行列式解法技巧论文完整版

合集下载

行列式的计算与技巧 毕业论文

行列式的计算与技巧  毕业论文

江西师范大学数学与信息科学学院学士学位论文行列式的计算与技巧The calculation of determinantand the skill姓名:* ***学号:090*0*0**2学院:数学与信息科学学院专业:数学与应用数学指导老师:*完成时间:2013-3-11行列式的计算与技巧【摘要】行列式是代数的一个重要的内容,也是讨论线性方程组的一个非常有力的工具,在数学的许多分支上有着极其广泛的应用。

同时,行列式的计算非常的灵活多变,有很强的技巧和规律性。

本文则主要讨论行列式的一些常用的方法,并坚持从实例出发,在以上几种常用方法的基础上,探讨并给出行列式的其他几种计算方法。

如:三角形法、升阶法、数学归纳法、递推法、提取因子法、范德蒙行列式法、拆行法等等,通过以上这些方法基本可以解决一般的n阶行列式的计算问题。

【关键词】行列式递推法范德蒙行列式降阶法The calculation of determinant and the skill【Abstract】Determinant is an important content of algebra, and discussthe system of linear equations is a very powerful tool, many branches of mathematics has the extremely widespread application. At the same time, the determinant calculation is very flexible, strong skills and regularity. This article mainly discuss some commonly used methods of the determinant, and proceed from the instance and on the basis of the above several kinds of commonly used method, and gives several calculation methods of the determinant are discussed. Such as: the triangle method, order method, mathematical induction, recursive method, extraction factor method, vandermonde determinant method, the split line method, and so on, through the above these methods can solve the general basic n-th-order determinant calculation problem.【Key words】:The determinant, Recursive method, Vandermonde determinant,Order reduction method目录1 引言 (1)2行列式的定义 (1)2.1 用定义法计算行列式 (1)3 行列式的相关性质 (3)3.1利用相关性质得到几种特殊解法 (3)3.1.1对角线法则计算行列式 (3)3.1.2 三角形法计算行列式 (3)3.1.2.1箭形(或爪形)行列式 (4)3.1.3加边法(升阶法)计算行列式 (5)3.1.4 分解行列法(又称拆项法)计算行列式 (6)3.1.5降阶法计算行列式 (7)4递推法计算行列式 (9)5 特征值法计算行列式 (10)6 数学归纳法计算行列式 (10)7 提取因子法计算行列式 (11)8 利用范德蒙行列式计算行列式 (12)9 利用拉普拉斯展开定理计算行列式 (14)10 因式分解法计算行列式 (15)11 乘法定理法(行列式乘积法)计算行列式 (16)12 小结 (17)参考文献 (18)1 引言行列式是一个基本的数学工具,是线性代数的重要研究对象,无论是在高精尖端科学领域,还是在日常工业生产、工程施工或经济管理中都有着广泛的应用。

行列式的计算方法小论文

行列式的计算方法小论文

行列式的计算方法行列式计算方法总结及简单应用摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。

并举出了几种常见的行列式应用。

关键词:排列 行列式 行列式计 行列式计算的基本方法:基本的行列式解法包括:性质法、化三角形法、代数余子式法等1、利用行列式的性质计算例1: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称n D 为反对称行列式,证明:奇数阶反对称行列式为零.证:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式n D 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----, 由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ =n n D )1(-当n 为奇数时,得n D =n D ,因而得n D = 0.2、 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例2 计算n 阶行列式n ab b ba b D bb a=解:()[]a b b a bbb n a D n1111-+=()[]ba b a bbb n a ---+=000011()[])1()(1---+=n b a b n a3、代数余子式法在一个n 级行列式D 中,把元素ij a 所在的行与列划去后,剩下的2)1(-n 个元素按照原来的次序组成的一个)1(-n 阶行列式ij M ,称为元ij a 的余子式,ij M 带上符号)()1(j i +-称为的ij a 代数余子式,记作ij j i ij M A )()1(+-=定理1: 行列式等于其第 i 行诸元素与各自代数余子式的乘积之和 , 即ij nj ij nn nn ij ij A a A a A a A a A a A a D ∑==+++++=1131312121111证:先证特殊情况元素11a 位于第一行、第一列,而该行其余元素均为零;1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000ni iinn n nna a a D a a a a a a =+++++++++111211112111121121212120000nn n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++ 1122i i i i in in a A a A a A =++同理有:nj nj j j j j A a A a A a D +++= 2211.例3 计算四阶行列式 4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.证: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a bD a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.4、范德蒙得行列式法根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式.其中范德蒙行列式就是一种.这种变形法是计算行列式最常用的方法.例1 计算行列式1222211221212121122111111n n nn n n n n n n nx x x D x x x x x x x x x x x x ------+++=++++++解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得范德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏参考文献[1] 蒋省吾. 杨辉三角中的行列式[J],教学通报,1988,5:8-10 [2] 张禾瑞.郝新高等代数[M].北京:人民教育出版社,1996. [3] 王品超.高等代数新方法[M].济南,山东教育出版社,1989.[4] 北京大学数学系几何与代数教研室代数小组. 高等代数(第三版)[M]. 北京: 高等教育出社,2003.[5] 同济大学数学教研室.工程数学线性代数(第三版) [M].北京:高等教育出版社,1999. [6] 王萼芳, 石生明修订. 高等代数(第三版)[M]. 北京: 高等教育出版社, 2003. [7] 李宇寰.组合数学[M].北京:北京师范大学出版社,1988. [8] 杨振声.组合数学及其算法[M].北京:中国科学技术出版社,1997. [9] 陈景润.组合数学简介[M].天津:天津科学技术出版社,1988.。

