矩阵分析基础1

合集下载

《矩阵分析》课件

《矩阵分析》课件

方阵 行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
03
对称矩阵
设$A = (a_{ij})$为$n$阶方阵,若对任意$i, j$都有$a_{ij} = a_{ ji}$,则称$A$为对称矩
阵。
05
02
零矩阵
所有元素都是零的矩阵称为零矩阵,记作 $O$。
04
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不能 由其中的部分向量线性表示出来。换句话说,只有 当这组向量中任何一个向量都不能由其余向量线性 表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
当B=I时,广义特征值问题退化为普通的特征值问题。此外,广义特征值问题可以通 过相似变换转化为普通的特征值问题进行求解。
06
CATALOGUE
矩阵函数与微分学在矩阵分析中应用
矩阵函数定义及性质
矩阵函数的性质 矩阵函数的转置、逆和行列式等运算也遵循相应的矩
阵运算规则。
矩阵函数的定义:设$A(t)=(a_{ij}(t))$是一个 $ntimes n$矩阵,其元素$a_{ij}(t)$是变量$t$ 的函数,则称$A(t)$为矩阵函数。
Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义

华南理工大学研究生矩阵分析复习资料1

华南理工大学研究生矩阵分析复习资料1
m

1 1 (10) 设方阵 A ,则有 A 2 A F 。( ) 0 1
二、 填空(30 分)
a b 0 (2) 线性子空间 W { A | A b a b , a, b, c R} 的维数为___________. 0 b c
1 0.5 0.6 1 1.1 0 0.6 0.8 (10) 若 A ,则矩阵 A 盖尔圆为_______________. 0.2 0 2 1 0.3 0.3 2.0 3
(11)若矩阵 A 的初级因子为 ( 1),( 1),( 1)2 ,则 A 的约当标准形为________
1 1 0 五、 (20 分)设 A 0 1 0 ,求: 0 0 2
(1) A 的特征值和特征向量; (2) det(sinAt); (3)
e At 。
自测题二
一、 判断正误(对正确的打“√” ,对错误的打“×” )(20 分) (1) 设 V1 V2 为直和,则 V1 V2 一定含有非零元素。 ( )
a 2 2 a 2
a 3 2 a 3
a 4 a 4
, 3 a 5
0} 2 a 5 0}
的交 V W 一个基,并求相应的标准正交基。
4 6 0 四、 (15 分)已知矩阵 A 3 5 0 ,求: 3 6 1
(1)所用的矩阵 P 及 P1 ,将 A 化为约当标准形 J; (2)矩阵 A 的最小多项式。
1 0 2 (6) 若矩阵 A 0 1 1 ,则矩阵 B A3 2 A 2E _______________ 0 1 0
1 1 0 1 (7) 若 A 1 2 0 ,则 det( A ) _______________. 0 0 3

矩阵分析与计算--01-线性空间

矩阵分析与计算--01-线性空间

《矩阵分析与应用》
张贤达清华大学出版社,2004年9月
矩阵与计算工具:MATLAB, MAPLE,LAPACK … 编程语言:C/C++, C#, Fortran,Java
14
矩阵分析与计算
考核方式:

闭卷考试:65%
课堂讨论,小报告: 35% 作业抽查,应该重视练习、讨论、算法设计、 上机实践等环节。
矩阵是数学中的一个重要的基本概念,是代数 学的一个主要研究对象,也是数学研究和应用 的一个重要工具。“矩阵”这个词是由西尔维 斯特(1814-1897)首先使用的,他是为了将 数字的矩形阵列区别于行列式而发明了这个述 语 西尔维斯特一生致力于纯数学的研究,他和凯莱、哈 在逻辑上,矩阵的概念应先于行列式的概念, 密顿 (Hamilton)等人一起开创了英国纯粹数学的一个 然而在历史上次序正好相反。 繁荣局面.他的成就主要在代数方面,他同凯莱一起
18
本讲主要内容
线性空间定义与性质 基、维数、坐标 基变换与坐标变换
子空间
内积空间
19
一、线性空间

几何空间和 n 维欧氏空间的回顾 推广思想: 抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
线性空间定义 要点:


集合V 与数域F 向量的加法和数乘向量运算 运算的性质刻画
矩 阵 分 析 与 计 算 Matrix Analysis and Computations
理学院 Email: mymath@ (民) 2011年9月
1

本科线性代数内容的简单回顾与讨论 1)线性代数主要内容 2)有什么用?工科学生最关心的 大家在本科毕业设计中用了么?

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

矩阵分析引论第(1)章

矩阵分析引论第(1)章
6 线性变换的矩阵表示
第一章 线性空间与线性变换
定理 3 设 e1 , e2 , , en是数域 P 上 n 线性空间 V 的一组基, 在这组基下按照式 (3)建立的线性变换同矩阵 的对应 关系,则有: 1)线性变换的乘积对应 于矩阵的乘积; 2)可逆线性变换对应的 矩阵也可逆,且逆变换 对应 于逆矩阵。 定理 4 设 V 是数域 P 上 n 维线性空间, e1 , e2 , , en 及 e1 , e2 , , en 是 V 的两组基,从前一组基 到后一组基的 过渡矩阵是 C 。又设 T 是 V 的一个线性变换,它在 前后 两组基下的矩阵分别是 A 与 B ,则有 B C 1 AC
第一章
§1 §2 §3 §4 §5 §6 §7
线性空间与线性变换
线性空间的概念 基变换与坐标变换 子空间与维数定理 线性空间的同构 线性变换的概念 线性变换的矩阵表示 不变子空间
第一章 线性空间与线性变换
回顾几个预备概念
集合 数集
Q
有理数集
Q
复数集合中的任意非空子集合 P 含有 非零的数,且其中任意两数的和、差、 积、商仍属于该集合 P ,则称数集P 为一个数域。(注意0和1) 实数域 R 复数域 C
运算性质
5 线性变换的概念
第一章 线性空间与线性变换
逆变换
象子空间 秩 维数关系
TS ST I
T V Tv / v V T V 的维数 dim T V dim T 1 V n
核(ke rnel) K v V / Tv
5 线性变换的概念
称为线性变换 T 在基 e1 , e2 en下的矩阵 . 定理 2 数域 P 上 n 维线性空间 V 的所有线性变换构成的 线性空间 L (V ),在取定 V 的一组基之下,它与数 域 P 上 的一切 n n 矩阵所构成的线性空间 P nn是同构的。 推论 dim L(V) dim P nn n 2

