AB =,求Rt ABC △的面积.21.如图,已知直线1:36l y x =-+与x 轴交于点A ,与y 轴交于点B ,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90ABC ∠=︒,直线2l 经过A ,C 两点.(1)求A ,B 两点的坐标;(2)求直线2l 的函数表达式;(3)若E 为x 轴正半轴上一点,ABE 的面积等于ABC V 的面积,求E 点坐标;(4)如图2,过点C 作CD x ⊥轴,垂足为D ,点P 是直线2l 上的动点,点Q 是直线CD 上的动点.试探究BPQ V 能否成为以BP 为直角边的等腰直角三角形(BPQ V 不与ABC V 重合)?若能,请直接写出DQ 的长,若不能,请说明理由.。
苏科版2024~2025学年八年级数学上册期中复习练[含答案]
期中复习练(1)一、选择题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是( ).A . B .C .D .2.下列说法错误的是( )A .﹣4是16的平方根B 2C .116的平方根是14D 53.如图,在四边形ABCD 中,90A Ð=°,对角线BD 平分ABC Ð,若53BC AD ==,,则BCD △的面积为( )A .6B .7.5C .12D .154.如图是小明制作的风筝,他根据DE DF =,EH FH =,不用度量,就知道DEH DFH Ð=Ð,小 明是通过全等三角形的判定方法得到的结论,则小明用的判定方法是( )A . SASB . ASAC . AASD . SSS5.如图,有一个圆柱体,它的高BD 等于12cm ,底面上圆的周长等于18cm ,一只蚂蚁从点D 出发沿着圆柱的侧面爬行到点C 的最短路程是( )A .18cmB .15cmC .12cmD .9cm6.如图,在ABC V 中,A ABC CB =Ð∠,将BCE V 沿E 折叠,使点C 落在AB 边上点D 处,若36A Ð=°,则AED Ð的度数为( )A .36°B .72°C .30°D .54°7.如图,ABC V 中,AD 是中线,5AB =,3AC =,则AD 的取值范围是( )A .14AD <<B .28AD <<C .35AD <<D .01AD <<8.两组邻边相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,在探究筝形的性质时,得到如下结论:①ABD CBD V V ≌;②AC BD ^;③直线BD 上任一点到A 、C 两点距离相等;④点O 到四条边的边距离相等.其中正确的结论有( )A .1个B .2个C .3个D .4个9.习题课上,张老师和同学们一起探究一个问题:“如图,在ABC V 中,D 、E 分别是AC 、AB 上的点,BD 与CE 相交于点O ,给出四个条件:①OB OC = ②EBO DCO Ð=Ð ③BEO CDO Ð=Ð ④BE CD =.若在上述四个条件中,选择两个作为已知条件,哪种组合能判定ABC V 是等腰三角形?”你认为正确的组合方法有( )A .2种B .3种C .4种D .6种10.如图,等腰ABC V 的底边BC 长为4cm ,面积为216cm ,腰AC 的垂直平分线EF 交AC 于点E ,交AB 于点F ,D 为BC 的中点,M 为直线EF 上的动点.则CDM V 周长的最小值为( )A .6cmB .8cmC .9cmD .10cm二、填空题11.等腰三角形的一个外角为100°,那么它的一个底角为 .12 1.7320508=L 0.01为 .13.如图,在ABC V 中,90BAC Ð=°,30BCA Ð=°,1AB =,以BC 为边构造如图所示的等边BCD △,连接AD ,则AD 的长为 .14.如图,AD AE =,12Ð=Ð,请你添加一个条件(只填一个即可),使ABD ACE ≌△△.15.如图,20cm BC =,DE 是线段AB 的垂直平分线,与BC 交于点E ,12cm AC =,则ACE △的周长为 .16.如图,60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于D ,6OP cm =,点E 是射线OB 上的动点,则PE 的最小值为 cm .17.已知Rt ABC V 中,90C Ð=°,9AC =,12BC =,将它的一条直角边沿一锐角角平分线所在直线翻折,使直角顶点落在斜边上点D 处,折痕交另一直角边于点E ,则折叠后不重合部分三角形的周长为 .18.如图,在等腰三角形ACB 中,AC =BC =10,AB =16,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为点E ,F ,则DE+DF 等于 .19.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:①AD BE =;②PQ //AE ;③OP OQ =;④△CPQ 为等边三角形;⑤60AOB Ð=°;其中正确的有 (注:把你认为正确的答案序号都写上)三、解答题20.如图所示,ABC V 在正方形网格中,若点A 的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B 和点C 的坐标;(3)作出ABC V 关于x 轴的对称图形A B C ¢¢¢V .(不用写作法)21.命题:全等三角形的对应边上的高相等.(1)将该命题写成“如果…,那么…”的形式: ;(2)下面是小明同学根据题意画出的图形及写出的已知和求证,请帮助小明同学写出证明过程.已知:如图,A ABC B C ¢¢¢≌△△,AD BC ^,A D B C ¢¢¢¢^.求证:AD A D ¢¢=.22.“某市道路交通管理条例“规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C 处,过了1.5秒后到达B 处(BC ^AC ),测得小汽车与车速检测仪间的距离AB 为40米,请问这辆小汽车是否超速?若超速,则超速了多少?23.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?24.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为0.7米,梯子滑动后停在DE 的位置上,测得BD 长为1.3米,求梯子顶端A 下落了多少米?25.小丽与爸爸妈妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m 高的B 处接住她后用力一推,爸爸在C 处接住她,若妈妈与爸爸到OA 的水平距离BF CG 、分别为1.8m 和2.2m ,90BOC Ð=°.(1)CGO V 与OFB △全等吗?请说明理由.(2)爸爸是在距离地面多高的地方接住小丽的?26.如图,在Rt ABC △中,90ACB Ð=°,AD 、BE 、CF 分别是三边上的中线.(1)若1AC =,BC 222AD CF BE +=;(2)是否存在这样的Rt ABC △,使得它三边上的中线AD 、BE 、CF 的长恰好是一组勾股数?请说明理由.(提示:满足关系222a b c +=的3个正整数a 、b 、c 称为勾股数.)27.如图1,AB 、CD 在直线l 的同侧,AB 在CD 的左边,AB l ^,CD l ^,2AB CD =,连接AD 、AC 、BC .V是三角形:(1)ABC(2)如图2,以AD为一边向外作等边ADEV,当边DE与CD重合时,直接写出CD与DE的数量关系;AB=时,求BC的长.(3)如图3,当等边ADEV的边AE BD∥,且61.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.【详解】A .﹣4是16的平方根,说法正确;B. 2,说法正确;C.116的平方根是±14,故原说法错误;D. ,说法正确.故选:C .【点睛】此题考查了平方根以及算术平方根的定义,熟记相关定义是解题的关键.3.B【分析】过点D 作DE BC ^于点E ,根据角平分线的性质定理得到3DE AD ==,根据三角形面积公式即可得到答案.熟练掌握角平分线的性质定理是解题的关键.【详解】解:过点D 作DE BC ^于点E ,∵90A Ð=°,对角线BD 平分ABC Ð,3AD =,∴3DE AD ==,∴5BC =,∴11537.522BCD S BC DE =×=´´=V ,故选:B4.D【分析】根据SSS 即可证明DHE DHF △≌△,可得DEH DFH Ð=Ð.【详解】解:在DHE V 和DHF △中,DH DH DE DF EH FH =ìï=íï=î,(SSS)DHE DHF \△≌△,DEH DFH \Ð=Ð.故选:D .【点睛】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法.5.B【分析】将圆柱的侧面展开,得到一个长方形,再利用两点之间线段最短解答.【详解】如图所示:由于底面上圆的周长等于18cm ,则11892AD =´=.又∵12BD AC ==∴15DC ===.故蚂蚁从点D 出发沿着圆柱的表面爬行到点C 的最短路程15cm ;故答案为:B .【点睛】此题主要考查了平面展开图的最短路径问题,将圆柱的侧面展开,构造出直角三角形是解题的关键.6.A【分析】根据等腰三角形的性质可得72C Ð=°,再由折叠的性质可得72BDE C Ð=Ð=°,再利用三角形外角的性质求解即可.【详解】解:∵A ABC CB =Ð∠,36A Ð=°,∴()1=18036=722C а-°°,由折叠的性质可得,72BDE C Ð=Ð=°,∵BDE A AED Ð=Ð+Ð,∴=7236=36AED а-°°,故选:A .【点睛】本题考查等腰三角形的性质、折叠的性质、三角形外角的性质,熟练掌握三角形的性质和折叠的性质得出72BDE C Ð=Ð=°是解题的关键.7.A【分析】本题主要考查了全等三角形的判定和性质,以及三角形三边之间的关系.构造全等三角形是解题的关键.延长AD ,过B 点作AC 的平行线交AD 的延长线于E 点,则BDE CDA △≌△,则可得DE AD =,因此2AE AD =.在ABE V 中,根据三角形三边之间的关系求出AE 的范围,则可得AD 的范围.【详解】解:如图,延长AD ,过B 点作AC 的平行线交AD 的延长线于E 点.∵AD 是ABC V 的中线,BD CD \=,BE AC Q ∥,12\Ð=Ð,又34ÐÐ=Q ,ASA ()BDE CDA \V V ≌,3BE AC \==,DE AD =,2AE AD \=,在ABE V 中,AB BE AE AB BE -<<+,5353A E \-<<+,28AE \<<,228AD \<<,14AD \<<.故选:A .8.C【分析】根据SSS 证明ABD CBD ≌△△,可得①正确,推出ADB CDB Ð=Ð,再根据等腰三角形的三线合一的性质即可判断②④正确,根据角平分线的性质定理,可得③错误.【详解】解:在ABD △与CBD △中,AD CD AB BC DB DB =ìï=íï=î,(SSS)ABD CBD \≌△△,故①正确;ADB CDB \Ð=Ð,DA DC =Q ,AC BD \^,AO OC =,故②正确;∴直线BD 上任一点到A 、C 两点距离相等,故③正确;过点O 作OE AD ^于E ,作OF CD ^于F ,作OG AB ^于G ,作OH BC ^于H ,∵AD CD =,AB CB =,AC BD ^,∴ADB CDB Ð=Ð,ABD CBD Ð=Ð,∴OE OF =,OG OH =,但无法判断OE 、OF 和OG 、OH 相等,故④错误;综上正确的有①②③三项.故选C .【点睛】本题考查全等三角形的判定和性质、等腰三角形的三线合一的性质的应用,以及角平分线的性质定理,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.C【分析】第1种:可选①②,根据OB OC =,可得∠OBC =∠OCB ,从而得到∠ABC =∠ACB ,进而得到△ABC 是等腰三角形;第2种,可选①③,根据OB OC =,可得∠OBC =∠OCB ,从而得到△BCE ≌△CBD ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形;第3种,可选②④,可证得△BOE ≌△COD ,从而得到OB =OC ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形;第4种,可选③④,可证得△BOE ≌△COD ,从而得到OB =OC ,∠OBE =∠OCD ,进而得到∠ABC =∠ACB ,可得到△ABC 是等腰三角形,即可求解.【详解】解:第1种:可选①②,理由如下:∵OB OC =,∴∠OBC =∠OCB ,∵EBO DCO Ð=Ð,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第2种,可选①③,理由如下:∵OB OC =,∴∠OBC =∠OCB ,∵BEO CDO Ð=Ð,BC =CB ,∴△BCE ≌△CBD ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第3种,可选②④,理由如下:∵EBO DCO Ð=Ð, ∠BOE =∠COD ,BE CD =,∴△BOE ≌△COD ,∴OB =OC ,∴∠OBC =∠OCB ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;第4种,可选③④,理由如下:∵BEO CDO Ð=Ð,∠BOE =∠COD ,BE CD =,∴△BOE ≌△COD ,∴OB =OC ,∠OBE =∠OCD ,∴∠OBC =∠OCB ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形;∴有4种正确的组合方法.