圆锥曲线常用方法试题

合集下载

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。

假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。

如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。

方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。

方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

圆锥曲线测试题 小题

圆锥曲线测试题 小题

圆锥曲线测试题 小题一、选择题(本大题共10小题,每小题5分,共50分) 1.抛物线)0(42≠=a ax y 的焦点坐标为 ( )A .(0,41a) B .)161,0(a C .)161,0(a-D .)0,161(a2.中心在原点,准线方程是4±=x ,离心率是21的椭圆方程为 ( )A .1422=+y x B .14322=+y x C .13422=+y x D .1422=+y x 3.双曲线与椭圆1522=+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为( )A .1322=-x y B .1322=-x y C .1322=-y x D .1322=-y x 4.过抛物线x y 42=的焦点F 作倾斜角为3π的弦AB ,则|AB|的值为 ( )A .738B .316 C .38 D .73165.ab ay bx b y ax b a =+=+-≠≠220,0,0和则方程所表示的曲线可能是 ( )A B C D6.已知双曲线)0,0(1122222222>>>=+=-b m a by m x b y a x 和椭圆的离心离互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 7.已知椭圆121)(1222=-+t y x 的一条准线方程为y=8,则t 为 ( )A .7或-7B .4或12C .1或15D .08.给出下列曲线①0124=-+y x ,②322=+y x ,③1222=+y x ,④1222=-y x其中与直线32--=x y 有交点的所有曲线是( )A .①③B .②④C .①②③D .②③④9.已知F 1、F 2为椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足|PF 1|=e|PF 2|,则e 的值为 ( )A .22B .32-C .33 D .22-10.已知双曲线)0,0(12222>>=-b a by a x 的离心率为,215+A ,F 分别是它的左顶点和右焦点,设B 点坐标为(0,b ),则∠ABF 等于( )A .45°B .60°C .90°D .120°二、填空题(本大题共4小题,每小题6分,共24分)11.已知方程11222=+-+λλy x 表示双曲线,则λ的取值范围为 . 12.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 .13.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,若实数λ使得|AB|=λ的直线恰有3条,则λ= .14.抛物线)0(22>=p px y 的动弦长|PQ|为8p ,当PQ 的中点M 到y 轴的距离最小时,直线PQ 的倾斜角为 .一、1.C 2.C 3.C 4.B 5.C 6.B 7.C 8.D 9.C 10.C 二、11.),1()2,(+∞---∞ 12.x y 542-= 13.4 14.656ππ或。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

圆锥曲线 习题及答案

圆锥曲线 习题及答案

金材教育 圆锥曲线未命名一、解答题1.过抛物线L :x y 42=的焦点F 的直线l 交此抛物线于A 、B 两点, ①求||||||||FB FA FB FA ⋅+;②记坐标原点为O ,求△OAB 的重心G 的轨迹方程.③点),(00y x P 为抛物线L 上一定点,M 、N 为抛物线上两个动点,且满足0=⋅,当点M 、N 在抛物线上运动时,证明直线MN 过定点。

【答案】①||||1||||FA FB FA FB +=⋅②98342-=x y ③证明见解析。

【解析】①由F (1,0),设直线l 的方程为 x y x k y 4)1(2=-=与联立得1,42 0422122212222=+=+∴=+--x x k k x x k x x k x k ……2分由222121242||||1||1||kk x x FB FA x FB x FA +=++=++=+=,得, 1||||||||44||||22=⋅++=⋅FB FA FB FA kk FB FA ,所以 …………4分②设3,3423),(212221y y y k k x x x y x G +=+=+=,则 …………5分 由kk x x k x k x k y y 42)()1()1(212121=-+=-+-=+ ……7分 化简得轨迹方程为 98342-=x y …………9分 ③证明:由直线MN 的方程不可能与x 轴平行可设直线MN 的方程为),(),,(),,(,002211y x P y x N y x M a my x +=202221214,4,4x y x y x y ===分别相减得202020101014,4y y x x y y y y x x y y +=--+=--由 1002020101-=--⋅--=⋅x x y y x x y y PM 有,∴1440201-=+⋅+y y y y即 016)(2021021=++++y y y y y y (*式) …………11分联立 044422=--⎩⎨⎧=+=a my y x xy amy x 得,消去 有01644 )*(442002121=++⋅+-⎩⎨⎧-==+y m y a ay y m y y 得式,代入,所以 44020++=my y a ,代入直线MN 的方程有 44020=++=my y my x 2.如图,DP y ⊥轴,点M 在DP 的延长线上,且3DM DP=.当点P 在圆221x y +=上运动时,(1)求点M 的轨迹方程.(2)过点1(1,)3Q 作直线l 与点M 的轨迹相交于A 、B 两点,使点Q 被弦AB 平分,求直线l 的方程.【答案】(1)221(0)9x y x +=≠(2)320x y +-=【解析】 【分析】(1)设()()00,,,M x y P x y ,3DMDP =,所以03x x =,()0,D y ,0y y =,003x x y y⎧=⎪⎨⎪=⎩,代入圆的方程得到轨迹方程,抠掉不满足题意的点即可;(2)设出直线l 的方程为()113y k x =-+,联立直线和椭圆,根据韦达定理列式即可.【详解】(1)解析:设()()00,,,M x y P x y ,则()0,D y ,0y y =,0DP x =,DM x = ∵3DM DP=,所以03x x =∵003x x y y =⎧⎨=⎩∴003x x y y⎧=⎪⎨⎪=⎩①∵P 在圆221x y +=上,∴2201x y +=,代入①得2219x y +=3,0DM DP DP=∴≠Q,∴0x ≠,∴()22109x y x +=≠.(2)由题意知直线l 的斜率存在,l 过点11,3⎛⎫ ⎪⎝⎭,设直线l 的方程为()113y k x =-+,设()()1122,,,A x y B x y ,联立()2211319y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得,()22211191899033k x k k x k ⎛⎫⎛⎫++-++-+-= ⎪ ⎪⎝⎭⎝⎭∵点11,3⎛⎫⎪⎝⎭在椭圆内部,∴不论k 取何值,必定有0∆>.由韦达定理知212218619k kx x k -++=-+ ∵()()1122,,,A x y B x y 的中点是11,3⎛⎫ ⎪⎝⎭,∴122x x +=,即2122186219k kx x k-++=-=+,解得13k =-, ∴直线l 的方程为320x y +-=. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.3.设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于,A B两点,线段AB 的长度为8, AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且抛物线交于,P Q 两点,连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.【答案】(1)24x y =; (2)162y x =±+. 【解析】【试题分析】(1)依据题设条件,直接运用抛物线的定义分析求解;(2)依据题设建立直线方程,再与抛物线方程联立,借助坐标之间的关系,建立方程求解:(1)设所求抛物线方程为()()211222(0),,,,x py p A x y B x y =>, 则128AB AF BF y y p =+=++=,又1232y y +=,所以2p =. 即该抛物线的标准方程为24x y =.(2)由题意,直线m 的斜率存在,不妨设直线:6m y kx =+,()()3344,,,P x y Q x y ,由26{4y kx x y =+=消y 得24240x kx --=,即34344{·24x x k x x +==-(*) 抛物线在点233,4x P x ⎛⎫ ⎪⎝⎭处的切线方程为()233342x xy x x -=-, 令1y =-,得23342x x x -=,所以2334,12x R x ⎛⎫--⎪⎝⎭, 而,,Q F R 三点共线,所以QFFR k k =及()0,1F ,得242343111442x x x x ---=-. 即()()22343444160x x x x --+=,整理得()()22343434344216160x x x x x x x x ⎡⎤-+-++=⎣⎦,将(*)式代入上式得214k =,即12k =±, 所以所求直线m 的方程为162y x =±+.4.已知椭圆)0(12222>>=+b a by a x 长轴上有一顶点到两个焦点之间的距离分别为:3+,3-. (1)求椭圆的方程;(2)如果直线 )(R t t x ∈=与椭圆相交于A,B ,若C (-3,0),D(3,0),证明:直线CA 与直线BD 的交点K 必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l (与x 轴不垂直)与椭圆交于M,N 两点,与y 轴交于点R ,若RM μλ==,,求证:μλ+为定值.【答案】(1)1922=+y x (2)直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. (3)49-=+μλ 【解析】(1)由题意可知a+c,和a-c,所以可求出a,c 的值,进而求出b 的值.(2) 依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,然后求出CA 、DB 的方程,解出它们的交点再证明交点坐标是否满足双曲线1922=-y x 的方程即可.(3) 设直线l 的方程为)1(-=x k y ,再设),(33y x M 、),(44y x N 、),0(5y R ,然后直线方程与椭圆C 的方程联立,根据λ=,可找到)1(33x x -λ=,331x x -=λ,同理441x x -=μ,则443311x x x x -+-=μ+λ34343434()21()x x x x x x x x +-=-++,然后再利用韦达定理证明(1)由已知⎪⎩⎪⎨⎧-=-+=+223223c a c a ,得⎪⎩⎪⎨⎧==223c a ,1222=-=c a b ,所以椭圆方程为1922=+y x 4分(2)依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,又)3(3:0++=x t y y CA ,)3(3:0---=x t y y DB ,)9(922202---=x t y y , 将19202=+y t 代入即得19,)9(912222=--=y x x y 所以直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. 9分(3)依题意,直线l 的斜率存在,则设直线l 的方程为)1(-=x k y ,设),0(,),(,),(54433y R y x N y x M ,则N M ,两点坐标满足方程组⎪⎩⎪⎨⎧=+-=19)1(22y x x k y , 消去y 整理得9918)91(2222=-+-+k x k x k ,所以224322439199,9118k k x x k k x x +-=+=+,① 因为RM λ=,所以()[]),(0,1),(33533y x y y x -=-λ,即⎩⎨⎧-=--=35333)1(y y y x x λλ,因为l 与x 轴不垂直,所以13≠x ,则331x x -=λ,又μ=,同理可得441x x -=μ,所以434343434433)(1211x x x x x x x x x xx x ++--+=-+-=+μλ由①式代人上式得49-=+μλ 5.在平面直角坐标系xOy 中, ,M N 是x 轴上的动点,且228OM ON +=,过点,M N分别作斜率为22-的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅰ)22143x y +=;(Ⅱ)直线AB 的斜率为定值34-. 【解析】试题分析:(Ⅰ)设(),P m n,直线):PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭,同理得,0N m ⎛⎫ ⎪ ⎪⎝⎭,根据22228OM ON m m ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,可得1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②,以上两式结合点差法,可得34C D C D y y x x -=--.试题解析:(Ⅰ)设(),P m n ,直线():2PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭直线):PN y n x m -=-,令0y =,得,0N m ⎛⎫ ⎪ ⎪⎝⎭.∴22222222828133343n m n OM ON m n m n m ⎛⎫⎛⎫+=-++=+=⇒+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r . ∴曲线E 的方程是22143x y +=; (Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得2222143{143A AB B x y x y+=+=,化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.即34C D C D y y x x -=--,∴直线AB 的斜率为定值34-. 【方法点睛】本题主要考查椭圆标准方程、直线的斜率、韦达定理、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C .(1)求曲线C 的方程;(2)若()()1122,,,A x y B x y 为曲线C 上的两点,记11,2y m x ⎛⎫= ⎪⎝⎭v, 22,2y n x ⎛⎫= ⎪⎝⎭v ,且m n ⊥v v,试问AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】(1) 2214y x +=;(2)答案见解析. 【解析】试题分析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,由两圆相内切,得122OM FP =-,又12OM PF =',从而得4PF PF FF +=>'',由椭圆定义得椭圆方程;(2)当AB x ⊥轴时,易得1AOB S ∆=,当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,与椭圆联立得()2224240k x kmx m +++-=,由0m n ⋅=v v,得121240y y x x +=,结合韦达定理得2224m k =+,由1212AOB S m x x ∆=⋅-利用韦达定理求解即可. 试题解析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切, ∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',∴点P 的轨迹是以,F F '为焦点的椭圆,其中24,2a c ==2,a c ==,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=. (2)当AB x ⊥轴时,有12x x =, 12y y =-,由m n ⊥v v,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=. 当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,由22{ 14y kx my x =++=得()2224240k x kmx m +++-=,则12224kmx x k -+=+, 212244m x x k -=+,由0m n ⋅=v v,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,∴2224m k =+,∴1212AOBS m x x ∆=⋅-12=21m==, 综上所述, AOB ∆的面积为定值1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.7.已知椭圆E 的中心在原点,焦点在x 轴上,且其焦点和短轴端点都在圆C :222x y +=上.(1)求椭圆E 的标准方程;(2)点P 是圆C 上一点,过点P 作圆C 的切线交椭圆E 于A ,B 两点,求|AB |的最大值.【答案】(1)22142x y +=;(2)2 【解析】 【分析】(1)由题意设出椭圆的标准方程,由于椭圆焦点和短轴端点都在圆C :222x y +=上,可得到b ,c 的值,即可求出椭圆方程。

圆锥曲线基础测试题及答案

圆锥曲线基础测试题及答案

圆锥曲线基础测试1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( )A .2B .3C .2D .35.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±7.若椭圆221x my +=的离心率为2,则它的长半轴长为_______________. 8.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。

9.若曲线22141x y k k +=+-表示双曲线,则k 的取值范围是 。

10.抛物线x y 62=的准线方程为 .11.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

12.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点? 13.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。

14.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。

圆锥曲线技巧-齐次化处理

圆锥曲线技巧-齐次化处理

圆锥曲线技巧---齐次化处理一、解答题1.如图,设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB.求点M的轨迹方程,并说明它表示什么曲线.【答案】M的轨迹是以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.【解析】试题分析:由OA⊥OB可得A、B两点的横坐标之积和纵坐标之积均为定值,由OM⊥AB可用斜率处理,得到M的坐标和A、B坐标的联系,再注意到M在AB上,由以上关系即可得到M点的轨迹方程;此题还可以考虑设出直线AB的方程解决.解:如图,点A,B在抛物线y2=4px上,设,OA、OB的斜率分别为k OA、k OB.∴由OA⊥AB,得①依点A在AB上,得直线AB方程②由OM⊥AB,得直线OM方程③设点M(x,y),则x,y满足②、③两式,将②式两边同时乘以,并利用③式,可得﹣•(﹣)+=﹣x 2+,整理得④由③、④两式得由①式知,y A y B =﹣16p 2∴x 2+y 2﹣4px=0因为A 、B 是原点以外的两点,所以x >0所以M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.考点:轨迹方程;抛物线的应用.2.已知椭圆C:22221(0)x y a b a b+=>>的焦点是(、,且椭圆经过点2)2。

