高等数学下册复习题模拟试卷和答案
高等数学下考试题库(附答案)
高等数学下考试题库(附答案)《高等数学》试卷1(下)一.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ()..4 C2.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y xB.(){}21,22<+<="" y="">C.(){}21,22≤+<="" y="">4.两个向量a与b 垂直的充要条件是(). A.0=?b a B.0 =?b a C.0 =-b a D.0 =+b a5.函数xy y x z 333-+=的极小值是(). B.2- D.1-6.设y x z sin =,则4,1πyz =().22B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为(). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设1333+--=xy xy y x z ,则=yx z2_____________________________.4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D .4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分?2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省 .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4. ()n n n n x ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.??=?πππρρρ?202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为().A.6πB.4πC.3πD.2π 3.函数()22arcsin y x z +=的定义域为().A.(){}10,22≤+≤y x y xB.(){}10,22<+<="" y="">C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x4.点()1,2,1--P 到平面0522=--+z y x 的距离为(). .4 C5.函数22232y x xy z --=的极大值为(). B.1 C.1- D.2 16.设223y xy x z ++=,则()=??2,1xz ()..7 C7.若几何级数∑∞=0n n ar 是收敛的,则().A.1≤rB. 1≥rC.1<r< bdsfid="197" p=""></r<>D.1≤r8.幂级数()n n x n ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分?2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积. 试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? .3.22,zxy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分)2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为()A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为()(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21 C 、1 D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学下册复习题模拟试卷和答案.
∫ (ex sin y − 2 y)dx + (ex cos y − 2)dy
9、 利用格林公式计算 L
,其中
L 为沿上半圆周 (x − a)2 + y2 = a2, y ≥ 0 、从 A(2a, 0) 到 O(0, 0) 的弧段.
y′ −
y
3
= (x +1)2
6、求微分方程
x +1
的通解.
四.解答题(共 22 分)
3 .已知 z = e xy ,则 ∂x = (1,0)
。 。
∫ 4 .设 L 为 x 2 + y 2
= 1上点 (1,0)到 (−1,0)的上半弧段,则
2ds =
L
。
e
ln x
∫ ∫dx f (x, y)dy =
5 .交换积分顺序 1 0
。
∑∞ (−1)n
6 .级数 n=1 n 是绝对收敛还是条件收敛?
⎧x + y + 3z = 0
(1)设直线
L
为
⎨ ⎩
x
−
y
−
z
=
0
,平面 π 为 x − y − z +1 = 0 ,则 L 与 π 的夹角为(
);
π
π
π
A. 0
B. 2
C. 3
∂z
(2)设 z
=
f
(x,
y) 是由方程 z3
− 3xyz
=
a3 确定,则
∂x
=
(
D. 4
);
yz
yz
xz
xy
A. xy − z2
间断点
(C)无穷
(D)振荡
高等数学(下册)期末复习试题及答案
一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。
高等数学下期末试题(七套附答案)
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分) 1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
大学高数下册试题及答案
大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。
令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。
高等数学下考试题库(附答案)