矩阵分析课件(1-1,4)

矩阵分析课件(1-1,4)
其中k , l 表示数域F中的任意数, , 表示V中任意元素. 称这样的V 为数域F 上的线性空间.
显然, 例1.1.1 1.1.3都是实数域R上的线性空间.下面再举 几个例子 :
例1.1.4 设A为实m n矩阵, 易证 : 齐次线性方程组Ax 0的所有 解(包括零解)的集合构成实数域R上的线性空间.这个空间为方 程组 Ax 0的解空间, 也称为矩阵A的核或零空间, 常记为N ( A).
称n阶方阵
a11 a21 P= a n1
a12 a22 an 2
a1n a2 n ann
是由基1 , 2 ,
, n到基1 , 2 ,
, n的过渡矩阵。于是上 ,n ) P
式可写成(1 , 2 ,
, n)=(1 , 2 ,

n n
1=(0,0,
T ,1)是 Rn的一组基,称 1 , 2 , , n为Rn的
标准正交基。
例1.2.1 试证:线性空间 R[ x ]n a0 a1 x
是n维的,并求a0 a1 x ,( x a )n1 下的坐标。
an1 x n1 ai R
定义1.3.1 设W 为域F 上的n维线性空间V的子集合,若 W 中元素满足
(1) 若, W , 则+ W ; (2) W , F , 则 W .
则称W 是线性空间V的一个子空间。
a1i a 2i , n ) ani
( i 1, 2,
, n)
把这n个关系式用矩阵可表示为
( 1 , 2 , , n ) (1 , 2 , a11 a21 , n ) a n1 a12 a22 an 2 a1n a2 n ann

史荣昌魏丰版矩阵分析第一章(1)

史荣昌魏丰版矩阵分析第一章(1)

矩阵分析主讲教师:张艳霞矩阵理论的应用微分方程、概率与统计、优化、信号处理、控制工程、经济理论等等。

工程经济理论等等如需更深入地学习和了解在自己专业的应用,可如需更深入地学习和了解在自己专业的应用可参考:《矩阵分析与应用》,张贤达著,清华大学出版社;《Matrix Analysis for Scientists & Engineers》:Alan J. Laub,SIAM.第章第一章线性空间和线性变换线性空间的基本概念及其性质线性空间的基底,维数, 坐标变换线性空间的基底维数线性空间的子空间,交与和线性映射及其值域、核线性变换及其矩阵表示矩阵(线性变换)的特征值与特征向量矩阵的可对角化条件第一节第节线性空间一:线性空间的定义与例子线性间的义定义设是一个非空的集合,是一个数域,V F 在集合中定义两种代数运算,一种是加法运算,来表示另种是运算用来表示V 用来表示; 另一种是数乘运算, 用来表示, +i并且这两种运算满足下列八条运算律:(1)加法交换律αββα+=+(2)加法结合律()()αβγαβγ++=++(3)零元素: 在中存在一个元素,使得对于V 0任意的都有V α∈0αα+=(4)负元素: 对于中的任意元素都存在一V α个元素使得β0αβ+=(5)i =1αα(6)()()k l kl αα=(7)()k l k l ααα+=+(8)()k k k αβαβ+=+为数域F 称这样的上的线性空间。

V例1全体实函数集合构成实数域上的线性空间。

R 例2复数域上的全体型矩阵构成的集C m n ×合为上的线性空间。

m n × C C 例3实数域上全体次数小于或等于的多项式R n 集合构成实数域上的线性空间;1[]n R x +R 实数域上全体次数等于的多项式集合不构成实数域上的线性空间;R n R二:线性空间的基本概念及其性质定义:线性组合;线性表出;线性相关;线性无关;向量组的极大线性无关组;向量组的秩向量组的极大线性无关组向量组的秩R例1实数域上的函数空间中,函数组2x x1,cos,cos2是线性相关的函数组。

矩阵分析 第一章

矩阵分析 第一章

矩阵的代数性质1.矩阵是线性映射的表示:线性映射的相加表示为矩阵的相加线性映射的复合表示为矩阵的相乘2.矩阵是一种语言,它是表示复杂系统的有力工具。

学习矩阵理论的重要用途之一就是学会用矩阵表示复杂系统的关系,培养根据矩阵推演公式的能力是学习矩阵论的目的之一。

定义一个矩阵有几种方式:可以通过定义矩阵的每一个元素来定义一个矩阵,也可以通过矩阵具有的性质来定义一个矩阵。

如:对称矩阵可以定义为:a ij =a ji也可以定义为: (x, Ay)=(Ax,y),还可以定义为: Ax=∇f(x), 其中f(x)=x T Ax/2,即它对向量x 的作用相当于函数f(x)在x 处的梯度。

3. 矩阵可以表示为图像矩阵的大小可以表示为图像。

反之,一幅灰度图像本身就是矩阵。

图像压缩就是矩阵的表示问题.这时矩阵相邻元素间有局部连续性,既相邻的元素的值大都差别不大。

4. 矩阵是二维的(几何性质)矩阵能够在二维的纸张和屏幕等平面媒体上表示,使得用矩阵表示的问题显得简单清楚,直观,易于理解和交流。

很多二元关系很直观的就表示为矩阵,如关系数据库中的属性和属性值,随机马尔科夫链的状态转移概率矩阵,图论中的有向图或无向图的矩阵表示等。

第一章:线性空间和线性变换1. 线性空间集合与映射集合是现代数学最重要的概念,但没有严格的定义。

集合与其说是一个数学概念,还不如说是一种思维方式,即用集合(整体)的观点思考问题。

整个数学发展的历史就是从特殊到一般,从个体到整体的发展历程。

集合的运算及规则,两个集合的并、交运算以及一个集合的补;集合中元素没有重合,子集,元素设S ,S'为集合映射:为一个规则σ:S → S', 使得S 中元素a 和S'中元素对应,记为 a'=σ(a),或σ:a →a'. 映射最本质的特征在于对于S 中的任意一个元素在S'中仅有唯一的一个元素和它对应。