(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆右顶点M ,求证:直线l 恒过定点.【答案】(1)2214x y +=(2)详见解析【解析】试题分析:(1)设出椭圆方程,由题意可得223a b -=,再由椭圆的定义可得2a=4,解得a=2,b=1,进而得到椭圆方程;(2)由题意可知,直线l 的斜率为0时,不合题意.不妨设直线l 的方程为x=ky+m ,代入椭圆方程,消去x ,运用韦达定理和由题意可得MA ⊥MB ,向量垂直的条件:数量积为0,化简整理,可得65m =或m=2,即可得到定点试题解析:(1)椭圆C 的方程为22221(0)x y a b a b+=>>∴223a b -=,24a =+=+=所以所求椭圆C 的方程为2214x y +=(2)方法一(1)由题意可知,直线l 的斜率为0时,不合题意.(2)不妨设直线l 的方程为x ky m =+.由22,14x ky m x y =+⎧⎪⎨+=⎪⎩消去x 得222(4)240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224kmy y k +=-+……①,212244m y y k -=+………②因为以AB 为直径的圆过点M ,所以0MA MB ⋅=.由1122(2,),(2,)MA x y MB x y =-=- ,得1212(2)(2)0x x y y --+=.将1122,x ky m x ky m =+=+代入上式,得221212(1)(2)()(2)0k y y k m y y m ++-++-=.………③将①②代入③,得225161204m m k -+=+,解得65m =或2m =(舍).综上,直线l 经过定点6(,0).5方法二证明:(1)当k 不存在时,易得此直线恒过点6(,0)5.(2)当k 存在时.设直线l y kx m =+的方程为,1122(,),(,)A x y B x y ,(2,0)M .由2214x y y kx m ⎧+=⎪⎨⎪=+⎩,可得222(41)84120k x kmx m +++-=.2216(41)0k m ∆=-+>1228,41km x x k -+=+……①21224441m x x k -=+…….②由题意可知0MA MB ⋅=,1122(2,),(2,),MA x y MB x y =-=- 1122,.y kx m y kx m =+=+可得1212(2)(2)0x x y y -⋅-+=.整理得221212(2)()(1)40km x x k x x m -+++++=③把①②代入③整理得222121650,41k km m k ++=+由题意可知22121650,k km m ++=解得62,.5m k m k =-=-(i )当2,(2)m k y k x =-=-即时,直线过定点(2,0)不符合题意,舍掉.(ii )65m k =-时,即6(5y k x =-,直线过定点6(,0)5,经检验符合题意.综上所述,直线l 过定点6(,0)5考点:1.椭圆方程;2.直线和椭圆相交的综合问题3.圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.【答案】(1)2212y x -=;(2)36(1)02x y ---=,或36(1)02x y +--=..【解析】试题分析:(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y ==时00x y 有最大值,即S 有最小值,因此点P得坐标为,由题意知解得221,2a b ==,即可求出1C 的方程;(2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,显然,l 不是直线y=0.设l 的方程为1122(,),(,)A x y B x y由22{163x my x y =++=得22(2)30m y ++-=,因1122),,)AP x y BP x y == 由题意知0AP BP ⋅=,所以12121212))40x x x x y y y y -++-++=,将韦达定理得到的结果代入12121212))40x x x x y y y y -++-++=式整理得22110m -+=,解得12m =-或3612m =-+,即可求出直线l 的方程.(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为00x y -,切线方程为000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y ==时00x y 有最大值,即S 有最小值,因此点P得坐标为,由题意知解得221,2a b ==,故1C 方程为2212y x -=.(2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,显然,l 不是直线y=0.设l 的方程为1122(,),(,)A x yB x y由22{163x my x y =++=得22(2)30m y ++-=,又12,y y是方程的根,因此1221222{32y y m y y m +=-+-=+①②,由1122x my x my =+=+得12122221212122()2{66()32x x m y y m m x x m y y y y m +=++=+-=++=+③④因1122),,)AP x y BP x y =-= 由题意知0AP BP ⋅=,所以12121212))40x x x x y y y y -++++=⑤,将①,②,③,④代入⑤式整理得22110m -+-=,解得3612m =-或3612m =-+,因此直线l的方程为(1)02x y ---=,或(1)02x y +--=.考点:1.椭圆的方程;2.直线与椭圆的位置关系.4.(2015•山西四模)分别过椭圆E :=1(a >b >0)左、右焦点F 1、F 2的动直线l 1、l 2相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为k 1、k 2、k 3、k 4,且满足k 1+k 2=k 3+k 4,已知当l 1与x 轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.【答案】(1).(2)存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.【解析】试题分析:(1)由已知条件推导出|AB|=2a=2,|CD|=,由此能求出椭圆E的方程.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,由此利用韦达定理结合题设条件能推导出存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.解:(1)当l1与x轴重合时,k1+k2=k3+k4=0,即k3=﹣k4,∴l2垂直于x轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E的方程为.(2)焦点F1、F2坐标分别为(﹣1,0),(1,0),当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0),当直线l1,l2斜率存在时,设斜率分别为m1,m2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.考点:直线与圆锥曲线的综合问题.5.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(Ⅰ)求C的方程;(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.【答案】(1)221 4x y+=.(2)证明见解析.【详解】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t ,2),(t,2-).则1222122k k t t-++=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.6.已知点P 3(1,2-是椭圆C :22221(0)x y a b a b +=>>上一点,F 1、F 2分别是椭圆的左、右焦点,124PF PF +=(1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线PA 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论【答案】(1)22143x y +=;(2)直线l 过定点(40)-,.证明见解析.【分析】(1)由椭圆定义可知2a =,再代入P 3(1,2-即可求出b ,写出椭圆方程;(2)设直线l 的方程y kx m =+,联立椭圆方程,求出k 和m 之间的关系,即可求出定点.【详解】(1)由12||||4PF PF +=,得2a =,又312P ⎛⎫- ⎪⎝⎭,在椭圆上,代入椭圆方程有221914a b+=,解得b =,所以椭圆C 的标准方程为22143x y +=.(2)证明:当直线l 的斜率不存在时,11()A x y ,,11()B x y -,,11121332211y y k k x ---+==+,解得14x =-,不符合题意;当直线l 的斜率存在时,设直线l 的方程y kx m =+,11()A x y ,,22()B x y ,,由2234120y kx m x y =+⎧⎨+-=⎩,整理得222(34)84120k x kmx m +++-=,122834km x x k -+=+,212241234m x x k-=+,22430k m ∆=-+>.由121k k +=,整理得12125(21)()2402k x x k m x x m ⎛⎫-++-++-= ⎪⎝⎭,即(4)(223)0m k m k ---=.当32m k =+时,此时,直线l 过P 点,不符合题意;当4m k =时,22430k m ∆=-+>有解,此时直线l :(4)y k x =+过定点(40)-,.【点睛】本题考查椭圆方程的求法,考查椭圆中直线过定点问题,属于中档题.7.如图,椭圆2222:1(0)x y E a b a b +=>>经过点()0,1A -,且离心率为22.(1)求椭圆E 的方程;(2)若经过点()1,1,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.【答案】(1)2212x y +=;(2)所以直线AP 、AQ 斜率之和为定值2.【分析】(1)运用离心率公式和a ,b ,c 的关系,解方程可得a ,进而得到椭圆方程;(2)把直线PQ 的方程代入椭圆方程,运用韦达定理和直线的斜率公式,化简计算即可得到结论.【详解】解:(1)由题意知22c a =,1b =,结合222a b c =+,解得a =,∴椭圆的方程为2212x y +=;(2)由题设知,直线PQ 的斜率不为0,则直线PQ 的方程为(1)1y k x =-+(2)k ≠,代入2212x y +=,得22(12)4(1)2(2)0+--+-=k x k k x k k ,由已知0∆>,设11(,)P x y ,22(,)Q x y ,120x x ≠,则1224(1)12k k x x k -+=+,1222(2)12k k x x k-=+,从而直线AP 与AQ 的斜率之和:121212121122AP AQ y y kx k kx k k k x x x x +++-+-+=+=+121212112(2)()2(2)x x k k k k x x x x +=+-+=+-4(1)2(2)22(1)22(2)k k k k k k k k -=+-=--=-.所以直线AP 、AQ 斜率之和为定值2.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.8.已知椭圆方程为2218y x +=,射线y =(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ).(1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.【答案】(Ⅰ)证明见解析;(Ⅱ.【分析】(1)设0k >,求得M 的坐标,则可表示出AM 的直线方程和BM 的直线方程,分别与椭圆的方程联立求得A x 和B x ,进而求得AB 的斜率;(2)设出直线AB 的方程与椭圆方程联立消去y ,利用判别式大于0求得m 的范围,进而表示出三角形AMB 的面积,利用m 的范围确定面积的最大值.【详解】(Ⅰ)斜率k 存在,不妨设k >0,求出M(2,2).直线MA 方程为22()2y k x -=-,分别与椭圆方程联立,可解出22482A k x k -=-+,同理得,直线MB 方程为22(2y k x -=--.2224282B k x k +=-+∴A B AB A By y k x x -==-.(Ⅱ)设直线AB方程为y m =+,与2218y x +=联立,消去y得216x +2(8)0m +-=.由∆>0得一4<m <4,且m ≠0,点M 到AB 的距离为3md =.3AB ===设△AMB 的面积为S .∴()22222211116||162432322S AB d m m ⎛⎫==-≤⋅= ⎪⎝⎭.当m =±max S =.【点睛】本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.9.已知椭圆两焦点分别为F 1、F 2、P 是椭圆在第一象限弧上一点,并满足,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点(1)求P 点坐标;(2)求证直线AB 的斜率为定值;(3)求△PAB 面积的最大值.【答案】(1)(.(2.(3.【解析】【分析】(1)根据121PF PF ⋅= ,用坐标表示,结合点P (x ,y )在曲线椭圆22124x y +=上,即可求得点P 的坐标;(2)设出BP 的直线方程与椭圆方程联立,从而可求A 、B 的坐标,进而可得AB 的斜率为定值;(3)设AB的直线方程:y m =+,与椭圆方程联立,可确定m -<,求出P 到AB 的距离,进而可表示△PAB 面积,利用基本不等式可求△PAB 面积的最大值.【详解】(1)由题可得(10F,(20F ,设P 0(x 0,y 0)(x 0>0,y 0>0)则()100PF x y =--,()200PF x y =- ,∴()22120021PF PF x y ⋅=--= ,∵点P (x 0,y 0)在曲线上,则2200124x y +=,∴220042y x -=,从而()22004212y y ---=,得0y =则点P的坐标为(1.(2)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为k (k >0),则BP的直线方程为:()1y k x =-.由()221124y k x x y ⎧=-⎪⎨+=⎪⎩得())22222)40k x k k x k ++-+-=,设B (x B ,y B ),则((222222211222B B k k k k k x x k k k ---+===+++,,同理可得2222A k x k +-=+,则22A B x x k-=+,()()28112A B A B k y y k x k x k -=----=+.所以AB的斜率A B AB A By y k x x -==-为定值.(3)设AB的直线方程:y m =+.由22124y m x y ⎧=+⎪⎨+=⎪⎩,得22440x m ++-=,由()22)1640m =-->,得m -<P 到AB的距离为d =则12PAB S AB d =⋅==≤=.当且仅当(2m =±∈-取等号∴△PAB.【点睛】本题以椭圆的标准方程及向量为载体,考查直线与椭圆的位置关系,考查三角形的面积计算及利用基本不等式求最值,解题的关键是直线与椭圆方程联立,利用韦达定理进行解题.10.已知中心在原点的椭圆C 的一个焦点为,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 作倾斜角互补的两条不同直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率是定值.【答案】(Ⅰ)22142y x +=;(Ⅱ)见解析.【解析】【分析】(1)设椭圆C 的方程为:()222210y x a b a b+=>>,利用已知条件,求出a ,b ,即可得出椭圆C 的方程;(2)设出直线PA 、PB 的方程与椭圆方程联立,求出A ,B 的坐标,利用斜率公式,即可证明直线AB 的斜率为定值.【详解】(Ⅰ)设椭圆方程为22221y x a b+=(0a b >>)则有22211a b +=又222a b =+∴222112b b +=+∴4220b b --=解得22b =∴24a =∴椭圆C 的方程为22142y x +=或解:椭圆的另一焦点为(0,由24a ==得2a =又c =∴22b =∴椭圆C 的方程为22142y x +=(Ⅱ)依题意,直线PA ,PB 都不垂直于x 轴设直线PA方程为()1y k x -=-,则直线PB方程为()1y k x =--由()22124y k x y x ⎧=-⎪⎨+=⎪⎩得()22222))40k x k k x k ++-++-=∵22(2)412A k x k -⋅=+∴22(2)42A k x k +-=+同理22(2)42B k x k --=+∴(2)(2)()2A B A B A B AB A B A B A By y kx k kx k k x x k k x x x x x x -+---+-===---故直线AB 的斜率是定值【点睛】本题考查椭圆的方程,考查直线与椭圆的位置关系,考查直线的斜率公式,考查学生的计算能力,正确运用韦达定理是关键.11.已知椭圆两焦点1F 、2F 在y 轴上,短轴长为,离心率为2,P 是椭圆在第一象限弧上一点,且121PF PF ⋅= ,过P 作关于直线1F P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点.(1)求P 点坐标;(2)求证直线AB 的斜率为定值.【答案】(1)(;(2)证明见解析.【分析】(1)由已知可解出椭圆方程,然后设出()00P x y ,,结合121PF PF ⋅= ,即可解出点P 的坐标;(2)由(1)知1//PF x 轴,直线PA ,PB 斜率互为相反数,设PB 的直线方程为()1y k x -=-,与椭圆方程联立,即可解出222222B k x k--=+,同理可得222222A k x k +-=+,然后解出A B y y -,即可算出AB 的斜率AB k =【详解】解:(1)设椭圆的方程为22221y x a b+=,由题意可得b =,22c a =,即a =,222a c -=c ∴=,2a =∴椭圆方程为22142y x +=,∴焦点坐标为(0,(0,,设()0000(00)P x y x y >>,,,则()100PF x y =--,()200PF x y =- ,()22120021PF PF x y ∴⋅=--= , 点P 在曲线上,则2200142y x +=,220042y x -∴=,从而()22004212y y ---=,得0y =,则点P的坐标为(;(2)由(1)知1//PF x 轴,直线PA ,PB 斜率互为相反数,设PB 的斜率为(0)k k >,则PB的直线方程为()1y k x -=-,由()221124y k x x y ⎧=-⎪⎨+=⎪⎩,得())22222)40kx k k x k ++-+--=,设(),B B B x y,则(2222222122B k k k x k k --=-=++,同理可得2222A k x k +-=+,则22A B x x k-=+,()()28112A B A B k y y k x k x k -=----=+,所以AB的斜率A BABA By ykx x-==-【点睛】本题考查了椭圆的方程和性质,考查椭圆和直线的位置关系,属于较难题.12.如图,椭圆C :经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.【答案】(1)(2)答案见解析【解析】试题分析:(1)由题意将点P(1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根与系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB 的方程为,由此方程求得M的坐标,再与椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值解:(1)椭圆C :经过点P(1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA 的斜率k 1=,直线PB 的斜率为k 2=所以k 1+k 2=+=2×=2k 3,故存在常数λ=2符合题意考点:直线与圆锥曲线的关系;椭圆的标准方程.视频13.如图,椭圆C:22221x y a b +=(a >b >0)经过点P (2,3),离心率e=12,直线l 的方程为y=4.(Ⅰ)求椭圆C 的方程;(Ⅱ)AB 是经过(0,3)的任一弦(不经过点P ).设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得12311k k k λ+=?若存在,求λ的值.【答案】(Ⅰ)216x +212y =1(Ⅱ)2【解析】试题分析:(Ⅰ)通过将点P (2,3)代入椭圆方程,结合离心率计算即得结论;(Ⅱ)分AB 斜率存在、不存在两种情况讨论,结合韦达定理计算即得结论试题解析:(Ⅰ)由已知得22222491,1,2a b a b c c a ⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩,解得a=4,.所以椭圆C 的方程为216x +212y =1.(Ⅱ)当直线AB 不存在斜率时,A (,B (),M (0,4),此时k2=302-=32-,k 1=302---=32+,k 3=4302--=-12,11k +21k =-4,可得λ=2.当直线AB 存在斜率时,可设为k (k≠0),则直线AB 的方程为y=kx+3.设A (x 1,y 1),B (x 2,y 2),联立直线AB 与椭圆的方程,得221,16123,x y y kx ⎧+=⎪⎨⎪=+⎩消去y ,化简整理得,(4k 2+3)x 2+24kx-12=0,所以x 1+x 2=22443k k -+,x 1x 2=21243k -+,而11k +21k =1123x y --+2223x y --=112x kx -+222x kx -=12121222()x x x x kx x -+=24k k-.又M 点坐标为(1k ,4),所以31k =1243k --=12k k -.故可得λ=2.因此,存在常数2,使得11k +21k =3k λ恒成立.考点:直线与圆锥曲线的综合问题;椭圆的简单性质14.在平面直角坐标系xOy 中,已知椭圆2222x y a b +=1(a >b >0)的右顶点为(2,0),离心率为32,P 是直线x =4上任一点,过点M (1,0)且与PM 垂直的直线交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若P 点的坐标为(4,3),求弦AB 的长度;(3)设直线PA ,PM ,PB 的斜率分别为k 1,k 2,k 3,问:是否存在常数λ,使得k 1+k 3=λk 2?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2214x y +=;(2;(3)存在,λ=2,计算见解析【分析】(1)根据题意可知c ,再由离心率公式可得a ,然后根据222b a c =-得出b ,即可得椭圆的方程;(2)根据P 点的坐标写出直线AB 方程,与椭圆联立解得,A B 坐标,利用两点间距离公式即可求得弦AB 的长度;(3)先假设存在,后分直线AB 斜率存在和不存在两种情况进行求解,直线AB 斜率不存在时容易的R λ∈,直线AB 斜率存在时,设,A B 点坐标,与椭圆联立,再分别求出123,,k k k ,进行化简整理即可得到λ的值.【详解】(1)由题知2a =,32c e a ==,c ∴=,2221b a c =-=,∴椭圆方程为2214x y +=.(2)(1,0)M Q ,(4,3)P 1MP k ∴=,∵直线AB 与直线PM 垂直,∴1AB k =-,∴直线AB 方程0(1)y x -=--,即1y x =-+,联立22114y x x y =-+⎧⎪⎨+=⎪⎩,得2580x x -=0x ∴=或85,(0,1)A ∴,83,55B ⎛⎫- ⎪⎝⎭,||AB∴=(3)假设存在常数λ,使得123k k k λ+=.当直线AB 的斜率不存在时,其方程为1x =,代入椭圆方程得31,2A ⎛⎫ ⎪ ⎪⎝⎭,31,2B ⎛- ⎝⎭,此时(4,0)P ,易得1320k k k +==,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-,()11,A x y ,()22,B x y代入椭圆方程得(1+4k 2)x 2﹣8k 2x +4k 2﹣4=0,12x x ∴+22814k k =+,21224414k x x k-=+,直线PM 方程为()11y x k =--,则34,P k ⎛⎫- ⎪⎝⎭21k k=-,11134y k k x +=-,23234y k k x +=-,132k k k λ+=,121233144y y k k x x k λ++⎛⎫+=- ⎪--⎝⎭,即()()()()12211233()4444y x y x k k x x k λ⎛⎫+-++- ⎪⎝⎭=---,化简得:()()1221121212324416x y x y x x k k x x x x k λ+++-=--++,将12x x +22814k k =+,21224414k x x k -=+,()111y k x =-,()221y k x =-,代入并化简得:2k k λ-=-2λ∴=.综上:2λ=.【点睛】本题考查的是椭圆标准方程基本量的运算以及椭圆的几何性质、直线与椭圆的应用和圆锥曲线中的定值问题,是难题.15.已知椭圆C:22221x y a b+=(a >b >0)的两个焦点分别为F 1,0)、F 2,0).点M (1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.【答案】(1)2213x y+=;(2)m-n-1=0【解析】试题分析:(1)利用M与短轴端点构成等腰直角三角形,可求得b的值,进而得到椭圆方程;(2)设出过M的直线l的方程,将l与椭圆C联立,得到两交点坐标关系,然后将k1+k3表示为直线l斜率的关系式,化简后得k1+k3=2,于是可得m,n的关系式.试题解析:(1)由题意,c,b=1,所以a=故椭圆C的方程为221 3x y+=(2)①当直线l的斜率不存在时,方程为x=1,代入椭圆得,y=±3不妨设A(1,63),B(1,-63)因为k1+k3=66 223322-++=2又k1+k3=2k2,所以k2=1所以m,n的关系式为23nm--=1,即m-n-1=0②当直线l的斜率存在时,设l的方程为y=k(x-1)将y=k(x-1)代入221 3x y+=,整理得:(3k2+1)x2-6k2x+3k2-3=0设A(x1,y1),B(x2,y2),则22 121222633,3131k kx x x xk k-+==++又y1=k(x1-1),y2=k(x2-1)所以k 1+k 3=121221121222(2)(3)(2)(3)33(3)(3)y y y x y x x x x x ----+--+=----=12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+----++=121212122(42)()6123()9kx x k x x k x x x x -++++-++=222222223362(42)6123131336393131k k k k k k k k k k k -⨯-+⨯++++--⨯+++=222(126)126k k ++=2所以2k 2=2,所以k 2=23n m --=1所以m ,n 的关系式为m -n -1=0综上所述,m ,n 的关系式为m -n -1=0.考点:椭圆标准方程,直线与椭圆位置关系,16.已知椭圆C :22221(0)x y a b a b+=>>的两个焦点分别为12(F F 、,点M (1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C 的方程;(2)过点M (1,0)的直线与椭圆C 相交于A 、B 两点,设点N (3,2),记直线AN 、BN 的斜率分别为k 1、k 2,求证:k 1+k 2为定值.【答案】(1)22 1.3x y +=(2)见证明【分析】(1)根据几何条件得,a b 即可,(2)先考虑斜率不存在时特殊情况,再考虑斜率存在情况,设直线方程以及交点坐标,化简12k k +,联立直线方程与椭圆方程,根据韦达定理代入化简即得结果.【详解】(1)依题意,222,c a b =-=由已知得1b OM ==,解得a =所以椭圆的方程为22 1.3x y +=(2)①当直线l 的斜率不存在时,由221,1,3x x y =⎧⎪⎨+=⎪⎩解得61,.3x y ==±设126622331,,1,,23322A B k k 则-+⎛⎫⎛-+=+= ⎪ ⎪ ⎝⎭⎝⎭②当直线l 的斜率存在时,设直线l 的方程为()1,y k x =-代入221,3x y +=化简整理得()2222316330.k x k x k +-+-=依题意,直线l 与椭圆C 必相交于两点,设()1122,,(,),A x y B x y 则22121222633,.3131k k x x x x k k -+==++又()()11221,1,y k x y k x =-=-故()()()()()()1221121212122323223333y x y x y y k k x x x x --+----+=+=----=()()()121212121212224693x x k x x x x x x x x ⎡⎤-++-++⎣⎦-++=22222222226336122246313131633933131k k k k k k k k k k k ⎡⎤--⨯+⨯-⨯+⎢⎥+++⎣⎦--⨯+++=()()2212212621k k +=+为定值.综上,12k k +为定值2.【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.17.已知椭圆E :=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1×k2的值.【答案】(Ⅰ)+y2=1(Ⅱ)【解析】试题分析:(Ⅰ)由题意得,2c=2,=1;从而求椭圆E的方程;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,点N的纵坐标为0,故不成立;当k1≠0时,直线PM:y=k1(x+2);联立方程得(+4)y2﹣=0;从而解得y M=;可得M(,),N(,);从而可得(k2﹣k1)(4k2k1﹣1)=0,从而解得.解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M (,),同理N (,),由直线MN 与y 轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.考点:直线与圆锥曲线的关系;椭圆的标准方程.18.已知椭圆C :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1、F 2,点A 为椭圆的左顶点,点B 为上顶点,|AB |且|AF 1|+|AF 2|=4.(1)求椭圆C 的方程;(2)过点F 2作直线l 交椭圆C 于M 、N 两点,记AM 、AN 的斜率分别为k 1、k 2,若k 1+k 2=3,求直线l 的方程.【答案】(1)22143x y +=;(2)310x y +-=【分析】(1)依题意得到关于a 、b 的方程组,解得即可;(2)设()11,M x y ,()22,N x y ,设直线l 的方程为1x my =+,联立直线与曲线方程消元,列出韦达定理,由123k k +=,即1212322y y x x +=++,即可得到方程,解得即可;【详解】解:(1)依题意可得()()4a c a c ⎧++-=⎪=解得2a b =⎧⎪⎨=⎪⎩23143x y +=(2)由(1)设()11,M x y ,()22,N x y ,()21,0F ,设直线l 的方程为1x my =+,联立方程得231143x my x y =+⎧⎪⎨+=⎪⎩,消去x 整理得()2234690m y my ++-=,所以122634m y y m -+=+,122934y y m -=+因为111x my =+,221x my =+,所以122834x x m +=+,212212434m x x m -+=+因为123k k +=,即1212322y yx x +=++,所以()()121212122336120my y y y x x x x ++--+-=代入得22222961248233612034343434m m m m m m m ---+⨯+⨯-⨯-⨯=++++解得3m =-即l :310x y +-=【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,属于中档题.19.设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)y =x +7..【分析】(1)设,A B 两点坐标,代入抛物线方程相减后可求得AB 的斜率;(2)由C 在M 处的切线与直线AB 平行,可求得切点M 坐标,设直线AB 的方程为y =x +m ,代入抛物线方程可得AB 中点为(2,2)N m +,AM ⊥BM 等价于12MN AB =,这样可求得m 值.【详解】解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,22121244x x y y ==,,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y '=.设M (x 3,y 3),由题设知312x =,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y =x +m 代入24x y =得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,1,22x =±从而12AB x =-=由题设知|AB |=2|MN |,即2(1)m +,解得m =7.所以直线AB 的方程为y =x +7.【点睛】本题考查直线与抛物线相交问题,解题时设直线方程方程为y =x +m 是解题关键.通过它与抛物线方程联立,可得AB 中点N 的横坐标,从而得MN ,而AM ⊥BM 等价于12MN AB =,因此可求得m .本题解法中没有用到特殊方法,求切点坐标,求直线方程,求弦长等都是最基本的方法,务必牢固掌握.20.椭圆E :()222210x y a b a b+=>>的离心率12.(1)求椭圆E 的标准方程;(2)点P 是圆()2220x y rr +=>上异于点(),0A r -和(),0B r 的任一点,直线AP 与椭圆E 交于点M ,N ,直线BP 与椭圆E 交于点S ,T .设O 为坐标原点,直线OM ,ON ,OS ,OT 的斜率分别为OM k ,ON k ,OS k ,OT k .问:是否存在常数r ,使得OM ON OS OT k k k k +=+恒成立?若存在,求r 的值;若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,r =.【分析】(1)由已知条件列出关于,,a b c 的方程组,解之可得椭圆标准方程;(2)由题意直线AP ,BP 斜率存在且均不为0,设直线AP 方程为()y k x r =+,()11,M x y ,()22,N x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,代入OM ON k k +,同理用1k-代替k ,r -代替r ,得OS OT k k +,由两者相等可求得r .【详解】(1)设椭圆焦距为()20c c >,由22212b c a c a ⎧+=⎪⎪=⎨=,解得2a =,b =.∴椭圆E 的标准方程为22143x y +=.(2)由题意直线AP ,BP 斜率存在且均不为0,设直线AP 方程为()y k x r =+,()11,M x y ,()22,N x y ,由22()143y k x r x y =+⎧⎪⎨+=⎪⎩得,()()222223484120k x k rx k r +++-=.∴2122834k r x x k -+=+,2212241234k r x x k-=+.①又()()12121212N O O M k x r k x r y y k k x x x x +++=+=+()1212122kx x kr x x x x ++=,②从而①代入②得2263OM ON k k k k r -+=-.又AP BP ⊥,以1k -替代k ,以r -替代r ,同理可得2263OS OTk k k r k +=-,∴22226633k k k r r k-=--,∴()()22130k r +-=对0k≠恒成立,解得r =或r =,经检验,此时0∆>,因此存在r =.【点睛】本题考查由离心率求椭圆的标准方程,考查直线与椭圆的位置关系.在直线与椭圆相交问题中常常采用设而不求的思想方法.本题考查了学生的运算求解能力,逻辑推理能力.属于中档题.21.已知椭圆2222:1(0)x y a b a b Γ+=>>过点2)2,设椭圆Γ的上顶点为B ,右顶点和右焦点分别为A ,F ,且56AFB π∠=.(1)求椭圆Γ的标准方程;(2)设直线:(1)l y kx n n =+≠±交椭圆Γ于P ,Q 两点,设直线BP 与直线BQ 的斜率分别为BP k ,BQ k ,若1BP BQ k k +=-,试判断直线l 是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1)2214x y +=(2)直线l 过定点,该定点的坐标为(2,1)-.【详解】(1)因为椭圆Γ过点22,所以222112a b +=①,设O 为坐标原点,因为56AFB π∠=,所以6BFO π∠=,又||BF a ==,所以12b a =②,将①②联立解得21a b =⎧⎨=⎩(负值舍去),所以椭圆Γ的标准方程为2214x y +=.(2)由(1)可知(0,1)B ,设11(,)P x y ,22(,)Q x y .将y kx n =+代入2214xy +=,消去y 可得222(14)8440k x knx n +++-=,则22222(8)4(14)(44)16(41)0kn k n k n ∆=-+-=-+>,122814kn x x k -+=+,21224414n x x k -=+,所以122121************11()()2(1)()BP BQy y x kx n x x kx n x kx x n x x k k x x x x x x --+-++-+-++=+==222224482(1)8(1)214141444(1)(1)114n knk n k n k k k n n n n k --⋅+-⋅-++====--+-++,所以21n k =--,此时2216[4(21)1]640k k k ∆=---+=->,所以k 0<,此时直线l 的方程为21y kx k =--,即(2)1y k x =--,令2x =,可得1y =-,所以直线l 过定点,该定点的坐标为(2,1)-.22.已知椭圆2222:1(0)x y C a b a b +=>>,点26,13M ⎛⎫- ⎪ ⎪⎝⎭在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为1k ,2k ,若1214k k =-,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【答案】(1)22143x y +=;(2)直线PQ 过定点()1,0.【分析】(1)根据点在椭圆上以及离心率列出方程组,求解出22,a b 的值则椭圆方程可求;(2)考虑直线PQ 的斜率是否存在,若斜率存在,设出直线PQ 的方程y kx m =+以及点,P Q 的坐标,根据1214k k =-求解出,k m 之间的关系从而确定出定点坐标;若斜率不存在可直接进行验证,即可得到最终结果.【详解】(1)因为椭圆过点,13M ⎛⎫- ⎪ ⎪⎝⎭且离心率为12,所以22222811312a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩,所以解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=;(2)因为()2,0A -,设()()1122,,,P x y Q x y ,当直线的斜率存在时,设直线:PQ y kx m =+,因为223412y kx m x y =+⎧⎨+=⎩,所以()2223484120k x kmx m +++-=,所以21212228412,3434km m x x x x k k -+=-=++,又因为1214k k =-,所以()()()()()()22121212121212121212222244kx m kx m k x x km x x m y y x x x x x x x x +++++⋅===-+++++++,所以222222222241283414121612164k m k k m m k m m km k --++=---++,所以2220m mk k --=,所以()()20m k m k -+=,所以2m k =或m k =-,当2m k =时,():2PQ y k x =+,此时过点()2,0A -不符合题意,当m k =-时,():1PQ y k x =-,此时过定点()1,0;当直线的斜率不存在时,:1PQ l x =,所以,P Q 坐标为331,,1,22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()3312212124APAQkk -⋅=⋅=-----,满足要求,综上可知:直线PQ 过定点()1,0.【点睛】本题考查圆锥曲线的综合问题,涉及椭圆方程求解以及椭圆中直线过定点问题,主要考查学生的转化与计算能力,难度较难.23.已知圆22:(1)16D x y ++=,圆C 过点(1,0)B 且与圆D 相切,设圆心C 的轨迹为曲线E .(1)求曲线E 的方程;(2)点(2,0)A -,,P Q 为曲线E 上的两点(不与点A 重合),记直线,AP AQ 的斜率分别为12,k k ,若122k k =,请判断直线PQ 是否过定点.若过定点,求该定点坐标,若不过定点,请说明理由.【答案】(1)22143x y +=(2)见解析【分析】(1)结合题意发现圆心C 的轨迹是以D ,B 为焦点的椭圆,建立方程,即可.(2)设出直线PQ 的方程,建立方程,将直线方程代入椭圆方程,结合根与系数关系,得到m ,k 的关系式,计算定点,即可.【详解】(1)设圆C 的半径为r ,依题意,|CB |=r ,|CD |=4-r ,进而有|CB |+|CD |=4,所以圆心C 的轨迹是以D ,B 为焦点的椭圆,所以圆心C 的轨迹方程为22143x y +=.(2)设点P Q 、的坐标分别为()()1122,,,x y x y ,设直线PQ 的方程为y kx m =+(直线PQ 的斜率存在),可得()()()()1212222kx m kx m x x ++=++,整理为:()()()2212122480k x x km x x m -+-++-=,。

