数学广角鸽巢问题教案
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇
小学六年级下册数学《数学广角──鸽巢问题》教案范文五篇推荐文章三年级《数学广角--集合》精品教案范文3篇热度:人教版三年级下册《数学广角--搭配》教案优秀范文热度:小学四年级数学下册《数学广角--鸡兔同笼》教案优秀范文热度:五年级数学上册《数学广角--植树问题》精品教案热度:小学五年级数学下册《数学广角──找次品》教案精选范文三篇热度:历史是时代的见证,真理的火炬,记忆的生命,生活的老师和古人的使者。
下面是小编给大家准备的小学六年级下册数学《数学广角──鸽巢问题》教案范文,供大家阅读。
小学六年级下册数学《数学广角──鸽巢问题》教案范文一教学目标1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。
重点难点经历抽屉原理的探究过程,并对抽屉原理的问题模式化学生笔记(教师点拨) 学案内容一、知识回顾:(2分钟)二、学生自学:(15分钟)(1)自学例1把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?(1) 学生思考各种放法。
(2) 第一种放法:第二种放法:第三种放法:第四种放法:教学过程:5÷2=2……1 (至少放3本)7÷2=3……1 (至少放4本)9÷2=4……1 (至少放5本)1、提出问题。
不管怎么放,总有一个文具盒里至少放进( )铅笔。
为什么?如果每个文具盒只放( )铅笔,最多放( )枝,剩下( )枝还要放进其中的一个文具盒,所以至少有( )铅笔放进同一个文具盒。
(1) 说一说你有什么体会。
二自学例21、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?2、摆一摆,有几种放法。
不难得出,不管怎么放总有一个抽屉至少放进( )本书。
3、说一说你的思维过程。
如果每个抽屉放( )本书,共放了( )本书。
剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
如果一共有7本书会怎样呢?9本呢?4. 你能用算式表示以上过程吗?你有什么发现?总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
数学广角鸽巢问题(共9篇)
数学广角鸽巢问题(共9篇)以下是网友分享的关于数学广角鸽巢问题的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇1第五单元数学广角——鸽巢问题第二课时教学设计:王玉环课题:“鸽巢问题”的具体应用教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。
教学目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。
教学准备:课件。
教学过程:一、情境导入二、探究新知1、教学例3(课件出示例3的情境图).出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球。
学生通过“猜测验证→分析推理”的学习过程解决问题。
(1)猜测验证。
1、学生自由猜测。
可能出现:2个、3个、4个、5个等。
说说理由。
2、学生摸球验证:说明理由。
摸2个球可能出现的情况:1红1蓝,2个红球,2个蓝球。
摸3个球可能出现的情况:2红1蓝,2蓝1红,3红,3蓝。
4红,4蓝。
摸5个球可能出现的情况:4红1蓝,3蓝2红,3红2蓝,4蓝1红。
3、归纳总结:盒子里有同样大小的红球和蓝球个4个。
要想摸出的球一定有2个同色的,至少要摸3个球。
三、巩固练习1、完成教材第70页的“做一做”的第2题。
(学生独立解答,集体交流。
)2、完成教材第71页的练习十三的第3-4题。
(学生独立解答,集体交流。
)3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。
每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)四、课堂总结在本节课的学习中,你有哪些收获?学生自由交流各自的收获体会。
人教版六年级下册第五单元5数学广角鸽巢问题教案
③公式:
两种颜色:2+1=3(个)
三种颜色:3+1=4(个)
四种颜色:4+1=5(个)
一、鸽巢问题
1.把n+1(n是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有n(n是大于0的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。
例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
