数学分析第一册第一章

合集下载

国家精品课程 《数学分析》陈纪修

国家精品课程 《数学分析》陈纪修

第十二章 第一节 偏导数与全微分(1)(2)(3)(4)(5)(6)
第十二章 第二节 多元复合函数的求导法则(1)(2)
第十二章 第三节 中值定理与Taylor公式(1)(2)
第十二章 第四节 隐函数(1)(2)(3)(4)
第十二章 第五节 偏导数在几何中的应用(1)(2)(3)
我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。
本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
第七章 第二节 定积分的基本性质(1)(2)
第七章 第三节 微积分基本定理(1)(2)(3)(4)
第七章 第四节 定积分在几何计算中的应用(1)(2)(3)(4)(5)
第七章 第五节 微积分实际应用举例(1)(2)
第七章 第六节 定积分的数值计算(1)
第八章 反常积分
数学分析录象目录
第一章 集合与映射
第一章 第一节 集合(1)(2)(3)
第一章 第二节 映射与函数(1)(2)(3)
第二章 数列极限
第二章 第一节 实数系的连续性(1)(2)
第二章 第二节 数列极限(1)(2)(3)(4)
第二章 第三节 无穷大量(1)(2)
第五章 第一节 微分中值定理(1)(2)(3)(4)
第五章 第二节 L’Hospital 法则(1)(2)
第五章 第三节 Taylor 公式和插值多项式(1)(2)(3)

《数学分析》第一章 实数集与函数

《数学分析》第一章 实数集与函数
x > y 存在非负整数 n , 使得 xn > yn
❖实数的性质
1.实数集R对加,减,乘,除(除数不为0)四则运算是 封闭的.即任意两个实数和,差,积,商(除数不为0) 仍然是实数. 2.实数集是有序的.即任意两个实数a, b必满足下 述三个关系之一: a < b, a = b, a > b .
由二项展开式
(1+ h)n 1+ nh + n(n 1) h2 + n(n 1)(n 2) h3 + + hn ,
2!
3!
有 (1+ h)n >上式右端任何一项.
今日作业 P4,3, 4, 6, 7
§1.2 数集·确界原理
一、区间与邻域 二、上确界、下确界
一、区间与邻域
1.集合: 具有某种特定性质的事物的总体.
❖实数的性质
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c. 4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
绝对值定义:
a, a0 | a | a , a < 0
从数轴上看的绝对值就是到原点的距离:
-a
a
0
绝对值的一些主要性质 1. | a | | a | 0 当且仅当 a 0 时 | a | 0 2 . -|a| a |a| 3. |a|< h -h < a < h ; | a | h h a h , h > 0 4. a b a b a + b 5. | ab || a | | b | 6. a | a | , b 0

数学分析教案(华东师大版)上册全集1-10章

数学分析教案(华东师大版)上册全集1-10章

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

《数学分析》第一章 实数集与函数 1

《数学分析》第一章 实数集与函数 1
o a
( ∞ , b ) = { x x < b}
无限区间
x obxFra bibliotek区间长度的定义: 区间长度的定义: 两端点间的距离(线段的长度 称为区间的长度 两端点间的距离 线段的长度)称为区间的长度 线段的长度 称为区间的长度.
3.邻域: 3.邻域: 设a与δ是两个实数 , 且δ > 0. 邻域
数集{ x x a < δ }称为点a的δ邻域 ,
o a x b 称为闭区间, { x a ≤ x ≤ b} 称为闭区间 记作 [a , b] o a
b
x
{ x a ≤ x < b} { x a < x ≤ b}
称为半开区间, 称为半开区间 记作 [a , b ) 称为半开区间, 称为半开区间 记作 (a , b] 有限区间
[a ,+∞ ) = { x a ≤ x }
a a≥0 a = a a < 0 运算性质: 运算性质 ab = a b ;
5.绝对值: 5.绝对值: 绝对值
( a ≥ 0)
a a = ; b b
绝对值不等式: 绝对值不等式
a b ≤ a ± b ≤ a + b.
x ≤ a ( a > 0) x ≥ a ( a > 0)
a ≤ x ≤ a;
点a叫做这邻域的中心 , δ 叫做这邻域的半径 .
U δ (a ) = { x a δ < x < a + δ }.
δ
δ
x
a aδ a+δ 0 点a的去心的 δ邻域 , 记作 U δ (a ).
U δ (a ) = { x 0 < x a < δ }.
4.常量与变量: 4.常量与变量: 常量与变量 在某过程中数值保持不变的量称为常量 在某过程中数值保持不变的量称为常量, 常量 而数值变化的量称为变量 变量. 而数值变化的量称为变量 注意 常量与变量是相对"过程"而言的. 常量与变量是相对"过程"而言的 常量与变量的表示方法: 常量与变量的表示方法: 通常用字母a, 等表示常量, 通常用字母 b, c等表示常量 等表示常量 用字母x, 等表示 等表示变 用字母 y, t等表示变量.