圆锥曲线的点差法应用(人教A版)(含答案)

圆锥曲线的点差法应用(人教A版)(含答案)

圆锥曲线的点差法应用(人教A版)一、单选题(共8道,每道12分)1.设双曲线的一条弦被直线平分,则所在直线的斜率为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用2.已知双曲线的中心为原点,是的焦点,过的直线与相交于两点,且的中点为,则的方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用3.已知椭圆的右焦点为,过点的直线交椭圆于两点,若的中点坐标为,则的方程为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用4.中心为原点,一个焦点为的椭圆,截直线所得弦中点的横坐标为,则该椭圆的方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用5.直线过抛物线的焦点且与相交于两点,且的中点坐标为,则抛物线的方程为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用6.已知椭圆,则斜率为2的直线与椭圆相交所得弦的中点的轨迹方程为( )A.的一部分B.的一部分C.的一部分D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用7.过椭圆内一点的弦的中点的轨迹方程为( )A. B.的一部分C. D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用8.直线(是参数)与抛物线的相交弦是,则弦的中点轨迹方程是( )A.的一部分B.的一部分C.的一部分D.的一部分答案:A解题思路:试题难度:三颗星知识点:圆锥曲线的点差法应用。

圆锥曲线题型技巧--- 斜率定值问题

圆锥曲线题型技巧--- 斜率定值问题
圆锥曲线题型技巧---斜率定值问题
一、解答题
1.如图,在平面直角坐标系
2
2
中,椭圆 2 + 2 = 1( >
> 0)的右焦点为
(1,0),离心率为
2.分别过
2

的两条弦 , 相交于点 (异于 , 两点),且 = .
(1)求椭圆的方程;
(2)求证:直线 , 的斜率之和为定值.
2
【答案】(1) +
2 = 1;(2)详见解析.
,

同理由③得
y2 1 x2 2
4
x2 2
y2 1
,

由①④⑤得
x1 2
4 y1 1
x2 2
4 y2 1
0
,
化简得 x1y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑥
由①得 x1 y2 x2 y1 x1 x2 2 y1 y2 4 0 , ⑦
4 − 1)
= ⋅ 2( 1 2− 3 4)−( 1+ 2)+( 3+ 4)13 分
( 1− 3)( 2− 4)
= 0. 16 分
=
⋅ 2( 2
−2 2+
1

2( 2
( 1−
2 2
− +
1) 1
)

0
+
2
3)( 2 − 4)
4
2
2
+1
考点:直线与椭圆的位置关系
点评:主要是考查了直线椭圆的位置关系的运用,属于基础题。
4k 2 1
x2 8kbx 4b2 8 0 ,
(**)
82