⾼等数学下考试题库(附答案)《⾼等数学》试卷1(下)⼀.选择题(3分?10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ().A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有().A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是().A.(){}21,22≤+≤y x y x B.(){}21,22<+C.(){}21,22≤+y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是().A.0=?b aB.0 =?b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极⼩值是(). A.2 B.2- C.1 D.1- 6.设y x z sin =,则4,1πyz =().A.22 B.22- C.2 D.2- 7.若p 级数∑∞=11n p n 收敛,则(). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为().A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=??02在收敛域内的和函数是().A.x -11 B.x -22 C.x -12 D.x-21 10.微分⽅程0ln =-'y y y x 的通解为().A.xce y = B.xe y = C.xcxe y = D.cxe y =⼆.填空题(4分?5)1.⼀平⾯过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平⾯⽅程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分?6)1.设v e z usin =,⽽y x v xy u +==,,求.,yz x z 2.已知隐函数()y x z z ,=由⽅程05242222=-+-+-z x z y x 确定,求.,yz x z 3.计算σd y x D+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱⾯所围成的⽴体的体积(R 为半径).四.应⽤题(10分?2)1.要⽤铁板做⼀个体积为23m 的有盖长⽅体⽔箱,问长、宽、⾼各取怎样的尺⼨时,才能使⽤料最省? .试卷1参考答案⼀.选择题 CBCAD ACCBD ⼆.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin . 2.12,12+=??+-=??z yy z z x x z . 3.?=πππρρρ?202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应⽤题1.长、宽、⾼均为m 32时,⽤料最省.2..312x y =《⾼数》试卷2(下)⼀.选择题(3分?10)1.点()1,3,41M ,()2,1,72M 的距离=21M M (). A.12 B.13 C.14 D.152.设两平⾯⽅程分别为0122=++-z y x 和05=++-y x ,则两平⾯的夹⾓为(). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为().A.(){}10,22≤+≤y x y x B.(){}10,22<+C.()?≤+≤20,22πy x y x D.()?<+<20,22πy x y x 4.点()1,2,1--P 到平⾯0522=--+z y x 的距离为(). A.3 B.4 C.5 D.6 5.函数2 2232y x xy z --=的极⼤值为().A.0B.1C.1-D.21 6.设223y xy x z ++=,则()=??2,1xz ().A.6B.7C.8D.9 7.若⼏何级数∑∞=0n nar是收敛的,则().A.1≤rB. 1≥rC.1D.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为().A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是(). A.条件收敛 B.绝对收敛 C.发散 D.不能确定⼆.填空题(4分?5)1.直线l 过点()1,2,2-A 且与直线??-==+=t z t y t x 213平⾏,则直线l 的⽅程为__________________________.2.函数xye z =的全微分为___________________________.3.曲⾯2242y x z -=在点()4,1,2处的切平⾯⽅程为_____________________________________.三.计算题(5分?6)1.设k j b k j i a32,2+=-+=,求.b a ?2.设22uv v u z -=,⽽y x v y x u sin ,cos ==,求.,y z x z 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z 4.如图,求球⾯22224a z y x =++与圆柱⾯ax y x 222=+(0>a )所围的⼏何体的体积.四.应⽤题(10分?2) 1.试⽤⼆重积分计算由x y x y 2,==和4=x 所围图形的⾯积.试卷2参考答案⼀.选择题 CBABA CCDBA. ⼆.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=??-=?? . 3.22,z xy xz y z z xy yz x z +-=??+-=??. 4.-3223323πa . 5.x xe C eC y --+=221.四.应⽤题1.316. 2. 00221x t v gt x ++-=.《⾼等数学》试卷3(下)⼀、选择题(本题共10⼩题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为() A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平⾯x+2y-2z-5=0的距离为() A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为() A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ,分别为() A 、z y z R x --, B 、z y z R x ---, C 、zz R x ,-- D 、zyz R x ,- 6、设圆⼼在原点,半径为R ,⾯密度为22y x +=µ的薄板的质量为()(⾯积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为()A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为()A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n⼆、填空题(本题共5⼩题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹⾓为z y x =-+=-1321___________。