初中数学教材第一册第一章教学案例分析

初中数学教材第一册第一章教学案例分析

初中数学教材第一册第一章教学案例分析教学案例一:解方程在初中一年级数学教材中,第一册第一章的内容主要是关于解一元一次方程的初步学习。

解方程是初中数学中的重要内容,它对于培养学生的逻辑思维和解决实际问题的能力至关重要。

下面我们通过一个教学案例,来分析如何在教学中引导学生深入理解解方程的过程。

教学目标:1. 了解方程的基本概念和解方程的意义;2. 掌握解一元一次方程的基本方法和步骤;3. 能够运用所学知识解决实际问题。

教学内容:1. 方程的基本概念和性质;2. 解一元一次方程的基本方法;3. 利用方程解决问题。

教学步骤:1. 导入通过提问的方式,引导学生回顾方程的定义和例子,例如:什么是方程?方程中包含什么元素?请举一个方程的例子。

2. 引入通过一个生活中的实际问题引入解方程的概念和意义,例如:班级一共有30人,并且男生人数是女生人数的2倍,求男生和女生各有多少人?这个问题如何用方程来表示?3. 讲解详细讲解解一元一次方程的基本方法,例如通过消元、代入法、等式法等来解释和演示解方程的步骤。

同时,要注意提醒学生在解题过程中需要注意的常见错误和易混淆的知识点。

4. 实践给学生分发练习题,让学生在课堂上独立完成练习,通过实际操作的方式来巩固和运用所学知识。

5. 案例分析选取一个与学生生活密切相关的案例进行分析,例如:小明每天骑自行车上学,速度是10km/h,如果他骑了1小时20分钟,那么他骑了多远?让学生自己尝试解决这个问题,然后与同学讨论和分享解题思路。

6. 总结总结本节课所学内容,回顾方程解的基本方法和步骤,再次强调解方程在实际问题中的应用价值。

7. 作业布置课后作业,要求学生选取一个实际问题,利用所学知识解决,并写出解决过程和答案。

通过以上案例分析的教学过程,可以有效引导学生理解解方程的概念、掌握解一元一次方程的基本方法,并通过实际问题的解决运用,培养学生的逻辑思维和解决问题的能力。

教学案例分析在初中数学教学中起到了重要的指导作用,能够提高学生的学习兴趣和学习效果,为他们日后接触更复杂的数学题目打下基础。

数学分析第一章

数学分析第一章
1 < 1 (b a). n2
前页 后页 返回

k
是满足
k n
a
的最大的正整数,即
k +1 n
> a.
于是, a < k + 1 < k + 2 < b, 则 k + 1, k + 2 是
nn
nn
a 与 b 之间的有理数, 而 k + 1 + π 是 a 与 b 之间 n 4n
的无理数.
例2 若a,b R,对 > 0,a < b + ,则 a b.
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c.
4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
6.实数集R与数轴上的点具有一一对应关系.即任一实数 都对应数轴上唯一的一点,反之,数轴上的每一点也都唯 一的代表一个实数.
证 倘若a > b,设 a b > 0, 则 a b + ,
与 a < b + 矛盾.
前页 后页 返回
(6)实数与数轴上的点一一对应
实数集 R与数轴上的点可建立一一对应关系.
1. 这种对应关系,粗略地可这样描述: 设 P 是数轴上的一点 (不妨设在 0的右边), 若 P 在 整数 n与 n + 1之间,则 a0 n. 把(n, n + 1]十等分, 若点 P 在第 i 个区间,则 a1 i. 类似可得到 an, n 2, 3, L . 这时, 令点 p 对应于 a0 .a1a2 L an L .

数学分析第一册讲义

数学分析第一册讲义
3,…。“严格”的定义可以用枚举的办法,也就是说 i 1, 2,3, ,但这省略号表示什
么呢?事实上,自然数的定义是和加法联系在一起的,换言之,自然数可以用第一个数 1, 和后继这两个说清楚。自然数集合的严格定义如下(皮亚诺 Peano):
(P1)有数 1; (P2)每一个数 m 都有一个后继,记为 m+1; (P3)1 不是任何数的后继; (P4)若 m+1=n+1,则 m=n; (P5)(归纳公理)若一个子集合满足(P1)(P2),则它就是自然数集。 其实这里定义了一个以 1 为首的一列“数字”队伍,我们依次称它们为 2,3,4,…。 这就解释了省略号的意思。 加法来自于我们解释后继为加 1,具体地说,n 的后继为 n+1,而 m+n 可以定义为 ( ((m 1) 1) ) 1;或者递归定义 m+(n+1)=(m+n)+1。可以证明(试一试!)这样定义的 加法满足: 交换率 m n n m ; 结合率 (m n) p m (n p) 。 因为自然数集合通过后继来定义,我们就得到了数与数之间的一种“序”的关系,大于、 等于和小于的意思于是就知道了。任给两个自然数 m 和 n,必有 m n, m n, m n 三种关 系中的一种出现,而且只有一种。这就是说,自然数可以比较大小。一会儿我们将看到,实 数比较大小要困难许多。 自然数这个定义对于微积分来说,非常重要的是第一次清晰、准确地刻画了一个无穷的 概念。我们没有定义任何一个数是无穷大,事实上,任给一个自然数 n,都存在比它更大的 数,如 n+1;但是,自然数逐渐加大的这样一个无穷的过程,定义了一个无穷。我们今后会 不断看到,这样一个作为过程的“无穷”。
说到这里,上面所有的内容并不涉及自然数的记法。有了乘法,就可以有数的进制。