第五单元数学广角-鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用
①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表
2.如果有n(n是大于0的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于0的自然数)个物品,那么至少需要有(kn+1)个物品。
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b<a),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:①构造“鸽巢”,建立“数学模型”;②把物体放入“鸽巢”,进行比较分析;③说明理由,得出结论。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式
《数学广角—鸽巢问题》(教案)
《数学广角—鸽巢问题》(教案)教学目标:1. 能够理解鸽巢原理的概念,并能够解决相关的数学问题。
2. 培养学生的思维能力、逻辑思考能力和解决实际问题的能力,使学生能够将学习到的知识运用到实际生活中。
教学准备:幻灯片、教学电子板书、考试试卷及答案、数学作业、学生教材。
教学过程:一、引入1. 教师将一些鸟巢放在教室的不同位置,让学生观察。
2. 问学生:这些鸟巢都在哪里?为什么鸟们会在这些地方筑巢?3. 学生可能会回答:鸟巢放在树上、灌木丛中等。
鸟会在这些地方筑巢是因为它们相对另外的地方更安全。
4. 引出鸽巢原理:鸽子的数量大于巢的数量时,必然有至少一只鸽子要住在同一个巢里。
5. 提问:这个原理和我们生活中哪些问题有关系呢?二、讲授1. 通过幻灯片或教学板书,讲解鸽巢原理。
2. 将课本中的鸽巢题目讲解一遍,强调其重要性和难点。
3. 解题方法的讲解:在鸽巢问题中,我们应该先看前提条件,然后进行分析,最后得出结论。
三、实际应用1. 提供一个生活中的例子:班级里有20个学生,他们都想和自己的朋友坐在同一张桌子上,但是班级里只有18张桌子。
根据鸽巢原理,至少会有多少对朋友坐在同一张桌子上呢?2. 让学生根据此题目进行思考,然后自己解题。
3. 针对这个问题进行讲解和答案的展示。
四、练习1. 教师出题,让学生在班内进行小组讨论。
2. 学生对相关题目进行解答,教师答疑。
五、评价1. 教师针对学生的理解程度进行评测。
2. 以考试试卷加以测评,跟学生本学期的数学成绩进行比较。
六、延伸1. 学生可以自己找一些生活中的相关问题,进行探讨和解答。
2. 学生可以通过查询资料,了解更多有关鸽巢原理的内容,写个小论文或调研报告。
三、提高1. 考虑到学生掌握鸽巢原理后,可能仍然有不同的解题思路和方法,可以进行相互讨论和分享。
2. 提供更多复杂的鸽巢问题,让学生更加深入地掌握鸽巢原理的应用。
四、案例分析1. 排队问题有N个人需要排队,但只有M个位置可以用来排队。
人教新课标六年级数学下册5 《数学广角——鸽巢问题》教案
人教新课标六年级数学下册5 《数学广角——鸽巢问题》教案一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册的一章内容。
本章主要让学生了解和掌握鸽巢问题的基本原理和应用。
通过本章的学习,学生能够解决一些生活中的实际问题,提高他们的数学应用能力。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习本章内容时,需要将已有的知识和经验与鸽巢问题相结合,通过探究和思考,理解并掌握鸽巢问题的解决方法。
三. 教学目标1.知识与技能:让学生了解和掌握鸽巢问题的基本原理和解决方法。
2.过程与方法:通过探究和思考,培养学生解决问题的能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极向上的学习态度。
四. 教学重难点1.重点:让学生了解和掌握鸽巢问题的基本原理和解决方法。
2.难点:如何引导学生将已有的知识和经验与鸽巢问题相结合,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握鸽巢问题的解决方法。
2.问题教学法:通过提问和思考,激发学生的思维,培养学生解决问题的能力。
3.小组合作学习:让学生在小组内进行讨论和探究,培养他们的合作意识和团队精神。
六. 教学准备1.教学素材:准备一些生活实例,用于引导学生理解和应用鸽巢问题。
2.教学工具:准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如停车场停车问题,引导学生思考和讨论,引出鸽巢问题的概念。
2.呈现(10分钟)呈现一些鸽巢问题的图片或实例,让学生观察和分析,引导学生理解鸽巢问题的基本原理。
3.操练(10分钟)让学生分组讨论和解决一些简单的鸽巢问题,引导学生运用已有的知识和经验解决实际问题。