故选:C【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.10.D【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM ≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =16,解得AD =8 cm ,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=10(cm ).故选:D .【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质和垂直平分线的性质是解答此题的关键.11.50°或80°【分析】由等腰三角形的一个外角是100°,可分别从①若100°的外角是此等腰三角形的顶角的邻角;②若100°的外角是此等腰三角形的底角的邻角去分析求解,即可求得答案.【详解】解:①若100°的外角是此等腰三角形的顶角的邻角,则此顶角为:18010080°-°=°,则其底角为:18080502°-°=°;②若100°的外角是此等腰三角形的底角的邻角,则此底角为:18010080°-°=°;故这个等腰三角形的一个底角为:50°或80°.故答案为:50°或80°.【点睛】此题考查了等腰三角形的性质,解题的关键是注意分类讨论思想的应用,小心别漏解.12.1.73【分析】根据近似数的精确度求解.0.01为 1.73.故答案为:1.73.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.13【分析】根据30BCA Ð=°,可得22BC AB ==,从而得到AC =BCD △是等边三角形,可得2BC CD ==,60BCD Ð=°,从而得到90ACD ACB BCD Ð=Ð+Ð=°,然后根据勾股定理,即可求解.【详解】解:90BAC Ð=°Q ,30BCA Ð=°,1AB =,22BC AB \==,∴AC ==,BCD QV 是等边三角形,2BC CD \==,60BCD Ð=°,90ACD ACB BCD \Ð=Ð+Ð=°,在Rt ACD △中,AD ===【点睛】本题主要考查了勾股定理,直角三角形的性质,等边三角形的性质,熟练掌握勾股定理,直角三角形的性质,等边三角形的性质是解题的关键.14.B C Ð=Ð(答案不唯一)【分析】由12Ð=Ð可得BAD CAE Ð=Ð,根据三角形全等的判定定理,填写相关条件即可.【详解】解:∵12Ð=Ð,∴12CAD CAD Ð+Ð=Ð+Ð,即BAD CAE Ð=Ð,若B C Ð=Ð,则在BAD D 与CAE D 中,B C BAD CAE AD AE Ð=ÐìïÐ=Ðíï=î,∴()BAD CAE AAS D D ≌.另当ADB AEC Ð=Ð或AB AC =时,均可证BAD CAED D ≌故答案为:B C Ð=Ð(答案不唯一)【点睛】本题考查了三角形全等判定定理,熟练掌握三角形全等判定的方法是解题的关键.15.32【分析】本题考查了线段垂直平分线的性质,根据线段垂直平分线上的点到线段两个端点的距离相等得出AE BE =,即可求解,熟练掌握知识点是解题的关键.【详解】∵DE 是线段AB 的垂直平分线,∴AE BE =,∴ACE △的周长为201232cm AC CE AE AC CE EB AC BC ++=++=+=+=,故答案为:32.16.3【分析】过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP cm =,∴132PD OP cm ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH cm ==,∵点E 是射线OB 上的动点,∴PE 的最小值为6cm ,故答案为:6cm .【点睛】此题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.17.18或12【分析】首先利用勾股定理求出Rt ABC V 的斜边AB 的长,然后根据题意,分两种情况:第一种情况,如图1,不重合部分是BDE V ,由折叠的性质可得9==AD AC ,DE CE =,然后得出BD 的长,最后BDE V 的周长++BE DE BD 转化为求BC BD +即可;第二种情况:如图2,不重合部分是ADE V ,由折叠的性质可得12==BD BC ,DE CE =,然后得出AD 的长,最后BDE V 的周长++AE DE AD 转化为求AC BD +即可.【详解】解:在Rt ABC V 中,90C Ð=°,9AC =,12BC =,∴15AB ==可分两种情况:第一种情况:如图1,不重合部分是BDE V ,∵直角边AC 沿A Ð的平分线所在直线AE 翻折,直角顶点C 落在斜边上点D 处,∴9==AD AC ,DE CE =,∴1596=-=-=BD AB AD ,∴++BE DE BD=++BE CE BD=+BC BD126=+18=∴BDE V 的周长为18;第二种情况:如图2,不重合部分是ADE V ,∵直角边BC 沿B Ð的平分线所在直线BE 翻折,直角顶点C 落在斜边上点D 处,∴12==BD BC ,DE CE =,∴15123=-=-=AD AB BD ,∴++AE DE AD=++AE CE AD=+AC BD93=+12=∴ADE V 的周长为12;综上所述,折叠后不重合部分三角形的周长为18或12.【点睛】本题是几何变换综合题,考查了勾股定理、折叠的性质的知识.根据题意分情况计算是解答本题的关键.18.9.6【分析】连接CD ,过C 点作底边AB 上的高CG ,根据等腰三角形的性质得出BG =8,利用勾股定理求出CG =6,再根据S △ABC =S △ACD +S △DCB 不难求得DE+DF 的值.【详解】连接CD ,过C 点作底边AB 上的高CG ,∵AC =BC =10,AB =16,∴BG =12AB =8,CG 6,∵S △ABC =S △ACD +S △DCB ,∴AB•CG =AC•DE+BC•DF ,∵AC =BC ,∴16×6=10×(DE+DF),∴DE+DF =9.6.故答案为9.6.【点睛】本题考查了勾股定理,等腰三角形的性质,辅助线是解决几何问题的一个关键,此外此题还考查了等腰三角形“三线合一”的性质.19.①②④⑤【分析】首先证明E ACD BC @D D ,推出AD BE =,说明①正确;证明ACP BCQ D @D ,推出CP CQ =,又60PCQ Ð=°,可得△CPQ 为等边三角形,故④正确;证明60PQC DCE Ð=Ð=°,推出//PQ AE ,故结论②正确;通过60AOB DAE AEO DAE ADC DCE Ð=Ð+Ð=Ð+Ð=Ð=°,得出⑤正确;现有条件不足以证明OP OQ =,故③错误.【详解】解:ABC D Q 和CDE D 都是等边三角形,AC BC \=,CD CE =,60ACB DCE °Ð=Ð=,ACB BCD DCE BCD \Ð+Ð=Ð+Ð,ACD BCE ÐÐ\=,在ACD D 和BCE D 中,AC BC =,ACD BCE Ð=Ð,CD CE =,ACD BCE \D @D ,AD BE \=,结论①正确;ACD BCE D @D Q ,CAD CBE \Ð=Ð,又60ACB DCE Ð=Ð=°Q ,18060BCD ACB DCE \Ð=°-Ð-Ð=°,60ACP BCQ \Ð=Ð=°,在ACP D 和BCQ D 中,ACP BCQ Ð=Ð,CAP CBQ Ð=Ð,AC BC =,ΔΔACP BCQ \@,AP =BQ \,CP CQ =,又60PCQ Ð=°Q ,PCQ \D 是等边三角形,结论④正确;60PQC DCE \Ð=Ð=°,//PQ AE \,结论②正确;ACD BCE D @D Q ,ADC AEO \Ð=Ð,60AOB DAE AEO DAE ADC DCE \Ð=Ð+Ð=Ð+Ð=Ð=°,故结论⑤正确;现有条件不足以证明OP OQ =,故③错误;综上,正确的结论有4个,分别是:①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质和应用、平行线的判定等,熟练掌握等边三角形的性质,从图中找出全等的三角形是解决问题的关键.20.(1)见解析(2)()3,1B --,()1,1C (3)见解析【分析】本题考查了平面直角坐标系的建立,和平面直角坐标系内点的坐标的确定,以及作关于x 轴对称的轴对称图形,熟练掌握和灵活运用各知识点是解决此题的关键.(1)根据点A 的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A ,B ,C 关于x 轴的对称点A ¢,B ¢,C ¢,连接A B ¢¢,B C ¢¢,C A ¢¢,则A B C ¢¢¢V 即为所求.【详解】(1)解:所建立的平面直角坐标系如下所示:(2)解:由平面直角坐标系可知:点B 和点C 的坐标分别为:()3,1B --,()1,1C ;(3)解:所作A B C ¢¢¢V 如下图所示:21.(1)如果两个三角形是全等三角形,那么它们对应边上的高相等(2)见解析【分析】本题考查了命题,全等三角形的判定和性质,熟练掌握命题与定理的知识以及全等三角形的判定和性质是解题的关键.(1)找出命题的题设和结论,然后进行改写即可;(2)利用AAS 证明ABD A B D ¢¢¢△≌△,根据全等三角形的性质可得AD A D ¢¢=.【详解】(1)解:将该命题写成“如果…,那么…”的形式:如果两个三角形是全等三角形,那么它们对应边上的高相等;(2)证明:∵A ABC B C ¢¢¢≌△△,∴AB A B ¢¢=,B B ¢Ð=Ð,又∵AD BC ^,A D B C ¢¢¢¢^,∴90ADB AD B ¢¢Ð=°=Ð,∵ADB AD B ¢¢Ð=Ð,B B ¢Ð=Ð,AB A B ¢¢=∴(AAS)ABD A B D ¢¢¢△△≌,∴AD A D ¢¢=.22.超速了,16.8千米/时【分析】根据题意得出由勾股定理得出BC 的长,进而得小汽车行驶速度为76.8千米/时,进而得出答案.【详解】解:根据题意,得24m 40m 90AC AB C ==Ð=°,,,在Rt ACB △中,根据勾股定理,222222402432BC AB AC =-=-=,所以32m BC =,小汽车1.5秒行驶32米,则1小时行驶76800(米),即小汽车行驶速度为76.8千米/时,因为 76.860>,所以小汽车已超速行驶,超速76.86016.8-=千米/时.【点睛】本题考查的是勾股定理的应用,算术平方根的含义,掌握根据已知得出BC 的长是解题关键.23.(1)风筝的高度CE 为21.6米(2)他应该往回收线8米【分析】本题考查了勾股定理的应用;(1)利用勾股定理求出CD 的长,再加上DE 的长度,即可求出CE 的高度;(2)根据勾股定理即可得到结论.【详解】(1)解:由题意得: 1.6m AB DE ==,在Rt CDB △中,由勾股定理得,222222515400CD BC BD =-=-=,所以,20CD =(负值舍去),所以,20 1.621.6CE CD DE =+=+=(米),答:风筝的高度CE 为21.6米;(2)解:由题意得,12CM =米,20128DM \=-=米,17BM \===(米),25178BC BM \-=-=(米),\他应该往回收线8米.24.梯子下滑了0.9米.【分析】在直角三角形ABC 中,根据勾股定理得:AC =2米,由于梯子的长度不变,在直角三角形CDE 中,根据勾股定理得CE =1.5米,所以AE =0.9米,即梯子的顶端下滑了0.9米.【详解】在Rt △ABC 中,AB =2.5米,BC =0.7米,故AC =米,在Rt △ECD 中,AB =DE =2.5米,CD =(1.3+0.7)=2米,故EC =米,故AE =AC -CE =2.4-1.5=0.9米.答:梯子下滑了0.9米.【点睛】本题考查了勾股定理的应用,准确理解题意,熟练掌握知识点是解题的关键.25.(1)CGO OFB ≌△△,理由见解析(2)爸爸接住小丽的地方距地面的高度为1.6m【分析】(1)由直角三角形的性质得出BOF OCG Ð=Ð,根据AAS 可证明CGO OFB ≌△△;(2)由全等三角形的性质得出,OF CG OG BF ==,求出FG 的长则可得出答案.【详解】(1)CGO OFB ≌△△.理由如下;∵90BOC Ð=°,∴90COG BOF Ð+Ð=°∵CG OA ^,∴90COG OCG Ð+Ð=°,∴BOF OCG Ð=Ð.又∵BF OA ^,∴90BFO OGC Ð=Ð=°.∵OC OB =,∴()AAS CGO OFB ≌△△.(2)∵CGO OFB ≌△△,∴,OF CG OG BF ==,∴ 2.2 1.80.4m FG OF OG CG BF =-=-=-=,∴爸爸接住小丽的地方距地面的高度为1.20.4 1.6m +=.【点睛】本题考查了全等三角形的判定与性质,直角三角形两锐角互余,证明CGO OFB ≌△△是解题的关键.26.(1)证明见解析(2)不存在这样的Rt ABC △,理由见解析【分析】(1)连接FD ,根据三角形中线的定义求出CD 、CE ,再根据三角形的中位线平行于第三边并且等于第三边的一半可得12FD AC =,然后分别利用勾股定理列式求出2AD 、2CF 、2BE 即可得证;(2)设两直角边分别为a 、b ,根据(1)的思路求出2AD 、2CF 、2BE ,再根据勾股定理列出方程表示出a 、b 的关系,然后用a 表示出AD 、BE 、CF ,再进行判断即可.