高等数学下册复习题模拟试卷和答案(简单实用共七套题)
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数z =+的定义域为(2)已知函数arctanyz x =,则zx∂=∂(3)交换积分次序,2220(,)y ydy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2xyz +=(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx -(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.225300d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232xy y y x e '''-+=-的特解y *的形式为y *=( ) A.B.()xax b xe + C.()xax b ce ++D.()x ax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :12311x y z ---==-且平行于直线2L :21211x y z+-==的平面方程2、 已知22(,)z f xy x y =,求zx ∂∂, zy ∂∂ 3、设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1co s x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =(10)' 2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数ln(1)z x y =--的定义域为 ;(2)已知函数xyz e =,则在(2,1)处的全微分dz = ; (3)交换积分次序,ln 1(,)ex dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1B 之间的一段弧,则L=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则zx∂=∂( );A. 2yzxy z - B. 2yzz xy - C. 2xzxy z - D. 2xyz xy - (3)微分方程256xy y y xe'''-+=的特解y *的形式为y *=( );A.2()xax b e+ B.2()xax b xe+ C.2()x ax b ce ++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222000sin ad d r drππθϕϕ⎰⎰⎰ B.22000ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x∞=-∑,则其收敛半径( ).2B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e+=,求zx ∂∂, zy ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDy dxdyx⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x xLe y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1yy x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn xn ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = .4、定积分1200621(sin )xx x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx=.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
高等数学下册试题及答案解析.docx
高等数学(下册)试卷(一)一、填空题(每小题 3 分,共计24 分)1、z =log a ( x2y 2 )( a 0) 的定义域为D=。
2、二重积分ln( x2y 2 )dxdy 的符号为。
|x| |y| 13 、由曲线y ln x 及直线x y e 1 , y 1 所围图形的面积用二重积分表示为,其值为。
4L 的参数方程表示为x(t)(x),则弧长元素ds。
、设曲线y(t)5 、设曲面∑为x2y 29 介于z0 及 z 3 间的部分的外侧,则(x2y21)ds。
6、微分方程dyy tany的通解为。
dx x x7、方程y( 4) 4 y0 的通解为。
8、级数1的和为。
n1n(n1)二、选择题(每小题 2 分,共计16 分)1、二元函数z f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是()(A)f ( x, y)在(x0, y0)处连续;(B)f x( x, y),f y( x, y)在( x0, y0)的某邻域内存在;( C)z f x (x0 , y0 )x f y ( x0 , y0 ) y 当( x) 2(y) 20 时,是无穷小;( D)lim z f x ( x0 , y0 ) x f y ( x0 , y0 ) y0。
22x0(x)( y) y02、设u yf ( x)xf (y), 其中 f 具有二阶连续导数,则x2u y 2 u等于()y x x 2y 2(A)x y ;( B)x;(C) y;(D)0。
3、设: x 2y 2z21, z0, 则三重积分I zdV 等于()( A ) 4 2d2 d1 3sin cos dr ;r 02 dd 1 dr ;( B )r 2 sin0 022 d13sin cos dr ;( C )dr0 02d 13sin cos dr 。
( D )dr0 04、球面 x 2 y 2z 2 4a 2 与柱面 x 2 y 22ax 所围成的立体体积 V=()(A ) 4 2d2 a cos 4a2r 2dr ;(B ) 4 2d2 a cos r 4a2r 2dr ;(C ) 8 2d2 a cos r 4a2r 2dr ;(D )2d2a cos r 4a2r 2dr 。