映射的原象,象;映射的复合。

矩阵分析1

矩阵分析1

矩阵分析矩阵分析是数学中一门重要的分支,主要研究矩阵及其运算规律、性质和应用。

矩阵分析被广泛应用于各个领域,如物理学、经济学、工程学、信息科学、生物学等,成为现代科技和工程中不可或缺的一部分。

一、矩阵介绍矩阵是一种数学对象,由m行n列的元素数排列成一个矩形阵列。

一般用大写字母A、B、C等表示矩阵,而用小写字母a、b、c等表示元素。

如下所示:A = [a11 a12 (1)a21 a22 (2)… … …am1 am2 … amn]其中,a11、a12、a21和a22等都是矩阵A的元素,其中第i行第j列的元素表示为aij,i表示行数,j表示列数。

二、矩阵的运算矩阵的运算包括加、减、乘和求逆,下面分别介绍。

1、加法令A、B是两个矩阵,则矩阵的加法定义为相加其对应的元素。

例如,如果A和B都是两行两列的矩阵,则A + B的结果为:A +B = [a11+b11 a12+b12a21+b21 a22+b22]2、减法矩阵的减法也是按照对应元素相减的规则。

例如,如果A和B都是两行两列的矩阵,则A - B的结果为:A -B = [a11-b11 a12-b12a21-b21 a22-b22]3、乘法矩阵乘法是指将一个矩阵的行乘以另外一个矩阵的列的结果所组成的矩阵。

例如,如果A是m行n列的矩阵,B是n行p列的矩阵,则它们的乘积C是m行p列的矩阵,C中第i行第j列的元素可以表示为:Cij = Σk=1,2,…n aikbkj其中,Σ表示求和符号,k表示矩阵A和B相乘的公共维度,即行数或列数。

4、求逆如果矩阵A是非奇异矩阵,即其行列式不为0,则可以求出其逆矩阵A-1,使得A×A-1=I,其中I为单位矩阵。

求逆矩阵的公式如下:A-1 = 1/|A| adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。

三、矩阵的性质矩阵有很多基本的性质,其中包括:1、矩阵的行和列数可以不相等;2、矩阵可以相加和相乘,但不可以相减和相除;3、矩阵加法和乘法有结合律、分配律和交换律;4、矩阵乘法不满足交换律,即AB≠BA。

矩阵分析课件精品PPT

矩阵分析课件精品PPT

典型例题解析
例1
求矩阵A的特征值和特征向量,其中A=[[3,1],[2,2]]。
例2
已知矩阵A的特征值为λ1=2, λ2=3,对应的特征向量为 α1=[1,1]T, α2=[1,-1]T,求矩阵A。
解析
首先求出矩阵A的特征多项式为f(λ)=(λ-1)(λ-4),解得特 征值为λ1=1, λ2=4。然后分别将特征值代入(A-λI)x=0求 解对应的特征向量。
应用举例
通过克拉默法则求解二元、三元线性方程组,并验证解的正确性 。
典型例题解析
01
例题1
求解三元线性方程组,通过高斯消元 法得到增广矩阵的上三角形式,然后 回代求解未知数列向量x。
02
03
例题2
例题3
判断四元线性方程组的解的情况,通 过计算系数矩阵的行列式|A|以及替换 列向量后的矩阵行列式|Ai|,根据克 拉默法则判断方程组的解是唯一解、 无解还是无穷多解。
特殊类型矩阵介绍
01
02
03
04
方阵
行数和列数相等的矩阵称为方 阵。
零矩阵
所有元素都是零的矩阵称为零 矩阵。
对角矩阵
除主对角线外的元素全为零的 方阵称为对角矩阵。
单位矩阵
主对角线上的元素全为1,其 余元素全为0的方阵称为单位 矩阵。
矩阵性质总结
Байду номын сангаас
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
• 对于每一个特征值m,求出齐次线性方程组(A-mI)x=0的一个基础解系,则A对应于特征值m的全部特征向量(其中I是与A 同阶的单位矩阵)。
特征值和特征向量求解方法