【详解】(1)证明:如图,连接FD ,∵AD 、BE 、∴12CD BC ==,1122CE AC ==,1122ED AC ==,由勾股定理得,22222312AD AC CD =+=+=,2222221324CF CD ED ED æö=+==+=ç÷èø,2222219(24BE BC CE +==+,∵339=244+,∴222AD CF BE +=.(2)解:设两直角边分别为a 、b .∵AD 、BE 、CF 分别是三边上的中线,∴12CD =,12CE =,1122ED AC ==,由勾股定理得,()22222221424AD C CD b a a b =+=+=+,222222211112244CF CD FD a b a b æöæö=+=+=+ç÷ç÷èøèø,22222221124BE BC CE a b a b æö=+=+=+ç÷èø.∵222AD CF BE +=,∴22222211114444a b a b a b +++=+,整理得,222b =,∴AD =,CF ,32BE b =,∴CF AD BE =::∵∴不存在这样的Rt ABC △.【点睛】本题考查了勾股定理及三角形中位线的性质,三角形的中位线平行于第三边并且等于第三边的一半,用两条直角边分别表示出三条中线的平方是解题的关键,也是本题的难点.27.(1)等腰(2)14CD DE =【分析】(1)过C 作CH AB ^于H ,可得四边形BDCH 是矩形,即知CD BH =,而2AB CD =,故2AB BH =,得HC 是线段AB 的垂直平分线,故AC BC =,ABC V 是等腰三角形;(2)由CD l ^,ADE V 是等边三角形,可得30ADB BDE ADE Ð=Ð-Ð=°,即得1122AB AD DE ==,故14CD DE =;(3)由ADE V 是等边三角形,AE BD ∥,可得30BAD Ð=°,在Rt ABD △中,得()22262BD BD +=,故BD =Rt BCD △中,由勾股定理即得BC 【详解】(1)解:过C 作CH AB ^于H ,如图所示:∵AB l ^,CD l ^,∴90BDC BHC Ð=Ð=°,HB CD ∥,∴HBC BCD Ð=Ð,∵BC CB =,∴()AAS HBC DCB V V ≌,∴CD BH =,∵2AB CD =,∴2AB BH =,∴H 是AB 的中点,∴HC 是线段AB 的垂直平分线,∴AC BC =,∴ABC V 是等腰三角形;故答案为:等腰.(2)解:∵CD l ^,∴90BDE Ð=°,∵ADE V 是等边三角形,∴AD DE =,60ADE Ð=°,∴30ADB BDE ADE Ð=Ð-Ð=°,∵90ABD Ð=°,∴1122AB AD DE ==,∵2AB CD =,∴122CD DE =,∴14CD DE =,故答案为:14CD DE =.(3)解:∵ADE V 是等边三角形,∴60EAD Ð=°,∵AE BD ∥,∴60ADB EAD Ð=Ð=°,∵90ABD Ð=°,∴30BAD Ð=°,∴在Rt ABD △中,2AD BD =,∵6AB =,∴()22262BD BD +=,解得BD =,∵2AB CD =,∴3CD =,在Rt BCD △中,BC ===∴BC .【点睛】本题主要考查三角形综合应用,涉及等边三角形的性质及应用,等腰三角形的判定,含30°角的直角三角形三边关系等知识,解题的关键是掌握并能熟练应用等边三角形的性质.。
2023-2024学年北师大新版八年级上册数学期中复习试卷(含答案)
2023-2024学年北师大新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣1.414,,π,2.010101…(相邻两个1之间有1个0),2+,这此数中,无理数的个数为( )A.5B.2C.3D.42.如图,是象棋盘的一部分,若帅位于点(5,1)上,则炮位于点( )A.(1,1)B.(4,2)C.(2,1)D.(2,4)3.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0、2、4、6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上.则数轴上表示99的点与正方形上表示数字( )的点重合.A.0B.2C.4D.64.如果下列各组数分别是三角形的三边长,那么能组成直角三角形的是( )A.1,2,2B.2,3,4C.3,4,5D.4,5,65.的立方根是( )A.﹣B.C.D.6.下列各图能表示y是x的函数的是( )A.B.C.D.7.正比例函数y=2x的图象向左平移1个单位后所得函数解析式为( )A.y=2x+1B.y=2x﹣1C.y=2x+2D.y=2x﹣28.在△ABC中,∠A,∠B,∠C的对边分别是a、b、c.下列条件中,可以判定△ABC为直角三角形的是( )A.a:b:c=2:3:B.ab=cC.∠A+∠B=2∠C D.∠A=2∠B=3∠C9.如图,直线l是一次函数y=kx+b的图象,且直线l过点(﹣2,0),则下列结论错误的是( )A.kb>0B.直线l过坐标为(1,3k)的点C.若点(﹣16,m),(﹣18,n)在直线l上,则n>mD.10.如图,在Rt△ABC中,BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD 折叠,使A落在A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为( )A.2或4B.2或4C.2或4D.4或4﹣4二.填空题(共7小题,满分28分,每小题4分)11.有一组按规律排列的数:,,,2,…则第n个数是 .12.在平面直角坐标系中,已知点P的坐标是(﹣2,3),则点P到y轴的距离为 .13.以直角三角形的两条直角边为边向外作正方形,面积分别为12和13,则斜边长是 .14.若将点P(﹣3,4)向下平移2个单位,所得点的坐标是 .15.一次函数与一元一次方程的关系:从“数”的角度看,一元一次方程kx+b=0(k,b为常数,且k≠0)的解,就是一次函数y= 的函数值为 时,相应的自变量x的值;从“形”的角度看,一元一次方程kx+b=0的解就是一次函数y= 的图象与 轴交点的 坐标.16.直角三角形中,两边长为3,4,则第三边长为 .17.如图,在边长为5cm的正方形纸片ABCD中,点F在边BC上,已知FB=2cm.如果将纸折起,使点A落在点F上,则tan∠GEA= .三.解答题(共8小题,满分62分)18.计算:(1)2﹣6+3(2)(﹣)2+2×319.计算:(﹣1)(+1)+﹣.20.如图,长方体的长为3cm,宽为1cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(B为棱的中点),那么所用细线最短是多少厘米?21.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c22.如图,架在消防车上的云梯AB长为15m,云梯底部离地面的距离BC为2m,BD⊥AD,BD=5m.求出云梯顶端离地面的距离AE.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过A(4,0)、B(0,4)两点.(1)k= ,b= .(2)已知M(﹣1,0)、N(3,0),①在直线AB上找一点P,使PM=PN.用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);②点P的坐标为 ;③点Q在y轴上,那么PQ+NQ的最小值为 .24.教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定(2)如图③,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.(3)试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在如图4的网格中,并标出字母a,b所表示的线段.25.下面我们参照学习函数的过程与方法,探究函数y=的图象与性质.(1)请根据下表中所给x,y的对应值,以自变量x的取值为横坐标,以相应的函数y 的值为纵坐标,在平面直角坐标系中(如图所示)画出函数图象:x…﹣4﹣3﹣2﹣101234…y…012321012…(2)结合表格和图象,解回答下列问题:①若点(﹣,y1),(,y2)在函数图象上,则y1 y2(填“>”,“=”或“<”);②点A的坐标是(0,a),过点A作直线l垂直于y轴,当直线l与函数图象有三个不同交点时,直接写出a的取值范围;③当y=5时,求x的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:﹣1.414是有限小数,属于有理数;2.010101…(相邻两个1之间有1个0)是循环小数,属于有理数;无理数有:,,π,2+共3个.故选:C.2.解:依题意,坐标系的原点是在帅位下一行与从帅位向左数第5列的交点,故炮的坐标为(2,4).故选:D.3.解:从点﹣1到点99共100个单位长度,正方形的周长为2×4=8个单位长度,100÷8=12…4,故数轴上表示99的点与正方形上表示数字4的点重合,故选:C.4.解:∵12+22≠22,故选项A的数据不能构成直角三角形;∵22+32≠42,故选项B中的数据不能构成直角三角形;∵32+42=52,故选项C中的数据能构成直角三角形;∵42+52≠62,故选项D中的数据不能构成直角三角形;故选:C.5.解:实数的立方根为,故选:C.6.解:A、B、D都不是函数,因为一个x的值对应有多个y的值,C选项符合函数的概念,故选:C.7.解:正比例函数y=2x的图象向左平移1个单位后所得函数解析式为y=2(x+1),即y=2x+2.故选:C.8.解:A.∵a:b:c=2:3:,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项符合题意;B.根据ab=c不能推出△ABC是直角三角形,故本选项不符合题意;C.∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∴∠C=60°,即∠A+∠B=120°,不能推出∠A和∠B的度数,即不能确定△ABC是直角三角形,故本选项不符合题意;D.∵∠A=2∠B=3∠C,∴∠B=∠A,∠C=A,∵∠A+∠B+∠C=180°,∴∠A+A+A=180°,∴∠A=()°,∴△ABC不是直角三角形,故本选项不符合题意;故选:A.9.解:∵该一次函数的图象经过第二、三、四象限,且与y轴的交点位于x轴下方,∴k<0,b<0,∴kb>0,故A正确,不符合题意;将点(﹣2,0)代入y=kx+b,得:0=﹣2k+b,∴b=2k,∴直线l的解析式为y=kx+2k,当x=1时,y=k+2k=3k,∴直线l过坐标为(1,3k)的点,故B正确,不符合题意;由图象可知该函数y的值随x的增大而减小,又∵﹣16>﹣18,∴n>m,故C正确,不符合题意;∵该函数y的值随x的增大而减小,且当x=﹣2时,y=0,∴当时,y>0,即,故D错误,符合题意.故选:D.10.解:Rt△ABC中,BC=AC=4,∴AB=4,∠B=∠A′CB=45°,①如图1,当A′D∥BC,即A'D⊥AC,设AD=x,∵把△ACD沿直线CD折叠,点A落在BC上方A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=2,DH=A′D=x,∴x+x+2=4,∴x=4﹣4,∴AD=4﹣4;②如图2,当A′D∥AC,即A'D⊥BC,∵把△ACD沿直线CD折叠,点A落在BC下方A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=4,故选:D.二.填空题(共7小题,满分28分,每小题4分)11.解:观察数据可知,这组数据的规律是:,,,,…,则第n个数是.故答案为:.12.解:点P的坐标是(﹣2,3)到y轴的距离为:|﹣2|=2,故答案为:2.13.解:由题意得:两条直角边长的平方分别为12和13,∴斜边长==5,故答案为:5.14.解:由题意可得,平移后点的横坐标为﹣3;纵坐标为4﹣2=2;即将点P(﹣3,4)向下平移2个单位,所得点的坐标是(﹣3,2).故答案为:(﹣3,2).15.解:一次函数与一元一次方程的关系:从“数”的角度看,一元一次方程kx+b=0(k,b为常数,且k≠0)的解,就是一次函数y=kx+b的函数值为0时,相应的自变量x的值;从“形”的角度看,一元一次方程kx+b=0的解就是一次函数y=kx+b的图象与x 轴交点的横坐标.故答案为:kx+b,0,kx+b,x,横.16.解:当4是直角边时,斜边==5,当4是斜边时,另一条直角边==,则第三边长为5或,故答案为:5或.17.解:如图作GM⊥AB于M,连接FG、AG.∵四边形EGHF是由四边形EGDA翻折得到,∴EF=EA,GF=AG,设EF=AE=x,在RT△EFB中,∵EF2=BF2+BE2,∴x2=22+(5﹣x)2,∴x=,∴AE=EF=,设DG=y,则y2+52=(5﹣y)2+32,∴y=,∵∠D=∠DAB=∠AMG=90°,∴四边形DAMG是矩形,∴AM=DG=,EM=AE﹣AM=2,GM=AD=5,∴tan∠AEG==.故答案为.三.解答题(共8小题,满分62分)18.解:(1)2﹣6+3=4﹣6×+12=4﹣2+12=14;(2)(﹣)2+2×3=2+3﹣2+×3=2+3﹣2+2=5.19.