高等数学下册复习题答案
当( x , y ) (0,0)时, P , Q ,
P Q , 均为连续函数 , 所以原点在 L外时, 积分为零 y x
P Q 的充分必要条件为 , 我们得到a 1 y x
当a 1时 , 原点在L内时, 作一原点为中心 , 半径为r的圆周c , 使c 包含在L内, 在介于L , c之间的区域用格林公式
D D
z Σ1 Σ Σ2 x y
3dV 5 3 4 5 8
十二、周期为 2的函数f ( x )在一个周期的表达式 x 1, x 0 f ( x) 2 x , 0 x 3 它的和函数为s( x ), 求s( ), s(0), s( ) 2
2x 1 1 2 ( 1 )n ( 1 n1 )( x 2 )n , 1 x 3 x x 2 n 0 4
八、设n是曲面2 x 2 3 y 2 z 2 6在点P (1,1,1)处指向外侧的法向量, 求函数 u 1 6 x 2 8 y 2 在点P处的梯度及沿方向 n 的方向导数 z
f ( ) f ( ) 1 2 解:s( ) , 2 2 f (0 ) f (0 ) 0 1 0 2 1 s( 0) , 2 2 2 3 s( ) s( 2 ) s( ) f ( ) 1 2 2 2 2 2
给(1)(2)(3)分别乘
x, y, z
,比较可得
x2 y2 z2 2 2 2 a b c
代入(4)得所求点为 x
a b c ,y ,z . 3 3 3
十. 已知L是平面上不通过原点的任意一条简单闭曲线,取正向,问 a 为何值时, 积分 xdx aydy L x 2 y 2 0 为什么? x ay P 2 xy Q 2axy P ( x, y) 2 Q ( x , y ) , x y2 x 2 y 2 y ( x 2 y 2 ) 2 x ( x 2 y 2 ) 2
高数(下)模拟题答案
高数(下)试题(一)解答一、1.0;2.1a b ⋅= 、3πθ=;3.1x >;4./2xy y =;5.10m =;6.(,)cos cos df x y y xydx x xydy =+;7.13x ≤<;8.312()x y c c x e -=+; 二、 B ;A ;B ;A ;A ;C ;A ;D ;A ;C ; 三、解:所求平面法向量为:11122111i jkn i j ==-+-故所求平面方程为:(1)(1)00x y x y ---=⇒-=. 四、解:两边对x 求偏导得:(1)zz z z z yz yz e yz xy x x x xy z e xy ∂∂∂=+⇒==∂∂∂--; 两边对y 求偏导得:(1)zz z z z xz xz e xz xy y y y xy z e xy ∂∂∂=+⇒==∂∂∂--. 五、解:222222222244164(4)(4)Dx y x y x y dxdy x y dxdy x y dxdy +≤≤+≤+-=--++-⎰⎰⎰⎰⎰⎰2224220224442202(4)(4)2(2)2(2)8647244d r rdr d r rdrr r r r ππθθπππππ=-+-=-+-=+=⎰⎰⎰⎰六、解:因为1(1)nn n a ∞=-∑发散,若lim 0n n a →∞=,则由交错级数可知,必有1(1)n n n a ∞=-∑收敛;故lim 0n n a →∞≠,由于0n a ≥,lim 0n n a →∞∴>,1lim lim11n n n n n u a →∞→∞∴=<+; 故级数11()1nn n a ∞=+∑收敛. 七、解:1(1)n a n n =+ ,1(1)lim lim1(1)(2)n n n na n n a n n +→∞→∞+==++,1;1R ρ∴== 又1x =±时,级数收敛,故收敛区间为[1,1]-;记12111()()()(1)1n n nn n n x x x S x S x S x n n n n ∞∞∞=====-=-++∑∑∑,则有: 1111'(),(11)1n n S x x x x ∞-===-<<-∑,10()ln(1)1xdxS x x x ∴==---⎰;又2211()(())',(11)11n n n n x xxS x xS x x x n x ∞∞===⇒==-<<+-∑∑ 20()ln(1)1xxdx xS x x x x ∴==----⎰,2ln(1)0,()1x x S x x -∴≠=--; ln(1)1ln(1),0()0,0x x x S x xx -⎧+--≠⎪∴=⎨⎪=⎩,又11,lim lim(1)11n n n x S S n →∞→∞===-=+. 八、解:设圆柱体的高为h ,底面半径为r ,222()2hr R +=,又体积为2V r h π=;则拉格朗日函数为2222(,)()4h L r h r h R r πλ=+--,令2222220102()02Lrh r r Lr h h L h R r πλπλλ∂⎧=-=⎪∂⎪∂⎪=-=⎨∂⎪∂⎪=--=⎪∂⎩,解得2222,336h R r h R === 由实际问题可知,这样求得的h ,r 可使得圆柱体的体积最大.模拟试题(二)解答一、1.极小值;2.220(,)(,)y ydy f x y dx dy f x y dy ππππ-+⎰⎰⎰⎰;3.90;4.4;5.3(1)e e π-;6.1q >; 二、C ;B ;D ;A ;B ;D ;B ;三、解:因为(3)(75)0(1)(4)(72)0(2)a b a b a b a b ⎧+⋅-=⎨-⋅-=⎩由(1)得22716150(3)a a b b +⋅-= ;由(2)得2273080(4)a a b b -⋅+= ;由(3),(4)得22b a b =⋅ 且有22b b = ,1cos 2a b a b θ⋅∴==⋅,3πθ=.四、解:设曲线方程为,设00(,)x y 为其上任一点,则切线方程为:'00()()y y f x x x -=-,切线必过原点,则有'000()y f x x -=-⋅;故曲线满足的微分方程为:dy y dy dx y cx dx x y x =⇒=⇒=; 又曲线过点1(2,1)22xc y ⇒=⇒=.五、证明:设,,u tx v ty w tz ===,两边对t 求导得:1(,,)k f f f x y z kt f x y z u v w-∂∂∂++=∂∂∂ 两边乘以t 得:(,,)k f f f tx ty tz kt f x y z u v w∂∂∂++=∂∂∂ 即 (,,)f f f u v w k f u v w u v w ∂∂∂++=∂∂∂,(,,)f f f x y z kf x y z x y z∂∂∂∴++=∂∂∂. 