行列式的计算技巧及其应用毕业论文【范本模板】

行列式的计算技巧及其应用毕业论文【范本模板】

本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。

.。

....。

.。

....。

.。

.。

.。

.。

.。

.。

.。

...。

..。

....。

.。

.。

..。

.。

.。

1 关键词.。

....。

.。

..。

.。

..。

..。

.。

.。

...。

....。

..。

..。

...。

..。

...。

1 0、前言。

..。

.。

.。

.。

....。

...。

.。

....。

.。

.。

..。

.。

....。

..。

.。

..。

1 1、基础知识及预备引理.。

....。

..。

.。

.。

.....。

....。

..。

..。

.。

.。

.。

.。

.。

2 1.1行列式的由来及定义。

..。

..。

...。

.。

..。

...。

.。

...。

....。

..。

....。

....。

..2 1.2行列式的性质。

.。

..。

.。

...。

..。

..。

...。

..。

.。

.。

....。

.。

.。

...。

.。

.。

.。

3 1。

3拉普拉斯定理及范德蒙德行列式的定义....。

.。

.。

..。

.。

.....。

.。

..。

4 2、行列式的计算方法。

.。

.。

...。

..。

...。

.。

..。

.。

...。

..。

..。

.....。

..。

.。

..。

.4 2。

1定义法。

.。

.。

...。

.。

...。

.。

...。

........。

.。

...。

.。

.。

.。

..。

..。

..4 2.2利用行列式的性质(化三角型)计算.。

.。

..。

..。

.。

.。

.。

.。

.。

..。

..。

..。

5 2.3拆行(列)法...。

..。

.。

..。

..。

.。

....。

.。

.。

...。

..。

.。

.。

..。

6 2。

4加边法(升阶法)。

..。

.。

....。

.。

..。

..。

...。

.。

.。

.。

..。

..。

..。

..。

.6 2。

5范德蒙德行列式的应用。

..。

...。

.。

.。

..。

.。

.。

.。

.。

.。

...。

.。

.。

..。

...。

.。

.7 3、n阶行列式的计算。

行列式计算方法研究毕业论文

行列式计算方法研究毕业论文

行列式计算方法研究毕业论文目录摘要………………………………………………………………………………………...错误!未定义书签。

Abstract……………………………………………………………………………………...错误!未定义书签。

第1章行列式的计算方法 (1)第1节利用行列式定义与性质计算 (1)第2节化三角形法 (3)第3节降阶法 (4)第4节递推公式法及数学归纳法 (5)第5节利用德蒙行列 (7)第6节行列式的特殊计算法 (8)第2章行列式的应用 (11)第1节行列式在代数中的应用 (11)第2节行列式在几何中的应用 (12)第3节行列式在多项式理论中的应用 (14)结论 (16)参考文献 (17)致谢 (18)第1章 行列式的计算方法第1 节 利用行列式定义与性质计算定义1[1] 对任何n 阶方阵()ij nA a =,其行列式记为ij nA a = .()()121212121n n n nt p p p ij p p p np p p A a a a a ==-∑ .其中12n p p p 是数组1,2,…,n 的全排列,∑表示对关于这些全排列的项(共有!n项)全体求和.性质1 行列互换,行列式不变,即nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=.性质1表明,行列式中行与列的地位是对称的,所以凡是有关行的性质,对列同样成立.性质2 对换行列式两行的位置,行列式反号. 性质3 若行列式有两行相同,则行列式等于0.性质4 用一个数乘以行列式的某一行,等于用这个数乘以这个行列式,或者说某一行的公因式可以提出来,即nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111************=. 推论1 若行列式某行(列)元素都是0,则行列式等于0. 推论2 若一个行列式的任两行成比例,则行列式值为0. 性质5 行列式具有分行相加性,即nnn n n n na a a cbc b c b a a a21221111211+++=nn n n n n a a a b b b a a a212111211+nnn n n n a a a c c c a a a212111211. 性质6 把行列式的某一行的若干倍加到另一行,行列式值不变, 即nnn n kn h k in i i nnn n n kn k k kn in k i k i na a a a a a a a a a a a a a a a a a ca a ca a ca a a a a212121112112121221111211=+++. 例1[1] 计算行列式0005004003002000=D . 解 展开式中项的一般形式是12341234j j j j a a a a .显然,如果51≠j ,那么011=j a ,从而这个项都等于零.因此只需考虑51=j 的那些项;同理,只需考虑24j =,33j =,42j =这些列指标的项.这就是说行列式不为零的项只有41322314a a a a 这一项,而6)3421(=τ这一项前面的符号应该是正的,所以1205432=⋅⋅⋅=D .例2[2] 计算n 级行列式cdddd c d dd d c dd d d c d =.解 这个行列式的特点是每一行有一个元素是c ,其余1-n 个是d . 根据性质6,把行列式第二列加到第一列,行列式不变,再把第三列加到第一列,行列式不变,直到第n 列也加到第一列,即得cddddn c d c d dn c dd c d n c dd d d n c d )1()1()1()1(-+-+-+-+= =[]11(1)11d d d d c d d d c n d d c d ddddc+-. 把第二行到第n 行都分别加上第一行的-1倍,就有[]dc dd c d d dc d d d d n c d ----+= 00001)1(.根据例1得[]1)()1(---+=n d c d n c d .把行列式的某一行(或列)的元素写成两数和的形式,然后利用行列式的性质5将原行列式写成两行列式之和, 进而使行列式简化以便计算.例3 计算行列式332132213211λλλ+++=a a a a a a a a a D .解332322321332132213210λλλλλ+++++=a a a a a a a a a a a a a a a D=[]3233221321))((a a a a a -+++λλλλλ.第2节 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法,这是计算行列式的重要方法之一. 利用行列式的定义容易求得上(下)三角形行列式或对角形行列式.对于各行(或各列)之和相等的行列式,将其各行(或列)加到第1行(或第1列)或第n 行(或第n 列),然后再化简.例1 计算行列式0112032120113110--=D . 解 4132310311020112423212-----=--↔r r r r r r D132014003110201123243----=+-r r r r 25132003110401143432-----=+↔r r r r =50. 原则上,每个行列式都可利用行列式的性质化为三角形行列式.但对于阶数高的行列式,在一般情况下,计算往往较繁,因此,在许多情况下,总是先利用行列式的性质将其作某种保值变形,再化为三角形行列式.例2 计算行列式xa a a a x a a aa x a a a a x D =.解 它的特点是各列元素之和为)3(x a +,因此把各行都加到第一行,然后第一行再提出)3(x a +,得xaa a ax a a aa x a x a D 1111)3(+=.将第一行乘以)(a -分别加到其余各行,化为三角形行列式,则ax a x a x x a D ---+=00000001111)3(=3))(3(a x x a -+.第3节 降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用行列式的性质化简,使行列式中有较多的零出现,然后再展开.例1 计算行列式4122743221010113-=D . 解221132214)1(21211432010021143223134--=---+--=c c c c D213767)1(22137067013423132-=----=---+-+=r r r r .第4节 递推公式法及数学归纳法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,1n -阶或1n -阶与2n -阶等)的线性关系式,这种关系式称为递推关系式.根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n 阶行列式的值,这种计算行列式的方法称为递推法.使用递推方法首先要利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明.但给定一个行列式要猜想其值是比较困难的,因此数学归纳法一般直是用来证明行列式等式.例1 计算n 阶行列式4314314314=n D . 解 按第一列展开2113443143143140134----=-=n n n n D D D D .于是有32211333------=-=-n n n n n n D D D D D D =1312=-=D D ,及)(3)(3322211------=-=-n n n n n n D D D D D D =n n D D 3)(3122=-=- .从上两式削去1-n D ,得)13(211-=+n n D . 对于形如 的所谓三角行列式,可直接展开得两项递推公式21--+=n n n D D D βα,然后采用如下方法求解.方法1 如果n 较小,则直接递推计算.方法2 用第二数学归纳法:即验证1=n 时结论成立,设k n ≤结论成立,若可证明出1+=k n 时结论也成立,则对任意自然数结论也成立.方法3 将21--+=n n n D D D βα变形为)(211----=-n n n n pD D q pD D ,其中α=+q p ,β=-pq .由韦达定理知p 和q 是一元二次方程02=--βαx x 的两个根.确定p 和q 后,令1)(--=n n pD D x f ,利用)1()(-=n qf n f 递推求出)(n f ,再由)(1n f pD D n n +=-递推求出n D .方法4 设n n D x =,代入021=----n n n D D D βα,得021=----n n n x x x βα,因此有02=--βαx x (称为特征方程),求出根1x 和2x (假设21x x ≠),则1122n n n D k x k x =+这里1k ,2k 可通过取1n =和2n =来确定.例2 求n 阶行列式的值0110110110110=n D .解 按第一行展开得2--=n n D D ,即.02=+-n n D D 作特征方程012=+x 解得i x i x -==21,,则n n n i b i a D )(-⋅+⋅= )1(当1=n 时,01=D ,代入)1(式得;0=-ib ia 当2=n 时,12-=D ,代入)1(得1-=--b a 联立求解得21==b a ,故1()2n nn D i i ⎡⎤=+-⎣⎦. 例3 计算n 阶行列式xa a a a a x x xD n n nn +---=--12211000010001. 解 用数学归纳法 当2=n 时21122)(1a a x x a x a x D ++=+-==212a x a x ++.假设k n =时,有k k k k k k a x a x a x a x D +++++=---12211 .