4.巩固(5分钟)通过一些练习题,让学生巩固和加深对鸽巢问题的理解。
5.拓展(5分钟)引导学生思考和讨论鸽巢问题在实际生活中的应用,如安排座位、分配资源等。
鸽巢问题教学设计范文(精选5篇)
鸽巢问题教学设计范⽂(精选5篇)鸽巢问题教学设计范⽂(精选5篇) 作为⼀位兢兢业业的⼈民教师,就有可能⽤到教学设计,教学设计是实现教学⽬标的计划性和决策性活动。
那么写教学设计需要注意哪些问题呢?以下是⼩编为⼤家收集的鸽巢问题教学设计范⽂(精选5篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。
鸽巢问题教学设计1 本节课是数学⼴⾓内容,也叫“抽屉原理”。
实际上是⼀种解决某种特定结构的数学或⽣活问题的模型,体现了⼀种数学的思想⽅法。
反思如下: 1.从学⽣喜欢的“游戏”⼊⼿,激发学⽣学习的兴趣和求知欲望,从⽽提出需要研究的数学问题。
这样设计使学⽣在⽣动、活泼的数学活动中主动参与、主动实践、主动思考,使学⽣的数学知识、数学能⼒、数学思想、数学情感得到充分的发展,从⽽达到动智与动情的完美结合,全⾯提⾼学⽣的整体素质。
2.引导学⽣在经历猜测、尝试、验证的过程中逐步从直观⾛向抽象。
在例1中针对实验的所有结果,在学⽣总结表征的基础上,进⽽提出“你还可以怎样想?”的问题,组织学⽣展开讨论交流。
我引导学⽣借助平均分即每个笔筒⾥先只放1⽀,这时学⽣看到还剩下1⽀铅笔,这1⽀铅笔不管放⼊其中的哪⼀个笔筒,这个笔筒都会有2⽀铅笔。
进⼀步引导学⽣加深对“⾄少有⼀个笔筒中有2⽀铅笔”的理解。
最后,组织学⽣进⼀步借助直观操作,讨论诸如“5⽀铅笔放进4个笔筒,不管怎么放,总有⼀个笔筒中⾄少有2⽀铅笔,为什么?”的问题,并不断改变数据(铅笔数⽐笔筒数多1),让学⽣继续思考,引导学⽣归纳得出⼀般性的结论:(+1)⽀铅笔放进个笔筒⾥,总有⼀个笔筒⾥⾄少放进2⽀铅笔。
注重让学⽣在观察、实验、猜想、验证等活动中,发展合情推理能⼒,培养学⽣能进⾏有条理的思考,能⽐较清楚地表达⾃⼰的思考过程与结果,经历与他⼈合作交流解决问题的过程。
本节课⾸先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理⽐较简单,但是在实际的题⽬当中,最主要的.是帮助学⽣在不同的题⽬中找出该道题⽬的“鸽巢”是什么,然后要放到“鸽巢”⾥的东西是什么,只有帮助学⽣在解题时有了构建鸽巢问题模型的能⼒,才能使学⽣真正的理解鸽巢问题,以便更好地解决鸽巢问题。
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计
(新人教版)六年级数学下册第五单元数学广角——鸽巢问题教学设计一. 教材分析新人教版六年级数学下册第五单元“数学广角——鸽巢问题”,主要让学生理解并掌握鸽巢问题的原理及应用。
本节课通过生活中的实例,引导学生探究和发现规律,培养学生的逻辑思维能力和解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,思维活跃,具有较强的探究欲望。
但在解决实际问题时,部分学生可能会受到生活经验的影响,难以把握问题的本质。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们逐步理解和掌握鸽巢问题的解决方法。
三. 教学目标1.让学生理解鸽巢问题的概念,掌握鸽巢问题的解决方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作交流、积极思考的良好学习习惯。
四. 教学重难点1.重点:理解鸽巢问题的原理,学会用鸽巢问题解决实际问题。
2.难点:如何引导学生发现生活中的鸽巢问题,并运用所学知识解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现和提出问题,激发学生学习兴趣。
2.启发式教学法:引导学生独立思考、合作交流,培养学生解决问题的能力。
3.实践操作法:让学生在实际操作中感受和理解鸽巢问题的应用,提高学生的动手能力。
六. 教学准备1.准备相关的生活实例和问题,以便在教学中引导学生探究。
2.准备课件和教学素材,以便进行生动的教学展示。
3.准备鸽巢问题的相关练习题,以便进行课堂巩固和拓展。
七. 教学过程1.导入(5分钟)利用一个生活实例,如公园里的鸽子巢穴,引出鸽巢问题。
提问:“如果有10只鸽子,而只有5个巢穴,那么至少有一个巢穴里有2只或以上的鸽子吗?”让学生思考并回答。
2.呈现(10分钟)呈现更多的鸽巢问题实例,引导学生观察和分析问题。
如:“一个班级有30个学生,如果有5个小组,那么至少有一个小组有7个或以上的学生吗?”学生进行讨论,让学生尝试找出问题的规律。
3.操练(10分钟)让学生分组进行练习,运用所学知识解决实际问题。
人教版数学六下第五单元《数学广角 鸽巢问题》教学设计