解:原式=()2﹣12+2﹣2=2﹣1+2﹣2=1.20.解:将长方体展开,连接A、B,根据两点之间线段最短,AB=(cm);如果从点A开始经过4个侧面缠绕1圈到达点B,相当于直角三角形的两条直角边分别是8和3,根据勾股定理可知所用细线最短需要=(cm).故用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点)那么所用细线最短需要cm.21.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,即a=5;∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,即b=2,∵c是的整数部分,而4<<5,∴c=4,∴a+2b+c=13,答:a+2b+c的值为13.22.解:在Rt△ADB中,AD===12(m),则AE=12+2=14(m),答:云梯顶端离地面的距离AE为14米.23.(1)解:将A(4,0)、B(0,4)代入y=kx+b(k≠0)中,得:,解得:,故答案为:﹣1,4;(2)①如图,点P即为所求;②由作图可知:点P在MN的垂直平分线上,∵M(﹣1,0)、N(3,0),∴点P的横坐标为1,代入y=﹣x+4中,得:﹣1+4=3,∴P(1,3),故答案为:(1,3);③∵N(3,0),∴点N关于y轴对称点为N'(﹣3,0),则QN=QN',∴PQ+NQ=PQ+N'Q=PN',∴PQ+NQ的最小值为.故答案为:5.24.解:(1)梯形ABCD的面积为,也可以表示为,∴,即a2+b2=c2;(2)在Rt△ABD中,AD2=AB2﹣BD2=42﹣x2=16﹣x2;在Rt△ADC中,AD2=AC2﹣DC2=52﹣(6﹣x)2=﹣11+12x﹣x2;所以16﹣x2=﹣11+12x﹣x2,解得;(3)如图,由此可得(a+b)(a+2b)=a2+3ab+2b2.25.解:(1)函数图象如图所示:(2)①点(﹣,y1),(,y2)在函数图象上,根据图象可知,y1>y2,故答案为:>;②根据图象可知,直线l与函数图象有三个不同交点时,a的取值范围是0<a<3;③当y=5时,x﹣2=5,解得x=7.。
2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)
2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。
八年级数学期中考试试卷
一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a=bB. a=-bC. a和b不相等D. a和b相等或互为相反数3. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²4. 如果等腰三角形的底边长为4cm,腰长为6cm,那么这个三角形的周长是()A. 10cmB. 12cmC. 16cmD. 20cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 3B. y = x² - 1C. y = 3/xD. y = 2√x二、填空题(每题5分,共25分)6. 已知一个数的平方是25,那么这个数是______或______。
7. 如果|a| = 5,那么a的取值范围是______。
8. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。
9. 已知等边三角形的边长为a,那么它的周长是______。
10. 函数y = 2x - 3的图象是一条直线,且斜率为______。
三、解答题(共55分)11. (10分)计算下列各式的值:(1)(-3)² - 2×(-3)×2 + 2²(2)√(49 - 14√3)12. (10分)解下列方程:(1)2x - 3 = 7(2)3(x + 2) - 2x = 513. (10分)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求这个三角形的面积。
2023-2024学年苏科新版八年级上册数学期中复习试卷(含解析)
2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列四个标志中,是轴对称图形的是( )A.B.C.D.2.如图,AC=DC,∠1=∠2,添加下面一个条件不能使△ABC≌△DEC的是( )A.BC=EC B.∠A=∠D C.DE=AB D.∠DEC=∠ABC 3.在△ABC中,AB=AC,△ABC的中线BD将这个三角形的周长分为9和15两个部分,则BC长为( )A.12B.4C.12或4D.6或104.下列式子中,正确的是( )A.B.C.D.5.若一个直角三角形的两边长分别为4和5,则第三条边长的平方为( )A.9B.41C.9或41D.不确定6.下列说法错误的是( )A.任何命题都有逆命题B.真命题的逆命题不一定是正确的C.任何定理都有逆定理D.一个定理若存在逆定理,则这个逆定理一定是正确的7.如图是5×5的正方形网格中,以D、E为顶点作位置不同的格点的三角形与△ABC全等,这样格点三角形最多可以画出( )A.2个B.3个C.4个D.5个8.已知△ABC是等腰三角形,过△ABC的一个顶点的一条直线,把△ABC分成的两个小三角形也是等腰三角形,则原△ABC的顶角的度数有几种情况?( )A.2B.3C.4D.5二.填空题(共8小题,满分24分,每小题3分)9.5的平方根是 ;0.027的立方根是 .10.已知在△ABC中,∠A=40°,D为边AC上一点,△ABD和△BCD都是等腰三角形,则∠C的度数可能是 .11.三角形三条角平分线交于一点,且这一点到三顶点的距离相等. 12.△ABC中,AB=7,AC=24,BC=25,则∠A= 度.13.如图,正方体的棱长为2,O为AD的中点,则O,A1,B三点为顶点的三角形面积为 .14.如图,锐角△ABC中,BC=12,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,NE=6,则△EAN的周长为 .15.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是 cm.16.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E、F分别是线段AB、AD上的动点,且BE=AF,则BF+CE的最小值为 .三.解答题(共9小题,满分72分)17.如图,在正方形网格中,每个小方格的边长都为1,△ABC各顶点都在格点上.若点A 的坐标为(0,3),请按要求解答下列问题:(1)在图中建立符合条件的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)画出△ABC关于x轴的对称图形△A′B′C′.18.如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?19.如图,四边形ABCD为正方形纸片,点E是CD的中点,若CD=4,CF=1,图中有几个直角三角形?你是如何判断的?试说明理由.20.已知:2x+y+7的立方根是3,16的算术平方根是2x﹣y,求:(1)x、y的值;(2)x2+y2的平方根.21.如图,在等边△ABC中,点D是射线BC上一动点(点D在点C的右侧),CD=DE,∠BDE=120°.点F是线段BE的中点,连接DF、CF.(1)请你判断线段DF与AD的数量关系,并给出证明;(2)若AB=4,求线段CF长度的最小值.22.如图,一架梯子AB长10米,斜靠在一面墙上,梯子底端离墙6米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了2米,那么梯子的底端在水平方向滑动了多少米?23.如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G.(1)求证:BF=CG(2)若AB=5,AC=3,求AF的长.24.Rt△ABC中,∠BAC=90°,AB=AC,点D在直线BC上运动,连接AD,将线段AD 绕点D顺时针旋转90°得到线段DE,连接AE,CE.(1)当点D与点B重合时,如图1,请直接写出线段EC和线段AC的数量关系;(2)点D在线段BC上(不与点B,C重合)时,请写出线段AC,DC,EC之间的数量关系,并说明理由;(3)若AB=4,CD=1,请直接写出△DCE的面积.25.综合与实践【问题情境]课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.小明在组内和同学们合作交流后,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是 ;A.SSSB.AASC.SASD.HL(2)由“三角形的三边关系”,可求得AD的取值范围是 .解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.[初步运用](3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.[灵活运用](4)如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,直接写出你的结论.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.2.解:A、若添BC=EC即可根据SAS判定全等;B、若添∠A=∠D即可根据ASA判定全等;C、若添DE=AB则是SSA,不能判定全等;D、若添∠DEC=∠ABC即可根据AAS判定全等.故选:C.3.解:根据题意,①当12是腰长与腰长一半时,AC+AC=15,解得AC=10,所以腰长为4;②当9是腰长与腰长一半时,AC+AC=9,解得AC=6,所以腰长为12,∵6+6=12,∴不符合题意.故腰长等于4.故选:B.4.解:A、=﹣=﹣2,正确;B、原式=﹣=﹣,错误;C、原式=|﹣3|=3,错误;D、原式=6,错误,故选:A.5.解:当5为直角边时,第三边的平方为:42+52=41;当5为斜边时,第三边的平方为:52﹣42=9.故第三边的平方为9或41,故选:C.6.解:A.任何命题都有逆命题,所以A选项不符合题意;B.真命题的逆命题不一定是正确的,所以B选项不符合题意;C.任何定理不一定有逆定理,所以C选项符合题意;D.一个定理若存在逆定理,则这个逆定理一定是正确的,所以D选项不符合题意;故选:C.7.解:如图所示:,最多可以画出4个.故选:C.8.解:设该等腰三角形的底角是x;①如图1,当过顶角的顶点的直线把它分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°,∴x+x+x+x=180,解得x=45,则顶角是90°;②如图2,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,x=36°,则顶角是108°.③如图3,当过底角的角平分线把它分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.④如图4,当∠A=x°,∠ABC=∠ACB=3x°时,也符合,AD=BD,BC=DC,∠A=∠ABD=x,∠DBC=∠BDC=2x,则x+3x+3x=180°,x=,因此等腰三角形顶角的度数为36°或90°或108°或,故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:5的平方根是±,0.027的立方根是0.3,故答案为:,0.3.10.解:如图1所示:当DA=DC时,∵∠A=40°,∴∠ABD=40°,∴∠ADB=180°﹣40°×2=100°,∴∠BDC=180°﹣100°=80°,当BD=BC1时,∠BC1D=∠BDC1=80°;当DB=DC2时,∠DBC2=∠DC2B=(180°﹣80°)÷2=50°;当BC3=DC3时,∠BC2D=180°﹣80°×2=20°;如图2所示:当AB=AD时,∵∠A=40°,∴∠ABD=∠ADB=(180°﹣40°)÷2=70°,∴∠BDC=180°﹣70°=110°,当DB=DC4时,∠DBC4=∠DC4B=(180°﹣110°)÷2=35°;如图3所示:当AB=DB时,∵∠A=40°,∴∠ADB=40°,∴∠BDC=180°﹣40°=140°,当DB=DC5时,∠DBC5=∠DC5B=(180°﹣140°)÷2=20°.综上所述,∠C的度数可能是80°或50°或20°或35°或20°.故答案为:80°或50°或20°或35°或20°.11.解:由角平分线性质可知:三角形的三条角平分线交于一点,这点到三角形的三边的距离相等,故所给命题是假命题.故本题答案为:×.12.解:∵△ABC中,AB=7,AC=24,BC=25,∴72+242=252即BC2=AB2+AC2,∴三角形ABC是直角三角形.∴∠A=90°.13.解:直角△AA1O和直角△OBA中,利用勾股定理可以得到OA1=OB=,在直角△A1AB中,利用勾股定理得A1B=,过点O作高,交A1B与M,连接AM,则△AOM是直角三角形,则AM=A1B=,OM==,∴△OA1B的面积是.14.解:(1)∵点E、N分别是AB、AC边的垂直平分线与BC的交点,∴BE=AE,AN=CN.∴△AEN的周长=AE+AN+EN=BE+NC+EN=BC+2NE=12+12=24;故答案为2415.解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.16.