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案第1章 线性空间和线性变换(详解)1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵.显然,ii E ,ij E 都是对称矩阵,ii E 有(1)2n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1)2n n +个矩阵线性表示,此即对称矩阵组成(1)2n n +维线性空间.同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1)2n n -.评注:欲证一个集合在加法与数乘两种运算下是一个(1)2n n +维线性空间,只需找出(1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1)2n n +个向量线性表示即可.1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可.1-3 解:方法一 设11223344x x x x =+++A E E E E即123412111111100311100000x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 故12341231211203x x x x x x x x x x +++++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦于是12341231,2x x x x x x x +++=++=1210,3x x x +==解之得12343,3,2,1x x x x ==-==-即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.方法二 应用同构的概念,22R ⨯是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T ,1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有1111110003111020100311000001021000300011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --.1-4 解:证:设112233440k k k k αααα+++=即1234123412313412411111110110110110k k k k k k k k k k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤==⎢⎥++++⎣⎦于是12341230,0k k k k k k k +++=++=1341240,0k k k k k k ++=++=解之得12340k k k k ====故1234,,,αααα线性无关. 设123412341231341241111111011011011a b x x x x c d x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦+++++⎡⎤=⎢⎥++++⎣⎦于是12341230,0x x x x x x x +++=++= 1341240,0x x x x x x ++=++=解之得122,x b c d a x a c =++-=-34,x a d x a b =-=-1234,,,x x x x 即为所求坐标.1-5 解:方法一 (用线性空间理论计算)32312233410()121,,,021,1,(1),(1)p x x x x x y y x x x y y ⎡⎤⎢⎥⎢⎥⎡⎤=+=⎣⎦⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤=---⎣⎦⎢⎥⎢⎥⎣⎦又由于23231,1,(1),(1)111101231,,,00130001x x x x x x ⎡⎤---⎣⎦⎡⎤⎢⎥-⎢⎥⎡⎤=⎣⎦⎢⎥-⎢⎥⎣⎦于是()p x 在基231,1,(1),(1)x x x ---下的坐标为11234111113012306001306000122y y y y -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦方法二 将3()12p x x =+根据幂级数公式按1x -展开可得32323()12(1)(1)(1)(1)(1)(1)(1)2!3!36(1)6(1)2(1)p x x p p p p x x x x x x =+''''''=+-+-+-=+-+-+- 因此()p x 在基231,1,(1),(1)x x x ---下的坐标为[]3,6,6,2T.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些. 1-6 解:①设[][]12341234,,,,,,=ββββααααP将1234,,,αααα与1234,,,ββββ代入上式得20561001133611001121011010130011⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦P 故过渡矩阵1100120561100133601101121001110131122223514221915223112822-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦P②设1212343410(,,,)10y y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξββββ将1234,,,ββββ坐标代入上式后整理得11234792056181336027112111310130227y y y y -⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦评注:只需将,i i αβ代入过渡矩阵的定义[][]12341234,,,,,,=ββββααααP计算出P .1-7 解:因为12121212{,}{,}{,,,}span span span +=ααββααββ由于秩1212{,,,}3span =ααββ,且121,,ααβ是向量1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ.方法一 设1212{,}{,}span span ∈ξααββI ,于是由交空间定义可知123411212111011030117k k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥+++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦解之得1222122,4,3(k l k l l l l =-==-为任意数)于是11222[5,2,3,4]T k k l =+=-ξαα(很显然1122l l ββ=+ξ)所以交空间的维数为1,基为[5,2,3,4]T -. 方法二 不难知12121212{,}{,},{,}{,}span span span span ''==ααααββββ其中2213[2,2,0,1],[,2,1,0]3TT ''=--=-αβ.又12{,}span 'αα也是线性方程组13423422x x x x x x =-⎧⎨=-⎩ 的解空间.12{,}span 'ββ是线性方程组13423413232x x x x x x ⎧=-+⎪⎨⎪=-⎩ 的解空间,所以所求的交空间就是线性方程组1342341342342213232x x x x x x x x x x x x =-⎧⎪=-⎪⎪⎨=-+⎪⎪=-⎪⎩ 的解空间,容易求出其基础解系为[5,2,3,4]T -,所以交空间的维数为1,基为[5,2,3,4]T -.评注:本题有几个知识点是很重要的.12(1){,,,}n span αααL 的基底就是12,,,n αααL 的极大线性无关组.维数等于秩12{,,,}n αααL .1212(2){,}{,}span span +ααββ1212{,,,}span =ααββ.(3)方法一的思路,求交1212{,}{,}span span ααββI 就是求向量ξ,既可由12,αα线性表示,又可由12,ββ线性表示的那部分向量.(4)方法二是借用“两个齐次线性方程组解空间的交空间就是联立方程组的解空间”,将本题已知条件改造为齐次线性方程组来求解.1-8解:(1):解出方程组1234123420510640x x x x x x x x ---=⎧⎨---=⎩(Ⅰ)的基础解系,即是1V 的基, 解出方程组123420x x x x -++=(Ⅱ)的基础解系,即是2V 的基; (2): 解出方程组1234123412342051064020x x x x x x x x x x x x ---=⎧⎪---=⎨⎪-++=⎩的基础解系,即为12V V ⋂的基;(3):设{}{}1121,,,,,k l V span V span ααββ==L L ,则11,,,,,k l ααββL L 的极大无关组即是12V V +的基. 1-9解:仿上题解.1-10解: 仿上题解.1-11 证:设210121()()()0k k l l l l --++++=ξξξξL A AA①用1k -A从左侧成①式两端,由()0k=ξA可得10()0k l -=ξA因为1()0k -≠ξA,所以00l =,代入①可得21121()()()0k k l l l --+++=ξξξL A A A②用2k -A从左侧乘②式两端,由()0k=ξA可得00l =,继续下去,可得210k l l -===L ,于是21,(),(),,()k -ξξξξL A AA 线性无关.1-12 解:由1-11可知,n 个向量210,(),(),,()n -≠ξξξξL A AA线性无关,它是V 的一个基.又由21212121[,(),(),,()][(),(),,()][(),(),,(),0]000010000100[,(),(),,()]00000010n n n n n n----⨯==⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ξξξξξξξξξξξξξξL L L L L L L M M M M L LA A A AA A A A AAA A A 所以A在21,(),(),,()n -ξξξξL A AA下矩阵表示为n 阶矩阵00001000010000000010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M M L L评注:n 维线性空间V 中任何一组n 个线性无关的向量组都可以构成V 的一个基,因此21,(),(),,()n -ξξξξL A A A是V 的一个基.1-13证: 设()()()111,,,,,,,,,,,r s m r s A A ξξξββααα==L L L L L 设11,,,,,,r r s ξξξξξL L L 是的极大无关组,则可以证明11,,,,,,r r s αααααL L L 是的极大无关组. 1-14 解:(1)由题意知123123[,,][,,]=ααααααA A123123111[,,][,,]011001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦βββααα 设A在基123,,βββ下的矩阵表示是B ,则11111123111011103011001215001244346238--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=---⎢⎥⎢⎥⎣⎦B P AP (2)由于0A ≠,故0=AX 只有零解,所以A的核是零空间.由维数定理可知A的值域是线性空间3R .1-15解:已知()()2323,,,,A αααααα=11A(1) 求得式()()2323,,,,P εεεααα=11中的过渡矩阵P ,则1B P AP -=即为所求; (2)仿教材例1.5.1.(见<矩阵分析>史荣昌编著.北京理工大学出版社.) 1-16解:设()23,,A ααα=1,则{}23(),,;()R A span N A ααα=1就是齐次方程组0Ax = 的解空间. 1-17证:由矩阵的乘法定义知AB BA 与的主对角线上元素相等,故知AB BA 与的迹相等;再由1-18 题可证. 1-18证:对k 用数学归纳法证。

矩阵分析(1)

矩阵分析(1)