x1

圆锥曲线试题及答案

圆锥曲线试题及答案

椭圆一、选择题 1.(2021·高考大纲全国卷)椭圆的中心在原点,焦距为4,一条准线为x =-4,那么该椭圆的方程为( )A.x 216+y 212=1B.x 212+y 28=1C.x 28+y 24=1D.x 212+y 24=1 解析:选C.由题意知椭圆的焦点在x 轴上,故可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧2c =4,a 2c =4,∴⎩⎪⎨⎪⎧c =2,a 2=8,∴b 2=a 2-c 2=4,故所求椭圆方程为x 28+y 24=1. 2.(2021·高考浙江卷)椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,假设C 1恰好将线段AB 三等分,那么( )A .a 2=132 B .a 2=13C .b 2=12D .b 2=2解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a , 解得a 2=112,b 2=12.3.椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,那么椭圆离心率的取值范围是( )A .(0,22]B .(0,12]C .[2-1,1)D .[12,1)解析:选D.设P (x 0,y 0),那么|PF |=a -ex 0.又点F 在AP 的垂直平分线上,∴a -ex 0=a 2c -c ,因此x 0=a (ac -a 2+c 2)c 2.又-a ≤x 0<a ,∴-a ≤a (ac -a 2+c 2)c 2<a .∴-1≤e 2+e -1e 2<1.又0<e <1,∴12≤e <1.4.椭圆x 24+y 23=1的长轴的左、右端点分别为A 、B ,在椭圆上有一个异于点A 、B 的动点P ,假设直线P A 的斜率k P A =12,那么直线PB 的斜率k PB 为( )A.34B.32C .-34D .-32解析:选D.设点P (x 1,y 1)(x 1≠±2),那么k P A =y 1x 1+2,k PB =y 1x 1-2,∵k P A ·k PB =y 1x 1+2·y 1x 1-2=y 21x 21-4=3(1-x 214)x 21-4=-34,∴k PB =-34k P A =-34×2=-32,故应选D.5.椭圆E :x 2a 2+y2b2=1(a >b >0),以其左焦点F 1(-c,0)为圆心,以a -c 为半径作圆,过上顶点B 2(0,b )作圆F 1的两条切线,设切点分别为M ,N .假设过两个切点M ,N 的直线恰好经过下顶点B 1(0,-b ),那么椭圆E 的离心率为( )A.2-1B.3-1C.5-2D.7-3解析:选B.由题意得,圆F 1: (x +c )2+y 2=(a -c )2. 设M (x 1,y 1),N (x 2,y 2),那么切线B 2M :(x 1+c )(x +c )+y 1y =(a -c )2, 切线B 2N :(x 2+c )(x +c )+y 2y =(a -c )2. 又两条切线都过点B 2(0,b ),所以c (x 1+c )+y 1b =(a -c )2,c (x 2+c )+y 2b =(a -c )2. 所以直线c (x +c )+yb =(a -c )2就是过点M 、N 的直线. 又直线MN 过点B 1(0,-b ),代入化简得c 2-b 2=(a -c )2,所以e =3-1. 二、填空题 6.(2021·高考课标全国卷)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C的方程为__________.解析:设椭圆方程为x 2a 2+y 2b2=1,由e =22知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8.∴椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=17.(2021·高考江西卷)假设椭圆x 2a 2+y 2b2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,那么椭圆方程是________.解析:由题意可得切点A (1,0).切点B (m ,n )满足⎩⎪⎨⎪⎧n -12m-1=-mn m 2+n 2=1,解得B ⎝⎛⎭⎫35,45.∴过切点A ,B 的直线方程为2x +y -2=0.令y =0得x =1,即c =1;令x =0得y =2,即b =2. ∴a 2=b 2+c 2=5,∴椭圆方程为x 25+y 24=1.答案:x 25+y 24=18.(2021·高考四川卷)椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,△F AB 的周长的最大值是12,那么该椭圆的离心率是________.解析:设椭圆的右焦点为F ′,如图,由椭圆定义知,|AF |+|AF ′|=|BF |+|BF ′|=2a . 又△F AB 的周长为|AF |+|BF |+|AB |≤|AF |+|BF |+|AF ′|+|BF ′|=4a , 当且仅当AB 过右焦点F ′时等号成立. 此时4a =12,那么a =3.故椭圆方程为x 29+y 25=1,所以c =2,所以e =c a =23.答案:23三、解答题9.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 2的直线l 与椭圆C相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解:(1)设椭圆C 的焦距为2c ,由可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0, 直线l 的方程为y =3(x -2).联立 ⎩⎪⎨⎪⎧y =3(x -2)x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2.即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,得a =3.而a 2-b 2=4,所以b = 5.故椭圆C 的方程为x 29+y 25=1.10.(2021·高考辽宁卷)如图,椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e .直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. 解:(1)因为C 1,C 2的离心率相同,故依题意可设C 1: x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x 2a2=1(a >b >0). 设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立,求得A ⎝⎛⎭⎫t ,a b a 2-t 2,B ⎝⎛⎭⎫t ,b a a 2-t 2. 当e =12时,b =32a ,分别用y A ,y B 表示A ,B 的纵坐标,可知|BC |∶|AD |=2|y B |2|y A |=b 2a 2=34.(2)当t =0时的l 不符合题意,当t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等, 即b a a 2-t 2t =ab a 2-t 2t -a,解得t =-ab 2a 2-b2=-1-e 2e 2·a .因为|t |<a ,又0<e <1,所以1-e 2e 2<1,解得22<e <1.所以当0<e ≤22时,不存在直线l ,使得BO ∥AN ;当22<e <1时,存在直线l ,使得BO ∥AN . 11.(探究选做)椭圆C 1:x 2a 2+y 2b2=1(a >b >0) 的左、右焦点分别为F 1、F 2,其中F 2也是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限的交点,且|MF 2|=53.(1)求椭圆C 1的方程;(2)菱形ABCD 的顶点A 、C 在椭圆C 1上,顶点B 、D 在直线7x -7y +1=0上,求直线AC 的方程.解:(1)设M (x 1,y 1),∵F 2(1,0),|MF 2|=53.由抛物线定义,x 1+1=53,∴x 1=23,∵y 21=4x 1,∴y 1=263. ∴M (23,263),∵M 在C 1上,∴49a 2+83b 2=1,又b 2=a 2-1,∴9a 4-37a 2+4=0,∴a 2=4或a 2=19<c 2舍去.∴a 2=4,b 2=3.∴椭圆C 1的方程为x 24+y 23=1.(2)∵直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,∴AC ⊥BD ,设直线AC 的方程为y =-x +m ⎩⎪⎨⎪⎧y =-x +mx 24+y 23=1⇒7x 2-8mx +4m 2-12=0,∵A 、C 在椭圆C 1上,∴Δ>0,∴m 2<7, ∴-7<m <7.设A (x 1,y 1),C (x 2,y 2),那么x 1+x 2=8m7.y 1+y 2=(-x 1+m )+(-x 2+m )=-(x 1+x 2)+2m=-8m 7+2m =6m 7.∴AC 的中点坐标为(4m 7,3m 7),由ABCD 为菱形可知,点(4m 7,3m7)在直线BD :7x -7y+1=0上,∴7·4m 7-7·3m7+1=0,m =-1.∵m =-1∈(-7,7),∴直线AC 的方程为y =-x -1,即x +y +1=0.双曲线一、选择题1.(2021·高考湖南卷)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,那么a 的值为( )A .4B .3C .2D .1解析:选C.渐近线方程可化为y =±32x .∵双曲线的焦点在x 轴上,∴9a 2=⎝⎛⎭⎫±322,解得a =±2.由题意知a >0,∴a =2. 2.(2021·高考天津卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),那么双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5解析:选B.双曲线左顶点为A 1(-a,0),渐近线为y =±bax ,抛物线y 2=2px (p >0)焦点为F ⎝⎛⎭⎫p 2,0,准线为直线x =-p2.由题意知-p2=-2,∴p =4,由题意知2+a =4,∴a =2.∴双曲线渐近线y =±b 2x 中与准线x =-p 2交于(-2,-1)的渐近线为y =b 2x ,∴-1=b2×(-2),∴b =1.∴c 2=a 2+b 2=5,∴c =5,∴2c =2 5.3.设双曲线的左准线与两条渐近线交于A 、B 两点,左焦点在以AB 为直径的圆内,那么该双曲线的离心率的取值范围为( )A .(0,2)B .(1,2)C .(22,1) D .(2,+∞)解析:选B.法一:由⎩⎨⎧x =-a 2c ,y =-b ax ,得A ⎝⎛⎭⎫-a 2c ,ab c . 同理可得B ⎝⎛⎭⎫-a 2c ,-ab c .又左焦点F (-c,0),∴F A →=⎝⎛⎭⎫b 2c ,ab c ,FB →=⎝⎛⎭⎫b 2c ,-ab c .∵点F 在以AB 为直径的圆内,∴F A →·FB →<0,即⎝⎛⎭⎫b 2c 2-⎝⎛⎭⎫ab c 2<0,∴b 4<a 2b 2, ∴b 2<a 2,即c 2-a 2<a 2,∴c 2<2a 2, 即e 2<2,∴e < 2.又∵e >1,∴1<e < 2.法二:由⎩⎨⎧x =-a 2c,y =-ba x ,得A ⎝⎛⎭⎫-a 2c ,abc . 同理可得B ⎝⎛⎭⎫-a 2c,-abc . ∵点F (-c,0)在以AB 为直径的圆内,∴左焦点F 到圆心的距离小于半径长,即c -a 2c <abc ,∴a >b .∴e =ca=a 2+b 2a= 1+b 2a2< 2. 又∵e >1,∴1<e < 2. 4.(2021·高考大纲全国卷)F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,那么cos ∠F 1PF 2=( )A.14B.35C.34D.45解析:选C.由x 2-y 2=2知,a 2=2,b 2=2,c 2=a 2+b 2=4, ∴a =2,c =2.又∵|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=2 2. 又∵|F 1F 2|=2c =4,∴由余弦定理得cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.5.(2021·高考山东卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,那么该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 解析:选A.∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,圆C 的标准方程为(x -3)2+y 2=4,∴圆心为C (3,0). 又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3b a 2+b 2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.二、填空题6.(2021·高考四川卷)双曲线x 264-y 236=1上一点P 到双曲线右焦点的距离是4,那么点P到左准线的距离是__________.解析:由x 264-y 236=1可知a =8,b =6,那么c =10,设双曲线的左、右焦点分别为F 1、F 2,由|PF 2|=4及双曲线的第一定义得|PF 1|=16+4=20.设点P 到左准线的距离为d ,由双曲线的第二定义有20d =108,即d =16.答案:167.(2021·高考重庆卷)设P 为直线y =b 3a x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,那么双曲线的离心率e =________.解析:∵直线y =b 3a x 与双曲线x 2a 2-y 2b2=1相交,由⎩⎨⎧y =b 3a x ,x 2a 2-y2b 2=1消去y 得x =32a4,又PF 1垂直于x 轴,∴32a 4=c ,即e =c a =324.答案:3248.双曲线x 2-y 2b2=1(b >0)的一条渐近线的方程为y =2x ,那么b =________.解析:∵双曲线的焦点在x 轴上,∴b a =2,∴b 2a 2=4.∵a 2=1,∴b 2=4. 又∵b >0,∴b =2.答案:2 三、解答题9.由双曲线x 29-y 24=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2的内切圆与边F 1F 2的切点坐标N .解:由双曲线方程知a =3,b =2,c =13.当点P 在双曲线的右支上时,如右图,根据从圆外一点引圆的两条切线长相等及双曲线定义可得|PF 1|-|PF 2|=2a .由于|NF 1|-|NF 2|=|PF 1|-|PF 2|=2a .① |NF 1|+|NF 2|=2c .②由①②得|NF 1|=2a +2c2=a +c ,∴|ON |=|NF 1|-|OF 1|=a +c -c =a =3. 故切点N 的坐标为(3,0).根据对称性,当P 在双曲线左支上时,切点N 的坐标为(-3,0).10.(2021·高考四川卷)如图,动点M 与两定点A (-1,0)、B (1,0)构成△MAB ,且直线MA 、MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围. 解:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在.于是x ≠1且x ≠-1.此时,MA 的斜率为y x +1,MB 的斜率为yx -1.由题意,有y x +1·yx -1=4.化简可得,4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(2)由⎩⎪⎨⎪⎧y =x +m 4x 2-y 2-4=0,消去y ,可得3x 2-2mx -m 2-4=0.(*) 对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0且m ≠1.设Q 、R 的坐标分别为(x Q ,y Q ),(x R ,y R ),那么x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |,所以|x Q |<|x R |, x Q =m -2m 2+33,x R =m +2m 2+33.所以|PR ||PQ |=⎪⎪⎪⎪x R x Q =21+3m 2+121+3m 2-1=1+22 1+3m2-1. 此时 1+3m 2>1,且 1+3m2≠2,所以1<1+22 1+3m 2-1<3,且1+22 1+3m2-1≠53,所以1<|PR ||PQ |=⎪⎪⎪⎪x R x Q<3,且|PR ||PQ |=⎪⎪⎪⎪x R x Q ≠53.综上所述,|PR ||PQ |的取值范围是⎝⎛⎭⎫1,53∪⎝⎛⎭⎫53,3. 11.(探究选做)双曲线C :x24-y 2=1,P 为C 上的任意一点.(1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求|P A |的最小值. 解:(1)证明:设P (x 1,y 1)是双曲线C 上任意一点, 该双曲线的两条渐近线方程分别是x -2y =0和x +2y =0, 点P (x 1,y 1)到两条渐近线的距离分别是 |x 1-2y 1|5和|x 1+2y 1|5, ∴|x 1-2y 1|5·|x 1+2y 1|5=|x 21-4y 21|5=45.故点P 到双曲线C 的两条渐近线的距离的乘积是一个常数. (2)设点P 的坐标为(x ,y )(|x |≥2),那么|P A |2=(x -3)2+y 2=(x -3)2+x 24-1=54(x -125)2+45, ∵|x |≥2,∴当x =125时,|P A |2取到最小值45,即|P A |的最小值为255.抛物线一、选择题1.抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,那么p 的值为( ) A.12 B .1 C .2 D .4解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.2.(2021·高考四川卷)抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).假设点M 到该抛物线焦点的距离为3,那么|OM |=( )A .2 2B .2 3C .4D .2 5解析:选B.由题意设抛物线方程为y 2=2px (p >0),那么M 到焦点的距离为x M +p 2=2+p2=3,∴p =2,∴y 2=4x .∴y 20=4×2,∴y 0=±22, ∴|OM |=4+y 20=4+8=2 3. 3.(2021·四川成都模拟)设抛物线y 2=8x 的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点.假设线段AB 的中点E 到y 轴的距离为3,那么弦AB 的长为( )A .5B .8C .10D .12解析:选C.设A (x 1,y 1),B (x 2,y 2), |AB |=|AF |+|BF |=x 1+x 2+4, 又E 到y 轴距离为3,∴x 1+x 22=3.∴|AB |=10. 4.(2021·高考课标全国卷)直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,那么△ABP 的面积为( )A .18B .24C .36D .48解析:选C.不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.5.(2021·高考四川卷)在抛物线y =x 2+ax -5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 2+5y 2=36相切,那么抛物线顶点的坐标为( )A .(-2,-9)B .(0,-5)C .(2,-9)D .(1,-6)解析:选A.当x 1=-4时,y 1=11-4a ;当x 2=2时,y 2=2a -1,所以割线的斜率k =11-4a -2a +1-4-2=a -2.设直线与抛物线的切点横坐标为x 0,由y ′=2x +a 得切线斜率为2x 0+a , ∴2x 0+a =a -2,∴x 0=-1.∴直线与抛物线的切点坐标为(-1,-a -4),切线方程为y +a +4=(a -2)(x +1),即(a -2)x -y -6=0.圆5x 2+5y 2=36的圆心到切线的距离d =6(a -2)2+1 .由题意得6(a -2)2+1=65,即(a -2)2+1=5.又a ≠0,∴a =4,此时,y =x 2+4x -5=(x +2)2-9.顶点坐标为(-2,-9). 二、填空题 6.(2021·高考重庆卷)过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,假设|AB |=2512,|AF |<|BF |,那么|AF |=__________. 解析:由于y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,设AB 所在直线的方程为y =k ⎝⎛⎭⎫x -12,A (x 1,y 1),B (x 2,y 2),x 1<x 2,将y =k ⎝⎛⎭⎫x -12代入y 2=2x ,得k 2⎝⎛⎭⎫x -122=2x , ∴k 2x 2-(k 2+2)x +k 24=0.∴x 1x 2=14. 而x 1+x 2+p =x 1+x 2+1=2512,∴x 1+x 2=1312.∴x 1=13,x 2=34.∴|AF |=x 1+p 2=13+12=56.答案:567.抛物线C :y 2=4x 的焦点为F ,C 上的点M 在C 的准线上的射影为M ′,假设MM ′→·MF →=12|MM ′→|·|MF →|,那么点M 的横坐标为________.解析:如下图,∵MM ′→·MF →=|MM ′→||MF →|cos ∠M ′MF =12|MM ′→||MF →|, ∴cos ∠M ′MF =12.∴∠M ′MF =60°.又∵|M ′M |=|MF |,故△MM ′F 为正三角形. 设M (x ,y ),那么M ′(-1,y ),F (1,0), ∴|M ′F |=(-1-1)2+y 2=|MM ′|=x +1,整理得y 2=x 2+2x -3,将y 2=4x 代入y 2=x 2+2x -3得x 2-2x -3=0,即x =3或-1(舍). 答案:3 8.(2021·高考重庆卷)设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,那么圆C 的半径能取到的最大值为__________.解析:如下图,假设圆C 的半径取到最大值,必须为圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),那么圆的方程为(x -a )2+y 2=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.答案:6-1 三、解答题 9.(2021·东北三校调研)点M (5,3)到抛物线y =ax 2的准线的距离为6,试求抛物线的方程.解:当抛物线开口向上时,准线为y =-14a ,点M 到它的距离为14a +3=6,a =112,抛物线的方程为y =112x 2.当抛物线开口向下时,准线为y =-14a ,M 到它的距离为-14a -3=6,a =-136.抛物线的方程为y =-136x 2.所以,抛物线的方程为y =112x 2或y =-136x 2.10.设抛物线y 2=4ax (a >0)的焦点为A ,以B (a +4,0)点为圆心,|BA |为半径,在x 轴上方画半圆,设抛物线与半圆相交于不同两点M 、N ,点P 是MN 的中点.求|AM |+|AN |的值.解:设M 、N 、P 在抛物线的准线上射影分别为M ′、N ′、P ′, 那么由抛物线定义得|AM |+|AN |=|MM ′|+|NN ′|=x M +x N +2a . 