《数学分析》(上册)第一章实数集与函数试题和答案

《数学分析》(上册)第一章实数集与函数试题和答案

第一章实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =-+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax=为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解: ⑴ 0)1(2>-x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<-b a ,则b a =. 证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <; 若b a >,则又由绝对值定义知:b a b a -=-.令b a -=ε,则ε为正数,但这与ε<-=-b a b a 矛盾; 若b a <,则又由绝对值定义知:a b b a -=-.令a b -=ε,则ε为正数,但这与ε<-=-a b b a 矛盾; 从而必有b a =. 3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x 1同号,从而21211=⋅≥+=+xx x x x x , 等号当且仅当xx 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有⑴ 121≥-+-x x ;⑵2321≥-+-+-x x x 证: ⑴因为21111-=+-≤--x x x ,所以121≥-+-x x .⑵因为21132-+-≤-≤--x x x x , 所以2321≥-+-+-x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a -≤+-+2222证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++, 即))(()(222222c a b a bc a ++≤+bc c a b a a 2))((2222222-≤++-,两端再同加22c b +,则有c b c a b a -≤+-+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边. 当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与ba之间. 证:因为x b a b x b x a +-=++-1,)()(x b b a b x b a x b x a +-=-++,且0,0>>b x 所以当b a >时, b ax b x a <++<1; 当b a <时, 1<++<xb xa b a ; 故x b x a ++总介于1与ba 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数证:假设p 是有理数,则存在正整数m 、n 使nmp =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n 因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解: ⑴ b x a x -<-;⑵b x a x -<-;⑶b a x <-2.解: ⑴原不等式等价于11<---bx ba 这又等价于20<--<b x b a 即⎩⎨⎧-<-<>b x b a b x 220或⎩⎨⎧->-><b x b a bx 220即⎪⎪⎩⎪⎪⎨⎧>+>>b a b a x b x 2或⎪⎪⎩⎪⎪⎨⎧<+<<ba b a x b x 2故当b a >时,不等式的解为2ba x +>当b a <时,不等式的解为2ba x +<当b a =时,不等式无解.⑵原不等式等价于⎩⎨⎧-<->b x a x b x 且⎩⎨⎧-<->b x x a bx即⎩⎨⎧>>b a b x 且⎪⎩⎪⎨⎧+>>2b a x bx 故当b a >时,21bx +>; 当b a ≤时,不等式无解. ⑶当0≤b 时,显然原不等式无解,当0>b 时原不等式等价于b a x b a +<<-2因此①当0≤+b a 或0≤b 时,无解②当0>+b a 且0>b 时,有解 Ⅰ 如果b a ≥,则解为b a x b a +<<-即b a x b a +<<-或b a x b a +>>--Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+-§2数集 确界原理1、 用区间表示下列不等式的解: ⑴01≥--x x ;⑵61≤+xx ; ⑶0))()((>---c x b x a x (a 、b 、c 为常数,且c b a <<)⑷22sin ≥x 解 ⑴原不等式等价于以下不等式组⎩⎨⎧≥--<011x x x 或⎩⎨⎧≥--≥011x x x前一不等式组的解为21≤x ,后一不等式组无解. 所以原不等式的解为⎥⎦⎤ ⎝⎛∞-∈21,x ⑵不等式61≤+xx 等价于616≤+≤-x x这又等价于不等式组⎩⎨⎧≤+≤->x x x x 61602或⎩⎨⎧-≤+≤<xx x x 61602前一不等式组的解为]223,223[+-∈x ,后一不等式组解为]223,223[+---∈x . 因此原不等式解为 ]223,223[]223,223[+-+---∈x⑶令))()(()(c x b x a x x f ---=,则由c b a <<知:⎪⎩⎪⎨⎧∞+∈>-∞∈<= ;),(),(,0;),(),(,0)(c b a x c b a x x f因此0)(>x f 当且仅当 ;),(),(∞+∈c b a x因此原不等式的解为 ),(),(∞+∈c b a x .⑷当]43,4[ππ∈x 时22sin ≥x .由正弦函数的周期性知22sin ≥x 的解是]432,42[ππππ++∈k k x ,其中k 是整数2、设S 为非空数集,试给出下列概念的定义:⑴数集S 没有上界; ⑵数集S 无界.解: ⑴设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 没有上界 ⑵设S 为一非空数集,若对任意的0>M ,总存在S x ∈0,使M x >0,则称数集S 无界3、证明:由(3)式确定的数集有上界,无下界. 证:{}22R x x y y S ∈-==.对任意的R x ∈,222≤-=x y 所以数集S 有上界2而对任意的0>M ,取m x +=31,则S M M x y ∈--=--===1322211, 但M y -<1,因此数集S 无下界4、 求下列数集的上、下确界,并依定义加以验证. ⑴{}22<=x x S⑵{},!为自然数n n x x S ==; ⑶{})1,0(内的无理数为x x S =; ⑷⎩⎨⎧=-==},2,1,211 n x x S n 解: ⑴2sup =S ,2inf -=S ,以下依定义加以验证.由22<x 知22<<-x ,因之对任意的S x ∈,有2<x 且2->x ,即2,2-分别是S 的上、下界.又对任意的0>ε,不妨设22<ε,于是存在220ε-=x ,221ε+-=x使0x 、1x S ∈,但ε->20x ,ε+-<21x ,所以2sup =S ,2inf -=S⑵+∞=S sup ,1inf =S ,以下依定义加以验证. 对任意的S x ∈,+∞<≤x 1,所以1是S 的下界.对任意的自然数n ,+∞<!n ,所以+∞=S sup ;对任意的0>ε,存在S x ∈==1!11,使ε+<11x ,所以1inf =S ⑶1sup =S ,0inf =S ,以下依定义加以验证.对任意的S x ∈,有10<<x ,所以1、0分别是S 的上、下界.又对任意的0>ε,取εη<<0,且使η-1为无理数,则η-1S ∈,εη->-11 所以1sup =S ;由η的取法知η是无理数,S ∈η,εεη+=<0,所以0inf =S⑷1sup =S ,21inf =S ,以下依定义加以验证. 对任意的S x ∈,有121≤≤x ,所以1、21分别是S 的上、下界.对任意的0>ε,必存在自然数k ,使S x k k ∈-=211,且ε->-=1211k k x所以1sup =S又S x ∈=-=21211,ε+<=-=2121211x 所以21inf =S5. 设S 为非空有下界数集.证明:S S S min inf =⇔∈=ξξ证:设S S ∈=inf ξ,则对一切S x ∈有ξ≥x ,而S ∈ξ,故ξ是数集S 中最小的数,即S min =ξ. 设S min =ξ,则S ∈ξ,下面验证S inf =ξ. Ⅰ 对一切S x ∈,有ξ≥x ,即ξ是S 的下界. Ⅱ 对任何ξβ>,只须取S x ∈=ξ0,则β<0x ,从而ξ不是S 的下界,故S inf =ξ.6.设S 为非空数集,定义}{S x x S ∈-=-,证明:⑴S S sup inf -=-⑵S S inf sup -=-证: ⑴设-=S inf ξ,由下确界的定义知,对任意的-∈S x ,有ξ≥x ,且对任意的0>ε,存在-∈S x 0,使εξ+<0x由}{S x x S ∈-=-知, 对任意的S x ∈-,ξ-≤-x ,且存在S x ∈-0,使εξ-->-0x ,由上确界的定义知ξ-=-S sup ,即S S sup inf -=-. 同理可证⑵式成立.7.设B A 、皆为非空有界数集,定义数集},,{B y A x y x z z B A ∈∈+==+. 