人教版数学六下第五单元《数学广角鸽巢问题》教学设计一. 教材分析《数学广角鸽巢问题》是人教版数学六下第五单元的教学内容。
本节课主要通过鸽巢问题引导学生理解并掌握数学中的组合知识,培养学生的逻辑思维能力和问题解决能力。
教材以生活中的实例引入,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
通过探究、交流、合作等活动,让学生在实际操作中理解鸽巢问题的本质,掌握解决类似问题的方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力,他们对数学知识有一定的了解和掌握。
但学生在解决实际问题时,往往还停留在表面,不能深入挖掘问题的本质。
因此,在教学过程中,教师要关注学生的认知水平,引导学生从实际问题中抽象出数学模型,培养学生解决问题的能力。
三. 教学目标1.让学生理解鸽巢问题的概念,掌握解决鸽巢问题的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:理解鸽巢问题的概念,掌握解决鸽巢问题的方法。
2.难点:如何引导学生从实际问题中抽象出数学模型,运用数学知识解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入鸽巢问题,让学生感受数学与生活的紧密联系。
2.探究式学习:引导学生分组讨论,自主探究鸽巢问题的解决方法。
3.案例教学法:分析实际问题,引导学生抽象出数学模型,解决问题。
4.小组合作学习:培养学生团队协作能力,提高解决问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,展示生活实例和教学内容。
2.教学素材:准备相关的生活案例,供学生探讨和分析。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活实例引入鸽巢问题,激发学生学习兴趣。
例如,讲述一个关于鸽巢问题的故事,让学生思考如何解决。
2.呈现(10分钟)展示鸽巢问题的相关图片和实例,引导学生关注问题的本质。
同时,让学生尝试用数学语言描述鸽巢问题,为后续解决问题打下基础。
数学广角-《鸽巢问题》教案
1.注重学生的个体差异,因材施教。
2.增加案例分析,让学生在具体情境中感受数学知识的应用。
3.加强课堂讨论的引导,确保讨论围绕主题进行。
4.提高学生的表达能力,让成果分享更加高效。
数学广角-《鸽巢问题》教案
一、教学内容
《鸽巢问题》选自人教版数学四年级下册第九单元数学广角。本节课主要内容包括:
1.理解鸽巢问题的含义,掌握其基本原理。
2.学会运用鸽巢问题解决实际生活中的问题。
3.掌握抽屉原理,并能运用其解决简单问题。
4.举例说明鸽巢问题在实际生活中的应用。
二、核心素养目标
1.培养学生逻辑推理能力,通过鸽巢问题的探讨,使学生理解并掌握抽屉原理,能运用逻辑推理解决问题。
三、教学难点与重点
1.教学重点
-理解鸽巢问题的基本原理:即如果有n个鸽子,要放到m个巢里(n>m),那么至少有一个巢里至少有两个鸽子。这一原理是本节课的核心,需要学生深刻理解并能够应用。
-掌握抽屉原理的应用:通过鸽巢问题引出抽屉原理,使学生能够将这一原理应用到其他类似的问题中,如袜子配对、书本分配等。
-解决实际生活中的问题:培养学生将数学知识应用于解决实际问题的能力,例如在日常生活中如何合理分配资源等。
举例:在讲解鸽巢问题时,可以通过具体的例子(如10个学生分配5个奖品),让学生理解并掌握鸽巢原理。
2.教学难点
-逻辑推理的严谨性:学生需要理解并掌握从一般到特殊的推理过程,对于四年级学生来说,这可能是一个挑战。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
六年级数学下册教学设计《5 数学广角—鸽巢问题》-人教版(4)
六年级数学下册教学设计《5 数学广角—鸽巢问题》-人教版(4)一. 教材分析《数学广角—鸽巢问题》是人教版六年级数学下册的教学内容。
本节课主要让学生理解并掌握鸽巢问题的基本原理和解决方法,能够运用鸽巢问题解决实际生活中的问题。
教材通过生动的例子和丰富的练习,引导学生探索和发现鸽巢问题的规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础和逻辑思维能力,他们对数学问题充满好奇心和求知欲。
但是,对于鸽巢问题这样的抽象问题,学生可能一时难以理解和接受。
因此,在教学过程中,教师需要注重引导学生从具体例子中发现问题、分析问题、解决问题,逐步提高学生的理解能力和解决问题的能力。
三. 教学目标1.让学生理解并掌握鸽巢问题的基本原理和解决方法。
2.培养学生运用鸽巢问题解决实际生活中的问题的能力。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:让学生理解并掌握鸽巢问题的基本原理和解决方法。
2.教学难点:让学生能够运用鸽巢问题解决实际生活中的问题。