六、21n n a ∞=∑ 收敛,而211n n ∞=∑收敛,2211()n n a n ∞=+∑收敛;又2212n n a a n n +≥⋅,由比较判别法可知1n n a n∞=∑绝对收敛.七、432dx x y ay y =+为一阶线性微分方程,先求3dx x ay y = 33dx dy x cy x y =⇒=,令3'32()()3()dx x c y y c y y c y y dy=⋅⇒=⋅+; 代入原方程得:'342()2()c y y y c y y c ⋅=⇒=+.故原方程的通解为:2353()x y c y y cy =+⋅=+;又53(0)20224y c c =⇒=+⋅⇒=-,即求得特解为534x y y =-.八、解:切向量为2{1,2,3}t t 垂直于{1,2,1},则有211430,13t t t t ++=⇒=-=-,故所求之点为(1,1,1)--和111(,,)3927--. 九、解:过点(1,1,1)作垂直于平面1x y z ++=的直线方程得:111111x y z ---==; 用参数表示成:1;1;1x t y t z t =+=+=+,则此直线与平面的交点即为所求:2(1)(11)(1)13t t t +++++=⇒=-,投影坐标为:111(,,)333.十、解:特征方程为312300,1r r r r ⋅-=⇒==±,方程的通解为123xx c c ec e -++; 又"(0)0,'(0)2,(0)0y y y ===,由此可解出10c =,21c =-,31c =; 故满足要求的积分曲线为:x x y e e -=-+.模拟试题(三)解答一、1.76;2.2'3ln 3sin 1'sin 3xy y z F z x xz yz y F xy yz z ∂--=-=∂+;3.12S u -;4.(3,2)-,(1,0); 5.3;6.32;7.12cos sin y C x C x =+;8.3322dx dy +;9.4(1)e π-; 二、 C ;A ;D ;A ;C ;C ;C ;C ;C ;三、解:222()cos sin 111ax axax du u u dy u dz y z e e ae a x x dx x y dx z dx a a a αααααα-=+⋅+=+⋅++++.四、解:0!n xn x e n ∞==∑,121!x n n e x x n -∞=-∴=∑,111()(1)!x n n d e nx dx x n -∞=-∴=+∑; 又因为211()x x x d e xe e dx x x --+=,所以12111()(1)!x n x x n d e nx xe e dx x n x -∞=--+∴==+∑ 当取1x =时,111(1)!1n n e e n ∞=-+==+∑. 五、解:因为22(3412288)169x y z d ++-=设2222(,,,)(3412288)(1)96x F x y z x y z y z λλ=+--+++-,则有22216(3412288)0488(3412288)204(3412288)201096xy z F x y z x F x y z y F x y z z x F y z λλλλ⎧=++-+=⎪⎪=++-+=⎪⎨=++-+=⎪⎪=++-=⎪⎩,解得:72,3,16x y y z λ===± 得点的坐标为13(9,,)88和13(9,,)88---把点13(9,,)88和13(9,,)88---代入距离公式得:121232013,,13d d d d ==<,故最近点为13(9,,)88,最远点为13(9,,)88---.六、解:22(1)01(1)!lim1(1)n n n n n+→+++ 七、解:因为112231111()nn ii n n n i S a aa a a a a a a a +++==-=-+-++-=-∑故n S 单调递增,且有上界11a C -,所以n S 有极限,即原级数收敛.八、解:1.(2)()242240A B a b a b ab ba λλλλ⋅=++=+++=+=2λ∴=-2.6S A B =⨯=(2)()2226A B a b a b a b b a λλλ∴⨯=+⨯+=⨯+⨯=-=所以1λ=-或5λ=.九、1.04πθ≤≤,12r ≤≤;22440101sin cos r I d arctg rdr d rdrr ππθθθθθ∴==⎰⎰⎰⎰2222401()413342216464d rdr ππππθθ-==⋅==⎰⎰; 2.02πθ≤≤ ,01r ≤≤;1122220(1)(1)(1)(221)44I d ln r rdr ln r d r ln πππθ∴=+=++=-⎰⎰⎰.模拟试题(四)解答一、1.4a =-;2.32-;3.(1,-2,-3);4.22x y -;5.[1,1]-;6.sin y x c =+; 7.220nn n a x ∞=∑;8.11001xI dx e dy e ==-⎰⎰;9.外积为零或a b λ= ;10.aR b =;二、 A ;A ;D ;B ;B ;C ;A ;C ;A ;C ;三、证明:'z f x ∂=∂ ,2"'zf x yϕ∂=⋅∂∂,''z f y ϕ∂=⋅∂,22"z f x ∂=∂; 222z z z z x x y y x∂∂∂∂∴⋅=⋅∂∂∂∂∂. 四、解:2211x x y y yyx I dy e dx ydy e dy==⎰⎰⎰⎰ 2111100111(1)(1)222y x yy y yyedy y e dy ye dy y e ==-=-=--=⎰⎰⎰.五、解:六、解:设方程为660x y z D +-+=,即166x y zD D D ++=-- 11,6666D DD D ⋅⋅=∴=±;故所求方程为660x y z D +-±=. 七、解:111222ABC S a b a c b c ∆=⨯=⨯=⨯即sin sin sin ab C ac B bc A ==;所以原式得证.八、解:1121(1)22n n n n a n a n ++⋅=→+⋅ ,2R ∴= 当2x =-时,11(2)2n n n n -∞=-⋅∑收敛;当2x =时,1122n nn n -∞=⋅∑发散 即收敛区间为[2,2]-;设11()2n n n x S x n -∞==⋅∑,则两边求积分得:012()2212nx n n xx x S x dx x x ∞====--∑⎰ 22(),22(2)S x x x ∴=-≤≤-.