则当1+=k n 时,把1+k D 按第一列展开,得11+++=k k k D xD D=1111)(+--+++++k k k k k a a x a x a x x =12111+-++++++k k k k k a x a x a x a x .第5节 利用德蒙行列式德蒙行列式具有逐行元素方幂递增的特点,因次遇到具有逐行(或列)元素方幂递增或者递减的行列式时,可以考虑将其转化为德蒙行列式并利用相应的结果求值.定义 1 德蒙行列式()1232222123111111231111n n ijnj i nn n n n na a a a D ab a a a a a a a a ≤≤----==-∏.例1 计算行列式2122122111222212121111111------+++++++++=n n n n n n n n n n x x x x x x x x x x x x x x x D. 解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得德蒙行列式112112222121111---=n nn n n n x x x x x x x x x D=1()i j j i nx x ≤<≤-∏,其中“∏”表示连乘号.第6节 计算行列式杂例计算某些行列式有时特意把原行列式加上一行一列再进行计算,这种计算行列式的方法叫做加边法.当然,加边后要保证行列式的值不变,并且要使所得的高一阶行列式容易计算.要根据需要和原行列式的特点选取所加的行和列.加边法适用于某一行(列)有一个相同的字母的行列式,也可用于其列(行)的元素分别为1-n 个元素的倍数的情况.例1[3] 计算行列式db aD +++=111111111.解 给原行列式加边dba D +++=1110111011101111=+->ir r i 11db a 0010010011111---=+++121313111c c a c c dc c b db a d b a 000000001111111+++=abd d b a )1111(+++.例2[3]计算行列式229132413232213211x x D --=.解 由行列式定义知D 为x 的4次多项式,当1±=x 时,1,2行相同,有0=D ,所以1±=x 为D 的根;当2±=x 时,3,4行相同,有0=D , 所以2±=x 为0D =的根.故0D =有4个1次因式:1x +,1x -,2x +,2x -.设)2)(2)(1)(1(-+-+=x x x x a D ,令0=x ,则129132513232213211-==D ,即,12)2)(1(1-=--⋅⋅a ,所以3-=a .所以)2)(2)(1)(1(3-+-+-=x x x x D .当行列式各行(列)和相等,且除对角线外其余元素都相同可采用如下步骤. (1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式D *除主对角线外,其余元素均为0;(2)计算D *的主对角线各元素的代数余子式()ij 1,2,,A i n =;(3) ∑=*-=nj i ij A x D D 1.例 3[3] 求行列式的值n 111211212111n n D n --=-.解 在n D 上的各个元素上加上(-1)后()()1(1)2001-n 001-n 0D1(1)1-n 0n n n n n -*==--.又12)1(11,21)1()1(-----====n n n n n n n A A A ,其它的是零,所以()()()()()()()()()1211211111)1(1121n -----*--=--+--=+=-∑n n n n n n nnij ij n n n n n A D D n .以上是行列式计算常用的方法,在实际计算中,不同的方法适应于具有不同特征的行列式,如定义法一般适用于0比较多的行列式.当某行或某列含有较多的零元素,可采用降阶的方法每一种方法都有其各自的优点及其独特之处,因此研究行列式的解法有非常重要的意义.第2章 行列式的应用第1节 行列式在代数中的应用2.1 用行列式解线性方程组如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* ,的系数行列式0≠D , 那么,这个方程组有解,并且解是唯一的,可表示为DD x D Dx D D x n n ===,,,2211 . 例1[4] 求一个二次多项式()f x ,使(1)1f =-,(1)9f -=,(2)3f =-. 解 设所求的二次多项式为,2012()f x a x a x a =++,则有012012012(1)1(1)9(2)423f a a a f a a a f a a a =++=-⎧⎪-=-+=⎨⎪=++=-⎩ ,可求得系数行列式11111160421D =-=≠,所以可用克拉默法则求解,又11119116321D -=-=-, 211119130431D -==--, 311111918423D -=-=-. 解得101D a D ==,215D a D ==-,323Da D==. 于是所求的二次多项式为2()53f x x x =-+.2.2 用行列式证明恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零,利用行列式的这些性质,我们可以构造行列式来证明等式.例2 已知0a b c ++=,求证abc c b a 3333=++. 证明 令abc c b a D 3333-++=,则0111)(=++=++++++==acb b ac c b a acbb ac c b a c b a c b a ac bb a cc b a D ,命题得证.第2节 行列式在几何中的应用利用行列式我们可以解决集合中的一些问题,例如求平面三角形面积,在解析几何中用行列式表示直线的方程,以及三线共点和三点共线的几何问题,接下来我们就来讨论一下行列式在这几方面的应用.1[5]用行列式表示三角形的面积以平面三点),(11y x P ,),(22y x Q ,),(33y x R 为顶点的PQR ∆的面积S 是11121332211y x y x y x . 证明 将平面),(11y x P ,),(22y x Q ,),(33y x R 三点扩充到三维空间,其坐标分别为),,(11k y x ,),,(22k y x ,),,(33k y x ,其中k 为任意常数, 由此可得)0,,(1212y y x x PQ --=,)0,,(1313y y x x PR --=.),0,0(13131212y y x x y y x x PR PQ ----=⨯.PQR ∆面积为><=PR PQ S ,21313121221yyxxyyxx----==1313121221yyxxyyxx----=11121332211yxyxyx.例1 (2001年全国高考试题)设抛物线pxy22=(0p>)的焦点为F,经过焦点F的直线交抛物线交于A、B两点,点C在抛物线的准线上,且xBC//轴,求证AC 经过原点.证明设A、B两点的坐标为),(11yxA、),(22yxB,由于点C在抛物线的准线上,且xBC//轴,则),2(2ypC-,由抛物线焦点弦性质221pyy-=,得122ypy-=,故ccccaaaayxyxyxyxyxyx+-ccccyxyxyxyx01111+-=22)22(112211221=-=+=ypyppyypypy,所以AC经过原点.2[5]用行列式表示直线方程直线通过两点),(11yxP和),(22yxQ的直线方程为11221101x yx yx y=)1(证明由两点式,直线PQ方程为221212x x y yx x y y--=--.将上式展开并化简,得2122121=+-+--xyyxyxyxxyxy,此式可进一步变形为0111122112121=+-y x y x x x yy y x,此式为行列式)1(按第三行展开所得结果,原式得证.3[6] 三线共点 平面三条互不平行的直线,0,0,333322221111=++=++=++c y b x a L c y b x a L c y b x a L 相交于一点的充要条件是1112223330a b c a b c a b c =. 4[6] 三点共线平面三点),(11y x P ,),(22y x Q ,),(33y x R 在一直线的充要条件是1122331101x y x y x y =. 第3节 行列式在多项式理论中的应用实系数二元二次多项式F Ey Dx Cy Bxy Ax +++++22在复数域是否可以分解因式,是初等数学的一个重要问题,它不仅关系到因式分解,而且关系到判别方程022=+++++F Ey Dx Cy Bxy Ax 表示曲线的类型及解二元二次方程,能简单明了地判定二元二次多项式的可分解性.例1[7] 求证)()()()(222cz by ax cy bx az cx bz ay cz by ax ++-++++++++))(())(()(cy bx az cz by ax cy bx az cx bz ay cx bz ay ++++-++++-++ ))((222222xz yz xy z y x ac bc ab c b a ---++---++=.证明 左边cxbz ay cz by ax cy bx az cy bx az cx bz ay cz by ax ++++++++++++=111xb a y ac z c b z a c y c b x b a cy bx az z a c y c b x b a z c b y b a x a c cz by ax )()()()()()()()()()()()(01-------+-+-++-------+-+-++= xb a y ac z c b z a c y c b x b a z a c y c b x b a z c b y b a x a c )()()()()()()()()()()()(-------+-+--------+-+-=⎝⎛------+------+------+------=)()()()()()()()(222a c b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c ⎝⎛------+⎪⎪⎭⎫------+ ⎝⎛------+⎪⎪⎭⎫------+)()()()()()()()(b a b a a c a c yz a c a c c b c b b a c b a c b a xy c b c b b a b a xz c b a c b a c b ⎪⎪⎭⎫------+)()(xy b a b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c )()()()()()()()(222------+------+------+------=xz c b a c b a c b yz b a c b a c b a )()()()(------+------+))((222222xz yz xy z y x ac bc ab c b a ---++---++=.结论本文对行列式的计算方法进行了概括和总结,主要从n阶行列式的特点出发,通过例题的形式列举了行列式的几种主要计算方法.不仅较完满地解决了一些较难的求解问题,而且解决了代数,解析几何等方面的问题,从数形结合方面又开辟了新的思考途径,使得行列式的作用不仅限于对方程组的研究,在初等数学的各个方面也看到了行列式的妙用.参考文献[1] 大学数学系几何与代数教研室代数小组,高等代数(第三版) [M],: 高等教育出社,(2003):27-38[2] 乔林,关于行列式的定义及其计算方法 [J],科技信息,2007(25):[3] 万广龙,行列式的计算方法与技巧 [J],China's Foreign Trade ,2011(04)[4] 梁波,例谈行列式的几个应用 [J],学院学报,2006,(4):27-28[5] 汤茂林,行列式在初等代数中的巧用 [J],师学院学报,2008,(3):9-10[6] 周立仁,行列式在初等数学中的几个应用 [J],理工学院学报,2008,(4):17-18[7] 彭丽清,行列式的应用 [J],师学院学报,2005,(5):40-41致谢在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到付丽老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,向她表示衷心的感谢!我还要感谢在一起愉快的度过大学生活的同学们,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成.感谢师长,同学,朋友们给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。