五. 教学方法1.情境教学法:通过生动的例子和实际生活中的问题,引发学生的兴趣和思考。
2.引导发现法:引导学生从具体例子中发现问题、分析问题、解决问题,培养学生的逻辑思维能力和解决问题的能力。
3.小组合作学习:学生进行小组讨论和合作,培养学生的团队协作能力和交流沟通能力。
六. 教学准备1.准备相关的例子和练习题,以便在课堂上进行教学演示和练习。
2.准备鸽巢问题的相关资料和图片,以便在课堂上进行展示和讲解。
七. 教学过程1.导入(5分钟)教师通过向学生提出一个实际生活中的问题,引发学生的兴趣和思考。
例如:“假设有一个班级有30名学生,如果每个学生都要坐在一张椅子上,至少需要几张椅子?”让学生思考并回答。
2.呈现(10分钟)教师呈现鸽巢问题的相关例子,让学生观察和分析。
例如,给出一个有5个鸽巢和6只鸽子的情境,让学生思考:“如果有6只鸽子,至少需要几个鸽巢?”引导学生发现问题的规律。
第五单元数学广角《鸽巢问题》(教案)
第五单元数学广角《鸽巢问题》(教案)一、教学目标1.认识和理解鸽巢问题的基本概念和规律;2.培养学生的观察力、分析、归纳和运算能力;3.通过数学游戏的方式激发学生的兴趣,提高学生的数学思维水平。
二、教学重点1.了解鸽巢问题的基本规律;2.学生能够运用基本规律解决实际问题。
三、教学难点1.让学生掌握鸽巢数问题的归纳和推理方法;2.培养学生运用所学知识解决鸽巢数问题的能力。
四、教学过程1.引入教师可以采取游戏的方式引入鸽巢问题,比如出示两个鸟巢和三只鸟,问学生这三只鸟可以分别住在哪两个鸟巢里,从而引出鸽巢问题。
2.巩固知识教师可以通过一些数学游戏和练习来巩固学生的知识,比如让学生组成几个小组,给每组一个数,让学生按照鸽子数量将这个数字分成几份,然后让学生找到其中必定有两份数字的和相同的情况。
3.讲解基本理论教师可以通过讲解和演示的方式让学生了解基本理论和规律,比如鸽巢问题的公式为:若将n+1个物体放到n个盒子中,则其中至少有一个盒子中放有两个物体。
4.解决实际问题教师可以引导学生通过解决实际问题来运用所学知识,比如:班级里有30个同学,请你算一下这个班级中至少有多少人生日是同一天的?5.拓展练习教师可以给学生一些拓展练习来提高学生的综合运用能力,比如:将15个QQ号码分到10个QQ群里,问你有多大几率在一个QQ群里看到两个号码是相同的?6.总结在教学结束时,教师可以让学生对所学知识进行总结,并鼓励学生将所学知识应用到生活中。
五、教学评价1.学生的反应与参与情况;2.学生的思维能力和数学素养;3.学生的作业完成情况。
六、教学方法1.游戏法游戏法是引入鸽巢问题的好方法,通过游戏的方式激发学生的兴趣,帮助学生更好地理解鸽巢问题的基本概念和规律。
2.讲解法教师可以通过讲解和演示的方式,让学生更好地理解鸽巢问题的基本理论和规律,例如引导学生运用公式来解决具体问题。
3.归纳法归纳法是学生掌握鸽巢数问题规律的重要方法,教师可以通过多种例子引导学生对规律进行总结和归纳。
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(5)
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(5)一. 教材分析《数学广角—鸽巢问题》是人教版六年级数学下册的一章内容。
本节课主要让学生理解并掌握鸽巢问题的基本原理和解决方法,培养学生的逻辑思维能力和问题解决能力。
教材通过生活中的实例,引导学生发现和总结鸽巢问题的规律,并运用这一规律解决实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础和逻辑思维能力,对于生活中的问题有自己的理解和解决方法。
但是,对于鸽巢问题这种抽象的数学问题,可能还比较陌生,需要通过实例和引导逐渐理解和掌握。
三. 教学目标1.让学生理解并掌握鸽巢问题的基本原理和解决方法。
2.培养学生的逻辑思维能力和问题解决能力。
3.让学生能够运用鸽巢问题的原理解决实际生活中的问题。
四. 教学重难点1.重点:让学生理解并掌握鸽巢问题的基本原理和解决方法。
2.难点:让学生能够运用鸽巢问题的原理解决实际生活中的问题。
五. 教学方法采用问题驱动法、实例教学法、小组讨论法等多种教学方法,引导学生主动探索和解决问题。
六. 教学准备1.准备相关的实例和问题,用于引导学生理解和掌握鸽巢问题的解决方法。
2.准备一些实际生活中的问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考和发现鸽巢问题的规律。
例如,有5个鸽巢,8只鸽子,至少有一个鸽巢里有2只或以上的鸽子。
让学生尝试解释这个现象,并引导他们总结出鸽巢问题的基本原理。
2.呈现(10分钟)通过呈现更多的实例,让学生进一步理解和掌握鸽巢问题的解决方法。
可以引导学生运用归纳法总结出鸽巢问题的规律,并让他们尝试解决一些实际问题。