九、解:设cos ,sin x y θθ==,并且θ是从π变到0,得sin (sin )cos cos d d πθθθθθθπ--=⎰.模拟试题(五)解答一、1.22221x y a b+≤;2.5、103、2;3.(0,0);4./2xy y =;5.1-、2y ;6.332;7.(1,1,2);8.4e ;9.221x ce -+;10.0a b ⋅=二、 D ;C ;D ;C ;B ;A ;B 或C ;A ;D ;C ; 三、解:210sin sin x x Dxx ds dx dy x x=⎰⎰⎰⎰112001100sin ()(1)sin 1(1)cos (1)cos cos 01sin1xx x dx x xdxxx d x x x xdx =-=-=-=--=-⎰⎰⎰⎰四、解:因为22(,)xy z f x y e =-121222xy xy zf x f ye xf ye f x ∂=⋅+⋅=+∂ 21112221222[(2)]()[(2)]xy xy xy xy xy zx f y f xe e xye f ye f y f xe x y∂=⋅-+⋅+++⋅-+⋅∂∂ 222111222242()(1)xy xy xy xyf e x y f e xy f xye f =-+-+++.五、解:因为(1)n a n n =+,1(1)(2)limlim 1(1)n n n na n n a n n +→∞→∞++==+,1;1R ρ∴==又1x =±时,级数发散,故收敛区间为(1,1)-; 记11(1)()n n n n xs x ∞-=+=∑,两边积分得,01(1)()xn n n x s x dx ∞=+=∑⎰211()1xx n n x s x dxdx xx∞+===-∑⎰⎰,2//323()()1(1)x x s x x x -==-- 故31(23)(1)()(1)nn x x n n xxs x x ∞=-+==-∑.六、解:因为2222(26);6(26)6x y z d d x y z +--==+--设2222(,,,)(26)(21)F x y z x y z x y z λλ=+--+++-,则有2224(26)402(26)202(26)20210x y zF x y z x F x y z y F x y z z F x y z λλλλ=+--+=⎧⎪=+--+=⎪⎨=-+--+=⎪⎪=++-=⎩,解得:12x y z ==-=± 把点(1/2,1/2,-1/2)和(-1/2,-1/2,1/2)代入距离公式得:122646,33d d ==,故最近点为(1/2,1/2,-1/2),最远点为(-1/2,-1/2,1/2). 七、/24621(arctan )11x x x x x==-+-++3572460arctan (1)357xx x x x x x x dx x =-+-+=-+-+⎰当1x =时,111arctan11357=-+-+1(1)111arctan111213574n n n π∞=-∴=-+-+=-=-+∑ .八、解:直线的方向向量为:1443215ij kl i j k =-=-----方程为325431x y z +--==.。
高等数学下期末试题(七套附答案)
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D.(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧 (10)' 2、(1)判别级数111(1)3n n n n∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dv Ω⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).B. 1C. 12 D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
高等数学下册试卷及答案
高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。
2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。
y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。
7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。
8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。
3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。
4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。
注:原文章中第一题的符号“>”应该是“≥”,已进行更正。
高数下期末复习模拟试题3份
2
∂P ∂P = 在 D 内 连 续 , 且 有 ∂x ∂y , 则
∫
L
( P( x, y ) + y )dx + ( P( x, y ) − x)dy =(
)
2 − 2 a A、 ;
B、 − 2a ;
2
C、 − a ;
2
D、 a
→
2
7. 设流体速度场 v = ci + y j ( c 为常数 ), 则单 位时间内由半径为 2 的球面内部流出球
u = f ( x, xy ), v = g ( x + xy ) ,
∂u ∂u 求 ∂x , ∂y
。
x +t
∂u ∂u 2.(8 分)设 u ( x, t ) = ∫ x −t f ( z )dz ,求 ∂x , ∂t 。 四、求解下列问题(共计 15 分) 。
1.计算 I
= ∫ 0 dx ∫ x e dy 。 (7 分)
即
∫
x0 0
ydx −
1 2 x0 y 0 = x0 2
将 ( x 0 , y 0 ) 改为 ( x, y ) 得: 求导得: y ′ −
∫
x
0
ydx −
1 xy = x 2 2
1 y = −4 ,且 y (1) = 1 x
该方程的通解为 y = (c + (−4)e
∫
−
∫ x dx1dx源自e∫ x dx∂ 2u ∂ 2u 数,则 x ∂x 2 + y ∂y 2
等于(
)
(A) x + y (B) x ; (C) y
(D)0 。
高等数学下册试卷及答案
高等数学〔下册〕考试试卷〔一〕一、填空题〔每题 3 分,共计 24 分〕1、 z = log a(x 2 + y 2 )(a > 0) 的定义域为 D=。