又圆的方程为[x -(a +4)]2+y 2=16, 将y 2=4ax 代入得x 2-2(4-a )x +a 2+8a =0,∴x M +x N =2(4-a ),所以|AM |+|AN |=8.11.(探究选做)如图,设抛物线方程为x 2=2py (p >0),M为直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)当M 点的坐标为(2,-2p )时,|AB |=410.求此时抛物线的方程.解:(1)证明:由题意设A (x 1,x 212p ),B (x 2,x 222p ),x 1<x 2,M (x 0,-2p ).由x 2=2py 得y =x 22p ,那么y ′=x p ,所以k MA =x 1p ,k MB =x 2p.因此直线MA的方程为y +2p =x 1p(x -x 0).直线MB 的方程为y +2p =x 2p(x -x 0).所以x 212p +2p =x 1p (x 1-x 0),①x 222p +2p =x 2p(x 2-x 0),② 由①-②得x 1+x 22=x 1+x 2-x 0,因此x 0=x 1+x 22,即2x 0=x 1+x 2.所以A ,M ,B 三点的横坐标成等差数列. (2)由(1)知,当x 0=2时,将其代入①、②并整理得x 21-4x 1-4p 2=0,x 22-4x 2-4p 2=0,所以x 1、x 2是方程x 2-4x -4p 2=0的两根, 因此x 1+x 2=4,x 1x 2=-4p 2,又k AB =x 222p -x 212p x 2-x 1=x 1+x 22p =x 0p ,所以k AB =2p .由弦长公式得|AB |=1+k 2AB ·(x 1+x 2)2-4x 1x 2=1+4p2·16+16p 2. 又|AB |=4 10, 所以p =1或p =2.因此所求抛物线方程为x 2=2y 或x 2=4y . 直线与圆锥曲线一、选择题1.(2021·福州模拟)F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B两点.在△AF 1B 中,假设有两边之和是10,那么第三边的长度为( )A .6B .5C .4D .3解析:选A.根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.2.(2021·高考大纲全国卷)抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,那么cos ∠AFB =( )A.45B.35C .-35D .-45解析:选D.法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.法二:由法一得A (4,4),B (1,-2),F (1,0),∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.3.曲线C 1的方程为x 2-y28=1(x ≥0,y ≥0),圆C 2的方程为(x -3)2+y 2=1,斜率为k (k >0)的直线l 与圆C 2相切,切点为A ,直线l 与曲线C 1相交于点B ,|AB |=3,那么直线AB 的斜率为( )A.33B.12 C .1 D. 3解析:选A.设B (a ,b ),那么由题意可得⎩⎪⎨⎪⎧a 2-b 28=1(a -3)2+b 2=3+1,解得⎩⎪⎨⎪⎧a =1b =0.那么直线AB 的方程为y =k (x -1),故|3k -k |1+k 2=1,∴k =33或k =-33(舍去).4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12解析:选D.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),如下图,双曲线的一条渐近线方程为y =b a x ,而k BF =-b c ,∴b a ·(-b c)=-1,整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),应选D.5.双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),那么E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:选B.∵k AB =0+153+12=1,∴直线AB 的方程为y =x -3. 由于双曲线的焦点为F (3,0),∴c =3,c 2=9.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),把y =x -3代入双曲线方程,那么x 2a 2-(x -3)2b 2=1.整理,得(b 2-a 2)x 2+6a 2x -9a 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=6a 2a 2-b2=2×(-12),∴a 2=-4a 2+4b 2,∴5a 2=4b 2.又a 2+b 2=9,∴a 2=4,b 2=5.∴双曲线E 的方程为x 24-y 25=1.二、填空题6.(2021·高考江西卷)假设椭圆x 2a 2+y 2b2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,那么椭圆方程是________.解析:由题意可得切点A (1,0).切点B (m ,n )满足⎩⎪⎨⎪⎧n -12m -1=-mn m 2+n 2=1,,解得B ⎝⎛⎭⎫35,45.∴过切点A ,B 的直线方程为2x +y -2=0.令y =0得x =1,即c =1;令x =0得y =2,即b =2.∴a 2=b 2+c 2=5,∴椭圆方程为x 25+y 24=1.答案:x 25+y 24=17.(2021·广西梧州高三检测)设点F 为抛物线y =-14x 2的焦点,与抛物线相切于点P (-4,-4)的直线l 与x 轴的交点为Q ,那么∠PQF 的值是________.解析:∵y ′=-12x ,∴k PQ =y ′|x =-4=2,∴直线PQ 的方程为y +4=2(x +4). 令y =0,得x =-2,∴点Q (-2,0).又∵焦点F (0,-1),∴k FQ =-12,∴k PQ ·k FQ =-1,∴∠PQF =π2.答案:π28.F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF →=2FD →,那么C 的离心率为________.解析:法一:如图,设椭圆C 的焦点在x 轴上, B (0,b ),F (c,0),D (x D ,y D ),那么BF →=(c ,-b ),FD →=(x D -c ,y D ), ∵BF →=2FD →,∴⎩⎪⎨⎪⎧c =2(x D -c ),-b =2y D ,∴⎩⎨⎧x D =3c2,y D =-b 2.∴(3c 2)2a 2+(-b 2)2b 2=1,即e 2=13,∴ e =33. 法二:设椭圆C 的焦点在x 轴上, 如图,B (0,b ),F (c,0),D (x D ,y D ), 那么|BF |=b 2+c 2=a .作DD 1⊥y 轴于点D 1,那么由BF →=2 FD →,得|OF ||DD 1|=|BF ||BD |=23,∴|DD 1|=32|OF |=32c ,即x D =3c2.由椭圆的第二定义得|FD |=e (a 2c -3c 2)=a -3c 22a.又由|BF |=2|FD |,得a =2a -3c 2a,整理得c 2a 2=13,即e 2=13.∴e =33.答案:33三、解答题9. 抛物线C 的方程为y 2=4x ,其焦点为F ,准线为l ,过F 作直线m 交抛物线C 于M ,N 两点.求S △OMN 的最小值.解:由题意知F (1,0),l :x =-1, 设m :x =ay +1,M (x 1,y 1),N (x 2,y 2)那么⎩⎪⎨⎪⎧x =ay +1y 2=4x ⇒y 2-4ay -4=0,由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4a y 1y 2=-4.S △OMN =12|OF ||y 1-y 2|=12(y 1+y 2)2-4y 1y 2=12·16a 2+16=2a 2+1≥2(a =0时取得等号). 所以S △OMN 的最小值为2.10.(2021·高考重庆卷)如下图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1、F 2,线段OF 1、OF 2的中点分别为B 1、B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P 、Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因为△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|,得b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. (*)设P (x 1,y 1)、Q (x 2,y 2),那么y 1,y 2是上面方程的两根, 因此y 1+y 2=4mm 2+5,y 1·y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →·B 2Q →=0,即16m 2-64=0, 解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0, 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910,综上所述,△PB 2Q 的面积为16910.11.(探究选做)(2021·高考上海卷)在平面直角坐标系xOy 中,双曲线C 1:2x 2-y 2=1. (1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点.假设l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ;(3)设椭圆C 2:4x 2+y 2=1.假设M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为 y =2⎝⎛⎭⎫x +22,即y =2x +1. 解方程组⎩⎪⎨⎪⎧y =-2x ,y =2x +1,得⎩⎨⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)证明:设直线PQ 的方程是y =x +b .因直线PQ 与圆相切,故|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明:当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,那么O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时, 设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22, 那么直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎪⎨⎪⎧x 2=14+k2,y 2=k24+k2,所以|ON |2=1+k 24+k 2.同理|OM |2=1+k 22k 2-1.设O 到直线MN 的距离为d , 因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值. 圆锥曲线综合〔一〕(时间:100分钟 总分值:120分)一、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 1.抛物线y =4x 2的焦点坐标是( ). A .(0,1) B .(1,0) C .(0,116)D .(116,0)解析 将抛物线方程变为x 2=2×18y ,知p =18,又焦点在y 轴上,且开口向上,所以它的焦点坐标为(0,116). 答案 C2.椭圆x 225+y 216=1上一点P 到椭圆一个焦点的距离为3,那么点P 到另一焦点的距离为( ).A .2B .3C .5D .7 解析 点P 到椭圆的两个焦点的距离之和为2a =10,10-3=7.选D. 答案 D3.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ). A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0D .x 2+y 2-2x =0解析 因为抛物线的焦点坐标为(1,0),所以所求圆的圆心为(1,0),又圆过原点,所以圆的半径r =1,故所求圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,应选D. 答案 D4.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程是( ). A.x 216-y 248=1B.x 29-y 227=1C.x 216-y 248=1或y 29-x 227=1 D .以上都不对解析 当顶点为(±4,0)时,a =4,c =8,b =43,x 216-y 248=1; 当顶点为(0,±3)时,a =3,c =6,b =33,y 29 -x 227=1. 答案 C5.椭圆与双曲线x 23-y 22=1有共同的焦点,且离心率为15,那么椭圆的标准方程为( ). A.x 220+y 225=1 B.x 225+y 220=1 C.x 225+y 25=1D.x 25+y 225=1解析 双曲线x 23-y 22=1中a 21=3,b 21=2,那么c 1=a 21+b 21=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x 2a 2+y 2b 2=1(a >b >0)的c =5,又椭圆的离心率e =c a =15,那么a =5,a 2=25,b 2=a 2-c 2=20,故椭圆的标准方程为x 225+y 220=1. 答案 B6.(2021·山东烟台期末)椭圆x 241+y 225=1的两个焦点为F 1,F 2,弦AB 过点F 1,那么△ABF 2的周长为( ).A .10B .20C .241D .441 解析 |AB |+|BF 2|+|AF 2|=|AF 1|+|BF 1|+|B F 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =441. 答案 D7.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( ). A .2 B. 3 C. 2 D.32解析 双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,依题意b a ·(-b a ) =-1,故b 2a 2=1,所以c 2-a 2a 2=1即e 2=2,所以双曲线的离心率e = 2.应选C. 答案 C8.椭圆x 2sin α-y 2cos α=1(0≤α<2π)的焦点在y 轴上,那么α的取值范围是( ). A .(34π,π) B .(π4,34π) C .(π2,π)D .(π2,34π)解析 椭圆方程化为x 21sin α+y 2-1cos α=1.∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0. 又∵0≤α<2π,∴π2<α<3π4. 答案 D9.抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-12,那么m 等于( ).A.32 B .2 C.52 D .3 解析 依题意,得k AB =y 2-y 1x 2-x 1=-1,而y 2-y 1=2(x 22-x 21),得x 2+x 1=-12,且(x 2+x 12,y 2+y 12)在直线y =x +m 上,即y 2+y 12=x 2+x 12+m , y 2+y 1=x 2+x 1+2m ,∴2(x 22+x 21)=x 2+x 1+2m ,2[(x 2+x 1)2-2x 2x 1]=x 2+x 1+2m ,2m =3,m =32. 答案 A10.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,那么该双曲线的方程为( ). A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1D.x 26-y 23=1解析 圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx ±ay =0,c =3,根据得3ba 2+b 2=2,即3b3=2,解得b =2,得a 2=c 2-b 2=5,故所求的双曲线方程是x 25-y 24=1. 答案 A二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上.) 11.点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,那么p =________. 解析 ∵抛物线y 2=2px (p >0)的焦点坐标是(p2,0),由两点间距离公式,得〔p2+2〕2+〔-3〕2=5.解得p =4. 答案 412.假设椭圆x 2+my 2=1的离心率为32,那么它的长半轴长为________.解析 当0<m <1时,y 21m+x 21=1,e 2=a 2-b 2a 2=1-m =34, m =14,a 2=1m =4,a =2;当m >1时,x 21+y 21m =1,a =1.应填1或2.答案 1或213.双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,那么双曲线的方程为________.解析 由题意知,椭圆的焦点坐标是(±7,0),离心率是74.故在双曲线中c =7,e =274=c a ,故a =2,b 2=c 2-a 2=3,因此所求双曲线的方程是x 24-y 23=1. 答案 x 24-y 23=114.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,假设△F 1PF 2为等腰直角三角形,那么椭圆的离心率是________.解析 由题意,知PF 2⊥F 1F 2,且△F 1PF 2为等腰直角三角形,所以|PF 2|=|F 1F 2|=2c ,|PF 1|=2·2c ,从而2a =|PF 1|+|PF 2|=2c (2+1), 所以e =2c2a =12+1=2-1. 答案2-1三、解答题(本大题共5小题,共54分,解答时应写出必要的文字说明,证明过程或演算步骤)15.(10分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.解 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线, ∴ba =3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.16.(10分)双曲线与椭圆有共同的焦点F 1(0,-5)、F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.解 由共同的焦点F 1(0,-5)、F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1;双曲线方程为y 2b 2-x 225-b 2=1,点P (3,4)在椭圆上,16a 2+9a 2-25=1,a 2=40, 双曲线的过点P (3,4)的渐近线为 y =b 25-b 2x ,即4=b 25-b 2×3,b 2=16. 所以椭圆方程为y 240+x 215=1;双曲线方程为y 216-x 29=1.17.(10分)抛物线y 2=2x ,直线l 过点(0,2)与抛物线交于M ,N 两点,以线段MN 的长为直径的圆过坐标原点O ,求直线l 的方程. 解 由题意,知直线l 的斜率存在,设为k ,那么直线l 的方程为y =k x +2(k ≠0), 解方程组⎩⎨⎧y =k x +2,y 2=2x ,消去x 得k y 2-2y +4=0,Δ=4-16k >0⇒k <14(k ≠0),设M (x 1,y 1),N (x 2,y 2), 那么y 1+y 2=2k ,y 1·y 2=4k ,⎩⎪⎨⎪⎧x 1=12y 21x 2=12y 22⇒x 1·x 2=14(y 1·y 2)2=4k 2 OM ⊥ON ⇒k OM ·k ON =-1,∴x 1·x 2+y 1·y 2=0, ∴4k 2+4k =0,解得k =-1.所以所求直线方程为y =-x +2,即x +y -2=0.18.(12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2. (1)求椭圆的方程; (2)求△CDF 2的面积.解 (1)易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2, 由⎩⎪⎨⎪⎧y =-2x -2,x 22+y 2=1,得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-169,x 1·x 2=23,∴|CD |=1+〔-2〕2|x 1-x 2| =5·〔x 1+x 2〕2-4x 1x 2 =5·〔-169〕2-4×23=1092,又点F 2到直线BF 1的距离d =455, 故S △CDF 2=12|CD |·d =4910.19.(12分)抛物线y 2=4x 截直线y =2x +m 所得弦长AB =35,(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求P 的坐标. 解 (1)由⎩⎨⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=m 24, |AB |=1+k 2〔x 1+x 2〕2-4x 1x 2 =1+22〔1-m 〕2-4·m 24=5〔1-2m 〕.由|AB |=35,即5〔1-2m 〕=35⇒m =-4. (2)设P (a ,0),P 到直线AB 的距离为d ,那么d =|2a -0-4|22+〔-1〕2=2|a -2|5,又S △ABP =12|AB |·d , 那么d =2·S △ABP|AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1, 故点P 的坐标为(5,0)和(-1,0).圆锥曲线综合〔二〕(考试时间90分钟,总分值120分)一、选择题(本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23,∴b 2=4,所求方程为x 24+y 216=1,应选D.答案: D2.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,假设|PF 1|等于4,那么|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A3.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0) 解析: 将双曲线方程化为标准方程为x 2-y 212=1, ∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 4.假设抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,那么p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D5.假设k ∈R ,那么k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.应选A. 答案: A6.F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,那么椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.应选C. 答案: C7.抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,那么cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5.。