证明: ⑴B A B A sup sup )sup(+=+ ⑵B A B A inf inf )inf(+=+ 证: ⑴设1sup η=A ,2sup η=B .对任意的B A z +∈,存在A x ∈,B y ∈,使y x z +=. 于是1η≤x ,2η≤y ,从而21ηη+≤z对任意的0>ε,必存在A x ∈0,B y ∈0且210εη->x ,220εη->y ,则存在B A y x z +∈+=000,使εηη-+>)(210z ,所以B A B A sup sup )sup(21+=+=+ηη ⑵同理可证8.设x a a ,1,0≠>为有理数,证明:{{⎪⎩⎪⎨⎧<>=<<,1}inf ,1}sup a r a a r a a rxr r x r x ,当为有理数,当为有理数证: 只证1>a 的情况, 1<a 的情况可以类似地予以证明.设}{x r r a E r<=,为有理数.因为1>a ,r a 严格递增,故对任意的有理数x r <,有x r a a <,即x a 是E 的一个上界.对任意的0>ε,不妨设x a <ε,于是必存在有理数x r <0,使得xr x a a a <<-0ε.事实上,由x a log 递增知:xx a a <-<ε0等价于x a a xa x a =<-log )(log ε取有理数0r ,使得x r a xa <<-0)(log ε.所以E a xsup =,即}{sup 为有理数r aa rxr x<=§4具有某些特征的函数1、证明:21)(x xx f +=是R 上的有界函数. 证: 利用不等式212x x +≤有2112211)(22≤+=+=x x xx x f 对一切的),(∞+-∞∈x 都成立 故21)(x xx f +=是R 上的有界函数2、⑴证明陈述无界函数的定义; ⑵证明:21)(x x f =为)1,0(上的无界函数. ⑶举出函数f 的例子,使f 为闭区间]1,0[上的无界函数.解: ⑴设)(x f 在D 上有定义,若对任意的正数M ,都存在D x ∈0,使M x f >)(0,则称函数)(x f 为D 上的无界函数.⑵对任意的正数M ,存在)1,0(110∈+=M x ,使M M x x f >+==11)(2所以21)(xx f =为)1,0(上的无界函数. ⑶设⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f .下证)(x f 为无界函数0>∀M ,]1,0(110∈+=∃M x ,使得M M x f >+=1)(0 所以⎪⎩⎪⎨⎧=∈=0,0]1,0(,1)(x x x x f 是闭区间[0,1]上的无界函数.3、 证明下列函数在指定区间上的单调性: ⑴13-=x y 在),(∞+-∞内严格递增; ⑵x y sin =在]2,2[ππ-上严格递增;⑶x y cos =在],0[π上严格递减.证: ⑴任取1x 、),(2∞+-∞∈x ,21x x <, 则0)(3)13()13()()(212121<-=---=-x x x x x f x f , 可见)()(21x f x f <,所以13-=x y 在),(∞+-∞内严格递增. ⑵任取1x 、]2,2[2ππ-∈x ,21x x <,则有22221ππ<+<-x x ,02221<-≤-x x π, 因此02cos21>+x x ,02sin 21<-x x , 从而02sin 2cos 2sin sin )()(21212121<-+=-=-x x x x x x x f x f , 故)()(21x f x f <,所以x y sin =在]2,2[ππ-上严格递增.⑶任取1x 、],0[2π∈x ,21x x <,则π<+<2021x x ,02221<-≤-x x π, 从而02sin21>+x x ,02sin 21<-x x 02sin 2sin2cos cos )()(21212121>-+-=-=-x x x x x x x f x f 故)()(21x f x f >,所以x y cos =在],0[π上严格递减.4、 判别下列函数的奇偶性:(1)12)(24-+=x x x f ;(2) x x x f sin )(+=;(3)22)(x e x x f -=; (4))1lg()(2x x x f -+=解(1)因)(121)(2)()(2424x f x x x x x f =-+=--+-=-, 故12)(24-+=x x x f 是偶函数. (2)因),()sin ()sin()()(x f x x x x x f -=+-=-+-=-故x x x f sin )(+=是奇函数.(3)因)()()(222)(2x f e x e x x f x x ==-=----,故22)(x e x x f -=是偶函数. (4))()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-故)1lg()(2x x x f -+=是奇函数.5、 求下列函数的周期:(1)x x f 2cos )(=;(2)x x f 3tan )(=;(3)3sin 22cos )(xx x f +=. 解 (1) )2cos 1(21cos )(2x x x f +==,而x 2cos 1+的周期是π,所以x x f 2cos )(=的周期是π. (2))3tan(x 的周期是3π,所以x x f 3tan )(=的周期是3π. (3)2cos x 的周期是π4,3sin x 的周期是π6,所以3sin 22cos )(xx x f +=的周期是π12.6、 设)(x f 为定义在],[a a -上的任一函数,证明: (1) ],[),()()(a a x x f x f x F -∈-+=为偶函数; (2) ],[),()()(a a x x f x f x G -∈--=为奇函数; (3) f 可表示为某个奇函数与某个偶函数之和.证 (1)由已知函数)(x F 的定义域关于原点对称且],,[a a x -∈∀)()()()()()(x F x f x f x f x f x F =-+=+-=-.故)(x F 为],[a a -的偶函数.(2) 由已知函数)(x G 的定义域关于原点对称且],,[a a x -∈∀有)()]()([)()()(x G x f x f x f x f x G -=---=--=-.故)(x G 为],[a a -的奇函数.(3)由(1)(2)知: ),(2)()(x f x G x F =+从而)(21)(212)()()(x G x F x G x F x f +=+=,而)(x F ,)(x G 分别是偶函数和奇函数.显然)(21x F 也是偶函数, )(21x G 也是奇函数.从而f 可表示为某个奇函数与某个偶函数之和.7、 设)(x f ,)(x g 为定义在D 上的有界函数,且对任一)()(,x g x f D x ≤∈,证明:(1))(sup )(sup x g x f Dx D x ∈∈≤;(2) )(inf )(inf x g x f Dx D x ∈∈≤. 证 (1)假设)(sup )(sup x g x f Dx D x ∈∈>. 令))(sup )(sup (21x g x f D x D x ∈∈-=ε,则0>ε 由上确界定义知,存在D x ∈0,))(sup )(sup (21)(sup )(0x g x f x f x f Dx D x D x ∈∈∈+=->ε,又对任意的D x ∈,<)(x g ))(sup )(sup (21)(sup x g x f x g D x D x D x ∈∈∈+=+ε. 由此知)()(0x g x f >,这与题设)()()(D x x g x f ∈∀≤相矛盾,所以)(sup )(sup x g x f D x D x ∈∈≤.(2)同理可证结论成立.8、 设f 为定义在D 上的有界函数,证明:(1) )(inf )}({sup x f x f Dx D x ∈∈-=-;(2) )(sup )}({inf x f x f Dx D x ∈∈-=- 证: (1)令ξ=∈)(inf x f Dx .由下确界的定义知,对任意的D x ∈,ξ≥)(x f ,即ξ-≤-)(x f , 可见ξ-是)(x f -的一个上界;对任意的0>ε,存在D x ∈0,使εξ+<)(0x f ,即εξ-->-)(0x f ,可见ξ-是)(x f -的上界中最小者.所以)(inf )}({sup x f x f Dx D x ∈∈-=-=-ξ(2)同理可证结论成立.9、 证明:函数x x f tan )(=在)2,2(ππ-内为无界函数,但在)2,2(ππ-内任一闭区间[]b a ,上有界.证: (1)对任意的正数M ,取)1arctan(0+=M x , 则220ππ<<-x ,M M M x >+=+=1)1(tan(arctantan 0 所以x x f tan )(=在)2,2(ππ-内是无界函数. (2)任取[]b a ,)2,2(ππ-∈,由于x tan 在[]b a ,上是严格递增的,从而b x a tan tan tan ≤≤对任意的[]b a x ,∈都成立.令}tan ,tan max{a a M =,则对一切的[]b a x ,∈,有M x ≤tan ,所以x x f tan )(=在)2,2(ππ-内任一闭区间[]b a ,上有界.10、 讨论狄利克雷函数⎩⎨⎧=为无理数时当为有理数时当x x x D ,0,1)(的周期性、单调性、有界性。