W1 V1 V2
W2 V1 V3 0 p 0 0 pR W3 V1 V3 a q e 0 a,q,eR
W4 V1 V2 V1 V2 a b c 0 a,b, c R
3 子空间与维数定理
第一章 线性空间与线性变换
n维线性空间 有且只有n个线性无关的向量
基 任何一组n个线性无关的向量。可以有无数组基。
基向量通常记作 e1, e2 ,L , en
向量x的基表示
x 1e1 2e2 L nen
i 称为坐标或分量
1 线性空间的概念
有两组基,分别为
e1, e2 ,L , en 和 e1, e2 ,L , en
dim(V1 V2 ) dimV1 dimV2 dim(V1 I V ) 若是直和,则有
dim(V1 V2 ) dimV1 dimV2
3 子空间与维数定理
第一章 线性空间与线性变换
子空间的交集 W V1 V2 是子空间
零向量属于W
任取 x, y W,则 x, y Vi ,所以
零子空间
由单个的零向量组成的子集 零维
平凡子空间 线性空间 V 本身 n 维
子空间之例
W x x y z, 任意, P, 给定y, z V
3 子空间与维数定理
第一章 线性空间与线性变换
设V1和V2为V的子空间,有以下结果
交集W V1 I V2 x x V1, x V2 , 也是子空间;
x y Vi , i 1,2
又 P, x W
x Vi
x W
3 子空间与维数定理
第一章 线性空间与线性变换
V1 a b 0 0 a,b R V2 0 0 c 0 c R V3 0 d e 0 a,b R