3.操练(10分钟)让学生分成小组,运用鸽巢问题的原理解决一些实际问题。
可以准备一些问题,让学生选择适合自己的问题进行解决。
在学生解决问题的过程中,教师给予适当的指导和支持。
4.巩固(10分钟)通过一些练习题,让学生巩固和加深对鸽巢问题的理解和掌握。
人教版数学六年级下册第28课鸽巢问题的应用教学设计(推荐3篇)
人教版数学六年级下册第28课鸽巢问题的应用教学设计(推荐3篇)人教版数学六年级下册第28课鸽巢问题的应用教学设计【第1篇】第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。
设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
数学广角《鸽巢问题》(教案)六年级下册数学人教版
数学广角《鸽巢问题》(教案)一、教学内容《鸽巢问题》选自人教版小学数学六年级下册。
本课主要围绕鸽巢问题展开,通过引导学生理解鸽巢原理,培养学生解决实际问题的能力。
二、教学目标1. 知识与技能:理解并掌握鸽巢原理,能运用鸽巢原理解决生活中的实际问题。
2. 过程与方法:通过观察、实验、推理等数学活动,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生数学学习的兴趣,培养学生合作交流、积极参与的意识和态度。
三、教学难点1. 理解并掌握鸽巢原理的含义和应用。
2. 能够运用鸽巢原理解决实际问题。
四、教具学具准备1. 教具:PPT课件、实物投影仪、教学黑板。
2. 学具:学习材料、练习本、文具。
五、教学过程1. 导入新课通过一个简单的实际生活中的例子,引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知利用PPT课件,展示一系列的实例,引导学生观察、思考、讨论,逐步理解鸽巢原理。
3. 实践应用分组讨论,每组选择一个实际问题,运用鸽巢原理进行解决,并分享解决过程和结果。
六、板书设计1. 鸽巢问题2. 重点内容:鸽巢原理的定义、应用实例、解决方法。
七、作业设计1. 必做题:完成课后练习题,巩固鸽巢原理的应用。
八、课后反思本节课通过实例导入、探究新知、实践应用等环节,使学生掌握了鸽巢原理,并能够解决实际问题。
在教学过程中,注意引导学生积极参与、合作交流,培养学生的数学思维和解决问题的能力。
在今后的教学中,要继续关注学生的个体差异,提高教学效果。
总计:约2000字重点关注的细节:教学过程1. 导入新课导入环节是激发学生学习兴趣、引发思考的重要环节。
教师可以通过一个简单的实际生活中的例子,如将10个苹果放入9个篮子中,引导学生思考:是否每个篮子都会放一个苹果?为什么?从而引出鸽巢问题的概念,激发学生的学习兴趣。
2. 探究新知(1)为什么每个盒子至少有一个乒乓球?(2)如何证明鸽巢原理的正确性?(3)鸽巢原理在实际生活中有哪些应用?通过这些问题,引导学生深入理解鸽巢原理的含义和应用。
小学六年级下册数学《数学广角鸽巢问题》教案
小学六年级下册数学《数学广角鸽巢问题》教案小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学准备:多媒体课件、扑克牌、3个笔筒。
教学过程:一、魔术游戏激趣导入:1、老师这个魔术需要请1名同学来配合,谁愿意?向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。
(学生打开牌让大家看)课件出示:至少有2张是同一花色。
“至少”表示什么意思?引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。
板演:鸽巢问题二、合作探究(一)列举法:课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?找一组学生上前实物模拟操作摆放情况。
师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?概括得出:总有1个笔筒至少放2支笔。
(及时肯定学生们的回答:你的。
逻辑思维能力真强)课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:1、分组探究,教师巡视指导。
预设学生会出现以下几种情况:(1)实物模拟;(2)图示;(3)数的分解。
2、学生汇报,讲台展示。
3、学生概括得出:总有1个笔筒至少放2支笔。
人教新课标六年级数学下册 5《数学广角——鸽巢问题》教案
人教新课标六年级数学下册 5《数学广角——鸽巢问题》教案一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册的一章内容。
本章主要让学生了解并掌握鸽巢问题的基本原理和解决方法,培养学生运用数学知识解决实际问题的能力。