小学数学教材第一册第一章教学解析

小学数学教材第一册第一章教学解析

小学数学教材第一册第一章教学解析第一节:自然数及其运算在小学一年级的数学课程中,第一个章节主要介绍了自然数及其运算。

自然数是我们常见的数,从1开始,一直往上数的数列。

在这一节,我们将了解自然数的定义、自然数的运算以及如何进行自然数的排序。

1. 自然数的定义自然数是指从1开始,一直往上数的数列,记作N={1, 2, 3, 4, ...}。

自然数没有小数、分数或负数。

2. 自然数的运算在小学一年级,我们学习了自然数的两种基本运算:加法和减法。

加法:加法是指将两个或多个自然数相加,得到一个和。

比如:1 + 2 = 3,3 + 4 = 7。

加法运算时,我们可以改变加数的顺序,结果不变。

减法:减法是指从一个自然数中减去另一个自然数,得到一个差。

比如:5 - 2 = 3,8 - 4 = 4。

减法运算中,我们需要注意被减数要大于等于减数,否则减法得不到有效的结果。

3. 自然数的排序在日常生活中,我们常常需要对自然数进行排序。

在排序时,我们需要比较数的大小,然后按顺序排列。

例如,给定一个集合S={5, 2, 7, 10, 3},要按照从小到大的顺序排序。

步骤如下:1) 从集合S中选择最小的数,即2;2) 将2从集合S中移除,并将其放置到一个新的集合T中;3) 重复步骤1)和2),直到集合S为空;4) 最终,我们得到一个新的集合T={2, 3, 5, 7, 10},这就是按照从小到大顺序排序后的结果。

第二节:数的应用小学一年级数学教材的第一章中,还介绍了数的应用。

数是我们日常生活中非常重要的,我们可以通过数来解决各种实际问题。

1. 数的计数应用在日常生活中,我们经常需要用到数来进行计数。

比如,我们可以通过数来计算一天中的小时数、一周中的天数,或者计算某种物品的数量等等。

2. 数的排列应用排列是指将一组数按照特定的顺序进行摆放。

在实际生活中,我们也需要用到排列来解决问题。

比如,我们可以通过排列来确定某个物品的摆放位置,或者确定某个队伍的顺序等等。

《数学分析》第一章 实数集与函数 2

《数学分析》第一章 实数集与函数 2

y = ex
y = ax
(a > 1)
( 0 ,1)
4,三角函数 , 正弦函数 y = sin x
y = sin x
余弦函数 y = cos x
y = cos x
正切函数 y = tan x
y = tan x
3,对数函数 y = log a x ,
(a > 0, a ≠ 1) y = ln x
恒成立 . 则称f ( x )为周 期函数 , l称为 f ( x )的周期 .
(通常说周期函数的周期是指其最小正周期). 通常说周期函数的周期是指其最小正周期) 周期
3l 2
l 2
l 2
3l 2
三,反函数
y
函数 y = f ( x )
y0
y
反函数 x = ( y )
y0
W
W
o
x0
x
o
x0
x