行列式的计算方法总结 毕业论文

行列式的计算方法总结  毕业论文

1 行列式的概念及性质1.1 行列式的概念n 级行列式nnn n nn a a a a a a a a a212222111211等于所有取自不同行不同列的个元素的乘积n nj j j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。

这一定义可写成,这里∑nj j j 21表示对所有n 级排列的求和。

1.2 行列式的性质[1]性质1 行列互换,行列式值不变,即=nn n n n na a a a a a a a a212222111211nnn n n n a a a a a a a a a 212221212111性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外,即=nnn n in i i na a a ka ka ka a a a212111211nnn n in i i na a a a a a a a a k 212111211 这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个nn nnj j j j j j r j j j nnn n nn a a a a a a a a a a a a 21212121)(212222111211)1(∑-=数乘以此行列式。

事实上,nnn n in i i n a a a ka ka ka a a a212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a +nnn n in i i n a a a a a a a a a k212111211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。

性质3 如果行列式中某列(或行)中各元素均为两项之和,即),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。

行列式解法技巧论文完整版

行列式解法技巧论文完整版

1 行列式的基本理论1.1行列式定义定义行列式与矩阵不同,行列式是一个值,它是所有不同行不同列的数的积的和,那些数的乘积符号由他们的逆序数之和有关,逆序数之和为偶数符号为正,逆序数之和为奇数符号为负。

这一定义可以写成a11a12 a1na21 a22 a2n1j1j2j na1j1a2j2anj n,这里j1j2j na n1a n2 a nn表示对所有n级排列求和.j1j2j n1.2行列式的性质1、行列式的行列互换,行列式不变;a11 a12 a1n a11 a21 a n1a21 a22 a2n a12 a22 a n2a n1 a n2 a nn a1n a2n a nn2、互换行列式中的两行或者两列,行列式反号;1a11 a12 a1n a11a12 a1na i1 a i2 a in a k1a k2 a kna k1 a k2 a kn a i1a i2 a ina n1 a n2 a nn a n1a n2 a nn3、行列式中某行乘以一个数等于行列式乘以这个数;a11 a12 a1n a11a12 a1nkai1 kai2 kain k ai1ai2 aina n1 a n2 a nn a n1a n2 a nn4、行列式的某两行或者某两列成比例,行列式为零;a11a12a1n a11 a12 a1nai1 ai2ain ai1 ai2 aink 0ka i1ka i2ka inai1 ai2 aina n1 a n2 a nna n1a n2a nn5、行列式的某一列或者某一行可以看成两列或两行的和时,行列式可拆另两个行列式的和。

a11a12a1na n a12 a1n a11 a12 a1nb1c1b2c2b n c n b1b2b n c1c2c nan1 an2 ann an1 an2 anna n1a n2a nn6、把一行的倍数加到另一行,行列式不变。