解:过B作BG⊥BC,且BG=BA,连接GE,∵AD⊥BC,∴GB∥AD,∴∠GBA=∠BAD,∵GB=AB,BE=AF,∴△GBE≌△BAF(SAS),∴GE=BF,∴BF+CE=GE+CE≥GC,∴当G、E、C三点共线时,BF+CE=GC最小,∵AB=AC=5,BC=6,在Rt△BCG中,GC=,故答案为.三.解答题(共9小题,满分72分)17.解:(1)如图所示:(2)如图所示,点B的坐标为(﹣3,1),点C的坐标为(1,1);(3)如图所示,△A′B′C′即为所求.18.解:(1)上述四个条件中,①③,①④,②③,②④组合可判定△ABC是等腰三角形.(2)选择①③证明.∵∠DBO=∠ECO,BD=CE,∠DOB=∠EOC,∴△DOB≌△EOC,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形;(3)∵∠A=60°,∴∠ABC=∠ACB=60°,∵BE平分∠B,CD平分∠C,∴∠OBC=∠OBC=30°,∴∠BOC=180﹣30﹣30=120°,答:∠BOC的度数为120°.19.解:图中的有4个直角三角形,它们为Rt△ADE,Rt△ABF,Rt△CEF,Rt△AEF.理由如下:∵四边形ABCD为正方形,∴∠D=∠B=∠C=90°,AD=BC=AB=CD=4,∴△ADE、△ABF和△CEF都为直角三角形,∵E是CD的中点,∴DE=CE=2,∵CF=1,∴BF=3,在Rt△ADE中,AE2=22+42=20,在Rt△CEF中,EF2=22+12=5,在Rt△ABF中,AF2=32+42=25,∵AE2+EF2=AF2,∴△AEF为直角三角形.20.解:(1)依题意,解得:;(2)x2+y2=36+64=100,100的平方根是±10.21.解:(1)线段DF与AD的数量关系为:AD=2DF,理由如下:延长DF至点M,使DF=FM,连接BM、AM,如图1所示:∵点F为BE的中点,∴BF=EF,在△BFM和△EFD中,,∴△BFM≌△EFD(SAS),∴BM=DE,∠MBF=∠DEF,∴BM∥DE,∵线段CD绕点D逆时针旋转120°得到线段DE,∴CD=DE=BM,∠BDE=120°,∴∠MBD=180°﹣120°=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∴∠ABM=∠ABC+∠MBD=60°+60°=120°,∵∠ACD=180°﹣∠ACB=180°﹣60°=120°,∴∠ABM=∠ACD,在△ABM和△ACD中,,∴△ABM≌△ACD(SAS),∴AM=AD,∠BAM=∠CAD,∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=∠BAC=60°,∴△AMD是等边三角形,∴AD=DM=2DF;(2)连接CE,取BC的中点N,连接作射线NF,如图2所示:∵△CDE为等腰三角形,∠CDE=120°,∴∠DCE=30°,∵点N为BC的中点,点F为BE的中点,∴NF是△BCE的中位线,∴NF∥CE,∴∠CNF=∠DCE=30°,∴点F的轨迹为射线NF,且∠CNF=30°,当CF⊥NF时,CF最短,∵AB=BC=4,∴CN=2,在Rt△CNF中,∠CNF=30°,∴CF=CN=1,∴线段CF长度的最小值为1.22.解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===8(米);答:这个梯子的顶端距地面有8米高;(2)梯子下滑了2米即梯子距离地面的高度为OA′=8﹣2=6(米),根据勾股定理:OB′===8(米),∴BB′=OB′﹣OB=8﹣6=2(米),答:当梯子的顶端下滑2米时,梯子的底端水平后移了2米.23.(1)证明:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥ABEG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.(2)解:在Rt△AEF和Rt△AEG中,,∴Rt△AEF≌Rt△AEG(HL),∴AF=AG,∵Rt△BFE≌Rt△CGE(HL),∴BF=CG,∴AB+AC=AF+BF+AG﹣CG=2AF,∴2AF=8,∴AF=4.24.解:(1)EC=AC,理由如下:由旋转得ED=AD,∠ADE=90°,当点D与点B重合时,则EB=AB,∠ABE=90°,∵∠BAC=90°,AB=AC,∴∠BAC+∠ABE=180°,∴AC∥BE,AC=EB,∴四边形ABEC是正方形,∴EC=AC.(2)AC﹣EC=DC,理由如下:如图2,作DF⊥BC交AC于点F,则∠CDF=90°,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠DFC=∠DCF=45°,∴DF=DC,∵∠ADF=∠EDC=90°﹣∠EDF,AD=ED,∴△ADF≌△EDC(SAS),∴AF=EC,∴AC﹣EC=AC﹣AF=FC,∵FC===DC,∴AC﹣EC=DC.(3)如图3,点D在线段BC上,作DF⊥BC交AC于点F,EG⊥BC交BC的延长线于点G,由(2)得∠DFC=45°,△ADF≌△EDC,AC﹣EC=CD,∴∠ECD=∠AFD=180°﹣∠DFC=135°,∴∠GCE=180°﹣∠ECD=45°,∵AB=AC=4,CD=1,∴EC=AC﹣DC=4﹣×1=3,∵∠CGE=90°,∴EG=EC•sin∠GCE=EC•sin45°=3×=3,∴S△DCE=CD•EG=×1×3=;如图4,点D在线段BC的延长线上,作DF⊥BC交AC的延长线于点F,EG⊥BC交BC 的延长线于点G,∵∠CDF=90°,∠DCF=∠ACB=45°,∴∠F=∠DCF=45°,∴FD=CD,∵∠ADF=∠EDC=90°+∠ADC,AD=ED,∴△ADF≌△EDC(SAS),∴EC=AF,∠DCE=∠F=45°,∵FC===DC,∴EC=AF=AC+CF=4+×1=5,∵∠CGE=90°,∴EG=EC•sin∠GCE=EC•sin45°=5×=5,∴S△DCE=CD•EG=×1×5=,综上所述,△DCE的面为或.25.解:(1)∵AD是BC边上的中线,∴CD=BD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:C;(2)∵AB﹣BE<AE<AB+BE,即6﹣4<AE<6+4,∴2<AE<10,∵AD=AE,∴1<AD<5,故答案为:1<AD<5;(3)延长AD到M,使AD=DM,连接BM,如图2所示:∵AE=EF.EF=3,∴AC=AE+EC=3+2=5,∵AD是△ABC中线,∴CD=BD,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即BF=5,故线段BF的长为5;(4)线段BE、CF、EF之间的等量关系为:BE2+CF2=EF2,理由如下:延长ED到点G,使DG=ED,连接GF、GC,如图3所示:∵ED⊥DF,∴EF=GF,∵D是BC的中点,∴BD=CD,在△BDE和△CDG中,,∴△DBE≌△DCG(SAS),∴BE=CG,∠B=∠GCD,∵∠A=90°,∴∠B+∠ACB=90°,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CG2+CF2=GF2,∴BE2+CF2=EF2.。
陕西省渭南市临渭区2024-2025学年八年级上学期数学期中试卷
陕西省渭南市临渭区2024-2025学年八年级上学期数学期中试卷和答案一、单选题1.1的立方根是()A .1B .1-C .0D .1±2.下列各组数中,是勾股数的是()A .1,2,3B .4,6,8C .0.3,0.4,0.5D .5,12,133.已知()35y a x a =++-是正比例函数,则该函数的表达式是()A .3y x=B .5y x=C .8y x =D .2y x =-4.计算2的结果为()A .43B .163C .49D .1695.在平面直角坐标系xOy 中,点()24A m +,与点B (),m n 关于y 轴对称,则m n +的值为()A .0B .1C .2D .1-6.直线1y ax =-向右平移3个单位后过点(2,3)P -,则a 的值应该是()A .1B .3C .2D .47.如图所示,在44⨯的正方形网格中,ABC V 的顶点都在格点上,则下列结论错误的是()A .25BC =B .5AB =C .90ACB ∠=︒D .4AC =8.在物理实验课上,小明在进行温度与金属导体电阻之间的关系实验中发现,某种金属导体的电阻R (单位:Ω)与温度t (单位:℃)之间存在一次函数关系,于是对不同温度下该导体的电阻进行了记录,如下表:t (℃)010203040R (Ω)5 5.08 5.16 5.24 5.32根据上述关系,当温度t 为55℃时,该金属导体的电阻R 的值为()A .5.36ΩB .5.40ΩC .5.44ΩD .5.48Ω二、填空题93.1415,67中,是无理数的是.10.比较大小:8(填“>”或“<”或“=”)11.已知点()11,A x y ,()22,B x y 是一次函数21y x =+图像上的两点,如果12x x <,那么1y ,2y 的大小关系是1y 2y (填“>”或“<”或“=”).12.把两个半径分别为1cm的铅球熔化后做成一个更大的铅球,则这个大铅球的半径是cm (球的体积公式34π3V r =,其中r 是球的半径).13.如图,在一张长方形纸板ABCD 上放着一根长方体木块.已知12m AD =,8m AB =,该木块的长与AD 平行,横截面是边长为1m 的正方形,一只蚂蚁从点A 爬过木块到达点C 需要走的最短路程是m .三、解答题14-.15.已知:27x +的立方根是3,25的算术平方根是5x y -,求:(1)x ,y 的值;(2)x y -的平方根.16.在ABC V 中,90C ∠=︒,AC ,AB =.求ABC V 的面积.17.如图,在平面直角坐标系中,网格上的每个小正方形的边长均为1,ABC V 的顶点坐标分别为()1,1A -,()4,4B -,()3,4C .在图中画出ABC V 关于x 轴对称的DEF (点A 、B 、C 的对应点分别为点D 、E 、F ),并写出点F 的坐标.18.已知刹车距离的计算公式=v v 表示车速(单位:km /h ),d 表示刹车距离(单位:m ),f 表示摩擦系数,在一次交通事故中.测得16m d =, 2.25f =,而发生交通事故的路段限速为100km /h ,通过计算说明肇事汽车是否违规行驶.19.已知平面内有一点()5,26G m m --,分别根据下列条件求点G 的坐标.(1)点G 在第三象限,且点G 到x 轴的距离为4;(2)点N 的坐标为(5,5)-,且直线GN 与y 轴平行.20.如图所示,有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出2尺,斜放就恰好等于门的对角线(BD ),已知门宽6尺,求竹竿长.21.如图是气象台某天用仪器记录的空中气温℃与距地面高度()km h 之间的函数图象.(1)根据图象,求出图中的t 关于h 的函数表达式;(2)当空中气温为12℃时,求此时距离地面的高度.22.小霞和爸爸妈妈到公园游玩,回到家后,她利用平面直角坐标系知识,画出了如图所示的公园景区地图.可是她忘记了在图中标出坐标系的x 轴y 轴和原点O ,只知道木栈道景点D 的坐标为(1,2)-,月亮桥景点B 的坐标为()4,2-.(1)请在图中画出x 轴、y 轴,并标出坐标原点O ;(2)请写出其它三个景点A 、C 、E 的坐标.23.某农场有一块长50米,宽30米的长方形场地,现要用场地面积的23建一个观鱼池.(1)若要修建一个上述面积的长方形鱼池,且长方形的长和宽之比为5:4,则鱼池的长和宽各为多少?(2)保持已知面积不变,能否将鱼池修建成一个正方形,若能建成,鱼池的边长为多少?不能,请说明理由?24.某工程的测量人员在规划一块如图所示的三角形地时,由于在BC 上有一处古建筑,使得BC 的长不能直接测出,于是工作人员在BC 上取一点D ,测得120AD =米,50BD =米后,又测得130AB =米,150AC =米,请你根据测量数据,求出BC 的长度.25.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.1元;B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.2元.若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元.(1)分别求出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,选哪种通讯方式更合算,请书写计算过程.(3)小明选的A 方式,他计算了一下,若是B 方式,他本月话费将会比现在多50元,请你算一下小明在A 方式下的实际话费是多少元?26.如图,正比例函数2y x =的图象与一次函数y kx b =+的图象交于点(),4A m ,一次函数图象与y 轴的交点为()0,2C ,与x 轴的交点为D .(1)求一次函数y kx b =+的表达式;(2)一次函数y kx b =+的图象上是否存在点P ,使得3ODP S =△,若存在,求出点P 的坐标;若不存在,说明理由;(3)如果在一次函数y kx b =+的图象存在点Q ,使OCQ △是以CQ 为腰的等腰三角形,请求出点Q 的坐标.。
八年级人教版期中试卷数学