D
y
D : ( 1,1)
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个, 是只有一个,这种函 W y 数叫做单值函数, 数叫做单值函数,否 则叫与多值函数. 则叫与多值函数.
( x, y)
x
例如, 例如, x + y = a .
2 2 2
o
x
D
定义: 定义: 点集C = {( x , y ) y = f ( x ), x ∈ D} 称为
o
I
x
设函数 f ( x )的定义域为 D , 区间 I ∈ D ,
如果对于区间 I 上任意两点 x1 及 x 2 , 当 x1 < x 2时,
恒有 ( 2) f ( x1 ) > f ( x 2 ),

数学分析第一章

数学分析第一章

第一章 函 数§1.1 实 数数学分析研究的基本对象是定义在实数集上的函数,为此,我们先简要叙述实数的概念与基本性质。

与基本性质。

一 实数及其性质在中学数学课程中,我们知道实数由有理数和无理数两部分组成。

在中学数学课程中,我们知道实数由有理数和无理数两部分组成。

有理数的特征:全体有理数构成的集合通常记为Q 。

对"q ÎQ (读作任一个有理数q )可以用一个分数表示,即uv q =(u 、v 为整数,且u ¹0),也可以用有限十进小数或无限十进循环小数表示。

如果一个数不能表示成分数,则称为无理数。

有理数和无理数统称为实数。

全体实数构成的集合记为R 。

实数有如下一些主要性质:实数有如下一些主要性质: 1. 实数集关于四则运算是封闭的,即实数集关于四则运算是封闭的,即 "a ,b ÎR ,则a ± b ÎR , a ´ b ÎR ,当b ¹0时,有a ¸b ÎR 。

2. 实数集具有有序性,即"a ,b ÎR ,则以下三个关系式a < b ,a > b ,a = b ,当且仅当只有一个成立。

仅当只有一个成立。

3. 实数的大小关系具有传递性,即"a ,b ,c ÎR ,若a > b ,b > c ,则a > c 。

4. 实数具有阿基米德(Archimedes 287—212 B.C )性,即"a ,b ÎR ,若a > b >0,则$(读作存在)正整数n ,使nb > a 。

5. 实数集R 具有稠密性:"a ,b ÎR ,若a > b ,则$c ÎR 使a >c >b 。

其中c 既可以是有理数,是有理数,也可以是无理数。

也可以是无理数。

数学分析 第一章 集合与映射

数学分析 第一章 集合与映射

引例3.
向 y 轴投影
(点集) (点集)
定义1.2.1 设 X , Y 是两个非空集合, 若存在一个对应规
则 f , 使得
有唯一确定的
与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f : X Y x y f (x)
X
f
Y
元素 y 称为元素 x 在映射 f 下的 像 , 记作 y f (x).
元素 x 称为元素 y 在映射 f 下的 逆像(也称为原像). 集合 X 称为映射 f 的定义域 ,记为Df=X; Y 的子集
f (X ) f (x) x X 称为 f 的 值域 ,记为Rf 。
注意: 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
有理数集
Q
ቤተ መጻሕፍቲ ባይዱ
q p
q Z, p N, p 与 q 互质
实数集合 R x x 为有理数或无理数
正实数集 R x x R, 且 x 0
特殊集合 x x R 且 x2 1 0
开区间 闭区间 半开区间 无限区间
点的 邻域
数学分析中常用 的实数集
a
(
a
a
)
去心 邻域
其中, a 称为邻域中心 , 称为邻域半径 .
pN+, qN+,q≤p, q,p互质。我们按以下方式排列这
些有理数。见P8.
作业:p10 2(2),5
5 .笛卡尔( Descartes )乘积集合
设A与B是两个集合,在集合A中任取一个元素x, 在集合B中任取一个元素y,组成一个有序对 (x,y)。
把这样的有序对 (x,y)作为新的元素,它们全体组成

数学分析第1章说课材料

数学分析第1章说课材料
的集合, RR常记作R2.
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a ,b R ,且 a b .
{xaxb} 称为开区间, 记作 (a,b)
oa
b
x
{xaxb} 称为闭区间, 记作 [a,b]
oa
b
x
{xaxb} 称为半开区间, 记作 [a,b)
{xaxb} 称为半开区间, 记作 (a,b]
大学出版社,1998 • 4)《吉米多维奇数学分析习题集解答》,山东科
技出版社,1983
第一章 变量与函数
§1 实数 §2 函数的概念 §3 复合函数与反函数 §4 基本初等函数
1.1 实数
一 .集合与实数的性质 二. 绝对值与不等式
几个常用符号
1. 我们用符号“” 表示“任取” 或“对于任意的”或“对于所有的” , 符号“” 称为全称量词.
l4
ln
2nrsin
n
n3,4,5,
l5
l6
圆内接正n 边形
O
r
n
定义 设 x和 y 是两个变量, X ,Y 是给定的数集,
如果对于每个数 x X , 按照确定的规律 f ,总有
唯一确定的数 y 和它对应,则称 y 是 x的函数,记作
yf(x) 数集X叫做这个函数的定义域
因变量
自变量
当 x0X时 ,称 f(x0)为函x数 0处在 的点 .函
2).实数集是有序的.即任意两个实数a, b必满足 下述三个关系之一: a < b, a = b, a > b .
❖实数的性质
3).实数集的大小关系具有传递性.即若a > b, b > c, 则有a>c