本节课的内容对于学生来说是一个比较新的概念,需要通过实例和活动来帮助学生理解和掌握。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和问题解决能力,但是对于鸽巢问题这样的数学问题可能还比较陌生。
因此,在教学过程中,需要通过具体的实例和活动来激发学生的兴趣,引导学生主动参与和思考。
三. 教学目标1.让学生了解并掌握鸽巢问题的基本原理和解决方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.鸽巢问题的基本原理和解决方法。
2.如何运用数学知识解决实际问题。
五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握鸽巢问题的解决方法。
2.小组合作:通过小组合作的方式让学生共同解决问题,培养学生的团队合作能力。
3.问题解决:引导学生运用数学知识解决实际问题,培养学生的问题解决能力。
六. 教学准备1.准备相关的实例和活动材料。
2.准备鸽巢问题的相关练习题。
七. 教学过程导入(5分钟)教师通过向学生提出一个问题:“如果有5只鸽子要放在3个鸽巢里,每个鸽巢至少要放几只鸽子?”来引起学生的兴趣和思考。
呈现(10分钟)教师通过展示一些实际的例子,如5个学生要坐3张桌子,每张桌子至少要坐几名学生?让学生直观地理解和感受鸽巢问题的解决方法。
操练(10分钟)教师引导学生进行小组合作,让学生自己尝试解决一些类似的鸽巢问题。
教师可以提供一些提示和指导,帮助学生解决问题。
巩固(10分钟)教师提供一些练习题,让学生独立解决。
教师可以选取一些学生的解答进行讲解和分析,巩固学生对鸽巢问题的理解和掌握。
拓展(10分钟)教师引导学生思考一些拓展性的问题,如:“如果有8只鸽子要放在5个鸽巢里,每个鸽巢至少要放几只鸽子?”让学生运用所学的知识和方法解决更复杂的问题。
六年级下册数学教学设计《5数学广角——鸽巢问题40》人教版
六年级下册数学教学设计《5 数学广角——鸽巢问题40》人教版一. 教材分析《数学广角——鸽巢问题》是人教版六年级下册的一课。
本节课主要让学生理解和掌握鸽巢问题的原理和解决方法,培养学生的逻辑思维能力和解决实际问题的能力。
教材通过生活中的实例,引导学生发现和总结鸽巢问题的规律,并运用规律解决一些实际问题。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于生活中的问题有自己的理解和解决方法。
但是,他们在解决一些涉及逻辑推理和抽象思维的问题时,可能会遇到困难。
因此,在教学过程中,教师需要引导学生逐步理解鸽巢问题的本质,帮助他们建立逻辑思维的框架。
三. 教学目标1.让学生理解鸽巢问题的原理,并能够运用原理解决实际问题。
2.培养学生的逻辑思维能力和解决实际问题的能力。
3.激发学生对数学的兴趣,提高学生参与课堂的积极性。
四. 教学重难点1.理解鸽巢问题的原理和解决方法。
2.运用鸽巢问题解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生发现和总结鸽巢问题的规律。
2.问题驱动法:教师提出问题,引导学生思考和讨论,激发学生的学习兴趣。
3.合作学习法:学生分组讨论和解决问题,培养学生的团队协作能力。
4.实践操作法:学生通过实际操作,加深对鸽巢问题的理解。
六. 教学准备1.教学课件:制作课件,展示生活中的实例和相关的数学问题。
2.练习题:准备一些相关的练习题,用于巩固学生的学习成果。
3.教学素材:准备一些生活中的实例,用于引导学生思考和讨论。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,引出鸽巢问题,激发学生的学习兴趣。
例如,教师可以提问:“如果有5个鸽巢,8只鸽子,那么至少有一个鸽巢里有2只鸽子吗?”让学生思考和讨论。
2.呈现(10分钟)教师通过课件展示一些相关的实例和数学问题,引导学生发现和总结鸽巢问题的规律。
教师可以提问:“你们发现了什么规律?谁能用自己的话总结一下?”引导学生思考和表达。
六年级下册数学教案-5《数学广角—鸽巢问题》(人教版)
《数学广角—鸽巢问题》一、教学目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。
二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程一、导入师:上课!同学们好,请坐!师:玩过“抢椅子”游戏吗?谁能说说游戏规则?你那么高兴,你来说!师:他说将椅子围成一个圈,人也站一个圈,有专门的主持人负责敲鼓,开始敲时人就围着椅子同一方向转,当敲击声停止,就要抢坐在椅子上。
师:那椅子数和人数是怎样的?师:他说椅子数比人数少1。
师:规则说的很详细!大家听明白了吗?想试试吗?师:大家都很踊跃!那就请刚才说游戏规则的同学选出三名同学,一起来玩这个游戏吧!师:老师当主持人,我们玩三次,大家注意观察,看看有什么发现!师:有趣的游戏结束了,你发现了什么?有一名同学没抢到椅子。