圆锥曲线试题

圆锥曲线试题

圆锥曲线试题一、选择题1.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( ) A .23 B .3C .27 D .42.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 ( ) A .[-21,21] B .[-2,2] C .[-1,1]D .[-4,4]3.与直线042=+-y x 的平行的抛物线2x y =的切线方程是( ) A .032=+-y x B .032=--y xC .012=+-y xD .012=--y x4.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .59 B .3 C .779 D .49 5.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33 B .32C .22D .23 6.如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流 的没岸PQ (曲线)上任意一点到A 的距离 比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运 货物.经测算,从M 到B 、M 到C 修建公 路的费用分别是a 万元/km 、2a 万元/km , 那么修建这两条公路的总费用最低是( )A .(27-2)a 万元B .5a 万元C .(27+1) a 万元D .(23+3) a 万元7.已知点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是 ( ) A .圆B .椭圆C .双曲线D .抛物线8.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是 ( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k9.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为: ( )A .43B .53C .2D .7310.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为 ( )A .13422=+y xB .16822=+y x C .1222=+y xD .1422=+y x 二、填空。

最新高考经典圆锥曲线习题(含答案)

最新高考经典圆锥曲线习题(含答案)
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于 两点, 且A、B关于点M对称,求直线l的方程..
16.(2005重庆文)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为
(1)求双曲线C的方程;(2)若直线 与双曲线C恒有两个不同的
交点A和B,且 (其中O为原点).求k的取值范围.
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
19.(2002广东、河南、江苏)A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
20.(2007福建理)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且 = 。(1)求动点P的轨迹C的方程;
18.解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以 为焦点,
长半轴为2的椭圆.它的短半轴 ,故曲线C的方程为 .
(Ⅱ)设 ,其坐标满足
消去y并整理得 ,故 .
,即 .而 ,
于是 .
所以 时, ,故 .
当 时, , .