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第 1 章线性空间和线性变换(详解)1-1证:用 E ii表示n阶矩阵中除第i行,第i列的元素为 1外,其余元素全为 0 的矩阵 . 用E ij(i j , i1,2,, n1) 表示n阶矩阵中除第 i 行,第 j 列元素与第 j 行第 i 列元素为1 外,其余元素全为0的矩阵.显然, E ii,E ij都是对称矩阵, E ii有 n( n1)个.不难证明E ii,E ij是线性无关的,2且任何一个对称矩阵都可用这n+ n( n1)= n( n 1)个矩阵线性表示,此即对称矩阵组成n(n 1)维线性空间 .222同样可证所有n 阶反对称矩阵组成的线性空间的维数为n(n 1).2评注 : 欲证一个集合在加法与数乘两种运算下是一个n(n 1)维线性空间,只需找出n(n 1)个向量线性无关,并且集合中任何一个向量都可以用这2n(n 1)个向量线性表示即22可.1-2 解:令x1 1 x2 2x3 3x4 4解出 x1 , x2 , x3, x4即可.1-3解:方法一设A x1E1x2E2x3E3x4E4即12111111100 3x1 1 1x2 1 0x3 0 0x4 00故1 2x1x2x3x4x1x2x303x1x2x1于是x1x2x3x41, x1x2x3 2x1x20, x13解之得x1 3, x23, x32, x41A E,E,E,E(3, 3,2,1)T方法二应用同构的概念,R2 2是一个四维空间,并且可将矩阵 A 看做(1,2,0,3)T,E1,E2, E3, E4可看做(1,1,1,1)T,(1,1,1,0)T,(1,1,0,0)T,(1,0,0,0)T.于是有1111110003111020100311000001021000300011因此 A 在E1,E2,E3,E4下的坐标为(3,3,2,1)T.1-4 解:证:设k1 1k22k33k440即11111110k1 1 1k2 0 1k3 1 0k4 1 1k1k2 k3k4k1k2k3k1k3k4k1k2k4于是k1k2k3k40,k1k2k30k1k3k40, k1k2k40解之得k1k2k3k40故α,α,α,α 线性无关.1234设a b11x211x31110c d x110110x41 11x1x2x3x4x1x2x3x1x3x4x1x2x4于是x1x2x3x40, x1x2x30x1x3x40, x1x2x40解之得x1b c d2a, x2a cx3 a d , x4a bx1, x2 , x3 , x4即为所求坐标.1-5 解:方法一(用线性空间理论计算)1p( x) 1 2x31,x, x2, x302y123y 21,x 1,( x 1) ,( x1)y3y4又由于1,x1,( x1)2 ,( x1)311111,x, x2 , x30123 0013 0001于是 p( x) 在基1, x1,( x1)2 ,( x1)3下的坐标为y11111113y2012306y3001306y4000122方法二将 p(x) 12x3根据幂级数公式按x 1 展开可得p( x) 1 2x3p(1)p (1)(x1)p (1) (x1)2p (1)( x1)32!3!36(x1)6(x1)22(x1)3因此 p( x) 在基1, x1,( x1)2 ,( xT 1)3下的坐标为3,6,6, 2.评注:按照向量坐标定义计算,第二种方法比第一种方法更简单一些.1-6 解:①设β,β,β,βα,α,α,αP将 α1,α2 ,α3, α4 与 β1, β2, β3,β4 代入上式得2 0 5 6 1 0 0 1 13 3 6 1 1 0 01 12 1 0 1 1 P0 1 01 30 1 1故过渡矩阵10 01 10 5 62 P1 1 0 0 1 3 3 61 10 1 1 2 10 0 1 1 10 1 3121 22231 5 42 211 9 52 232 11 82 2②设1y 1ξ0 β β β β y 21 ( 1, 2, 3 , 4 )y 3y 4将 β1, β2, β3, β4 坐标代入上式后整理得719 y 1 2 0 5 6 1 8 y 2 1 3 3 6 0 27 y 3 1 1 2 1 1 1 y 411 33 227评注 :只需将iβ1,β2 ,β3, β41,2,3,4P计算出, β代入过渡矩阵的定义α α α α P .1-7 解:因为span{ α1, α2}span{ β1,β2}span{ α1, α2, β1,β2}由于秩 span{ α1,α2 , β1, β2}3 ,且α1, α2, β1是向量α1, α2, β1,β2的一个极大线性无关组,所以和空间的维数是3,基为α1,α2,β1.方法一设ξ span{α1,α2}span{ β1, β2} ,于是由交空间定义可知112121k31k41k1k210130117解之得k1l2 , k24l2 ,l13l2 (l2为任意数)于是ξ k1α1k2α2l 2[5,2,3,4] T( 很显然ξl1 1l2 2 )所以交空间的维数为 1,基为[5,2,3,4] T.方法二不难知span{ α1,α2}span{ α1,α2}, span{ β1,β2} span{ β1, β2}其中α[ 2, 2,0,1] T, β[13,2,1,0] T.又span{ α1,α2 }也是线性方程组223x1x32x4x22x3x4的解空间 . span{β1,β2}是线性方程组x113x32x4 3x22x3x4的解空间,所以所求的交空间就是线性方程组x 1 x 3 2x 4x 2 2x 3 x 4x 1 13x 3 2x 4x 2 32x 3x 4的解空间,容易求出其基础解系为[ 5,2,3,4] T ,所以交空间的维数为1,基为[ 5,2,3,4] T .评注:本题有几个知识点是很重要的.(1)span{ α1,α2 , , αn } 的 基 底 就 是α1, α2, , αn 的极大线性无关组. 维数等于秩{ α1,α2 ,,αn } . (2) span{α1, α2} span{ β1, β2} span{ α1,α2 , β1, β2} . (3) 方法一的思路,求交span{ α,α} span{ β, β} 就是求向量 ,既可由 α, α 线性表121 2ξ1 2示,又可由 β, β线性表示的那部分向量 . (4) 方法二是借用“两个齐次线性方程1 2组解空间的交空间就是联立方程组的解空间” ,将本题已知条件改造为齐次线性方程组来求解 .1-8 解:(1):解出方程组 (Ⅰ)x 1 2x 2 x 3 x 45x 1 10x 2 6x 3的基础解系 ,即是 V 1 的基 ,4 x 4 0解出方程组 (Ⅱ) x 1x 2 x 3 2 x 4 0 的基础解系 ,即是 V 2 的基 ;x 12x 2 x 3x 4 0(2): 解出方程组5x 1 10 x 2 6x 3 4 x 4 0 的基础解系 ,即为 V 1V 2的基 ;x 1 x 2x 32x 4 0(3): 设 V 1 span 1,,k,V 2 span1 ,, l ,则1 ,, k ,1 ,, l 的极大无关组即是V 1 V 2 的基 . 1-9 解 : 仿上题解 .1-10 解 : 仿上题解 . 1-11 证:设l 0ξ l 1A (ξ) l 2A2(ξ)l k 1Ak 1(ξ) 0①用 A k 1 从左侧成 ① 式两端,由 A k (ξ) 0 可得l 0A k 1 (ξ) 0因为 A k 1 (ξ) 0 ,所以 l 00,代入 ①可得l 1A (ξ) l 2A 2 (ξ)l k 1A k 1 (ξ) 0②用k 2kA从左侧乘②式两端,由Aξ0可 得 l0 0,继续下去,可得( )l 2l k 1 0 ,于是 ξ,A (ξ), A 2 (ξ), ,A k 1(ξ) 线性无关 .1-12解:由 1-11可知, n 个向量 ξ 0,A ( ),A2(ξ),,An 1 (ξ)线性无关,它是 V 的ξ一个基 . 又由ξξ2ξ,An 1ξA [,A( ),A( ),( )][A (ξ),A 2(ξ), ,A n 1(ξ)][A (ξ),A2(ξ),,An 1(ξ),0]0 0 0 010 0 ξξ2ξ ,An 1ξ 0 1[,A (),A( ),( )]0 0 0 010 n n所以 A在, (ξ),A 2(ξ), ,An 1(ξ)下矩阵表示为 n 阶矩阵ξA0 0 0 01 0 0 00 10 00 0 0 0 n0 01V 中任何一组 n个线性无关的向量组都可以构成V 的一个基,评注 : 维线性空间 因此 ξ,(ξ), A 2(ξ), ,A n1(ξ)是 V 的一个基 .A1-13 证: 设 1, , r , , s1 , , m A, A 1, , r , , s设 1 , , r 是 1,, r ,, s 的极大无关组,则可以证明1,, r 是 1, , r,,s 的极大无关组 .1-14 解: (1) 由题意知A [α1, α2,α3 ] [ α1,α2 ,α3] A1 1 1[β, β, β] [ α,α , α ] 0 1 11 231 230 0 1设 A在基 β1, β2, β3下的矩阵表示是 B ,则1 1 112 3 1 1 11BP 1AP 01 11 0 3 0 1 10 0 1 2 1 5 0 0 12 4 434 6238(2) 由于 A0 ,故 AX 0 只有零解,所以 A的核是零空间 . 由维数定理可知A 的值域是线性空间 R 3 .1-15 解 :已知 A1,2,31,2,3A(1) 求得式 1 , 2 , 3 1 ,2 ,3 P 中的过渡矩阵 P ,则BP 1AP 即为所求 ; (2) 仿教材例 1.5.1.(见<矩阵分析 >史荣昌编著 .北京理工大学出版社 .)1-16 解 :设 A1 ,2 ,3 , 则 R( A)span1 ,2 ,3 ; N ( A) 就是齐次方程组 Ax的解空间 .1-17 证 :由矩阵的乘法定义知AB 与 BA 的主对角线上元素相等 , 故知 AB 与 BA 的迹相等 ; 再由 1-18题可证 .1-18 证 :对 k 用数学归纳法证。

矩阵分析引论--第一章 线性空间与线性变换-子空间与维数定理、线性空间的同构

矩阵分析引论--第一章 线性空间与线性变换-子空间与维数定理、线性空间的同构
(2) W W .
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
子空间举例
零子空间{0}与线性空间V 本身称为平凡子空间.
例1 线性空间V 的子集:(1,2 ,,m V )
m
L(1,2 ,,m ) { | kii , ki P} i 1
是V的子空间,称为由
称为子空间 V1 与 V2 的交;
(2)集合 V1 V2 { | V1, V2 }
称为子空间 V1 与 V2 的和;
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
定理1-3:线性空间V 的两个子空间V1与V2的 交W=V1∩V2也是V 的子空间.
证 (1) W 是非空集合, 0 W ;
生成的子空间.
例2 在n维线性空间V=Pn 中,子集
W { | A 0, Pn}
是V 的一个n-r 维子空间,r是的ຫໍສະໝຸດ .目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
二、子空间的运算
定义:设V1, V2是线性空间V 的两个子空间,则
(1)集合 V1 V2 { | V1且 V2 }
目录 上页 下页 返回 结束
第一章第三四节 子空间与维 数定理、线性空间的同构
推论:若n维线性空间V 的两个子空间的维数之和
大于n,则其交V1∩V2必含非零向量. dim(V1 V2 ) dimV1 dimV2 dim(V1 V2 )
定义1-5:设V1, V2是线性空间V 的两个子空间, 若和 W V1 V2 具有性质:
(4) dimV1 dimV2 dim(V1 V2 ) .
目录 上页 下页 返回 结束