7、行列式有两行(列)相同,则行列式为零。

行列式的计算技巧——毕业论文.doc

行列式的计算技巧——毕业论文.doc

2016届本科毕业论文行列式的计算方法姓名:____ *** ____________ 院别:____数学与信息科学学院________ 专业:____数学与应用数学____________ 学号:___ 0000000000______________ 指导教师:__ __ *** ___ ____ 2016年 5月 1日2016届本科生毕业论文目录摘要.................................................... 错误!未定义书签。

关键词....................................................... 错误!未定义书签。

Abstract ..................................................... 错误!未定义书签。

Key words .................................................... 错误!未定义书签。

0 引言....................................................... 错误!未定义书签。

1 基本理论................................................... 错误!未定义书签。

2 行列式的计算技巧........................................... 错误!未定义书签。

2.1 化三角形法........................................... 错误!未定义书签。

2.2 递推法............................................... 错误!未定义书签。

2.3降阶法............................................... 错误!未定义书签。

行列式解法技巧论文完整版讲解

行列式解法技巧论文完整版讲解

1行列式的基本理论1.1行列式定义定义 行列式与矩阵不同,行列式是一个值,它是所有不同行不同列的数的积的和,那些数的乘积符号由他们的逆序数之和有关,逆序数之和为偶数符号为正,逆序数之和为奇数符号为负。

这一定义可以写成()()121212111212122212121n nnn j j j n j j nj j j j n n nna a a a a a a a a a a a τ=-∑,这里12nj j j ∑表示对所有n 级排列求和.1.2行列式的性质1、行列式的行列互换,行列式不变;nnn nn n nnn n n na a a a a a a a a a a a a a a a a a 212221212111212222111211=2、互换行列式中的两行或者两列,行列式反号;nnn n in i i kn k k nnn n n kn k k in i i n a a a a a a a a a a a a a a a a a a a a a a a a2121211121121212111211-= 3、行列式中某行乘以一个数等于行列式乘以这个数;nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111211212111211= 4、行列式的某两行或者某两列成比例,行列式为零;02121211121121212111211==nnn n in i i in i i nnnn n ini i in i i na a a a a a a a a a a a k a a a ka ka ka a a a a a a5、行列式的某一列或者某一行可以看成两列或两行的和时,行列式可拆另两个行列式的和。

nnn n nnnn n n n n nnnn n n n na a a c c c a a a a a ab b b a a a a a ac b c b c b a a a212111211212111221221111211+=+++ 6、把一行的倍数加到另一行,行列式不变。

数学毕业论文《行列式计算的若干种方法及算法实现》

数学毕业论文《行列式计算的若干种方法及算法实现》

山西师范大学本科毕业论文行列式计算的若干种方法及算法实现姓名系别专业班级学号指导教师答辩日期成绩行列式计算的若干种方法及算法实现内容摘要行列式是高等数学中基本而又重要的内容之一,那么认识行列式,并且掌握行列式的性质就显得尤为重要,在此基础上,我们还需要搞清楚行列式的若干种计算方法,这不仅仅是用于高等数学中的计算,行列式也可用于解决许多实际问题。

本文通过行列式的定义,把握行列式的性质,透彻全面的概括了6种行列式的计算方法,包括定义法,化三角法,应用一行(列)展开公式,范德蒙行列式,递推公式法以及加边,本文还提出运用MATLAB来帮助计算行列式,正确的选择计算行列式的方法,使计算更为快捷。

通过这一系列的方法进一步提高我们对行列式的认识,为我们以后的学习带来十分有益的帮助。

【关键词】行列式性质计算方法 MATLABThe determinant of several kinds of calculating method andalgorithmAbstractThe determinant of higher mathematics is the basic and important content of, then know the determinant, and grasps the nature of the determinant is particularly important, based on this, we also need to figure out some kind of calculation method of the determinant, it is not used in the calculation of higher mathematics, the determinant can also be used to solve many problems. In this paper the determinant do understand after, grasp the nature of the determinant, thoroughly comprehensive summary six kinds of determinant calculation method, including definition method, the triangle method, the application of row(column) on a formula, Vander monde determinants, recursive formula method and add edge method. This paper also puts forward to help with MATLAB calculation determinants; the right choice calculation method of the determinant, making the calculation is more quickly. Through this a series of methods to future improve our understanding of the determinant, for the rest of learning brings very useful help.【Keywords】Determinant Properties Calculation method MATLAB目录一、行列式概念的提出 (1)二、行列式的定义 (1)(一)定义1 (2)(二)定义2 (2)(三)定义3 (2)三、行列式的性质 (2)四、行列式的若干种计算方法 (4)(一)定义法 (4)(二)化三角形法 (5)(三)应用一行(列)展开公式 (5)(四)范德蒙行列式 (5)(五)递推公式法 (6)(六)加边法 (7)五、运用MATLAB来解决行列式的问题 (8)六、结束语 (13)参考文献 (13)致谢 (14)行列式计算的若干种方法及算法实现学生姓名: 指导老师: 一、行列式概念的提出我们知道,行列式是高等代数中的一个计算工具,无论是数学中的高深领域,还是现实生活中的实际问题,都或多或少的与行列式有着直接或间接地关系。