2、二重积分jj ln(x2+ y 2 )dxdy 的符号为。
|x|+|y|共13、 由曲线 y = ln x 及直线 x + y = e +1,y = 1 所围图形的面积用二重积分表示为,其值为。
4、设曲线 L 的参数方程表示为〈 (a 共 x 共 b), 则弧长元素 ds =。
5 、 设 曲 面 ∑ 为 x 2 + y 2 = 9 介 于 z = 0 及 z = 3 间 的 局 部 的 外 侧 , 则jj (x 2+ y 2+ 1)ds = 。
xdy y y1、二元函数 z = f(x,y) 在 (x 0 , y 0 ) 处可微的充分条件是〔〔A 〕 f(x,y) 在(x 0 , y 0 ) 处连续;〔B 〕 f x ,(x, y) , f y ,(x, y) 在 (x 0 , y 0 ) 的*邻域存在;〔C 〕 编z - f x ,(x 0 , y 0 )编x - f y ,(x 0 , y 0 )编y 当 (编x)2 +(编y)2 ) 0 时,是无穷小; 〔D 〕 lim编z - f x ,(x 0 , y 0 )编x - f y ,(x 0 , y 0 )编y = 0。
编x)0(编x)2 + (编y)2y x ?x 2 ?y 2〔A 〕 x + y ;〔B 〕 x ; (C) y ; (D)0 。
3、设 Q :x 2 + y 2 + z 2 共1,z > 0, 则三重积分 I =jj zdV 等于〔 〕Qj6、微分方程= + tan 的通解为。
dx x x7、方程 y (4) - 4y = 0 的通解为。
8、级数 xw 1 的和为。
二、选择题〔每题 2 分,共计 16 分〕2、设 u = yf(x) + xf(y), 其中 f 具有二阶连续导数,则 x 2u + y?2u等于〔 〕 n=1n(n + 1) 编y)0〕(x = Q(t) ly =v(t)〔A 〕4jd9j dQ j 01r 3 sinQ cosQdr ;〔B 〕j2 d9jdQ j 01r 2 sinQdr ;〔C 〕j2d9j dQ j 01r 3 sinQ cosQdr ;〔D 〕j2d9jdQ j 01r 3 sinQ cosQdr 。
高等数学下册复习题模拟试卷和答案
高等数学下册复习题模拟试卷和答案高等数学(下)模拟试卷一一、填空(每空3分,共15分)11?x?yx?y的定义域为(1)函数zy?Z那是阿肯斯吗?X(2)已知函数z??(3)交换积分次序,20岁?2yy2f(x,y)dx=(4)已知l是连接(0,1),(1,0)两点的直线段,则二、选择题(每空3分,共15分)(x?y)ds?l(5)已知微分方程y2y??3y?0,则其通解为十、3岁?2z?1.0(1)将直线L设置为?2倍?Y10z?3.0,飞机?4X?2岁?Z2.0,然后()a.l平行于?b.l在?上c.l垂直于?d.l不?斜交(2)设()a、 dx?戴布。
dx?2dyc。
2dx?2码。
dx?2天(3)已知?表面4Z?25(x?Y)和平面Z?由5包围的封闭区域将被转换成柱坐标系中的三次积分,即()a2?0252?04xyz?是由方程x2?y2?z2?2确定,则在点(1,0,?1)处的dz?222(x?52?y2)dv?d??r3dr?dz002502rb.Dr3dr?dz002?二万二千五百c.2.0d??r3dr?5dzd然后是它的收敛半径()0d??rdr?DZ(4)已知幂级数1a.2b.1c.2d.十、2(5)微分方程y3y??2岁?3倍?2E的特解y的形式是?()a。
xxx(ax?b)xe(ax?b)?ce(ax?b)?cxeb.c.d.三、计算题(每题8分,共48分)x?2y?1zx?1y?2z?3ll11的平面方程0?1且平行于直线2:21、求过直线1:1?z?z22z?f(xy,xy),求?x,?y2、已知3.设定d?{(x,y)x?y?4},利用极坐标求2x222x??dxdyd4、求函数f(x,y)?e(x?y?2y)的极值十、T辛特?(2xy?3sinx)dx?(x?e)dy?5.计算曲线积分L,其中L是摆线?Y1.成本从点算起2yo(0,0)到a(?,2)的一段弧xy?1的特解6、求微分方程xy??y?xe满足x?1四、回答问题(共22分)1、利用高斯公式计算22xzdydz?yzdzdx?zdxdy22z?十、Y其中,所述锥面不22z?2?x?y?)半球面所围成的立体表面的外侧(102、(1)判别级数n?1?(?1)?n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)(2)在X里?(?1,1)功率系列N?一nxn的和函数(6?)高等数学(第二部分)模拟试卷2一.填空题(每空3分,共15分)4x?y2z?22ln(1?X?Y)的结构域为;(1)功能xy(2)已知函数z?e,则在(2,1)处的全微分dz?;(3)交易所整合令,e1dxlnx0f(x,y)dy2=;)点B(1,1)之间的弧,然后(4)我们知道l是抛物线y?X(0,0)上的点olyds;(5)已知微分方程y2y??Y0,一般解决方案为2、多项选择题(每个空白3分,共15分)xy3z0(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l不?的夹角为();a、 0b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为(2)已知函数arctanyz x =,则zx∂=∂(3)交换积分次序,2220(,)y ydy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2x y z +确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.dx ++D.dx -(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.225300d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D.(5)微分方程3232xy y y x e '''-+=-的特解y *的形式为y *=( ) A.B.()xax b xe + C.()xax b ce ++D.