矩阵分析-(1)

矩阵分析-(1)

第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18
第一章 线性空间和线性映射
《矩阵分析》 · 徐赐文
2013-11-18

2016矩阵分析-第1章多项式矩阵与矩阵多项式-1.4(讲)

2016矩阵分析-第1章多项式矩阵与矩阵多项式-1.4(讲)

A1 0 A 0 A 2 并设 A1 , A2 的最小多项式分别为 g1 ( x ), g2 ( x ).
则A的最小多项式为 g1 ( x ), g2 ( x )的最小公倍式.
2016级矩阵分析
1.4 矩阵的零化问题
推广: 若A是一个准对角矩阵
A1 A2 A s 且 Ai 的最小多项式为 gi ( x ), i 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., gs ( x )].
A 的最小多项式没有重根.
2016级矩阵分析
1.4 矩阵的零化问题
练习:
1 1 求矩阵 A 1 1 1 1 1 1 的最小多项式. 1
2016级矩阵分析
1.4 矩阵的零化问题
解: A的特征多项式
x 1 1 f ( x ) | E AE | 1
1.4 矩阵的零化问题
1 0 2 8 5 4 2 A 0 1 1 , 2 A 3 A A A 4E . 例1. 设 求 0 1 0
3 f ( ) E A 2 1 解:A的特征多项式
用 f ( )去除 2 8 3 5 4 2 4 g( ), 得
g( ) f ( )(2 5 4 3 5 2 9 14) (24 2 37 10)
2016级矩阵分析
1.4 矩阵的零化问题
f ( A) 0,
2 A8 3 A5 A4 A2 4 E 24 A2 37 A 10 E
3 48 26 0 95 61 0 61 34
2016级矩阵分析

矩阵分析(1)

矩阵分析(1)

f ( ) 0 AX 0 X
由此可得定理:
0 是 f 的特征值 0 是 A 的特征值 是 f 的属于0 的特征向量 X是 A 的 属于0 的特征向量
因此,只要将 A 的全部特征值求出来,它们 就是线性变换 f 的全部特征值;只要将矩阵 A的 属于0 的全部特征向量求出来,分别以它们为坐 标的向量就是 f 的属于 0 的全部特征向量。
例 1 设 V 是数域 K上的3维线性空间,f 是 V 上 的一个线性变换,f 在V 的一个基 1,2 ,3 下的
矩阵是
2 2 2
A 2
1
4

2 4 1
求 f 的全部特征值与特征向量。
解: A 的特征多项式为
2 2 2 I A 2 1 4

y2



a21
a22
...
a2
n


x2

... ... ... ... ... ...

ym


am1
am2
...
amn


xn

线性映射与矩阵之间的一一对应关系
线性映射 f 在给定基下的矩阵表示 A 是唯一的,
反之,给定一个 m n 矩阵A (aij )mn ,那么存
下的坐标。
(3)求向量 , A( ) 在基 1, 2 , 3下的坐标。
对于有限维的线性空间 V ,线性变换 A 在不同 基下的矩阵表示有什么关系?对于线性空间 V 已 知两组基 {1,2 ,L ,n},{1, 2,L , n},而且
[1, 2,L , n ] [1,2,L ,n ]P

北理版矩阵分析课件

北理版矩阵分析课件

1 0
1 0
,
1 1
1 0
,
1 1
1 1
是其两组基,求向量 坐标。
A
1 3
2 4 在这两组基下的
解:设向量 A 在第一组基下的坐标为 ( x1, x2 , x3, x4 )T
于是可得
1 2 0 1 1 0 3 4 x1 1 1 x2 1 1
1 1 1 1 x3 0 1 x4 1 0
解得
x1
7, 3
求 V1 V2 、V1 V2 的基与维数。
第一章 第一节 函数
解: 设 V1 V2 ,则 V1, V2
所以可令 k11 k22 = l11 l22

k11 k22 l11 l22
这是关于 k1, k2 , l1, l2 的齐次方程组,即
k1
(1 , 2
,
1,
2
)
注意: 通过上面的例子可以看出线性空间的基底并不 唯一,但是维数是唯一确定的。利用维数的定义线性 空间可以分为有限维线性空间和无限维线性空间。目 前,我们主要讨论有限维的线性空间。
例 4 在4维线性空间 R22 中,向量组
0 1
1 1
,
1 1
0 1
,
1 0
1 1
,
1 1
1 0
与向量组
1 0
0 0
,
组互不相同的实数。
例 2 实数域 R 上的线性空间 RR 中,函数组
x1 , x2 , , xn
是一组线性无关的函数,其中 1,2 , ,n为一
组互不相同的实数。
例 3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx

矩阵分析第一章

矩阵分析第一章

∀α∈V, k∈F, η = kα∈V
满足下面 加法运算法则 运算法则: 法则: 满足下面四 下面四条加法运算 (1)交换律:α
+ β = β + α , ∀α , β ∈ V (2)结合律:(α + β ) + γ = α + ( β + γ ), ∀α , β , γ ∈ V
(3)零元素:∃0∈V,使得
的尺寸为r×n,具有和原始数据矩阵X一样的几何结构:
cos(θ ( xi , x j ) ) = cos(θ ( z i , z j ) )
d ( xi , x j ) = d ( zi , z j )
应用矩阵来表示和求解问题的例子还有很多很多
物理、通信、电子、系统、模式 识别、土木、建筑、航空航天、 LLLL
σ i ≥ 0 称为矩阵X的奇异值,大于零的奇异值是矩阵XTX