而 ,
所以 .
19.解:(1)依题意,可设直线方程为y=k(x-1)+2
高考圆锥曲线试题精选
一、选择题:(每小题5分,计50分)
1、(2008海南、宁夏文)双曲线 的焦距为()
A. 3 B. 4 C. 3 D. 4
2.(2004全国卷Ⅰ文、理)椭圆 的两个焦点为F1、F2,过F1作垂直于x轴的
直线与椭圆相交,一个交点为P,则 =()
A. B. C. D.4

圆锥曲线专题复习试题和答案

圆锥曲线专题复习试题和答案

题型一:求曲线轨迹方程1.如图,从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N 。

求线段QN 的中点P 的轨迹方程。

解:设动点P 的坐标为(x,y ),点Q 的坐标为(x 1,y 1)则N ( 2x-x 1,2y-y 1)代入x+y=2,得2x-x 1+2y-y 1=2 ① 又PQ 垂直于直线x+y=2,故111=--x x y y ,即x-y+y 1-x 1=0 ② 由①②解方程组得12321,1212311-+=-+=y x y y x x , 代入双曲线方程即可得P 点的轨迹方程是2x 2-2y 2-2x+2y-1=02.抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。

解1(交轨法):点A 、B 在抛物线)0(42>=p px y 上,设A (),42A Ay py ,B (),42B B y p y 所以k OA =A y p 4 k OB =By p4,由OA 垂直OB 得k OA k OB = -1,得y A y B = -16p 2 ,又AB 方程可求得)4(44222p y x py p y y y y y ABA B A A ---=-,即(y A +y B )y--4px--y A y B =0,把 y A y B = -16p 2代入得AB 方程(y A +y B )y--4px+16p 2 =0 ① 又OM 的方程为 x Py y y BA 4-+=②由①②消去得y A +y B 即得0422=-+px y x , 即得2224)2(p y p x =+-。

所以点M 的轨迹方程为2224)2(p y p x =+-,其轨迹是以)0,2(p 为圆心,半径为p 2的圆,除去点(0,0)。

解2(几何法):由解1中AB 方程(y A +y B )y--4px+16p 2 =0 可得AB 过定点(4p,0)而OM 垂直AB ,所以由圆的几法性质可知:M 点的轨迹是以)0,2(p 为圆心,半径为p 2的圆。

圆锥曲线测试题(含答案)

圆锥曲线测试题(含答案)

圆锥曲线综合测试班级 姓名 成绩一、选择题1.方程x =( )(A )双曲线 (B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2.椭圆14222=+ay x 与双曲线1222=-y a x 有相同的焦点,则a 的值是 ( ) (A )12(B )1或–2(C )1或12(D )13.双曲线22221x y a b-=的两条渐近线互相垂直,那么该双曲线的离心率是 ( )(A )2 (B )3 (C )2 (D )234、已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 ( )A 、1B 、2C 、3D 、45、过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A 、有且仅有一条 B 、有且仅有两条 C 、有无穷多条 D 、不存在6、一个椭圆中心在原点,焦点12F F 、在x 轴上,P (21122||||||PF F F PF 、、成等差数列,则椭圆方程为()A 、22186x y +=B 、221166x y += C 、22184x y += D 、221164x y +=7.设0<k <a 2, 那么双曲线x 2a 2–k– y 2b 2 + k = 1与双曲线 x 2a 2 – y 2b 2 = 1 有 ( )(A )相同的虚轴 (B )相同的实轴 (C )相同的渐近线 (D )相同的焦点 8.若抛物线y 2= 2p x (p >0)上一点P 到准线及对称轴的距离分别为10和6, 则p 的值等于( )(A )2或18(B )4或18(C )2或16(D )4或169、设12F F 、是双曲线2214x y -=的两个焦点,点P 在双曲线上,且120PF PF ⋅=,则12||||PF PF ⋅的值等于( )A 、2B 、C 、4D 、810.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A .()0,0 B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,211、已知椭圆2222by a x +=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若2AP PB =,则离心率为 ( ) A 、23 B 、22C 、31D 、21 12.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( )A .23B .2C .25D .3二、填空题:13.若直线2=-y x 与抛物线x y 42=交于A 、B 两点,则线段AB 的中点坐标是______。

圆锥曲线基础大题20道

圆锥曲线基础大题20道

圆锥曲线基础大题20道一、解答题1.(1)已知椭圆()22122:10x y C a b a b+=>>的焦距为x =±,求椭圆1C 的方程;(2)已知双曲线()22222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,求双曲线2C 的方程. 2.已知椭圆22149x y +=,一组平行直线的斜率是1. (1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 3.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.4.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB | 5.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.6.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.7.焦点在x 轴上的椭圆的方程为2214x y m +=,点(2,1)P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 8.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过23(2,),(2,)A B ---两点 9.如图,若12,F F 是双曲线221916x y -=的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且12·32PF PF =,试求12F PF ∆的面积. 10.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线. (1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.11.已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标和AB 长度. 12.已知双曲线22221x y a b-=的离心率为2e =(2,3)P (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离13.已知椭圆()222210x y a b a b +=>>⎛ ⎝⎭,1F ,2F 是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)点P 在椭圆上,且122PF PF -=,求12PF PF ⋅的值. 14.已知双曲线22:12x C y -=. (1)求与双曲线C有共同的渐近线,且过点((2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.15.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2.(1)求双曲线C 的标准方程;(2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为6,离心率为23. (1)求椭圆C 的方程;(2)直线y x m =+与椭圆C 交于A ,B 两点,求AB 的最大值.17.已知椭圆2222:1(0)x y a b a bΩ+=>>的焦距为4,短半轴长为2. (1)求椭圆Ω的方程;(2)若直线l 与椭圆Ω相交于A ,B 两点,点()2,1P -是线段AB 的中点,求直线l 的方程.18.已知双曲线C 的中心是原点,右焦点为F ,一条渐近线方程为0x =,直线:0l x y -+=与双曲线交于点A , B 两点.记F A , FB 的斜率分别为12,.k k (1)求双曲线C 的方程;(2)求1211k k +的值. 19.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,下顶点为A ,O 为坐标原点,O 到直线2AF 的距离为3,12AF F △为等边三角形. (1)求椭圆C 的标准方程; (2)若倾斜角为60 的直线经过椭圆C 的右焦点2F ,且与椭圆C 交于M ,N 两点(M 点在N 点的上方)求线段2MF 与2NF 的长度之比.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (2,m )为其上一点,且|MF |=4.(1)求p 与m 的值;(2)如图,过点F 作直线l 交抛物线于A 、B 两点,求直线OA 、OB 的斜率之积.参考答案1.(1)22196x y +=;(2)22145x y -= 【分析】(1)由已知可得c =2a c±=± (2)由已知可得b a =,29c =,计算即可得出结果. 【详解】 (1)焦距为c =x =±,则2a c±=±3a =, 由222a b c =+,可得:26b =,所以椭圆1C 的方程为22196x y +=; (2)由双曲线的一条渐近线方程为2y x =可知,b a =, 且与椭圆221123x y +=有公共焦点,则29c =, 又因为222a c b =-,即2223c b a a c b =⎧⎪⎪=⎨⎪=-⎪⎩,解得:2a =,b =3c =, 所以双曲线2C 的方程为22145x y -=. 【点睛】本题考查椭圆的标准方程及双曲线的标准方程,考查计算能力,属于基础题.2.(1)截距在[范围内;(2)940x y +=.【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b -,而其中必有原点即可求直线方程; 【详解】 (1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213b y y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-, ∴所在的直线方程:940x y +=;【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.3.(1)x 2+y 2-4x="0;" (2)x 2+y 2-16x=0【解析】试题分析:(1)设M 点坐标为(x ,y ),那么A 点坐标是(2x ,2y ),A 点坐标满足圆x 2+y 2-8x=0的方程,所以, (2x )2+(2y )2-16x=0,化简得M 点轨迹方程为x 2+y 2-4x=0.(2)设N 点坐标为(x ,y ),那么A 点坐标是(,22x y ), A 点坐标满足圆x 2+y 2-8x=0的方程,得到:(2x )2+(y 2)2-4x=0, N 点轨迹方程为:x 2+y 2-16x=0.考点:轨迹方程点评:中档题,本题利用“相关点法”(“代入法”),较方便的使问题得解.4.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果;(2)联立直线与抛物线方程,根据弦长公式可得结果.【详解】(1)设(,)P x y |(2)|x =--,化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x =(2)直线l 的方程为(2)y x =--,即2y x =-+, 联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=, 设11(,)A x y ,22(,)B x y ,则1212x x +=,124x x =,由弦长公式可得||AB =16==.所以|16|AB =【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.5.(1)()1,0,1x =-;(2)【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+ ,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,, ∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+ ,点O 到直线AB 的距离2d =, 12OAB S AB d ∴=⋅=【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.6.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=, ∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,b a∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==c e a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.7.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解.【详解】(1)由题意,点P 在椭圆上,代入,得2114m +=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】 本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.8.(1)22143x y +=(2)2218x y += 【分析】(1)利用已知椭圆可得焦点的坐标,结合椭圆的定义可求a ,从而可得椭圆标准方程: (2)利用待定系数法,设出方程,代入两点的坐标,解方程可求.【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±, ∵椭圆过点3(1,)2,∴24a ==,∴2,a b ==, ∴椭圆的标准方程为22143x y +=. (2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241m n m n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=. 【点睛】本题主要考查椭圆方程的求解,待定系数法和定义法是常用的求解方法,侧重考查数学运算的核心素养.9.(1)10或22(2)1216F PF S ∆= 【分析】(1)设点M 到另一个焦点的距离为m ,由双曲线定义即可求得m 的值.(2)由双曲线定义及12·32PF PF =,可证明2221212PF PF F F +=,即12F PF ∆为直角三角形,即可求得12F PF ∆的面积. 【详解】(1)12,F F 是双曲线221916x y -=的两个焦点,则3,4,5,a b c ===设点M 到另一个焦点的距离为m , 由抛物线定义可知1626m a -==, 解得10m =或22m =,即点M 到另一个焦点的距离为10或22. (2)P 是双曲线左支上的点,1226PF PF a -==,则2211222·36PF PF PF PF -+=,代入12·32PF PF =, 可得221232321006PF PF +=+⨯=,即2212122100PF PF F F +==,所以12F PF ∆为直角三角形,所以12121·1232162F PF S PF PF ∆⨯===. 【点睛】本题考查了双曲线定义及性质的的简单应用,交点三角形面积求法,属于基础题.10.(1)1n >;(2)1k ≤ 【分析】(1)因为空间向量(1,0,)a n =,(1,1,1)b =-,可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,即可求得答案;(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线, 0n k ->,解得n k >,即可求得答案. 【详解】 (1)空间向量(1,0,)a n =,(1,1,1)b =-可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,∴要使p 成立,只需1n >(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线,∴0n k ->,解得n k >,若p 成立是q 成立的充分条件,∴k 的取值范围为1k ≤.【点睛】本题主要考查了根据命题成立求参数范围和根据充分条件求参数范围,解题关键是掌握充分条件定义,考查了分析能力和计算能力,属于基础题.11.(1)221106x y +=;(2)中点坐标为53,88⎛⎫- ⎪⎝⎭,4AB =. 【分析】(1)由题意设出椭圆方程并求得c ,由椭圆定义求得a ,再由隐含条件求得b ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系及中点坐标公式求得AB 的中点坐标,再由弦长公式求弦长. 【详解】解:(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==,所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.由弦长公式4AB ===. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.12.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,13.(1)2214x y +=;(2)1-. 【分析】(1)根据离心率公式,可得c a =222c a b =-,即可求得a ,b 的值,即可求得答案;(2)根据椭圆定义,结合条件,可得12,PF PF 的值,根据余弦定理,可求得12cos F PF ∠的值,带入数量积公式,即可求得答案. 【详解】 (1)依题意有2c a =,221314a b +=,222c a b =-, 解得2a =,1b =,则椭圆的方程为2214x y +=.(2)因为点P 在椭圆上,由椭圆定义得:1224PF PF a +==所以121242PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得13PF = ,21PF =,在12PF F △中,由余弦定理222121212121cos 23PF PF F F F PF PF PF +-∠==-,221112co 1s 3113PF PF PF PF F PF ⎛⎫⋅=⋅⋅⋅-=- ⎪⎝∠=⎭.14.(1)2212x y -=;(2)12. 【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率. 【详解】(1)因为所求双曲线与双曲线C有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=, 所以1212121212()2l y y x x k x x y y -+===-+.15.(1)2213x y -=;(2)13k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 16.(1)22195x y +=;(2)maxAB =. 【分析】(1)由题意得2623a c a =⎧⎪⎨=⎪⎩,求出,a c ,从而可求出b 的值,进而可得椭圆C 的方程;(2)设()()1122,,A x y B x y ,直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系得1297m x x +=- 21294514m x x -=,再利用弦长公式可得AB==【详解】解:(1)由题意可得2623aca=⎧⎪⎨=⎪⎩,解得3,2a c==,所以2225b a c,所以椭圆C的方程为22195x y+=;(2)设()()1122,,A x yB x y222214189450195y x mx mx mx y=+⎧⎪⇒++-=⎨+=⎪⎩,由22(18)414(945)0m m∆=-⨯⨯->,得2140m-<1297mx x+=-,21294514mx x-=AB∴==≤所以当0m=时,max7AB=.17.(1)22184x y+=;(2)30x y-+=.【分析】(1)直接求出,b c,即可求解;(2)利用点差法,设()11,A x y,()22,B x y,由题意得22112222184184x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,然后,得到斜率()121212122y y x xkx x y y-+==--+,再代入中点,即可出k,进而求出直线l的方程【详解】(1)由题意可知24c =,2b = 所以24b =,24c =,2228a b c =+=所以椭圆Ω的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,由题意得22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得22221212084x x y y --+=,即()()()()12121212084x x x x y y y y +-+-+=,所以直线l 的斜率()121212122y y x x k x x y y -+==--+.因为点(2,1)P -是线段AB 的中点, 所以124x x +=-,122y y +=,所以1k =所以直线l 的方程为1(2)y x -=+,即30x y -+=. 【点睛】关键点睛:利用点差法和中点求出斜率k 是解题关键,属于基础题18.(1)2212x y -=;(2)10-. 【分析】(1)设双曲线方程,由焦点及渐近线方程运算即可得解;(2)设()()1122,,,A x y B x y ,联立方程组,结合韦达定理可得12y y +=-121y y =-,再由斜率公式即可得解. 【详解】(1)设双曲线的方程为()22221,0,0x y a b a b-=>>,由题意,223a b +=,该双曲线的渐近线方程by x a=±,又双曲线的一条渐近线方程为0x +=,所以2b a =, 所以222,1a b ==,所以双曲线C 的方程为2212x y -=;(2)设()()1122,,,A x y B x y ,由22120x y x y ⎧-=⎪⎨⎪-+=⎩,消去x化简可得210y +-=,0∆>,所以12y y +=-121y y =-,所以12121212121211112x x y y k k y y y y y y ⎛⎫--+=+=+=-+ ⎪⎝⎭121222101y y y y +-=-=-=--. 【点睛】关键点点睛:解决本题的关键是联立方程组,结合韦达定理对1211k k +变形.19.(1)22143x y +=;(2)35. 【分析】(1)由椭圆的定义结合平面几何的知识可直接求得a 、b ,即可得解; (2)联立直线方程与椭圆方程,求得点8,55M ⎛⎫ ⎪ ⎪⎝⎭,(0,N ,再由22MN MF y NF y =即可得解. 【详解】(1)因为12AF F △为等边三角形,1OA =即b =,又O 到直线2AF的距离d =2b d ==2a =, 则椭圆C 的标准方程为22143x y +=;(2)倾斜角为60°的直线经过椭圆C 的右焦点()21,0F ,则直线的方程为)1y x =-,联立)221143y x x y ⎧=-⎪⎨+=⎪⎩,解得0x y =⎧⎪⎨=⎪⎩85x y ⎧=⎪⎪⎨⎪=⎪⎩, 因为M 点在N点的上方,所以8,55M ⎛ ⎝⎭,(0,N , 所以2235M N MF y NF y ==. 20.(1)p =4,m =±4;(2)-4. 【分析】(1)利用抛物线的定义及题干条件,可求得p 的值,将M 点坐标代入,即可求得m 值; (2)当直线l 的斜率不存在时,方程为:x =2,代入抛物线方程,求得A 、B 点坐标,即可求得OA OB k k ⋅的值,当直线l 的斜率存在时,设直线为y =k (x -2),与抛物线联立,利用韦达定理,求得12y y ,12x x 的值,即可求得OA OB k k ⋅的值,综合即可得答案. 【详解】(1)抛物线C :y 2=2px (p >0)的焦点为(,0)2pF ,准线为2p x =-, 由抛物线定义知:点M (2,m )到F 的距离等于M 到准线的距离, ∴||242pMF =+=,∴p =4, 故抛物线C 的方程为y 2=8x , ∵点M (2,m )在抛物线C 上,∴m 2=16,∴m =±4,∴p =4,m =±4;(2)由(1)知:抛物线C 的方程为y 2=8x ,焦点为F (2,0),答案第17页,总17页 若直线l 的斜率不存在,则其方程为:x =2,代入y 2=8x ,可得:A (2,4),B (2,-4), 从而404042020OA OB k k ---=⨯=---⋅; 若直线l 的斜率存在,设为k (k ≠0),则其方程可表示为:y =k (x -2),由2(2)8y k x y x=-⎧⎨=⎩,消去x ,得:21(2)8y k y =-,即ky 2-8y -16k =0(k ≠0), Δ=64+64k 2>0,设A (x 1,y 1),B (x 2,y 2),则121616k y y k-==-, ∴22221212121111(()(16)4886464)()x x y y y y ===⨯-=⋅, 从而OA k ⋅1212121200164004OB y y y y k x x x x ---=⨯===---, 综上所述:直线OA 、OB 的斜率之积为-4.【点睛】处理抛物线问题,需熟练应用抛物线定义,在联立直线与抛物线方程时,消x 得到关于y 的一元二次方程为常用办法,可简化计算,提高正确率,属基础题.。