()x ax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :12311x y z ---==-且平行于直线2L :21211x y z+-==的平面方程2、 已知22(,)z f xy x y =,求zx ∂∂, zy ∂∂ 3、设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()yL xy x dx x e dy ++-⎰, 其中L 为摆线s i n 1c o s x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx zdxdy∑+-⎰⎰ ,其中∑由圆锥面z =与上半球面z =(10)' 2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数ln(1)z x y =--的定义域为 ;(2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)ex dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0O 与点(1,1B 之间的一段弧,则L=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则zx∂=∂( );A. 2yzxy z - B. 2yzz xy - C. 2xzxy z - D. 2xyz xy - (3)微分方程256xy y y xe'''-+=的特解y *的形式为y *=( );A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A 2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e+=,求zx ∂∂, zy ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDy dxdyx⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x xLe y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1yy x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn xn ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = .4、定积分1200621(sin )xx x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx=.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、积分10⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、1sin xtdt⎰的一阶导数为 .(A )sin x (B )sin x - (C )cos x (D )cos x -5、向量{1,1,}a k =- 与{2,2,1}b =--相互垂直则k = .(A )3 (B )-1 (C )4 (D )2三.计算题(3小题,每题6分,共18分)1、求极限123lim ()21x x x x +→∞+- 2、求极限3sin limx x xx→-3、已知ln cos xy e =,求d yd x四.计算题(4小题,每题6分,共24分)1、已知221t x y t ⎧=⎪⎨⎪=-⎩,求22d ydx2、计算积分2cos xxdx⎰3、计算积分10arctan xdx⎰4、计算积分⎰五.觧答题(3小题,共28分)1、(8)'求函数42341y x x =-+的凹凸区间及拐点。
2、(8)'设1101()101x x xf x x e +⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰3、(1)求由2y x =及2y x =所围图形的面积;(6)'(2)求所围图形绕x 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷四一. 填空题(每空3分,共15分)1、函数1y x =-的定义域为 .2、,0axedx a +∞->⎰= .3、已知sin(21)y x =+,在0.5x =-处的微分dy = .4、定积分121sin 1x dxx-+⎰= .5、函数43341y x x =-+的凸区间是 .二.选择题(每空3分,共15分)1、1x =是函数211x y x -=-的 间断点 (A )可去 (B )跳跃 (C )无穷 (D )振荡2、若()0,(0)0,(0)1,limx f ax a f f x→'≠==-==(A)1 (B)a(C)-1 (D) a -3、在[0,2]π内函数sin y x x =-是 。
(A )单调增加; (B )单调减少;(C )单调增加且单调减少; (D)可能增加;可能减少。
4、已知向量{4,3,4}a =- 与向量{2,2,1}b =则ab ⋅为 .(A )6 (B )-6 (C )1 (D )-35、已知函数()f x 可导,且0()f x 为极值,()f x y e=,则0x x dydx==.(A )0()f x e (B )0()f x ' (C )0 (D )0()f x三.计算题(3小题,每题6分,共18分)1、求极限10lim (1-)kx x kx +→2、求极限12cos 2sin limsin xx t dtx x→⎰3、已知1ln sinxy e =,求d yd x四. 计算题(每题6分,共24分)1、设10ye xy --=所确定的隐函数()yf x =的导数0x dydx =。
2、计算积分arcsin xdx⎰3、计算积分π⎰4、计算积分,0a >⎰五.觧答题(3小题,共28分)1、(8)'已知2223131at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩,求在2t =处的切线方程和法线方程。
2、(8)'求证当0a b >>时,1ln ln 1a b aa bb -<<-3、(1)求由3y x =及0,2y x ==所围图形的面积;(6)' (2)求所围图形绕y 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷五一. 填空题(每空3分,共21分)1.函数yy x z )ln(-=的定义域为 。
2.已知函数22yx e z +=,则=dz 。
3.已知xy e z =,则=∂∂)0,1(x z。
4.设L 为122=+yx 上点()0,1到()0,1-的上半弧段,则=⎰ds L2 。
5.交换积分顺序⎰⎰=x edy y x f dx ln 01),( 。