一、选择题(每题3分,共30分)1. 若m=3,n=-2,则代数式2m-3n的值为()A. -15B. -9C. 9D. 152. 下列选项中,是等差数列的是()A. 2,4,6,8,10B. 1,3,5,7,9C. 3,5,7,9,11D. 2,5,8,11,143. 若一个三角形的三边长分别为3,4,5,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不规则三角形4. 下列函数中,是反比例函数的是()A. y=x+1B. y=x^2C. y=2xD. y=1/x5. 下列图形中,对称轴是直线x=1的是()A. 圆B. 正方形C. 等腰梯形D. 梯形6. 若一个平行四边形的对角线相等,则这个平行四边形是()A. 矩形B. 菱形C. 等腰梯形D. 不规则四边形7. 下列数中,是质数的是()A. 15B. 17C. 18D. 208. 若一个数的平方根是3,则这个数是()A. 9B. 12C. 27D. 369. 下列方程中,有唯一解的是()A. 2x+3=5B. 3x+2=6C. 4x+1=7D. 5x+3=810. 若一个正方形的面积是16,则这个正方形的边长是()A. 2B. 4C. 6D. 8二、填空题(每题4分,共20分)11. 若a=-2,b=3,则2a+b的值为______。
12. 下列数中,是偶数的是______。
13. 下列图形中,中心对称图形是______。
14. 若一个圆的半径是5,则这个圆的直径是______。
15. 下列方程中,无解的是______。
三、解答题(每题10分,共30分)16. (1)已知等差数列的首项是2,公差是3,求第10项;(2)已知等差数列的前5项和是25,求首项和公差。
17. (1)已知一个三角形的三边长分别为5,6,7,求这个三角形的面积;(2)已知一个平行四边形的底是8,高是6,求这个平行四边形的面积。
18. (1)已知一个数的平方根是-3,求这个数;(2)已知一个数的立方根是-2,求这个数。
2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解
2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6 B.3,5,7 C.4,5,10 D.3,3,83.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒4.画ABC 边BC 上的高,下列画法正确的是()A . B.C. D.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A.6B.7C.8D.910.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6B.3,5,7C.4,5,10D.3,3,8【答案】B【分析】根据三角形的三边关系,进行判断即可.【详解】解:A 、246+=,不能构成三角形;B 、357+>,能构成三角形;C 、4510+<,不能构成三角形;D 、338+<,不能构成三角形;故选B .【点睛】本题考查构成三角形的条件.解题的关键是掌握两条短的线段之和大于第三条线段的长时,三条线段能构成三角形.3.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒【答案】B 【分析】三角形内角和定理,求出BCD ∠,再根据全等三角形对应角相等,即可得出结果.【详解】解:∵73,38D DBC ∠=︒∠=︒,∴10689D D CD BC B ∠︒-∠-=∠=︒;∵ABC DCB △≌△,∴69B ABC CD ∠∠==︒;故选B .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的对应角相等,是解题的关键.4.画ABC 边BC 上的高,下列画法正确的是()A. B.C. D.【答案】D【分析】根据三角形的高的定义:从三角形的一个顶点出发,向对边引垂线,顶点与垂足形成的线段即为三角形的高,进行判断即可.【详解】解:画ABC 边BC 上的高,如图所示:故选D .【点睛】本题考查画三角形的高.熟练掌握三角形的高的定义,是解题的关键.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL【答案】D 【分析】根据题意得到两个三角形是直角三角形,结合给出的条件:直角边和斜边分别相等,从而得出结论.【详解】∵90BCA BDA ∠=∠=︒,∴BAC 和BAD 是直角三角形,∵BC BD =,AB AB =,∴()BAC BAD HL ≌,故选:D .【点睛】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法及其应用.6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒【答案】D 【分析】先根据邻补角的定义计算出5∠的度数,再根据多边形的外角和为360︒,计算即可得到答案.【详解】解:如图,120BAE ∠=︒ ,518018012060BAE ∴∠=︒-∠=︒-︒=︒,12345∠∠∠∠∠ 、、、、是五边形ABCDE 的五个外角,12345360∴∠+∠+∠+∠+∠=︒,1234360536060300∴∠+∠+∠+∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了利用邻补角求角的度数、多边形的外角和,熟练掌握多边形的外角和为360︒是解此题的关键.7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P【答案】C【分析】本题考查了两点之间线段最短、轴对称的性质,熟练掌握轴对称的性质是解此题的关键.先找出点B 对称点B ',连接AB ',再根据两点之间线段最短即可得到答案.【详解】解:正确作法如下:如图,作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点P ,,理由如下:在l 上异于点P 的位置任取一点H ,连接AH ,BH ,B H ',,B 、B '关于直线l 对称,BH B H '∴=,AH BH AH B H AB AP B P AP BP '''∴+=+>=+=+,PA PB ∴+最短,故选:C .8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒【答案】B 【分析】根据等腰三角形的性质可得70ABC C ∠=∠=︒,根据三角形内角和定理可得40A ∠=︒,根据线段垂直平分线的性质可得AD BD =,从而得到40ABD A ==︒∠∠,最后由DBC ABC ABD ∠=∠-∠进行计算即可得到答案.【详解】解: 70AB AC C =∠=︒,,70ABC C ∴∠=∠=︒,180ABC C A ∠+∠+∠=︒ ,18040A ABC C ∴∠=︒-∠-∠=︒,DE 是AB 的垂直平分线,AD BD ∴=,40ABD A ∴∠=∠=︒,704030DBC ABC ABD ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形内角和定理,熟练掌握以上知识点是解此题的关键.9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A .6 B.7 C.8 D.9【答案】C【分析】在AB 上截取AE AC =,证明ADE ADC △△≌,得到3DE CD ==,2AED C B ∠=∠=∠,推出EDB B ∠=∠,得到3BE DE ==,再利用AB AE BE =+,求解即可.【详解】解:在AB 上截取AE AC =,∵AD 平分CAE ∠,∴DAE DAC ∠=∠,∵AD AD =,∴ADE ADC △△≌,∴3DE CD ==,2AED C B ∠=∠=∠,∵AED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴3BE DE ==,∴8AB AE BE =+=;故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形和特殊三角形.10.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B 【分析】由折叠的性质可得90BCD BED ∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,即可判断①②,由BD 不一定等于AD ,可得BDE ∠不一定等于ADE ∠,即可判断③;根据等边三角形的判定即可判断④.【详解】解: 将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,BCD BED ∴ ≌,90BCD BED ∴∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,DE AB ⊥∴,BD 垂直平分CE ,故①②正确,符合题意;BD Q 不一定等于AD ,∴BDE ∠不一定等于ADE ∠,∴DE 不一定平分ADB ∠,故③错误,不符合题意;60ADE ∠=︒ ,180120CDE ADE ∴∠=︒-∠=︒,CDB EDB ∠=∠ ,1602CDB EDB CDE ∴∠=∠=∠=︒,9030CBD BDE ∠=︒-∠=∴︒,30EBD CBD ∠∴∠==︒,即60CBE ∠=︒,BC BE = ,BCE ∴△是等边三角形,故④正确,符合题意;综上所述,正确的有①②④,故选:B .【点睛】本题考查了折叠的性质、线段垂直平分线的判定与性质、等边三角形的判定等知识点,熟练掌握以上知识点是解此题的关键.二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.【答案】BC AD =(答案不唯一)【分析】当BC AD =时,可证()SAS ABC CDA ≌,然后作答即可.【详解】解:当BC AD =时,∵BC AD =,21∠=∠,AC CA =,∴()SAS ABC CDA ≌,故答案为:BC AD =.【点睛】本题考查了全等三角形的判定定理.解题的关键在于熟练掌握根据ASA SAS AAS 、、证明三角形全等.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.【答案】40【分析】此题主要考查了三角形的外角性质,平行线的性质,角平分线的定义,首先根据三角形的外角定理求出40ABD ∠=︒,再根据角平分线的定义得40CBD ABD ∠=∠=︒,然后根据平行线的性质即可得BDE ∠的度数.【详解】解:∵36A ∠=︒,76BDC ∠=︒,∴BDC A ABD ∠=∠+∠,即7636ABD ︒=︒+∠,∴763640ABD ∠=︒-︒=︒,∵BD 是ABC 的角平分线,∴40CBD ABD ∠=∠=︒,∵DE BC ∥,∴40BDE CBD ∠=∠=︒.故答案为:40.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.【答案】()1,1-【分析】根据平行于x 轴的直线上的点的纵坐标相同,得到点B 的纵坐标,过点A 作AD BC ⊥,利用等腰三角形的三线合一,求出点B 的横坐标即可.【详解】解:∵BC x ∥轴,()5,1C ,∴点B 的纵坐标为1,过点A 作AE x ⊥,交x 轴于点E ,交BC 于点D ,则:()2,1D ,∵,AB AC =∴BD CD =,∴点B 的横坐标为2251⨯-=-,∴()1,1B -.故答案为:()1,1-.【点睛】本题考查坐标与图形,等腰三角形的性质.熟练掌握平行于x 轴的直线上的点的纵坐标相同,等腰三角形三线合一,是解题的关键.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.【答案】3【分析】过点D 作DF AB ⊥于点F ,角平分线的性质得到DF DE =,再利用三角形的面积公式进行计算即可.【详解】解:过点D 作DF AB ⊥于点F ,∵AD 平分,BAC DE AC∠⊥∴2DF DE ==,∴ABD △的面积是1132322AB DF ⋅=⨯⨯=;故答案为:3.【点睛】本题考查角平分线的性质.熟练掌握到角平分线上的点到角两边的距离相等,是解题的关键.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.【答案】①.115②.5【分析】先证明ABD BCE ≌,得到BD CE =,BAD CBE ∠=∠,利用三角形外角的性质,求出AFB ∠,利用BD BE -即可得到DE 的长.【详解】解:∵ABC 为等腰直角三角形,∴90,,45ABC AB BC ACB ∠=︒=∠=︒,∵,AD BD CE BD ⊥⊥,∴90ADB CEB ∠=∠=︒,∴90ABD BCE CBE ∠=∠=︒-∠,∴ABD BCE ≌,∴70BAD CBE ∠=∠=︒,7BD CE ==,∴115AFB DBC BCD ∠=∠+∠=︒,5DE BD BE =-=;故答案为:115,5.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,三角形的外角.解题的关键是证明ABD BCE ≌.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.【答案】①.5(答案不唯一)②.5(答案不唯一)③.9【分析】(1)根据题意,画出图形,进行求解即可.(2)根据题意,分,,A B C ∠∠∠分别为直角,进行讨论求解即可.