行列式解法小结 数学毕业论文

行列式解法小结  数学毕业论文

行列式解法小结数学毕业论文
行列式解法是线性代数中重要的一种方法,可以广泛地应用于各个领域,如物理、工程、经济等。

本文就行列式解法进行了全面的介绍和分析,并探讨了它在实际应用
中的具体作用。

首先,本文阐述了行列式作为一个矩阵的一个属性,描述了它的定义、性质和计算方法。

行列式的定义是通过对一个矩阵中所有可能的排列进行组合,求得的一个标
量值。

它具有很多有用的性质,如行列式关于行和列的互换、行列式的线性性质等。

计算行列式可以使用伴随矩阵或展开式等方法。

其次,本文讨论了行列式作为一个代数工具的应用。

通过分析行列式与线性方程组之间的关系,我们可以发现,行列式可以被用来检测线性方程组解的性质。

如果行
列式的值为零,则该线性方程组无唯一解。

但如果其值不为零,则有唯一解。

此外,本文还阐释了行列式在求解矩阵乘法、求逆矩阵及求解特征值的应用。

通过行列式解法可以很容易地计算出矩阵的乘积、逆矩阵以及特征值等,这对于实际应
用中的矩阵相关问题具有很大的意义。

最后,本文对于行列式的具体应用进行了分析。

在物理领域中,如电学和热学计算问题里,行列式经常出现在方程组的解中。

在机器学习领域,行列式也被广泛地应
用于求解数据的特征值和特征向量。

在工业制造领域中,行列式可以用于计算机器人
的运动,以及控制系统的分析。

综上所述,行列式在数学中具有很重要的地位,并且在各个应用领域都有着非常广泛的应用。

因此,学习和掌握行列式解法对于从事数学及相关领域的人员来说是非
常必要的。

行列式的计算及应用毕业论文

行列式的计算及应用毕业论文

行列式的计算及应用毕业论文行列式的计算及应用毕业论文目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (15)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (17)3.6 行列式在实际中的应用 (18)总结 (20)参考文献 (21)附录1 (22)附录2 (22)附录3 (23)谢辞 (24)1. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D21212121)(212222111211)1(∑-==τ, (1-1-2)这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为n i i i i i i i i i nn n n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ.(1-1-3) 1.2 行列式的相关性质记 nnn n n na a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='.性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D += 可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -= 性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D ,交换D 相同的那两行,由性质4可得D D -=,故.0=D性质6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.2. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算。

行列式的计算方法和解析论文

行列式的计算方法和解析论文

行列式的计算方法和解析论文行列式是线性代数中重要的概念,其在矩阵理论、向量空间等方面有广泛的应用。

行列式的计算方法包括拉普拉斯展开、按行(列)展开、递推法等。

行列式的计算方法在不同的场景下有不同的适用性,下面将详细介绍行列式的计算方法及其应用,并从一篇经典的解析论文中探讨行列式在数学研究中的作用。

一、行列式的计算方法1.拉普拉斯展开法:拉普拉斯展开法是求行列式的一种常用的计算方法。

假设A是一个n阶方阵,其中元素用a_ij表示,对于任意一个a_ij,可以通过展开该元素所在的行和列的其他元素来计算行列式的值。

拉普拉斯展开法的基本原理是递归地求解子行列式的值,直到得到一个1阶行列式。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过拉普拉斯展开法按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(a_22*a_33-a_23*a_32)-a_12*(a_21*a_33-a_23*a_31)+a_13*(a_21*a_32-a_22*a_31)其中,A_11,表示去掉第一行第一列元素的2阶子行列式,以此类推。

2.按行(列)展开法:按行(列)展开法是求行列式的另一种计算方法。

通过选择其中一行(列),将行列式扩展为若干个较小阶的子行列式,最终递归地计算行列式的值。

按行展开和按列展开所得到的计算表达式相同,只是展开的方式不同而已。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(-1)^(1+1)*(a_22*a_33-a_23*a_32)-a_12*(-1)^(1+2)*(a_21*a_33-a_23*a_31)+a_13*(-1)^(1+3)*(a_21*a_32-a_22*a_31)其中,(-1)^(i+j)是代数余子式。

行列式的计算毕业论文

行列式的计算毕业论文

渤海大学毕业论文题目:行列式的计算系别:数学系专业:数学与应用数学班级: 03级五班姓名:徐元姣指导教师:李春目录摘要 (2)引言 (3)一、行列式的定义和性质 (3)1、行列式的定义 (3)2、行列式的性质 (5)二、行列式计算的若干方法 (8)1、化三角形法 (8)2、降阶法(按行(列)展开法) (14)3、升阶法(加边法) (18)4、拆分法 (19)5、泰勒公式法 (21)6、利用范德蒙行列式 (23)7、导数法 (24)8、积分求行列式 (25)9、行列式乘积法 (27)10、递推法 (29)11、数学归纳法 (32)12、循环矩阵的行列式的计算方法 (35)13、利用矩阵行列式公式 (39)14、利用方阵特征值与行列式的关系 (40)结束语………………………………………………………………………………………42参考文献……………………………………………………………………………………43行列式的计算摘要:行列式是高等数学的一个基本的概念。

求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法。

本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式求值方法。

如:化三角形法、降阶法、升阶法、泰勒公式法、范德蒙行列式等十多种方法。

并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征。

关键词:行列式,定义,计算方法。

The Calculation of DeterminantXu Yuanjiao(Department of Mathematics BohaiUniversity Liaoning Jinzhou 121000 China)Abstract: The determinant is a basic concept of higher mathematics. The solution of determinant is the basic question, and each kind of complex higher order determinant has its special solution method. This paper mainly introduces the methods for calculation of determinant. For example, the triangle method, rise-lower method, analyzes the law, Taylor formula, Vandermonde determinant, and so on. The paper also analyzes the corresponding examples, and summarizes the characteristic of determinants corresponding to each method.Key words: Determinant, Definition, Calculation.引言行列式是高等代数中的重点部分,讲到行列式,我们通常会联想到用克兰姆法则求解线性方程组.但是行列式的作用不仅仅只用于求解线性方程组.在解析几何中,用行列式方法可以判别三点共线和三向量共面、计算平行六面体的体积等等.它不仅是研究线性方程组基本工具,也是讨论向量矩阵和二次型的重要工具之一。

行列式的解法技巧 毕业论文

行列式的解法技巧  毕业论文

目录摘要 (1)前言 (2)一、行列式的基本理论 (2)(一)行列式定义 (2)(二)行列式的性质 (2)(三)基本理论 (4)(四)几种特殊行列式的结果 (4)二、行列式的计算技巧 (5)(一)定义法 (5)(二)化成三角形行列式法 (5)(三)两条线型行列式的计算 (7)(四)箭型行列式的计算 (8)(五)三对角行列式的计算 (8)(六)利用范德蒙行列式 (10)(七)H ESSENBERG型行列式的计算 (10)(八)降阶法 (11)(九)加边法(升阶法) (12)(十)计算行(列)和相等的行列式 (13)(十一)相邻行(列)元素差1的行列式计算 (14)(十二)线性因子法 (15)(十三)辅助行列式法 (16)(十四)n阶循环行列式算法 (17)(十五)有关矩阵的行列式计算 (18)(十六)用构造法解行列式 (19)(十七)利用拉普拉斯展开 (20)三、用多种方法解题 (21)总结 (25)参考文献: (25)行列式的解法技巧摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。

本文先阐述行列式的基本理论,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。

通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。

关键词:行列式 , 矩阵, 范德蒙行列式 ,递推法Determinant of the solution techniqueAbstract:Determinant is an basic and important subject in advanced algebra ,it is veryuseful in mathematic. It is very important to know how to calculate determinant. The paperfirst introduced the basic nature of determinant,then introduced some methods, Finally,withthe other determinant of knowledge on the links in several other ways.,through this series ofmethods will futher enhance our understanding of the determinant,on our learning will bringvery useful help.Keywords: Determinant,matrix,Vandermonde Determinant,recurrence method前言行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题技巧进行总结归纳。