数学分析一电子教案

数学分析一电子教案

数学分析(一)电子教案杨小康第一章 实数集与函数本章教学要求:1.加深理解实数的浓密性、绝对值不等式。

2.深切理解一元函数的概念、分段函数的几何特性(尤其是函数有界、无界的分析概念),掌握复合函数、单调函数、奇函数和偶函数;3.理解反函数、周期函数;4.对大体初等函数和初等函数要熟练掌握其运算、几何形状,对以前没有接触过的Dirichlet 函数,符号函数,Gauss 函数等要熟悉。

5.掌握区间与邻域、掌握和应用确界概念、确界原理。

§ 1实数教学目的:熟练掌握实数及主要性质、绝对值概念及其不等式性质。

教学内容:实数的大体性质和绝对值的不等式. 大体要求:1)掌握实数的大体性质:实数的有序性,浓密性,阿基米德性,实数的四则运算。

2)掌握和熟练运用几个重要的绝对值不等式。

一.实数及其性质:有理数:(,0)p q q ⎧≠⎪⎨⎪⎩p 能用互质分数 为整数,表示的数;q有限十进小数或无限十进循环小数表示的数 例1 设 p 正整数,若p 不是完全平方数,则p 是无理数证明:反证法。

若p 是有理数,则p 可表示成:mnp =,从而整数p 可表示成: 22mn p =⇒ p 是完全平方数,矛盾若规定: 012012..(1)999n n a a a a a a a a =-则有限十进小数都能表示成无穷循环小数。

例如:001.2 记为 999000.2 ;0 记为 000.0 ;8- 记为 999.7- 实数大小的比较概念1 给定两个非负实数n n b b b b y a a a a x 210210.,.==其中 k k b a , 为非负整数,9,0≤≤k k b a 。

如有1) ,2,1,0,==k b a k k 则称 x 与 y 相等,记为 y x =2) 若存在非负整数 l ,使得),,2,1,0(,l k b a k k ==,而11++>l l b a ,则称x 大于 y (或 y 小于 x ),别离记为 y x >(或x y <)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S的最小的上界 称作 的上确界 的最小的上界,称作 的上确界. 的最小的上界 称作S的上确界 满足: 定义2 定义 设S是R中的一个数集 若数 η 满足: 是 中的一个数集 (i) 对一切 x ∈ S , 有 x ≤ η , η 即是 的上界; 即是S的上界 的上界; (ii) 对任何 α < η , 存在x0 ∈ S , 使得 x0 > α , 即 则称数
事实上,对任何正数 无论多么大 无论多么大), 事实上,对任何正数M(无论多么大 ,取 则 n0 ∈ N + , 且 n0
n0 = [ M ] + 1, ([ M ]表示对M 取整)
问题: 问题 设 S
有无上界; 有无上界 = [0,1]. (1) S有无上界 (2) S若有上界 有几个上界 若有上界,有几个上界 若有上界 有几个上界; (3) S有无最小的上界 有无最小的上界. 有无最小的上界
数集.确界原理 §2数集 确界原理 数集 一 区间与邻域 为开区间, 设 a, b ∈ R, 且 a < b. 称数集 {x | a < x < b} 为开区间,记作 ( a, b) 称为闭区间,记作 数集 称为闭区间,
{x | a ≤ x ≤ b}
(a, b)
数集
{x | a ≤ x < b} [a, b) 都称为半开半闭区间, 都称为半开半闭区间,分别记作 ( a, b] { x | a < x ≤ b} b
例2 设
满足: 定义2 定义 设S是R中的一个数集 若数η 满足: 是 中的一个数集 (i) 对一切 x ∈ S , 有 x ≤ η , η 即是 的上界; 即是S的上界 的上界; η 又是 的最小上界, 的最小上界 (ii) 对任何 α < η , 存在x ∈ S , 使得 x0 > α ,即 又是S的最小上界, 则称数 证明: S = [0,1]. 证明 sup S = 1. 的上界; 的上界 证: (i) 对一切 x ∈ S , 有 x ≤ 1, η = 1 是S的上界; (ii) 对任何 α < 1, 取 x0 = 1 ∈ S , 则有 x0 > α , 故 sup S = 1. 例2 设 证明: = [0,1).证明: sup S = 1. 的上界; 的上界 证: (i) 对一切 x ∈ S , 有 x ≤ 1, η = 1 是S的上界; 则有任取 x0 ∈ S , (ii) 对任何 α < 1. 若 α < 0, 1+ α , 有 α < x0 . 有 α < x0 . 若 0 ≤ α < 1, 取 x0 = 2 sup S = 1. 例3 设 S 所以
设数集S有上确界 有上确界. 例4 设数集 有上确界.证明 η = sup S ∈ S ⇔ η = max S 证: ⇒) 设 η = sup S ∈ S , 则对一切 x ∈ S 有x ≤ η 而
η ∈ S , 故η , 故 η 是数集S中最大的数,即 η = max S . 是数集 中最大的数, 中最大的数 ⇐) 设 η = max S , 则η ∈ S . 下面验证 η = sup S . (i) 对一切 x ∈ S , 有x ≤ η , 即η是S的上界. (ii) 对任何 α < η 只须取 x0 = η ∈ S , 则x0 > α . 从而满足 η = sup S 的定义