【详解】解:(1)如图,当5,5m n ==时,此时:()5,5A ,()5,0B ,()0,5C ,由图可知,三角形ABC 为等腰直角三角形,满足题意,故答案为:5,5(答案不唯一);(2)∵点(),0B m ,点()0,C n ,m 与n 均是正整数,∴点,B C 分别在,x y 轴的正半轴上,∵()5,5A ,∴()()2222222225555AB m AC n BC m n =+-=+-=+,,,当A ∠为直角时,222AB AC BC +=,即:()()2222225555m n m n +-++-=+,整理得:10m n +=,∴10m n =-,∴()()222222551055AB n n AC =+-+=+-=,满足ABC 为等腰直角三角形,∴1,2,3,4,5,6,7,8,9m =,9,8,7,6,5,4,3,2,1n =,满足上述条件的ABC 共有9个;当B ∠为直角或C ∠为直角,不存在点,B C 分别在,x y 轴的正半轴上,m 与n 均是正整数时,ABC 为等腰直角三角形;故答案为:9.【点睛】本题考查坐标与图形.熟练掌握等腰直角三角形的性质,利用数形结合和分类图讨论的思想进行求解,是解题的关键.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.【答案】1x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:32341x y x y -=⎧⎨+=⎩①②,2⨯+①②得,77x =,解得,1x =,将1x =代入②得,141y +=,解得,0y =,∴10x y =⎧⎨=⎩.【点睛】本题考查了加减消元法解二元一次方程组.解题的关键在于正确选取合适的方法解方程组.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.【答案】(1)2x ≥-,图见解析(2)3,4【分析】(1)根据解不等式的步骤,进行求解,再在数轴上表示出解集,即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即可.【详解】解:(1)4113x x -≥-,去分母,得:4133x x -≥-,移项,合并,得:2x ≥-;数轴表示解集,如图:(2)()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩①②,由①,得:52x ≥;由②,得:4x ≤;∴不等式的解集为:542x ≤≤.∴整数解为:3,4.【点睛】本题考查解一元一次不等式和一元一次不等式组.熟练掌握解一元一次不等式的步骤,正确的计算,是解题的关键.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.【答案】76AEC ∠=︒,14DAE ∠=︒【分析】三角形的内角和定理,求出,CAD BAC ∠∠的度数,角平分线求出,CAE BAE ∠∠的度数,利用CAE CAD ∠-∠求出DAE ∠,三角形的外角求出AEC ∠即可.【详解】解:∵AD 是ABC 中BC 边上的高,∴90ADC ∠=︒,∵32,60B C ∠=∠=︒︒,∴18088BAC B C ∠=︒-∠-∠=︒,18030CAD ADC C ∠=︒-∠-∠=︒,∵AE 平分BAC ∠,∴1442CAE BAE BAC ∠=∠=∠=︒,∴76AEC B BAE ∠=∠+∠=︒,14DAE CAE CAD ∠=∠-∠=︒.【点睛】本题考查与角平分线有关的三角形的内角和定理,三角形的外角.熟练掌握相关知识点,是解题的关键.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.【答案】(1)图见解析(2)NP ,到线段两端距离相等的点在线段的垂直平分线上【分析】(1)根据作图步骤,作图即可;(2)根据中垂线的判定,进行作答即可.【小问1详解】解:如图,线段CD 即为所求【小问2详解】证明:,CM CN MP NP == ,∴点,C P 在线段MN 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.故答案为:NP ,到线段两端距离相等的点在线段的垂直平分线上【点睛】本题考查基本作图——作垂线.熟练掌握垂线的尺规作图方法,中垂线的判定方法,是解题的关键.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.【答案】(1)见解析(2)见解析【分析】(1)由题意得,AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,证明()SAS ABD ACE △≌△,进而可证BD CE =;(2)如图,延长CE 交BD 于F ,交AB 于G ,由()SAS ABD ACE △≌△,可得ABD ACE ∠=∠,由180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,可得90BFC CAB ∠=∠=︒,进而结论得证.【小问1详解】证明:∵等腰直角三角形ABC 和等腰直角三角形ADE ,90BAC DAE ∠=∠=︒,∴AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,∵AB AC =,DAB EAC ∠=∠,AD AE =,∴()SAS ABD ACE △≌△,∴BD CE =;【小问2详解】证明:如图,延长CE 交BD 于F ,交AB 于G ,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,∵180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,∴90BFC CAB ∠=∠=︒,∴CE BD ⊥.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,三角形内角和定理,对顶角相等.解题的关键在于明确全等的判定条件.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)【答案】(1)①图见解析②图见解析(2)图见解析【分析】(1)作以点C 为顶点的等边三角形的中线与BR 的交点即为点A ,利用三线合一以及等边三角形的角为60︒,即可得到ABC 是以90ACB ∠=︒的直角三角形;②根据150,CAE AE BC ∠=︒=,得到点E 在线段BR 上,点A 的下方3个单位长度的位置,再根据DE AB =确定点D 的位置,即可;(2)分别以点,,A B C 为原心,以小于AB 长度的一半为半径画弧,与三边的交点为,,P Q R ,连接即可得到等边三角形PQR .【详解】解:(1)①如图所示:ABC 即为所求,②如图所示,ADE V 即为所求;(2)如图,PQR 即为所求;【点睛】本题考查作图—复杂作图.熟练掌握等边三角形的性质,全等三角形的判定,是解题的关键.24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.【答案】(1)证明见解析(2)①补图见解析;②EC BD DE =+,证明见解析【分析】(1)由AH 平分PAQ ∠,可得BAM CAM ∠=∠,由BC AH ⊥,可得90AMB AMC ∠=∠=︒,证明()ASA ABM ACM ≌,进而可证BM CM =;(2)①如图1,即为所求;②如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,则ABN ACM ∠=∠,证明()SAS ABD ACF △≌△,则AD AF =,BAD CAF ∠=∠,由12DAE PAQ BAM CAM ∠=∠=∠=∠,可得BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,则BAD EAM ∠=∠,BAE FAM ∠=∠,由BAD BAE EAM FAM ∠+∠=∠+∠,可得DAE FAE ∠=∠,证明()SAS ADE AFE △≌△,则DE EF =,根据EC CF EF =+,等量代换可得EC BD DE =+.【小问1详解】证明:∵AH 平分PAQ ∠,∴BAM CAM ∠=∠,∵BC AH ⊥,∴90AMB AMC ∠=∠=︒,∵BAM CAM ∠=∠,AM AM =,90AMB AMC ∠=∠=︒,∴()ASA ABM ACM ≌,∴BM CM =;【小问2详解】①解:如图1,②解:EC BD DE =+,证明如下:如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,∴ABN ACM ∠=∠,∵AB AC =,ABD ACF ∠=∠,DB CF =,∴()SAS ABD ACF △≌△,∴AD AF =,BAD CAF ∠=∠,∵12DAE PAQ BAM CAM ∠=∠=∠=∠,∴BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,∴BAD EAM ∠=∠,BAE FAM ∠=∠,∴BAD BAE EAM FAM ∠+∠=∠+∠,即DAE FAE ∠=∠,∵AD AF =,DAE FAE ∠=∠,AE AE =,∴()SAS ADE AFE △≌△,∴DE EF =,∵EC CF EF =+,∴EC BD DE =+.【点睛】本题考查了角平分线的定义,全等三角形的判定与性质,轴对称的性质.解题的关键在于确定全等三角形的判定条件.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.【答案】(1)①1P ,3P ,②36P y -≤≤,且0P y ≠,3P y ≠(2)①47P x ≤≤,②()()1110m n --=【分析】(1)①画出图形,再根据垂直对称点的定义判断即可;②先判断ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,所得图形即为点P 的轨迹,再根据垂直对称点的定义判断即可;(2)①根据垂直对称点的定义,结合AB BP ⊥可得线段PA 垂直平分线过点B ,即有AB BP =,过P 点作PT x ⊥轴于点T ,证明AOB BTP ≌V V ,问题随之得解;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段;同理当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,即可判断出动点P 形成的轨迹组成的图形为平行四边形,问题随之得解.【小问1详解】①如图,∵()0,3A ,()0,0B ,()13,3P ,()21,1P ,()33,0P,∴133AB AP BP ===,3AB BP ⊥,1AP AB ⊥,22P B =,25AP =,∴点B 在3AP 的垂直平分线上,点A 在1BP 的垂直平分线上,∴线段AB 的垂直对称点是1P ,3P ;②∵对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,∴AB PB =或者AB PA =,∴ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,如图,当AB PA =时,点P 位于点P '处,∴根据等腰三角形的性质可得顶点A 在BP '的垂直平分线上,当AB PB =时,点P 位于点P ''处,∴根据等腰三角形的性质可得顶点B 在AP ''的垂直平分线上,当点P 位于点A 或者点B 时,点P 不是线段AB 的垂直对称点,∵()0,3A ,()0,0B ,3AB =,∴()0,6M ,()0,3N -,∴点P 的纵坐标P y 的取值范围:36P y -≤≤,且0P y ≠,3P y ≠;【小问2详解】①过P 点作PT x ⊥轴于点T ,如图,∵P 是线段AB 的垂直对称点,AB BP ⊥,∴点B 在AP 的垂直平分线上,90ABP ∠=︒,∴AB BP =,即ABP 是等腰直角三角形,∵90ABP AOB ∠=︒=∠,∴OAB OBA OBA PBT ∠+∠=∠+∠,∴OAB PBT ∠=∠,∵PT x ⊥轴,∴90BTP AOB ∠=︒=∠,∴BTP AOB ≌,∴AO BT =,∵()0,A a ,(),0B b ,3a =,14b ≤≤,∴3AO a ==,BO b =,∴3AO BT ==,∴3OT OB BT b =+=+,∵14b ≤≤,∴437b ≤+≤,∴47OT ≤≤,∴点P 的横坐标P x 的取值范围:47P x ≤≤;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段,且两条线段相等;当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,且两条线段相等;∵两组对边分别相等的四边形是平行四边形,∴动点P 形成的轨迹组成的图形为平行四边形,如图,∵a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,∴点A 垂直移动的距离为()1m -,点B 水平移动的距离为()1n -,∴动点P 形成的轨迹组成的图形为平行四边形的底为()1n -,高为()1m -,∵动点P 形成的轨迹组成的图形面积为10,∴()()1110n m --=.【点睛】本题主要考查了坐标与图形,平行四边形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,垂直平分线的性质等知识,正确理解线段垂直对称点的含义是解答本题的关键.。
八年级期中测试卷数学【含答案】