行列式的计算方法研究毕业论文

行列式的计算方法研究毕业论文

昆明学院2010 届毕业设计(论文)设计(论文)题目行列式的计算方法研究姓名学号 S006054127所属系数学系专业年级数学与应用数学2006级数学<1>班指导教师2010年 5 月摘要在线性代数中,行列式是个函数。

在本质上,行列式描述的是在n维空间中一个线性变换所形成的“平行多面体”的“体积”。

行列式的概念出现的根源是解线性方程组。

本论文首先,对行列式的计算方法进行总结,并对计算方法进行举例。

其次,n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法。

最后,值得注意的是,在同一个行列式有时会有不同的求解方法,这就要根据行列式的特点选择适当的方法了。

关健词:行列式计算方法方法举例AbstractIn linear algebra, the determinant is a function.In essence, the determinant dimensional space described in a linear transformation.The formation of "parallel polyhedron" and "volume".The concept of the root of the determinant there is solution of linear equations.The paper on the summary of the calculation of the determinant and the calculation method for example.n-order determinant have many the calculation methods,Fewer non-zero elements Can be calculated using the definition(1.In accordance with the start of a column or a row. 2.Full expansion.). More determinant of the nature of the calculation is to use.In particular, observe the characteristics of the subject request,Flexible Selection Method.It is to be noted that In the same determinant sometimes will have different methods for solving. Here are some commonly used methods and illustrate with examples.Keywords:Determinant Calculation motheds illustrate with examples目录前言 (1)第一章普遍法求行列式1.1利用行列式的定义直接计算 (2)1.2利用行列式的性质计算 (2)1.3化为三角形行列式 (3)1.3.1直接化为阶梯型 (3)1.3.2相同去项化上三角形 (4)第二章特殊法求行列式2.1降阶法(按行(列)展开法) (5)2.1.1先简后展 (5)2.1.2 按第一行(列)展开 (6)2.2 递(逆)推公式法 (7)2.2.1等差数列递推 (7)2.2.2“一路直推” (9)2.2.3对角递推 (9)2.3利用德蒙行列式 (11)2.3.1变形德蒙行列式 (11)2.3.2 系数德蒙行列式 (12)2.3.3利用行列式性质凑德蒙行列式 (13)第三章其他方法求行列式3.1加边法(升阶法) (14)3.1.1“0”和“字母”加边 (14)3.1.2“0”和“1”加边 (14)3.2 数学归纳法 (16)3.2.1第一数学归纳法 (16)3.2.2第二数学归纳法 (17)3.2.3猜测归纳法 (17)3.3拆开法 (19)3.3.1对角拆开 (19)3.3.2按行(列)拆 (19)参考文献.............................................................................................21. 辞. (22)前言在线性代数中,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作)det(A。

行列式的计算方法和解析论文

行列式的计算方法和解析论文

行列式的计算方法与解析1、化三角形法此种方法是利用行列式的性质把给定的行列式表示为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式。

三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的N 阶三角形行列式等于次对角线上元素之积且带符号。

例1计算N 阶行列式a b b b a b b b a D n = 解()[]a b ba bb b n a D n1111-+=()[]b a b a bb b n a ---+=000011()()11n a n b a b-=+-⎡⎤⎣⎦-2、利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值。

例2 计算n 阶行列式n a b b c a b c c a D =,其中0,≠≠bc c b解 将n D 的第一列视为(a-c )+c,0+c,……,0+c,据行列式的性质,得0000na c cb b ac b b c b b c a b a b c a b c c a c a c c a D -+-+==++()()11n n n a c c a bD D --∴=-+- (1)由b 与c 的对称性,不难得到()()11n n n a b b a c D D --=-+- (2)联立(1),(2)解之,得()()()1n n n b c b c a c a b D -⎡⎤=-⎢⎥⎣⎦---例3 计算n 阶行列式00010001000000n a b ab a b ab a b a bab a bD +++=++解 将n D 按第一行展开,得()110000000001n n aba b a b ab a b ab a bD D -+=+-++于是得到一个递推关系式 ()12n n n a b ab D D D --=+-,变形得()112nn n n b a b D D D D ----=- ,易知 ()()2312334n n n n n n b b b D D D D D D a a ------=-=- ()()()22212n n n b ab b a b a b D D aaa --⎡⎤==-==⎢⎥⎣⎦--++所以1nn n b D D a -=+,据此关系式再递推,有()11222nn nn n n n b b b b a a a a D D D ----=++=++1122111n n n n n n n n b b a a a a b b a a b b D -----==++++=++++如果我们将n D 的第一列元素看作a+b,1+0,……0+0,按第一列拆成两个行列式的和,那么可直接得到递推关系式 1n n n b D D a -=+,同样可n D 的值。

行列式的计算方法论文范文

行列式的计算方法论文范文

华北水利水电学院行列式的计算方法课程名称:线性代数专业班级:成员组成:联系方式:2012年11月4日行列式的计算方法摘要:线性代数是大学数学教育中一门主要基础课程,而行列式又是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,因此学会怎样计算行列式对你学好线性代数这门课程有和大的帮助。

下文是关于行列式的计算方法的一些总结和归纳,其中共总结了10种方法,并附有关于此方法的应用的案例、例题,介绍一些解题技巧。

关键词:行列式 计算方法 性质 例题Abstract: linear algebra is the university mathematics education is a main basic course, and column type is also the higher algebra basic and important subject in one, in the mathematics of a wide range of applications, so learn how to compute the determinant in linear algebra for you to learn the course and great help. The following is about the calculating methods of determinant of some summary and conclusion, which were summarized 10 kinds of methods, and with the application of this method to the case, example, introduces some problem solving skill.Key words: determinant calculation method character example.一、 前言随着科学技术的发展,很多前沿科学都需要运用行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1行列式的基本理论1.1行列式定义定义 行列式与矩阵不同,行列式是一个值,它是所有不同行不同列的数的积的和,那些数的乘积符号由他们的逆序数之和有关,逆序数之和为偶数符号为正,逆序数之和为奇数符号为负。

这一定义可以写成()()121212111212122212121n nnn j j j n j j nj j j j n n nna a a a a a a a a a a a τ=-∑,这里12nj j j ∑表示对所有n 级排列求和.1.2行列式的性质1、行列式的行列互换,行列式不变;nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=2、互换行列式中的两行或者两列,行列式反号;nnn n ini i kn k k nnnn n kn k k in i i n a a a a a a a a a a a a a a a a a a a a a a a a2121211121121212111211-= 3、行列式中某行乘以一个数等于行列式乘以这个数;nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111211212111211= 4、行列式的某两行或者某两列成比例,行列式为零;02121211121121212111211==nnn n ini i ini i nnnn n in i i ini i na a a a a a a a a a a a k a a a ka ka ka a a a a a a5、行列式的某一列或者某一行可以看成两列或两行的和时,行列式可拆另两个行列式的和。

nnn n n nnn n n n n nnnn n n n na a a c c c a a a a a ab b b a a a a a ac b c b c b a a a212111211212111221221111211+=+++6、把一行的倍数加到另一行,行列式不变。