σ 1 ≥ σ 2 ≥ Lσ r > σ r +1 = σ r + 2 = Lσ n = 0
则:
S r = diag(σ 1 , σ 2 ,L, σ r )
X = U r S rVrT
U的前r列 数据矩阵 VT的前r行
Z r = S rVrT
X = (x1 , x2 , L, xn )
的尺寸为N×n。 任务是将数据尺寸从N×n减小至M×n ( M ≤ N ),并保 持数据的几何结构不变。这里的几何结构是指: 1. 任意两个xi , xj之间的距离
d ( xi , x j ) = xi − x j
2
2. 任意两个xi , xj之间的夹角 之间的夹角 cos θ ( xi , x j ) =
a + b := ab, ∀a, b ∈ R + k + k ⋅ a := a , ∀a ∈ R , ∀k ∈ R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 X n
1
X

X
1
X
X

X
X
2
1
n X



n X
定义2:设给定Rn中的向量序列{ X k },即
X 0 , X1 ,
其中
(k ) (k ) X k x1( k ) , x 2 , , x n

Xk ,

T
若对任何i (i = 1, 2,…, n )都有
lim xi( k ) xi*
定义7 令向量 u li (0, ,0, li1,i , , lni )T ,向量 v ei 1
则称矩阵
1 T Li Li (li ) E(li , ei ;1) I li ei 1
k Байду номын сангаас
则向量
* * T X * ( x1 , , xn )
称为向量序列{ X k }的极限,或者说向量序列{ X k }
* 记为 依坐标收敛于向量 X,
lim X k X
k
*
定理3:向量序列{Xk}依坐标收敛于X*的充要条件是
lim X k X * 0
k
向量序列依范数收敛与依坐标收敛是等价的。 2.矩阵的范数
max i A
1i n
并且如果A为对称矩阵,则
max i A 2 (谱范数)
1i n
定义4:矩阵A 的诸特征值的最大绝对值称为A的谱半径, 记为: ( A) max i
1i n
注:Rn×n中的任意两个矩阵范数也是等价的。
定义5: 设|| ·||为Rn×n上的矩阵范数,A,B∈Rn×n
A
2
1
相容的矩阵范数是
n i j 1
其中1为矩阵ATA的最大特征值。
(Ⅲ)与 x

A max aij
上述三种范数分别称为矩阵的1-范数、2-范数和∞-范数。
Frobenius范数: || A || F 可以证明, 对方阵 A R
nn
2 | a | ij i 1 j 1
定义3:设A为n 阶方阵,Rn中已定义了向量范数
则称 sup AX 记为 A 。即
x 1

为矩阵A 的算子范数或模,
A sup AX
x 1
矩阵范数的基本性质: (1)当A = 0时, A =0,当A 0时, A > 0
(2)对任意实数k 和任意A,有 kA k A
(3)对任意两个n阶矩阵A、B有
称 ||A-B||为A与B之间的距离。
定义6:设给定Rn×n中的矩阵序列{ Ak},若
lim Ak A 0
k
则称矩阵序列{ A }k收敛于矩阵A,记为
lim Ak A
k
定理6 设B∈Rn×n,则由B的各幂次得到的
矩阵序列Bk, k=0,1,2…)收敛于零矩阵

lim Bk 0 )的充要条件
§5.1 向量和矩阵的范数
1.向量的范数 定义1:设X R n,X 表示定义在Rn上的一个实值函数,
称之为X的范数,它具有下列性质: (1) 非负性:即对一切X R n,X 0, X >0 (2) 齐次性:即对任何实数a R,X R n,
aX a X
(3)三角不等式:即对任意两个向量X、Y R n,恒有
初等矩阵对线性方程组的研究起着重要的作用,本节介绍 一般形式的初等矩阵,它是矩阵计算的基本工具。 5.2.1 初等矩阵 定义6 设向量 u, v Rn , R ,则形如
E(u, v; ) I uvT
n 阶单位矩阵, 的矩阵叫做实初等矩阵,其中 I 是
5.2.2 初等下三角矩阵
定理1:定义在Rn上的向量范数 X 是变量X分量的
一致连续函数。 X f ( X )
定理2:在Rn上定义的任一向量范数 X 都与范数 X 1 等价,
即存在正数 M 与 m ( M>m ) 对一切XRn,不等式
mX
成立。
1
X M X
1
推论:Rn上定义的任何两个范数都是等价的。
对常用范数,容易验证下列不等式:
n
n
(向量|| ·||2的直接推广)
n x R 和 ,有 || Ax ||2 || A ||F || x ||2
注:(1) || A ||F tr ( A A)
T
(2) 矩阵的Frobenius范数不是算子范数。
3.矩阵的范数与特征值之间的关系
定理5:矩阵A 的任一特征值的绝对值不超过A的范数,即
X Y X Y
三个常用的范数: 设X = (x1, x2,…, xn)T,则有 (1) (2) (3)
X 1 x1 x2 xn
X 2 X T X x12 x22 xn2
X

max xi
1i n
范数等价: 设‖· ‖A 和‖· ‖B是R上任意两种范数,若存在 常数 C1、C2 > 0 使得 ‖· ‖A 和‖· ‖B 等价。 , 则称
2 2 || A || 1,|| B || 1,|| AB 2 2 || AB |||| A || || B || 从而
AB || 2
定理4:设n 阶方阵A = (aij)nn,则 (Ⅰ)与 x 相容的矩阵范数是 1
A 1 max aij
j n i 1
(Ⅱ)与 x相容的矩阵范数是 2
k

。 ( B) 1
4. 矩阵的条件数
定义5 设矩阵 A 为非奇异矩阵,则称
cond ( A) A 1 A
为矩阵 A 的条件数,其中 是矩阵的算子范数。 对矩阵 A 的任意一个算子范数 有 ,
cond ( A) A 1 A A 1 A I 1
§ 5.2 初等矩阵
A B A B
(4)对任意向量XRn,和任意矩阵A,有
AX A X
(5)对任意两个n阶矩阵A、B,有
AB A B
例5:
设A=(aij)∈M. 定义
1 || A || 2 n
i , j 1
| a
n
ij
|
证明:这样定义的非负实数不是相容的矩阵范数.
1 1 1 1 证明:设 A , B 1 1 1 1
1 li 1,i lni 1
为初等下三角阵。
定理5.2.1 初等下三角阵 Li具有如下性质: (1)
相关文档
最新文档