八年级期中测试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 的值是多少?A. 8B. 9C. 10D. 113. 下列哪个数是素数?A. 12B. 13C. 15D. 184. 一个等边三角形的内角是多少度?A. 30°B. 45°C. 60°D. 90°5. 如果一个圆的半径是5cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 方程 2x + 3 = 7 的解是 x = 2。
()2. 任何两个奇数相加的和都是偶数。
()3. 一个等腰三角形的两个底角相等。
()4. 圆的周长和它的直径成正比。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 如果一个数加上5等于10,那么这个数是______。
2. 一个正方形的边长是6cm,那么这个正方形的面积是______平方厘米。
3. 2的平方根是______。
4. 如果一个事件是必然事件,那么这个事件发生的概率是______。
5. 在直角坐标系中,点(3, 4)的横坐标是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是算术平均数?如何计算一组数据的算术平均数?3. 请解释什么是概率,并给出一个概率的例子。
4. 请简述平行线的性质。
5. 请解释什么是等差数列,并给出一个等差数列的例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的面积。
2. 如果一辆汽车以60km/h的速度行驶,行驶了3小时,请计算这辆汽车行驶的总距离。
3. 一个班级有40名学生,其中有20名学生喜欢打篮球,请计算喜欢打篮球的学生所占的百分比。
八年级期中数学试卷及答案
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。
()答案:√2.任何数与0相乘,其结果一定是0。
()答案:√3.若a>b,则a^2>b^2。
()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。
答案:42.若一个正方形的边长为a,则其面积为_______。
答案:a^23.若|x|=5,则x的值为_______或_______。
答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。
(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。
答案:第10项的值为2+(101)3=2+27=29。
2.解方程:2(x3)+4=3x+1。
答案:2x6+4=3x+1,化简得x=9。
(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。
答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。
答案:8cm6.若a=3,b=-2,则a+b的值为_______。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的。
)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.333...2. 一个等腰三角形的两边长分别为5和8,那么它的周长是多少?A. 18B. 21C. 26D. 303. 下列哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 1/x4. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是5. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π6. 一个多项式与2x^2 - 3x + 1的乘积是4x^3 - 6x^2 + 3x - 5,那么这个多项式是?A. 2x - 1B. 2x + 1C. -2x + 1D. -2x - 17. 下列哪个选项是正确的不等式?A. 3x > 2x + 1B. 3x ≤ 2x + 1C. 3x < 2x + 1D. 3x ≥ 2x + 18. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 109. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:810. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的立方根是2,那么这个数是______。
12. 如果一个角的补角是120°,那么这个角的度数是______。
13. 一个等差数列的首项是3,公差是2,那么它的第五项是______。
14. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么它的解析式可以表示为y = a(x - 1)^2 - 4,其中a的值是______。
人教版八年级(上)数学期中试卷(含答案)
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
2024-2025学年人教版八年级上册数学期中复习提升试卷【含答案】
A. 40°
B. 45°
)
D. 2,3
)
C. 50°
D. 60°
3.如图, BD 是 V ABC 的角平分线, AE ^ BD ,垂足为 F ,若 ÐABC = 36° , ÐC = 44° ,则
ÐEAC 的度数为( )
A. 18°
B. 28°
C. 36°
D. 38°
4.如图,在中, AB = AC , ÐB = 55° , P 是边上 AB 的一个动点(不与顶点 A 重合),
数.
19.如图 1,在 V ABC 中, AB = AC ,D 是 BC 的中点,过点 B 作 BE ^ AC ,垂足为 E,连
接 AD 交 BE 于点 F.
(1)猜想 ÐCBE 与 ÐCAD 的数量关系,并说明理由;
(2)P 是射线 EB 上的点,过点 C 作 CG // EB 交 PD 的延长线于点 G.
1
2
关于 x 的方程 x + mx + 2 - m = 0 的两个实数根,求 V ABC 的周长.
2
24.提出问题:如图 1,将三角板放在正方形 ABCD 上,使三角板的直角顶点 P 在对角线
AC 上,一条直角边经过点 B,另一条直角边交边 DC 与点 E,求证:PB=PE
积是(
A.5
)
B.7
C.7.5
D.10
8.如图,已知∠B=20°,∠C=25°,若 MP 和 QN 分别垂直平分 AB 和 AC,则∠PAQ 等于
( )
A.80°
B.90°
C.100°
D.105°
9.如图,在 Rt V ABC 中, ÐACB = 90° , AC = 3 , BC = 4 , AB = 5 , AD 是 Ð BAC 的平分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期中复习试卷
一.选择题
1.如图所示,图中不是轴对称图形的是()
2、下列图形:①三角形,②线段,③正方形,④
直角.其中是轴对称图形的个数是()
A.4个 B.3个 C.2个 D.1个
3、下列图形是轴对称图形的有()
A:1个 B:2个 C:3个 D:4个
4.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB 于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°
5.已知A,B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B 关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个
5.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()
A.70°
B.50°
C.40°
D.20°
6.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F•,则下列结论不一定正确的是() A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF
7.三角形中,到三边距离相等的点是()
A.三条高线的交点
B.三条中线的交点 C.三条角平分线的交点 D.三边垂直平分线的交点。
8.如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;
③CD=DN;④△ACN≌△ABM,其中正确的有()
A.1个
B.2个
C.3个
D.4个
9.等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),
则其顶点的坐标能确定的是()
A.横坐标 B.纵坐标 C.横坐标及纵坐标 D.横坐标或纵坐标
10.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的
是()A.∠M=∠N B. AM∥CN C.AB=CD D. AM=CN
11.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()
A.80° B:40° C:60° D:120°
12.如图:OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3㎝,则CE的长
度为()A.2㎝ B.3㎝ C.4㎝ D.5㎝
13.点M(—1,2)关于y轴对称的点的坐标为()
A.(-1,-2)
B.(1,2)
C.(1,-2)
D.(2,-1)
14.等腰三角形的一边长是6,另一边长是12,则周长为()
E
C
O
D
B
A
A B D
C
M
N
C E
B
D
A
N
M
D
C B
A
A.24
B.30
C.24或30
D.18 15.如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米 A.16 B.18 C.26 D.28 16.下列关于等边三角形的说法正确的有( )
①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形。
A.①②③ B.①②④ C.②③④ D.①②③④
17.如图, △ABC 中, D 是BC 中点, DE ⊥DF, E 、F 分别在AB 、AC 上, 则BE+CF.( )
A. 大于EF
B. 等于EF
C. 小于EF
D. 与EF 的大小无法确定
18.如图, 已知△ABC 中, AB =AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(每题3分,共18分)
19.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分
针的位置如图所示,此时时间是_____.
20. 已知:AD 平分∠BAC ,AC=AB+BD ,∠B=56°求证:∠C= 21.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为__________.
22.△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= 若BN 、CN 分别平分∠ABC ,∠ACB 的外角平分线,则∠N=
23.如图4, 已知AB =AC , ∠A =40°, AB 的垂直平分线MN 交AC 于点D ,则∠DBC = _______度.
24. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
E
F
C
B A
D
C B A P 1
N
M O P
B
A
(第13题图)
三、解答题(共66分)
25.(6分)如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .
求证:∠A=∠D .
26.(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)
(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1; (2)在DE 上画出点P ,使PC PB +1最小; (3)在DE 上画出点Q ,使QC QA +最小。
27.(8分)①如图:A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)
②如图:某地有两所大学M 、N 和两条相交叉的公路a 、b ,现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
你能确定
仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;
28.(8分)如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠ ⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知: 求证: 证明:
29.(10分)如图,AD 为△ABC 的中线,BE 为△ABD 的中线. (1)∠ABE=15°,∠BAD=40°,求∠BED 的度数; (2)作△BED 的边BD 边上的高;
(3)若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少?
B
b。