0 0 U − (a )与U + (a )
其中M为充分大的正数 为充分大的正数。 ∞ 邻域 U (∞ ) = { x || x |> M }, 其中 为充分大的正数。 其中M为充分大的正数 为充分大的正数。 +∞ 邻域 U ( +∞ ) = { x | x > M }, 其中 为充分大的正数。 其中M为充分大的正数 为充分大的正数。 −∞ 邻域 U ( −∞ ) = { x | x < − M }, 其中 为充分大的正数。
显然是非空有界集, 因此S的上下确界都存在 的上下确界都存在. 证: 由于 S = A U B, 显然是非空有界集 因此 的上下确界都存在 (i) 对任何 x ∈ S 有 x ∈ A 或 x ∈ B ⇒ x ≤ sup A或x ≤ sup B, 故得 x ≤ max{sup A,sup B}. 从而有 sup S ≤ max{sup A,sup B}.
a
[a, b]
a
[ a, b]
x x
b
x x
a [a, b) b
满足关系式 x
a ( a, b ] b
≥ a 的全体实数上的集合记作 [a, +∞)

读作“无穷大” 读作“无穷大”,
( −∞, a ] = {x | x ≤ a} (a, +∞ ) = { x | x > a}
(−∞, a ) = {x | x < a} ( −∞, +∞ ) = {x | −∞ < x < +∞} = R
设 a ∈ R, δ 的集合称为点
> 0. 满足绝对值不等式 | x − a |< δ 的全体实数 x 邻域, a 的 δ 邻域,记作 U ( a; δ ), 简记作 U ( a ). 即 U ( a; δ ) = {x || x − a |< δ } = ( a − δ , a + δ ),
邻域, U 0 (a; δ ) = {x | 0 <| x − a |< δ }: 点 a 的空心 δ 邻域,简记作 U 0 (a)
η 又是 的最小上界, 又是S的最小上界 的最小上界,
η
为数集S的上确界, 为数集S的上确界,记作 的上确界
η = sup S
S = [0,1]. 证明 sup S = 1. 证明: 的上界; 的上界 证: (i) 对一切 x ∈ S , 有 x ≤ 1, η = 1 是S的上界; (ii) 对任何 α < 1, 取 x0 = 1 ∈ S , 则有 x0 = 1 > α , 故 sup S = 1.
为有界数集. 例6 设A、B为有界数集 、 为有界数集
证明 S = A U B 证明: (i ) sup S = max{sup A,sup B}; (ii ) infS = min{inf A,inf B};
a 的δ 右邻域 U + (a; δ ) = [a, a + δ ), 简记为 U + (a) 点 a 的 δ 左邻域 U − (a; δ ) = (a − δ , a ],简记为 U − ( a ) 右邻域, U − (a)与U + (a) 除去点 a 后, 分别为点 a 的空心δ 左、右邻域,简记为
sup S = 1, inf S = 0.
在 (α ,1) 必存在有理数 x0 , 显然有 所以supS=1. 类似地可验证 所以 类似地可验证infS=0. .
的上界. 是 的上界 (i) 对一切 x ∈ S , 有 x ≤ 1, 即1是S的上界 (ii) 对任何 α < 1, 若 α ≤ 0, 则任取 x0 ∈ S 都有x0 > α ; 由有理数集在实数集中的稠密性, 若 α > 0, 则0 < α < 1, 由有理数集在实数集中的稠密性,
x∈S 定义1 中的一个数集. 定义 设S为R中的一个数集.若存在数 ,使得对一切 为 中的一个数集 若存在数M, 则称S为有上界的数集 为有上界的数集, 称为S的一个上界 称为 的一个上界。 都有 x ≤ M , 则称 为有上界的数集,数M称为 的一个上界。
x∈S 定义1.1 设S为R中的一个数集.若存在数 ,使得对一切 中的一个数集. 定义 为 中的一个数集 若存在数L, 则称S为有上界的数集 为有上界的数集, 称为S的一个下界 称为 的一个下界。 都有 x ≥ L, 则称 为有上界的数集,数L称为 的一个下界。
η
பைடு நூலகம்
为数集S的上确界, 为数集 的上确界,记作 的上确界
η = sup S
为数集 的下确界, 的下确界 则称数 ξ 为数集S的下确界,记作 ξ = inf S 试按上、下确界的定义验证: 例4 设 S = {x | x为区间(0,1)中的有理数}, 试按上、下确界的定义验证: 解:先验证supS=1. 先验证
例1 证明数集
有界集·确界原理 二 有界集 确界原理
若数集S既有上界又有下界,则称 为有界集 为有界集. 不是有界集, 为无界集. 若数集 既有上界又有下界,则称S为有界集.若S不是有界集,则称 为无界集. 既有上界又有下界 不是有界集 则称S为无界集 有下界而无上界. N + = {n | n为正整数} 有下界而无上界. 任何一个不大于1的实数都是 的下界, 证: 任何一个不大于 的实数都是 N + 的下界,故 N 为有下界的数集 + 无上界,按照定义只须证明:对于无论多么大的数M, 为证 N + 无上界,按照定义只须证明:对于无论多么大的数 , 总存在某个正整数 n0 (∈ N + ), 使得 n0 > M . 无上界. > M . 这就证明了 N + 无上界.
满足: 定义2 定义 设S是R中的一个数集 若数η 满足: 是 中的一个数集 (i) 对一切 x ∈ S , 有 x ≤ η , η 即是 的上界; 即是S的上界 的上界; η 又是S的最小上界 的最小上界, (ii) 对任何 α < η , 存在x0 ∈ S , 使得 x0 > α ,即 又是 的最小上界, 则称数
η
0
为数集S的上确界, 为数集 的上确界,记作 的上确界
η = sup S
(1) 一个数集的上确界是唯一的 一个数集的上确界是唯一的; (2) 一个数集的上确界 可能属于该数集,也可能不属于该数集 一个数集的上确界,可能属于该数集 也可能不属于该数集 可能属于该数集 也可能不属于该数集; (3) 不同的数集可能有相同的上确界 不同的数集可能有相同的上确界.
相关文档
最新文档