7、行列式有两行(列)相同,则行列式为零。

1.3 基本理论1.⎩⎨⎧=≠=+++ji ji D A a A a A a jn in j i j i ,0,2211 其中ij A 为元素ij a 代数余子式。

2.降阶定理B CA D A DCB A 1--=3.C A CO B A =4.B A AB =5.非零矩阵k 左乘行列式的某一行加到另一行上,则新的分块行列式与原来相等。

1.4几种特殊行列式的结果1. 三角行列式nn nnn n a a a a a a a a a 221122211211000=(上三角行列式)nn nnn n a a a a a a a a a221121222111000=(下三角行列式)2. 对角行列式nn nna a a a a a 221122110000=3.对称与反对称行列式nnn n nn a a a a a a a a a D 212222111211=满足)2,1,2,1(n j n i a a ji ij ===,D 称为对称行列式000321332312232111312 n n n n nn a a a a a a a a a a a a D =满足)2,1,(n j i a a ji ij =-=,D 称为反对称行列式。

若阶数n 为奇数时,则D=04.)(1111111312112232221321j ni j i n nn n n nn n a a a a a a a a a a a a a a D -==∏≤≤≤----2行列式的计算技巧2.1定义法例1:计算行列式000000053524342353433323125242322211312a a a a a a a a a a a a a a a a D = 解:由行列式定义知∑-=nn n j j nj j j j j j a a a D 1212121),,,()1(τ,且0151411=a a a , 所以D 的非零项j ,只能取2或3,同理由0551*******=====a a a a a ,因而54j j 只能取2或3,又因51j j 要求各不相同,故521j j j a a a 项中至少有一个必须取零,所以D=0。

2.2化成三角形行列式法将行列式化为上三角形行列式计算步骤,如果第一行第一个元素为零,首先将第一行(或第一列)与其它任一行(或列)交换,使第一行第一个元素不为零,然后把第一行分别乘以适当数加到其它各行,使第一列除第一个元素外其余元素全为零,再用同样的方法处理除去第一行加第一列余下的低阶行列式依次做下去,直至是它成为上三角形行列式,这时主对角线上元素的乘积就是行列式的值。

例2 计算行列式ab b b b a b b bb a b bb b a D n =解:各行加到第一行中去[]ab b b ba b b bb a b b n a a b bba b bn a b n a b n a D n 1111)1()1()1()1(-+=-+-+-+=[][]1)()1(000000001)1(---+=----+=n b a b n a ba bb a bba b b n a例3 计算行列式12212154314321321---=n n n nnn D解:从倒数第二行(-1)倍加到第n 行1111011110111101322)1(1111111111111111321n n n n n n n n n nn ---+----将所有列加到第一列上n n n nnn n nn n n 001112)1(11111111112)1( ---+---+=)倍加各行上第一行的(nnn n nnn n n1)1(2)1(001112)1(--+=---+=12)1(2)1()1(--+-=n n n n n2.3两条线型行列式的计算除了较简单的行列式(如上、下三角行列式等)可以用定义直接计算,少数几类行列式可利用行列式性质直接计算外,一般行列式计算的主要方法是利用行列式的性质做恒等变形化简,使行列式中出现较多的零元素,然后直接用特殊的行列式的值来计算(如上(下)三角行列式等)或利用按行(列)展开定理降低行列式的阶数。

例4 nnn n a b b a a b a D n 00000000011211--=阶行列式 计算.解: 按第1列展开得13322111132210000000000)1(0000000000-+---+=n n n n n n b b a b a b b a b a a b a a D()n n n b b b a a a 211211+-+= .2.4箭型行列式的计算对于形如的所谓箭型(或爪形)行列式,可以直接利用行列式性质化为三角或次三角形行列式来计算,即利用对角元素或次对角元素将一条边消为零。

例5 计算行列式 10010101201111n n D n -=. 解:())1211(!10000010020012111111212)1(11nn n n nc nc c c n n n n n nD ----=-----=-- 2.5三对角行列式的计算对于形如的所谓三对角行列式,可直接展开得到两项递推关系21--+=n n n D D D βα,然后采用如下的一些方法求解。

方法1 如果n 比较小,则直接递推计算方法2 用第二数学归纳法证明:即验证n=1时结论成立,设k n ≤ 时结论也成立,若证明n=k+1时结论也成立,则对任意自然数相应的结论成立方法 3 将21--+=n n n D D D βα变形为)(211----=-n n n n pD D q pD D ,其中α=+q p ,β=-pq 由韦达定理知p 和q 是一元二次方程02=--βαx x 的两个根。

确定p 和q 后,令()1--=n n pD D x f ,则利用()()1-=n qf n f 递推求出()n f ,再由()n f pD D n n +=-1递推求出n D 。

方法4 设n n x D =,代入021=----n n n D D D βα得0=--βαx x n (称之为特征方程),求出其根1x 和2x (假设21x x ≠),则n n n x k x k D 2211+=,这里1k ,2k 可通过n=1和n=2来确定。

例6 计算行列式 βααββαβααββααββα+++++=100000010001000n D .解:将行列式按第展开,有n,)(21---+=n n n D D D αββα 112(),n n n n D D D D αβα----=- 112(),n n n n D D D D βαβ----=-得 n n n n n n D D D D D D βαβαβα=-==-=-----)()(1223221 同理,得 n n n D D αβ=--1,所以 ⎪⎩⎪⎨⎧≠--=+=++.,;,)1(11βαβαβαβααn n n n n D2.6利用德蒙行列式德蒙行列式具有逐行元素递增的特点。

因此遇到具有逐行(或列)元素方幂递增或递减的所谓德蒙型的行列式时,可以考虑将其转化为德蒙行列式并利用相应的结果求值例7 计算行列式 21-n 221-n 2211-n 1222212121111111---+++++++++=n nn n n n n n x x x x x x x x x x x x x x x D. 解:把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此推直到把新的第1-n 行的-1倍加到第n 行,便得德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏.2.7 Hessenberg 型行列式的计算对于形如,的所谓Hessenberg 型行列式,可直接展开得到递推公式,也可利用行列式的性质化简并降阶。

例8 计算行列式 )1(1)2(222111321---------=n n n n nn D n解: 将第1,2··n-1 列加到第n 列,得1)2(222112)1(1321------+-=n n n n n n D n1)2(211)1(2)1(1-----•+=+n n n n n2)!1()1(1+-=+n n 2.8降阶法将行列式的展开定理与行列式性质结合使用,即先利用性质将行列式的某一行(或某一列)化成仅含一个非零元素,然后按此行(列)展开,化成低一阶的行列式,如此继续下去,直到化为三阶或二阶行列式直接计算出结果。

相关文档
最新文档