一道圆锥曲线试题的六种解法

一道圆锥曲线试题的六种解法

一道圆锥曲线试题的六种解法题目:设抛物线C:y^2 = 2px(p > 0)的焦点为F,点A在第一象限内且为抛物线C上一点,点M的坐标为(2,1),AM的中点为N,AN与C的准线交于点D,过A、D、M三点作圆Q,过点F作直线l平行于x轴,与圆Q相交于E、G两点。

(1)求圆心Q的坐标;(2)求△MEG的面积的最大值。

解法一:(1)设A(x_0,y_0),N(x_1,y_1),D(x_2,y_2),则M(2,1),由中点坐标公式得:x_1 = (2 + x_0)/2, y_1 = (1 + y_0)/2又因为点A在抛物线C上,所以y_0^2 = 2px_0。

因为AN与准线交于点D,所以D到准线的距离等于A到准线的距离。

所以x_2 = x_0 + p/2, y_2 = y_0 - 1。

由此得到圆心Q的坐标为(x_0 + 3p/4,y_0 - 1)。

(2)由于△MEG的面积与直线l的位置无关,所以只需求出△MEG面积的最大值即可。

根据点到直线的距离公式和三角形的面积公式,得到△MEG的面积为S = (1/2) × EG ×d,其中d为M到直线l的距离。

通过计算得到S的最大值为9/4。

解法二:(1)设E、G的坐标分别为(x_3,y_3)、(x_4,y_4),由于E、G在圆Q上且在直线l上,所以有:x_3 = 3p/4 + ty_3 = t - 1x_4 = 3p/4 - ty_4 = t - 1又因为△MEG是直角三角形,所以有:(x_3 - 2)^2 + (y_3 - 1)^2 = (x_4 - 2)^2 + (y_4 - 1)^2通过计算得到t的值,进一步得到圆心Q的坐标。

(2)由于△MEG的面积与直线l的位置无关,所以只需求出△MEG面积的最大值即可。

根据点到直线的距离公式和三角形的面积公式,得到△MEG的面积为S = (1/2) ×EG × d,其中d为M到直线l的距离。

圆锥曲线试题精选

圆锥曲线试题精选

圆锥曲线【题型剖析(1)】求圆锥曲线的离心率1.如图,中心均为原点O 的双曲线与椭圆有公共核心,M,N 是双曲线的两极点.若M,O,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )( )A .3B .2C 3D 22.椭圆22221(0)x y a b a b +=>>的左、右极点别离是A 、B ,左、右核心别离是F 1,F 2.若|AF 1|、|F 1F 2|、|F 1B|成等比数列,则此椭圆的离心率为( )A .14B 5C .12D 5-23.椭圆2221(5x y a a +=为定值,且5)a >的的左核心为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______.4.设1F ,2F 是椭圆E :2222x y a b +=1(a >b >0)的左、右核心,P为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为( )A .12B .23C .34D .455.已知1F 、2F 是椭圆的两个核心,知足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .1(0,]2 C .2(0,)2D .26.在椭圆22221(0)x y a b a b +=>>中,12,F F 别离是其左右核心,若122PF PF =,则该椭圆离心率的取值范围是( )A .1(,1)3B .1[,1)3C .1(0,)3D .1(0,]37.若是椭圆)0(12222>>=+b a by a x ,知足a ,b ,c 成等比数列,则该椭圆为“优美椭圆”,且其离心率215-=e ;由此类比双曲线,若也称其为“优美双曲线”,那么你取得的正确结论为:_________________________________.7.如图,F 1,F 2是双曲线C :22221x y a b -=(a >0,b >0)的左、右核心,过F 1的直线l 与C 的左、右两支别离交于A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3:4:5,则双曲线的离心率为( )A 13B 15C .2D 38.若双曲线221x y k+=的离心率小于2,则k 的取值范围是 .9.若椭圆的短轴为AB ,它的一个核心为F ,则知足三角形ABF 为等边三角形的椭圆的离心率是 。

高一数学圆锥曲线试题

高一数学圆锥曲线试题

高一数学圆锥曲线试题1.已知定点,,动点到定点距离与到定点的距离的比值是.(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;(Ⅱ)当时,记动点的轨迹为曲线.①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;②已知,是曲线上不同的两点,对于定点,有.试问无论,两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.【答案】(Ⅰ),方程表示的曲线是以为圆心,为半径的圆.(Ⅱ)当时,曲线的方程是,曲线表示圆,圆心是,半径是.①.②动直线与定圆相切.【解析】(Ⅰ)设动点的坐标为,则由,得,整理得: .,当时,则方程可化为:,故方程表示的曲线是线段的垂直平分线;当时,则方程可化为,即方程表示的曲线是以为圆心,为半径的圆. 5分(Ⅱ)当时,曲线的方程是,故曲线表示圆,圆心是,半径是.①由,及有:两圆内含,且圆在圆内部.如图所示,由有: ,故求的取值范围就是求的取值范围.而是定点,是圆上的动点,故过作圆的直径,得,,故,. 9分②设点到直线的距离为,,则由面积相等得到,且圆的半径.即于是顶点到动直线的距离为定值,即动直线与定圆相切.【考点】圆的方程,圆与圆的位置关系,直线与圆的位置关系。

点评:难题,本题确定轨迹方程,利用了“直接法”,对于参数的讨论,易出现遗漏现象。

本题确定点到直线的距离,转化成面积计算,不易想到。

2.如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ) 求椭圆C的方程;(Ⅱ) 求的取值范围.【答案】(Ⅰ) (Ⅱ) [,)【解析】 (Ⅰ) 设F2(c,0),则=,所以c=1.因为离心率e=,所以a=.所以椭圆C的方程为. 6分(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-,此时P(,0)、Q(,0).当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-,m) (m≠0),A(x1,y1),B(x2,y2).由得(x1+x2)+2(y1+y2)=0,则-1+4mk=0,故k=.此时,直线PQ斜率为,PQ的直线方程为.即.联立消去y,整理得.所以,.于是(x1-1)(x2-1)+y1y2.令t=1+32m2,1<t<29,则.又1<t<29,所以.综上,的取值范围为[,). 15分【考点】本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解圆锥曲线问题常用方法:
1、定义法
(1)椭圆有两种定义。

第一定义中, 。

第二定义中, 。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1))0(122
22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02
020=+k b y a x 。

(2))0,0(122
22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02
020=-k b
y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.
【典型例题】
例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

例2、F 是椭圆13
42
2=+y x 的右焦点,A(1,1)为椭圆内一定点,P (1)PF PA +的最小值为 (2)PF PA 2+的最小值为
例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,
例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5
3
sinA,求点A
例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

例6、已知椭圆
)52(11
2
2≤≤=-+m m y m x 过其左焦点且斜率为1B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。

【同步练习】
1、已知:F 1,F 2是双曲线122
22=-b
y a x 的左、右焦点,过F 1作直线交双曲线左支于点A 、B ,若m AB =,
△ABF 2的周长为( )
A 、4a
B 、4a+m
C 、4a+2m
D 、4a-m
2、若点P 到点F(4,0)的距离比它到直线x+5=0的距离小1,则P 点的轨迹方程是( )
A 、y 2=-16x
B 、y 2=-32x
C 、y 2=16x
D 、y 2=32x
3、已知△ABC 的三边AB 、BC 、AC 的长依次成等差数列,且AC AB >,点B 、C 的坐标分别为(-1,0),(1,0),则顶点A 的轨迹方程是( )
A 、
13422=+y x B 、)0(1342
2>=+x y x C 、)0(13422<=+x y x D 、)00(13
42
2≠>=+y x y x 且 4、过原点的椭圆的一个焦点为F(1,0),其长轴长为4,则椭圆中心的轨迹方程是( ) A 、)1(49)2
1
(2
2-≠=+-x y x B 、)1(49
)21(22-≠=++x y x C 、)1(49)2
1(2
2
-≠=
-+x y x D 、)1(4
9
)21(22-≠=++x y x 5、已知双曲线
116
92
2=-y x 上一点M 的横坐标为4,则点M 到左焦点的距离是 6、抛物线y=2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是 7、已知抛物线y 2=2x 的弦AB 所在直线过定点p(-2,0),则弦AB 中点的轨迹方程是
8、过双曲线x 2-y 2=4的焦点且平行于虚轴的弦长为
9、直线y=kx+1与双曲线x 2-y 2=1的交点个数只有一个,则k=
10、设点P 是椭圆
19
252
2=+y x 上的动点,F 1,F 2是椭圆的两个焦点,求sin ∠F 1PF 2的最大值。

11、已知椭圆的中心在原点,焦点在x 轴上,左焦点到坐标原点、右焦点、右准线的距离依次成等差数列,若直线l 与此椭圆相交于A 、B 两点,且AB 中点M 为(-2,1),34=AB ,求直线l 的方程和椭圆方程。

12、已知直线l 和双曲线)0,0(122
22>>=-b a b y a x 及其渐近线的交点从左到右依次为A 、B 、C 、D 。

求证:
CD AB =。

相关文档
最新文档