师:一个简单的游戏里,又蕴含着什么数学知识呢?你想知道吗?师:就让我们一起来探究:数学广角—鸽巢问题。
二、新授师:大屏幕上,这三名同学在做一个探究活动,找一找其中的数学信息吧!师:你举手最快了,请你!师:他说要把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。
师:声音洪亮,信息找的很完整!师:这里的“总有”和“至少”是什么意思?自己想一想,和同桌说一说。
师:你平时不怎么举手,这次很勇敢,说说你的理解!师:他说“总有”就是总是会有的意思,“至少”是最少的意思。
师:很高兴你能说的这么好!是的,“总有”是总是会有、一定有,“至少”是最少、最低限度。
这句话其实就是说无论怎么放,都会有一个笔筒里最少是2支铅笔。
师:那这句话到底对不对呢?怎样验证呢?师:现在,我们开展小组探究活动,用老师给大家准备的纸杯当笔筒,用你的四支笔,摆一摆、画一画、写一写,把自己的想法表示出来。
师:活动之前,老师想提示大家,一个笔筒里放4支笔,另两个笔筒里没有,这4支笔无论放到哪个笔筒里,都只看做一种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄岭子镇中心校
赵春宇《鸽巢问题》教学设计
数学广角——鸽巢问题
黄岭子中心校赵春宇
教学目标
1.经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
2.通过操作发展学生的归纳推理的能力,形成比较抽象的数学思维。
3.会用“抽屉原理”解决简单的实际问题,感受数学的魅力。
重点难点
重点:经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”。
难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教学过程
第一学时
教学活动
活动1【导入】游戏导入
上课前,我们先来热身一下,做一个预测的游戏。
请各位同学在本子上任意写出三个自己喜爱的老师的名字,之后老师进行预测,如果预测准的话给老师五秒钟的掌声。
其实在这个预测的游戏中还蕴含着一个风趣的数学原理,这节课我们就一起来研究.
活动2【讲授】自主探究,初步感知
1、研究4枝笔放进3个笔筒。
(1)要把4枝笔放进3个笔筒,有几种放法请同学们小组内摆一摆。
(2)反馈:四种放法(课件出示)
(3)判断:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进2支笔。
这句话说的对吗为什么
(4)“总有”什么意思(一定有)
(5)“至少”有2枝什么意思(不少于2枝)
(6)师:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进几支笔你是怎么知道的(先找到每种摆法中笔数最多的杯子,然后再找到这些最多的杯子中最少的笔数)
(7)师:实际就是多中找少
师:我们刚刚把所有摆放的方法都一一罗列出来,从而找到总有一个杯子里至少放进2支笔,这种方法叫枚举法。
这种方法好不好(评价:随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列)那么我们能不能找到一种更为直接的方法,也能得到这个结论呢请同学们在小组内讨论讨论,怎么摆(每个杯子都先放进一枝,还剩一枝不管放进哪个杯子,总会有一个杯子至少有2枝笔)(你的方法果然简单)
(8)这种方法我们可以称之为假设法,假设先在每个杯子里放1枝铅笔,这种放法其实也就是怎样分(平均分)那剩下的1枝怎么处理(放入任意一个杯子,那么这个杯子就有2枝铅笔了)(9)谁能用算式来表示这位同学的想法(4÷3=1…1)商1表示什么余数1表示什么怎么办
2、类推:把5枝笔放进4个笔筒,会有什么结果,为什么把6枝笔放进5个笔筒呢为什么
把7枝笔放进6个笔筒呢为什么
把1000枝笔放进999个杯子呢
把(n+1)枝笔放进n个杯子呢
3、从刚才我们的探究活动中,你有什么发现(只要放的铅笔比杯子的数量多1,总有一个杯子里至少放进2枝铅笔。
)
4、小结:从以上的学习中,你有什么发现
师:这样的数学问题就叫做“鸽巢问题”或“抽屉原理”(板书课题)。
一起看大屏幕(介绍鸽巢问题的相关知识)指名读。
师:像刚才的问题中,并没有鸽巢、抽屉,其实鸽巢或抽屉就是一个模型。
把谁看作“抽屉”把谁看作“物体”
生:笔筒相当于抽屉,铅笔相当于物体。
(板书)
师:用公式怎样表示这个原理(物体数÷抽屉数=商…..余数至少数=商+1)
活动4【练习】运用模型,解决问题
1、预测游戏是抽屉原理吗解释为什么总有至少两个人的性别一样。
师:抽屉原理的应用是千变万化的,用它可以解决许多风趣的问题
2:从大街上随意找13个人,至少有两人属相相同。
3:从全校老师中任意找13人,至少有两人在同一个月过生日。
活动5【活动】课堂小结
总结这节课,你有什么收获。